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Outline of lectures

@ STM32H7 platform description and development environment
o FreeRTOS

Task management
Queues management
Interrupts

Resources management
Software timer

Event groups
Notification

Memory management

@ Simulation environment
@ Real board NUCLEO-H7A3ZI-Q
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Outline of lectures

@ Linux embedded

e Introduction to Linux embedded
e Linux architecture
e Yocto project and toolchain

@ Beaglebone Black (BBB)
@ SDcard + USB-serial converter

Livio Tenze FreeRTOS and introduction to Linux embedded



Basic knowledge

e C (C++) programming and pointers

@ Versioning systems (git), compilation process (cmake,
Makefile)

@ Linux base commands, console (bash)

@ Docker to use containers used during lessons

Livio Tenze FreeRTOS and introduction to Linux embedded



Recommended texts

FreeRTOS (ST)

@ Richard Barry-Using the FreeRTOS Real Time Kernel - A
Practical Guide - Cortex-M3 Edition

@ Mastering the FreeRTOS Real Time Kernel
(https://github.com/FreeRT0OS/
FreeRTO0S-Kernel-Book/releases/download/V1.1.0/
Mastering-the-FreeRTOS-Real-Time-Kernel.v1.1.0.
pdf)

@ FreeRTOS reference manual (https://www.freertos.org/
media/2018/FreeRTOS_Reference_Manual_V10.0.0.pdf)

@ FreeRTOS on STM32 v2 https://www.youtube.com/
playlist?1list=PLnMKNibPkDnExrAsDpjjF1PsvtoAIBquX

@ Corso STM32 di Elettronicaln
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Recommended texts

Introduction to Embedded Linux (Beaglebone black)
@ Embedded Linux System with the Yocto Project
@ Using Yocto Project with BeagleBone Black

@ Building embedded linux systems - 2nd edition, Yaghmour et
al.

@ https://bootlin.com/pub/conferences/2011/
montpellier/presentation.pdf
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Exam

@ Possible project on specific topic (FreeRTOS or Linux
embedded, or both)

@ Oral examination on subjects treated during lessons
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Software facilities

@ Docker image with posix simulation environment and a
webserver to download posix examples and STM32CubelDE

projects (Ubuntu 22.04)

@ Docker image with Yocto ready to use environment and with
jumpnowtek website (a good solution if you need to customize
your linux embedded system for BBB)
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Part |

ST device and IDE
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Board and IDE

@ Board NUCLEO-H7A3ZI-Q, Nucleo-144
@ Development system STMCubelDE, based on eclipse

Livio Tenze FreeRTOS and introduction to Linux embedded



FreeRTOS docker container

Instead of configuring from scratch the compilation environment, |
prepared a docker container where all requirements should be met:

docker run --name freertos -d -p 127.0.0.1:8080:80/tcp liviusl47/freertos:latest

After start, test the following link:
http://localhost:8080/upload/

Show simulator compilation process with cmake )
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Figure: NUCLEO-H7A3ZI-Q
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Board introduction

The STM32H7 Nucleo-144 boards based on the MB1363 reference
board (NUCLEO-H745Z1-Q, NUCLEO-H755Z1-Q,
NUCLEO-H7A3ZI-Q) provide an affordable and flexible way for
users to try out new concepts and build prototypes, by choosing
from the various combinations of performance and
power-consumption features provided by the
STM32H7microcontroller.
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Board introduction

@ The ST Zio connector, which extends the ARDUINO(R) Uno
V3 connectivity, and the ST morpho headers provide an easy
means of expanding the functionality of the Nucleo open

development platform with a wide choice of specialized
shields.

@ The STM32H7 Nucleo-144 boards do not require any separate
probe as they integrate the STLINK-V3E
debugger/programmer. The STM32H7 Nucleo-144 boards

come with comprehensive free software libraries and examples
available with the STM32Cube MCU Package.
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Board details
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External power supply input from VIN (7-11 V, 800 mA
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Power supply input from 5V_EXT
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USB CHARGER (5V)

USB CHARGER
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power supply input from 3V3_EXT
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Extension connectors
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Button, leds and other connections

Component ‘ GPIO
LD1 (green) | PBO
LD2 (yellow) | PE1
LD3 (red) PB14
Button Bl PC13

UART3 and SWD are connected to STLINK and are available via
the micro USB connection.
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STM32H7A3ZI| microcontroller

@ Schematics are available to check the behaviour of the board
(provided inside the freertos docker image).

