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Abstract. Using winding numbers, we give an extremely short proof that every continuous
field of tangent vectors on S2 must vanish somewhere.

Consider the unit two sphere S2 = {p ∈ R
3 : |p| = 1} in R

3. We say a function v :
S2 → R

3 is a vector field on S2 if 〈v(p), p〉 = 0 for each p ∈ S2 and call a vector field
continuous if its component functions are continuous.

Theorem 1. Suppose v is a continuous vector field on S2. Then there is p ∈ S2 such
that v(p) = 0.

This classical theorem was originally proven by Poincaré and is sometimes called
the “Hairy Ball theorem.” Theorem 1 has many interesting proofs (see, for instance, [2]
and the charming book [1]) and various generalizations; for more information, see the
introduction of [2]. The distinguishing attribute of the present proof is its brevity and
elegance: Each of the aforementioned proofs requires computations in and between a
set of stereographic coordinate charts that appropriately cover S2. The argument here
is shorter and and simpler.

A regular smooth curve in the plane is a smooth map S1 → R
2 whose derivative

does not vanish anywhere. The rotation number of such a curve γ is 1
2π

times the
change that the oriented angle γ̇ makes with some fixed reference direction (e.g., e1 =
(1, 0)) as the curve is traversed; in other words, it is the winding number of γ̇ , thought
of as a map S1 → R

2 \ {0}. The rotation number is an integer that is an invariant under
regular homotopy (homotopy through regular curves).

Proof. Suppose for the sake of a contradiction that S2 admits a continuous nonvanish-
ing vector field v; we may suppose v has unit length by replacing v with v

|v| . We first
note that the definition of rotation number can be extended to curves in S2 by replacing
the fixed reference direction e1 by the variable direction v in the definition above.

To see this, endow R
3 with a right-handed orientation so the ordered 3-tuple of

standard basis vectors {e1, e2, e3} is positively oriented and identify R
2 with the subset

{(x, y, z) ∈ R
3 : z = 0} ⊂ R

3. Given p ∈ S2 and a unit vector w ∈ TpS2, there is a
unique unit vector w⊥ ∈ TpS2 such that {p, w, w⊥} is positively oriented. For such p
and w, denote by �p,w the isometry of R3 determined by requesting that �p,w map
the point p to 0 and send the ordered 3-tuple of tangent vectors {w, w⊥, p} ⊂ TpR

3

to {e1, e2, e3} ⊂ T0R
3. Clearly, �p,w depends continuously on p and w. We define the

rotation number of a curve γ in S2 with respect to v to be the winding number of the
continuous curve �γ,v(γ )(γ̇ ).

Consider now the family of regular smooth curves in S2 defined as follows: Cp,s (for
p ∈ S2, s ∈ (−1, 1)) is the circle that is the intersection of S2 and the plane {q ∈ S2 :
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〈q, p〉 = s}, oriented so that p is the positive normal. These curves are all regularly
homotopic and so have the same rotation number with respect to v, say n.

Now notice that for s = 0, Cp,s and C−p,s parametrize the same great circle but
with opposite orientations. Thus, n = −n and hence n = 0. On the other hand, for s
close to 1, the rotation number of Cp,s is close to the rotation number of a circle in
the plane because v is close to v(p) on Cp,s by continuity. Thus, n ∈ {−1, 1}. This is a
contradiction.

REFERENCES

1. W. Chinn, N. Steenrod, First Concepts of Topology. Mathematical Association of America, Washington,
DC, 1966.

2. M. Eisenberg, R. Guy, A proof of the Hairy Ball theorem, Amer. Math. Monthly 86 (1979) 571–574.

Department of Mathematics, Brown University, Providence RI 02912
Peter Mcgrath@brown.edu

May 2016] NOTES 503


