Appendlx A Brief Review

of Continuity and

Differentiability

R" will denote the set of r-tuples (x,, . . - , x,) of real numbers. Although we
use only the cases R' = R, R?, and R?, the more general notion of R" unifies
the definitions and brings in no additional difficulties; the reader may think
in R?* or R?, if he wishes so. In these particular cases, we shall use the follow-
ing more traditional notation: x or ¢ for R, (x, y) or (4, v) for R?, and (x, y, z)
for R3.

A. Continuity in R*

We start by making precise the notion of a point being e-close to a given
point p, € R*;

A ball (or open ball) in R* with center p, = (x?, ..., x?) and radius € > 0
is the set

B(po)=1{(x15...5x) € R*; (x; — xD* + --- + (x, — x2) < €2}.

Thus, in R, B.(p,) is an open interval with center p, and length 2¢; in R?,
B.(p,) is the interior of a disk with center p, and radius €; in R?, B.(p,) is the
interior of a region bounded by a sphere of center p, and radius € (see Fig.
A2-1). .

A set U — R" is an open set if for each p € U there is a ball B.(p) = U;
intuitively this means that points in U are entirely surrounded by points of U,
or that points sufficiently close to points of U still belong to U.

For instance, the set

{(x,eER;a<x<bc<y<d}
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Figure A2-1

is easily seen to be open in R2. However, if one of the strict inequalities, say
x < b, is replaced by x <C b, the set is no longer open; no ball with center at
the point (b, (d + ¢)/2), which belongs to the set, can be contained in the set
(Fig. A2-2). - |

It is convenient to say that an open et in R” containing a point p € R”
is a neighborhood of p.

From now on, U — R" will denote an open set in R".

We recall that a real function f: U = R — R of a real variable is con-
tinuous at x, € U if given an e > 0 there exists a § > 0 such that if

=3l <8 e o — sl <ce

Figure A2-2
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Similarly, a real function f: U = R? — R of two real variables is continuous
at (x5, y,) € U if given an € > O there exists a § > 0 such that if

(x — x0) + (¥ — y,)? < 82, then
| fCe, ») — fxo, ¥o) | < €.

The notion of ball unifies these definitions as particular cases of the following

general concept:
A map F: U < R* — R"™ is continuous at p € U if given € > 0, there

exists a 0 > 0 such that
F(By(p)) = BAF(p))- -

In other words, F is continuous at p if points arbitrarily close to F(p) are
images of points sufﬁciently close to p. It is easily seen that in the particular
cases of n = 1, 2 and m = 1, this agrees with the prev1ous definitions. We
say that F is continuous in U if F is continuous for all p € U (Fig. A2-3).

R2
F(Bg(p))

B:(F(p))
R3 :

Figure A2-3

Given a map F: U = R* — R™, we can determine m functions of n
variables as follows. Let p =(x;,...,x,) € U and f(p) = W15+ - V).
Then we can write ’

Y1 :'fl(xl”-}"’ xn)’ e Vm zfm(xp PP x,,).

The functions f;: U — R, i =1, ..., m, are the component functions of F.
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Example 1 (Symmetry). Let F: R?* — R® be the map which assigns to
each p € R? the point which is symmetric to p with respect to the origin
O € R3. Then F(p) = —p, or

F(x, y, z) = (—%, =¥, —2);
and the component functions of F are
fl(x3y’z):—xs ‘fz(x:ysz)z_y’ f‘i*!(xi'y’z)v= .__Z'

Example 2 (Inversion). Let F: R* — {(0, 0)} — R? be defined as follows.
Denote by |p| the distance to the origin (0, 0) = O of a point p € R* By
definition, F(p), p # 0, belongs to the half-line Op and is such that | F(p) || p|
= 1. Thus, F(p) = p/|p|?, or

_{ x y
Fo ) = (i)  @N=O0,
and the component functions of F are
fi(x, ) = x—z%:j}ja falx, y) = x_z—i{—)—;i
Example 3 (Projection). Let m: R* — R* be the projection a(x, y,2) =

(xs }’) Thenfl(x9 y: Z) == xafz(xs ya Z) :y’

The following proposition shows that the continuity of the map F is
equivalent to the continuity of its component functions. :

PROPOSITION 1. F: U = R* — R= is continuous if and only if each
component function f: U < R* — R, i=1,...,m, is continuous. ’

Proof. Assume that F is continuous at p € U. Then given € > 0, there
exists § > 0 such that F(B,(p)) < B.(F(p)). Thus, if g € By(p), then

F(q) € B.F(p)),
that is,

@) — FAPW? + -+ + (@) — Ll DI < €2,

which implies that, for each i =1,...,m,|f{q) —fip)| < €. Therefore,
given € > 0 there exists § > 0 such that if g € S,(p), then [ flq) — fdp)| < €.