@ The datasheet of the microcontroller is available at https:
//www.st.com/en/microcontrollers-microprocessors/
stm32h7a3zi.html?rt=ds&id=DS13195
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STM32CubelDE FreeRTOS

workspace_1.16.0- Device Configuration Tool - STM3ZCubeIDE
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STM32CubelDE clock
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Summary for IDE

Warning: create a login account

Show how to setup a project

Show how to add middleware FreeRTOS
Configure FreeRTOS and tick timer (HAL)
Parameters and remarks about CMSIS
Project manager — Code generator
Blocks where to write new code, ALT+K
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Show template from docker
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Part Il

FreeRTOS
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Multitasking on microncontroller

@ Typically, applications of microncontrollers include a mix of
both hard and soft real-time requirements.

Livio Tenze FreeRTOS and introduction to Linux embedded



Multitasking on microncontroller

@ Typically, applications of microncontrollers include a mix of
both hard and soft real-time requirements.

@ Soft real-time requirements are those that state a time
deadline—but breaching the deadline would not render the
system useless.
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Multitasking on microncontroller

@ Typically, applications of microncontrollers include a mix of
both hard and soft real-time requirements.
@ Soft real-time requirements are those that state a time

deadline—but breaching the deadline would not render the
system useless.

@ Hard real-time requirements are those that state a time
deadline—and breaching the deadline would result in absolute
failure of the system.
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FreeRTOS

FreeRTOS is a real-time kernel (or real-time scheduler) on top of
which microcontroller applications can be built to meet their hard
real-time requirements.
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FreeRTOS

FreeRTOS is a real-time kernel (or real-time scheduler) on top of
which microcontroller applications can be built to meet their hard
real-time requirements. It allows microcontroller applications
to be organized as a collection of independent threads of
execution. As most Cortex-M3 microcontroller have only one core,
in reality only a single thread can be executing at any one time.
The kernel decides which thread should be executing by examining
the priority assigned to each thread by the application designer.
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FreeRTOS

In the simplest case, the application designer could assign higher
priorities to threads that implement hard real-time
requirements, and lower priorities to threads that implement
soft real-time requirements. This would ensure that hard
real-time threads ! are always executed ahead of soft real-time
threads, but priority assignment decisions are not always that
simplistic.

Yn FreeRTOS, each thread of execution is called a task.
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Why a real-time kernel

There are many well established techniques for writing good
embedded software without the use of a kernel, and, if the system
being developed is simple, then these techniques might provide the
most appropriate solution.
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Why a real-time kernel

There are many well established techniques for writing good
embedded software without the use of a kernel, and, if the system
being developed is simple, then these techniques might provide the
most appropriate solution.

In more complex cases, it is likely that using a kernel would be
preferable, but where the crossover point occurs will always be
subjective.
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Real-time features

@ Abstracting away timing information
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Real-time features

@ Abstracting away timing information
The kernel is responsible for execution timing and provides a
time-related API to the application. This allows the structure
of the application code to be simpler and the overall code size
to be smaller.
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Real-time features

@ Abstracting away timing information

e Maintainability/Extensibility
Abstracting away timing details results in fewer
interdependencies between modules and allows the software to
evolve in a controlled and predictable way. Also, the kernel is
responsible for timing, so application performance is less
susceptible to changes in the underlying hardware.
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Real-time features

@ Abstracting away timing information
e Maintainability /Extensibility

e Modularity
Tasks are independent modules, each of which should have a
well-defined purpose.
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Real-time features

@ Abstracting away timing information
e Maintainability /Extensibility
e Modularity

@ Team development
Tasks should also have well-defined interfaces, allowing easier
development by teams.
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Real-time features

Abstracting away timing information
Maintainability /Extensibility
Modularity

Team development

Easier testing
If tasks are well-defined independent modules with clean
interfaces, they can be tested in isolation.
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Real-time features

Abstracting away timing information
Maintainability /Extensibility
Modularity

Team development

Easier testing

Code reuse
Greater modularity and fewer interdependencies can result in
code that can be re-used with less effort.
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Real-time features

