An Extremely Short Proof of the Hairy Ball Theorem

Peter McGrath

Abstract. Using winding numbers, we give an extremely short proof that every continuous field of tangent vectors on S^2 must vanish somewhere.

Consider the unit two sphere $S^2 = {\mathbf{p} \in \mathbb{R}^3 : |\mathbf{p}| = 1}$ in \mathbb{R}^3 . We say a function $\mathbf{v} : S^2 \to \mathbb{R}^3$ is a *vector field* on S^2 if $\langle \mathbf{v}(\mathbf{p}), \mathbf{p} \rangle = 0$ for each $\mathbf{p} \in S^2$ and call a vector field *continuous* if its component functions are continuous.

Theorem 1. Suppose **v** is a continuous vector field on S^2 . Then there is $\mathbf{p} \in S^2$ such that $\mathbf{v}(\mathbf{p}) = 0$.

This classical theorem was originally proven by Poincaré and is sometimes called the "Hairy Ball theorem." Theorem 1 has many interesting proofs (see, for instance, [2] and the charming book [1]) and various generalizations; for more information, see the introduction of [2]. The distinguishing attribute of the present proof is its brevity and elegance: Each of the aforementioned proofs requires computations in and between a set of stereographic coordinate charts that appropriately cover S^2 . The argument here is shorter and and simpler.

A regular smooth curve in the plane is a smooth map $S^1 \to \mathbb{R}^2$ whose derivative does not vanish anywhere. The rotation number of such a curve γ is $\frac{1}{2\pi}$ times the change that the oriented angle $\dot{\gamma}$ makes with some fixed reference direction (e.g., $\mathbf{e}_1 =$ (1,0)) as the curve is traversed; in other words, it is the winding number of $\dot{\gamma}$, thought of as a map $S^1 \to \mathbb{R}^2 \setminus \{0\}$. The rotation number is an integer that is an invariant under regular homotopy (homotopy through regular curves).

Proof. Suppose for the sake of a contradiction that S^2 admits a continuous nonvanishing vector field **v**; we may suppose **v** has unit length by replacing **v** with $\frac{\mathbf{v}}{|\mathbf{v}|}$. We first note that the definition of rotation number can be extended to curves in S^2 by replacing the *fixed* reference direction \mathbf{e}_1 by the *variable* direction **v** in the definition above.

To see this, endow \mathbb{R}^3 with a right-handed orientation so the ordered 3-tuple of standard basis vectors $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is positively oriented and identify \mathbb{R}^2 with the subset $\{(x, y, z) \in \mathbb{R}^3 : z = 0\} \subset \mathbb{R}^3$. Given $\mathbf{p} \in S^2$ and a unit vector $\mathbf{w} \in T_{\mathbf{p}}S^2$, there is a unique unit vector $\mathbf{w}^{\perp} \in T_{\mathbf{p}}S^2$ such that $\{\mathbf{p}, \mathbf{w}, \mathbf{w}^{\perp}\}$ is positively oriented. For such \mathbf{p} and \mathbf{w} , denote by $\Phi_{\mathbf{p},\mathbf{w}}$ the isometry of \mathbb{R}^3 determined by requesting that $\Phi_{\mathbf{p},\mathbf{w}}$ map the point \mathbf{p} to $\mathbf{0}$ and send the ordered 3-tuple of tangent vectors $\{\mathbf{w}, \mathbf{w}^{\perp}, \mathbf{p}\} \subset T_{\mathbf{p}}\mathbb{R}^3$ to $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\} \subset T_0\mathbb{R}^3$. Clearly, $\Phi_{\mathbf{p},\mathbf{w}}$ depends continuously on \mathbf{p} and \mathbf{w} . We define the rotation number of a curve γ in S^2 with respect to \mathbf{v} to be the winding number of the continuous curve $\Phi_{\gamma, \mathbf{v}(\gamma)}(\dot{\gamma})$.

continuous curve $\Phi_{\gamma, \mathbf{v}(\gamma)}(\dot{\gamma})$. Consider now the family of regular smooth curves in S^2 defined as follows: $C_{\mathbf{p},s}$ (for $\mathbf{p} \in S^2$, $s \in (-1, 1)$) is the circle that is the intersection of S^2 and the plane { $\mathbf{q} \in S^2$:

http://dx.doi.org/10.4169/amer.math.monthly.123.5.502

MSC: Primary 55M25

 $\langle \mathbf{q}, \mathbf{p} \rangle = s$, oriented so that **p** is the positive normal. These curves are all regularly homotopic and so have the same rotation number with respect to **v**, say *n*.

Now notice that for s = 0, $C_{\mathbf{p},s}$ and $C_{-\mathbf{p},s}$ parametrize the same great circle but with opposite orientations. Thus, n = -n and hence n = 0. On the other hand, for s close to 1, the rotation number of $C_{\mathbf{p},s}$ is close to the rotation number of a circle in the plane because **v** is close to $\mathbf{v}(\mathbf{p})$ on $C_{\mathbf{p},s}$ by continuity. Thus, $n \in \{-1, 1\}$. This is a contradiction.

REFERENCES

- 1. W. Chinn, N. Steenrod, *First Concepts of Topology*. Mathematical Association of America, Washington, DC, 1966.
- 2. M. Eisenberg, R. Guy, A proof of the Hairy Ball theorem, Amer. Math. Monthly 86 (1979) 571-574.

Department of Mathematics, Brown University, Providence RI 02912 Peter_Mcgrath@brown.edu