Hence, each f; is continuous at p.
Conversely, let f,, i = 1, ..., m, be continuous at p. Then given € > 0

there exists §, > O such that if ¢ € S;(p), then|f(q) — f(p)| < e/~/m. Set
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0 < min g, and let g € S,(p). Then

(fi(@) =P + -+ 4+ (fuld) — [P < €2,
and hence, the continuity of F at p. ' Q.E.D.
‘It follows that the maps in Examples 1, 2, and 3 are continuous.
Example 4. Let F: U < R — R™. Then
Ft)=(x,(9), - .., x,(®), teU.

This is usually called a vector-valued function, and the component functions
of F are the components of the vector F(z) € R™. When F is continuous, or,
equivalently, the functions x(#), i = 1, . .., m, are continuous, we say that
Fis a continuous curve in R". »

In most applications, it is convenient to express the continuity in terms of
neighborhoods instead of balls.

PROPOSITION 2. 4 map F: U < R* — R™ is continuous at p € U if
and only if, given a neighborhood V of F(p) in R™ there exists a neighborhood
W.of p in R* such that F(W) — V.

Proof. Assume that Fis continuous‘at p. Since ¥ is an open set containing
F(p), it contains a ball B.(F(p)) for some ¢ > 0. By continuity, there exists a
ball B;(p) = W such that

FW) = F(B{(p)) = B{F(p)) < V,

and this proves that the condition is necessary.

Conversely, assume that the condition holds. Let & > 0 be given and set
V = B.(F(p)).- By hypothesis, there exists a neighborhood W of p in R” such
that F(W) — V. Since W is open, there exists a ball B;(p) = W- Thus,

HBxp)) =« F(W) = V = B(F(p)),
and hence the continuity of F at p. Q.E.D.

"The composition of continuous maps yields a continuous map. More
precisely, we have the following proposition.

PROPOSITION 3. Let F:U < R*—R=™ and G:V < R® — R¥ pe
continuous maps, where U and V are open sets such that F(U) = V. Then
G o F: U < R* — R is a continuous map.
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Proof. Let p € U and let ¥ be a neighborhood of G o F(p) in R*. By
continuity of G, there is a neighborhood @ of F(p) in R™ with G(Q) < V.
By continuity of F, there is a neighborhood W of p in R* with F(W) < @.
Thus,

GoFW)c GQ)c V,
and hence the continuity of G o F. : Q.E.D.

It is often necessary to deal with maps defined on arbitrary (not neces-
sarily open) sets of R", To extend the previous ideas to this situation, we shall
proceed as follows.

Let F: A = R" — R™ be a map, where 4 is an arbitrary set in R*. We say
that F is continuous in' A if there exists an open set U « R", U > 4, and a
continuous map F: U — R™ such that the restriction F|A4 = F. In other
words, F is continuous in A if it is the restriction of a continuous map defined
in an open set containing A.

It is clear that if F: 4 < R* — Rm is continuous, given a neighborhood
V of F(p) in R™, p € A, there exists a neighborhood W of p in R” such that
F(W N A) < V. For this reason, it is convenient to call the set W N 4 a
neighborhood of p in A (Fig. A2-4).

WNA

Figure A2-4

Example 5. Let
2 2 2
E= {(x.,y, z) e R3;%+%+_§_2: 1}

be an ellipsoid, and let z: R®* — R? be the projection of Example 3. Then the
restriction of z to E is a continuous map from E to R*.

We say that a continuous map F: 4 = R*— R" is a homeomorphism
onto F(A)if F is one-to-one and the inverse F~!: F(4) = R"— R” is continu-
ous. In this case 4 and F(A) are homeomorphic sets.
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Example 6. Let F: R? — R3 be given by
F(x, y, z) = (xa, yb, zc).
Fis clearly continuous, and the restriction of ¥ to the sphere
S ={(x,5,2) € R; x> + y? 4 z* =1}

is a continuous map F: §* — R®. Observe that F(S?) = E, where E is the
ellipsoid of Example 5. It is also clear that ¥ is one-to-one and that

FYx,y,2) = (—,-y[;,—)-

Thus, F~' = F=1| E is continuous. Therefore, F is a homeomorphism of the
sphere S? onto the ellipsoid E.

Finally, we want to describe two properties of real continuous functions
defined on a closed interval [a, ],

[a, b] = {x € R; a < x < b}

(Props. 4 and 5 below), and an important property of the closed interval
[a, B] itself. They will be used repeatedly in this book.

PROPOSITION 4 (The Intermediate Value Theorem). Let f: [a, b] — R
be a continuous function defined on the closed interval [a, b]. Assume that
f(a) and f(b) have opposite signs; that is, f(a)f(b) < 0. Then there exzsts a
point ¢ € (a, b) such that f(c) = 0.

PROPOSITION 5. Ler f: [a, b] be a continuous function defined in the
closed interval [a, b]. Then f reaches its maximum and its minimum in [a, b];
that is, there exist points X,, X, € [a, b] such that £(x,) < f(x) < f(x,) for all
x € [a, b].

PROPOSITION 6 (Heine-Borel). Let [a, b] be a closed interval and let
L, € A, be a collection of open intervals in [a, b] such that | J, 1, = [a, b].
Then it is possible to choose a finite number 1., 1.,, . .., L. of 1, such that
UL, =Li=1,...,n

These propositions are standard theorems in courses on advanced
calculus, and we shall not prove them here. However, proofs are provided in
the appendix to Chap. 5 (Props. 6, 13, and 11, respectively).
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B. Differentiability in R"

Let f: U =« R— R. The derivative f'(x,) of fat x, € U is the limit (when
it exists)

fey = tim Tt W=D ey

When f has derivatives at all points of a neighborhood V of x,, we can
consider the derivative of f': ¥ — R at x,, which is called the second derivative
F"(x,) of f at x,, and so forth. fis differentiable at x, if it has continuous
derivatives of all orders at x,. f is differentiable in U if it is differentiable at
all points in U.

Remark. We use the word differentiable for what is sometimes called
infinitely differentiable (or of class C*). Our usage should not be confused
with the usage of elementary calculus, where a function is called differentiable
if its first derivative exists.

Let F: U = R? — R. The partial derivative of f with respect to X at
(%o, ¥o) € U, denoted by (9f]0x)(xs, ¥o); is (when it exists) the derivative at
x, of the function of one variable: x — f(X, ¥,). Similarly, the partial deriva-
tive with respect to y at (x,, o), (@//0¥)(Xs, ¥o), is defined as the derivative at
¥ of y — f(%o, ¥). When fhas partial derivatives at all points of a neighbor-
hood ¥ of (x,, ¥,), we can consider the second partial derivatives at (Xo, ¥,):

i(ai) 9 i(ﬂ.’) _ 97
dx\dx/)  dx*. dx\dy/)  dxody’
i(ifl) W] i(‘?i) _ 9
day\dx) ~ dydx’  dy\dy/  *’
and so forth. fis differentiable at (x,, y,) if it has continuous partial derivatives

of all orders at (x,, y,). fis differentiable in U if it is differentiable at all points
of U. We sometimes denote partial derivatives by

é’f 0f — (?zf Y _ (?zf —
fxﬂ fya ’_fxxa axay_fxya f;’y

It is an important fact that when f'is differentiable the partial derivatives
of f are independent of the order in which they are performed; that is,

& & Of _ 3 "
dxdy dyodx d*xdy Ixdyox ’
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The definitions of partial derivatives and differentiability are easily extend-
ed to functions f: U < R" — R. For instance, (9f/dx;)(x?, xS, . . ., x7) is the
derivative of the function of one variable

X3 —> f(x9, %%, x5, x3, ..., x0).

A further important fact is that partial derivatives obey the so-called
chain rule. For instance, if x = x(u, v), y = y(u, v), z = z(u, v) are real differ-
entiable functions in U < R? and f(x, y, 2) is a real differentiable function in
R3, then the composition f(x(u, v), y(u, v), z(u, v)) is a differentiable function
in U, and the partial derivative of f with respect to, say, « is given by

of _ofox o dy_ 9f9s
du 0xdu you ' 0z du

We are now interested in extending the notion of differentiability to maps
F: U < R”— R~ We say that F is differentiable at p € U if its component
functions are differentiable at p; that is, by writing

F(Xpsoons X)) =(filx15 oo Xn)s oo s [l <05 X))

the functions f,,i =1,..., m, have continuous partial derivatives of all
orders at p. F is differentiable in U if it is differentiable at all points in U.

For the case m = 1, this repeats the previous definition. For the case
n =1, we obtain the notion of a (parametrized) differentiable curve in R™.
In Chap. 1, we have already seen such an object in R3. For our purposes,
we need to extend the definition of tangent vector of Chap. 1 to the present
- situation. A tangent vector toamap a: U « R— R™att, € U is the vector
in R™ 2 ‘
a'(to) = (X1(to)s . . - 5 Xm{to))-

Example 7. Let F: U — R* — R® be given by
F(u, v) = (cos u cos v, cos u sin v, cos? v), (u, v) € U.
The component functions of F, namely,
S1(u, v) = cos u cos v, S2(u, v) = cos u sin v, S3(u, v) = cos? v

have continuous partial derivatives of all orders in U. Thus, Fis differentiable
in U. ‘

Example 8. Let ¢: U < R — R* be given by

N o) = (4, 3, 1%, 1), te U.
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Then o is a differentiable curve in R4, and the tangent vector to & at ¢ is
a'(t) = (4¢3, 312, 2t, 1). '

Example 9. Given a vector w € R™ and a point p, € U = R", we can
always find a differentiable curve a: (—¢, €) — U with (0) = p, and ¢'(0) =
w. Simply define a(z) = po + tw, t € (—F€, €). By writing p, = (x1, . . ., xp)
and w = (wy, ... , W,), the component functions of & are x(t) = x? + tw,
i=1,...,m Thus, o is differentiable, (0)-= p, and

a'(0) = (x4(0), ... s X, (0)) = (Wys .o s Wa) = W,

We shall now introduce the concept of differential of a differentiable
map. Jt will play an important role in this book.

DEFINITION 1. Let F: U c R® — R® be a differentiable map. To each
p € U we associate a linear map dF,: R® — R™ which is called the differential
of F at p and is defined as follows. Let w € R* and let o: (—¢,€) — U be a
differentiable curve such that a(0) = p, &'(0) = w. By the chain rile, the curve
B = Foa: (—¢, €) — R™ is also differentiable. Then (Fig. A2-5)

dFy(w) = B'(0).

dF p(w)

F(p)
F
——y
D
\ u
p 4
Figure A2-5

PROPOSITION 7. The above definition of dF, does not depend on the
choice of the curve which passes through p with tangent vector w, and dF, is,
in fact, a linear map.

Proof. To simplify notation, we work with the case F: U = R*>-— R’
Let (4, ) be coordinates in R* and (x,y,z) be coordinates in R®. Let
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e; =(1,0), e; =(0,1) be the canonical basis in R? and f, = (1,0, 0),
o =(0,1,0), f; =(0, 0, 1) be the canonical basis in R*. Then we can write

a(t) = (u(t), v(1), t € (—¢,€),
%' (0) = w = u'(0)e; + v'(0)e,
F(u, v) = (x(u, v), Y, v), z(4, v)), and
B(®) = F o a(t) = (x(u(®), v(t)), y(u(t), v(®)), 2(u(t), v(2)))-

Thus, using the chain rule and taking the derivatives at z = 0, we obtain
7 dxdu , dxdv dydu , dy dv)
FO) = (au & a dt)f‘ (au @ v d f2

ozdu , dzdy
+ (au dt U o dt)f3

ox dx du
du ov\|dt
_ |9y 9y -
== 7 = dF (w).
9z 9z |do
du O/ \dt

This shows that dF, is represented, in the canonical bases of R? and R3,
by a matrix which depends only on the partial derivatives at p of the com-
ponent functions x, y, z of F. Thus, dF, is a linear map, and clearly dF (w)
does not depend on the choice of a.

The reader will have no trouble in extending this argument to the more

general situation. : Q.E.D.

The matrix of dF,: R* — R™ in the canonical bases of R* and R~ that
is, the matrix (df;/ox,), i =1,...,m, j=1,..., n, is called the Jacobian
matrix of F at p. When n = m, this'is a square matrix and its determinant is
called the Jacobian determinant; it is usual to denote it by

det(r) = GLn Lol

Remark. There is no agreement in the literature regarding the notation
for the differential. It is also of common usage to call dF, the derivative of
F at p and to denote it by F'(p).

Example 10, Let F: R> — R? be given by

F(x, y) = (x* — % 2xy),  (x,)) € R~
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F is easily seen to be differentiable, and its differential dF, at p = (x, y) is

2x '—2y)

dF, = (
2y 2x

For instance, dF; ,(2, 3) = (—2, 10).

One of the advantages of the notion of differential of a map is that it
allows us to express many facts of calculus in a geometric language. Consider,
for instance, the following situation: Let F: U < R* — R, G: V < R* — R?
be differentiable maps, where U and ¥ are open sets such that F(U) < V.
Let us agree on the following set of coordinates,

Uc R* >V R S5+ R?
(u, v) (x,, 2) ¢ m
and let us write
F(u, v) = (x(u, v), y(u, v)s 24, v)),
G(x’ Vs Z) = (f(x’ s Z)a ﬂ(x’ Vs Z))'
Then

Go F(us 'U) 5 (é(x(u’ 'U)’ y(”» 'U)s Z(us 'U))’ ﬂ(x(u: 'I)), y(us 'U)’ z(”s 'U)))’

and, by the chain rule, we can say that G o Fis differentiable and compute the
partial derivatives of its-component functions. For instance,

4 0§6x+6§6y+0602
u_ Oxdu ' dyou ' 9z du

Now, a simple way of expressing the above situation is by using the fol-
lowing general fact.

PROPOSITION 8 (The Chain Rule for Maps). Let F: U < R* — R®
and G:V = R® — Rk be differentiable maps, where U and V are open sets
such that F(U) < V. Then G o F: U — R* is q differentiable map, and

d(G o F), = dGgy o dF,, p e U

Proof. The fact that G o F is differentiable is a consequence of the chain
rule for functions. Now, let w, € R" be given and let us consider a curve
o: (—e,, €,) — U, with a(0) = p, a’(0) = w,. Set dF,(w,) = w, and observe
that dGp,y(ws) = (ddiXG o F o @)],—o. Then

G © F)0:) = 9(G o F o @)ymo = dGrey(03) = dGrep © dF, ().
QED.
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Notice that, for the particular situation we were considering before, the
relation d(G o F), = dGp,, o dF, is equivalent to the following product of
Jacobian matrices,

0 o 0 o9& o0& x ox

Ju oo ox dy dz|[du v
dy 9y
ou ov
oq 9dn) \9n 9y 9nf\dz Oz
du v ox dy 0z/ du v

which contains the expressions of all partial derivatives 0&/du, 0¢/dv, dn/du,
on/dv. Thus, the simple expression of the chain rule for maps embodies a
great deal of information on the partial derivatives of their component func-
tions.

An important property of a differentiable function f: (a, b) cR—R
defined in an open interval (g, b) is that if f’(x) = 0 on (g, b), then fis con-
stant on (a, b). This generalizes for differentiable functions of several variables
as follows.

We say that an open set U — R" is connected if given two points p,qg € U
there exists a continuous map ¢: [¢, b] — U such that a(a) = p and a(b) = q.
This means that two points of U can be joined by a continuous curve in U or
that U is made up of one single “piece.”

PROPOSITION 9. Let f: U — R®*— R be a differentiable function
defined on a connected open subset U of R®. Assume that df,: R* — R is zero
at every point p € U. Then { is constant on U.

Proof. Let p € U and let B;(p) — U be an open ball around p and con-
tained in U. Any point g € B.(p) can be joined to p by the “radial” segment
B:10, 1] — U, where B(t) =tq 4 (1 — t)p, t € [0, 1] (Fig. A2-6). Since U
is open, we can extend fto (0 — ¢, 1 + ¢€). Now, foB: (0 — ¢, 1 ~|—f)-—>R
is a function defined in an open interval, and

d(f ° B) = (df o dp), = 0,
since df = 0. Thus,

d
dirop=0

for all 1 € (0 —¢,1 4 ¢), and hence (f o B) = const. This means that

F(BO) = f(p) = f(B(1)) = f(q); that is, fis constant on B,(p).
Thus, the proposition is proved locally; that is, each point of U has a
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Figure A2-6

neighborhood such that f is constant on that neighborhood. Notice that so
far we have not used the connectedness of U. We shall need it now to show
that these constants are all the same.

Let r be an arbitrary point of U. Since U is connected, there exists a
continuous curve o:[a, b] — U, with a(@) =p, a(b) =r. The function
fo a:[a, b] — R is continuous in [a, b]. By the first part of the proof, for
each ¢ € [a, b], there exists an interval I,, open in [g, b], such that fo & is
constant on I,. Since |_J, I, = [a, b], we can apply the Heine-Borel theorem.
(Prop. 6). Thus, we can choose a finite number I,, . . . , I of the intervals I,
so that |, I, =[a,b], i =1,...,k We can assume, by renumbering the
intervals, if necessary, that two consecutive intervals overlap. Thus, fo & is
constant in the union of two consecutive intervals. It follows that fis constant
on [a, b]; that is,

floa) = f(p) = flab)) = f(r).
Since r is arbitrary, fis constant on U. Q.E.D.

One of the most important theorems of differential calculus is the so-
called inverse function theorem, which, in the present notation, says the
following. (Recall that a linear map 4 is an isomorphism if the matrix of 4
is invertible.)

INVERSE FUNCTION THEOREM. Let F: U < R* — R® be q differ-
entiable mapping and suppose that at p € U the differential dF,: R* — R* is
an isomorphism. Then there exists a neighborhood V of p in U and a neigh-
borhood W of F(p) in R® such that F:V — W has a differentiable inverse
F1:W—-YV,

A differentiable mapping F: ¥ < R*— W < R", where V' and W are open
sets, is called a diffeomorphism of V with W if F has a differentiable inverse.
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The inverse function theorem asserts that if at a point p € U the differential
- dF, is an isomorphism, then F is a diffeomorphism in a neighborhood of p.
In other words, an assertion about the differential of F at a point implies a
similar assertion about the behavior of F in a neighborhood of the point.

This theorem will be used repeatedly in this book. A proof can be found,
for instance, in Buck, Advanced Calculus, p. 285. :

Example 11, Let F: R? — R? be given by
F(x, y) = (e” cos y, e* sin y), (x, ) € R,

The component functions of F, namely, u(x, y) = e* cos y, v(x,y) = e*
sin y, have continuous partial derivatives of all orders. Thus, F is differenti-
able. ,

It is instructive to see, geometrically, how F transforms curves of the
xy plane. For instance, the vertical line x = x, is mapped into the circle
u =e*cos y, v = e™sin y of radius ¢, and the horizontal line y =y, is
mapped into the half-line ¥ = e* cos y,, v = e* sin y, with slope tan y,. It
follows that (Fig. A2-7)

[ v
yi X =Xp
bon
0 dF (xo . 30)(1,0)
——y =y, Yo
(Xano) (1,0) -—
B 0 u
0 i

Figure A2-7

d .
ngxo,yo)(l’ 0) = Ei(ex COS Yo, e” sin J’o) lx=xo
= (€™ ¢08$ yo, €* sin p,),
dF(xo,yo)(la 0) = %(exo cos y, €* sin y)ly=yo

= (—e* sin y,, €*°Cos yy).

This can be most easily checked by computing the Jacobian matrix of F,
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au au x __px
3% ¥ e*cosy —e*siny
dF(x’y) - == >

dy 9y e*siny e*cosy

dx dy

and applying it to the vectors (1, 0) and (0, 1) at (x,, ¥,)-

We notice that the Jacobian determinant det(dF,, ,,) = e* # 0, and thus
dF, is nonsingular for all p = (x, y) € R? (this is also clear from the previous
geometric considerations). Therefore, we can apply the inverse function
theorem to conclude that F is locally a diffeomorphism.

Observe that F(x, y) = F(x, y + 2n). Thus, F is not one-to-one and has
no global inverse. For each p € R?, the inverse function theorem gives
neighborhoods ¥ of p and W of F(p) so that the restriction F: V' — Wis a
diffeomorphism. In our case, ¥ may be taken as the strip {—oc0 < x < oo,
0 < y < 2z} and W as R* — {(0, 0)}. However, as the example shows, even
if the conditions of the theorem are satisfied everywhere and the domain of
definition of F is very simple, a global inverse of F may fail to exist.