Abstracting away timing information
Maintainability /Extensibility
Modularity

Team development

Easier testing

Code reuse

Improved efficiency

Using a kernel allows software to be completely event-driven,
so no processing time is wasted by polling for events that have
not occurred. Code executes only when there is something
that must be done.
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Real-time features

Abstracting away timing information
Maintainability /Extensibility
Modularity

Team development

Easier testing

Code reuse

Improved efficiency

Idle time

The Idle task is created automatically when the kernel is
started. It executes whenever there are no application tasks
wishing to execute. The idle task can be used to measure
spare processing capacity, to perform background checks, or
simply to place the processor into a low-power mode.
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Real-time features

Abstracting away timing information
Maintainability /Extensibility
Modularity

Team development

Easier testing

Code reuse

Improved efficiency

Idle time

Flexible interrupt handling
Interrupt handlers can be kept very short by deferring most of
the required processing to handler tasks.
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Real-time features

Abstracting away timing information
Maintainability /Extensibility
Modularity

Team development

Easier testing

Code reuse

Improved efficiency

Idle time

Flexible interrupt handling

Mixed processing requirements

Simple design patterns can achieve a mix of periodic,
continuous, and event-driven processing within an application.
In addition, hard and soft real-time requirements can be met
by selecting appropriate task and interrupt priorities.
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Real-time features

Abstracting away timing information
Maintainability /Extensibility
Modularity

Team development

Easier testing

Code reuse

Improved efficiency

Idle time

Flexible interrupt handling

Mixed processing requirements
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Easier control over peripherals
Gatekeeper tasks can be used to serialize access to peripherals.
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FreeRTOS features 1/2

@ Pre-emptive or co-operative operation
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FreeRTOS features 1/2

@ Pre-emptive or co-operative operation

@ Optional time-slicing
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FreeRTOS features 1/2

@ Pre-emptive or co-operative operation
@ Optional time-slicing

@ Very flexible task priority assignment
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FreeRTOS features 1/2

@ Pre-emptive or co-operative operation

@ Optional time-slicing

@ Very flexible task priority assignment

@ Flexible, fast and light-weight task notification mechanisms
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FreeRTOS features 1/2

Pre-emptive or co-operative operation

Optional time-slicing

Very flexible task priority assignment

Flexible, fast and light-weight task notification mechanisms

Queues
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FreeRTOS features 1/2

Pre-emptive or co-operative operation

Optional time-slicing

Very flexible task priority assignment

Flexible, fast and light-weight task notification mechanisms

Queues

Binary semaphores
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FreeRTOS features 1/2

Pre-emptive or co-operative operation
Optional time-slicing

Very flexible task priority assignment

Queues

("]
*]
]
@ Flexible, fast and light-weight task notification mechanisms
]
e Binary semaphores

(*]

Counting semaphores
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FreeRTOS features 1/2

Pre-emptive or co-operative operation

Optional time-slicing

Very flexible task priority assignment

Flexible, fast and light-weight task notification mechanisms
Queues

Binary semaphores

Counting semaphores

Mutexes
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FreeRTOS features 1/2

Pre-emptive or co-operative operation

Optional time-slicing

Very flexible task priority assignment

Flexible, fast and light-weight task notification mechanisms
Queues

Binary semaphores

Counting semaphores

Mutexes

Recursive mutexes
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FreeRTOS features 1/2

Pre-emptive or co-operative operation

Optional time-slicing

Very flexible task priority assignment

Flexible, fast and light-weight task notification mechanisms
Queues

Binary semaphores

Counting semaphores

Mutexes

Recursive mutexes

Software timers
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FreeRTOS features 1/2

Pre-emptive or co-operative operation

Optional time-slicing

Very flexible task priority assignment

Flexible, fast and light-weight task notification mechanisms
Queues

Binary semaphores

Counting semaphores

Mutexes

Recursive mutexes

Software timers

Event groups
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FreeRTOS features 1/2

Pre-emptive or co-operative operation

Optional time-slicing

Very flexible task priority assignment

Flexible, fast and light-weight task notification mechanisms
Queues

Binary semaphores

Counting semaphores

Mutexes

Recursive mutexes

Software timers

Event groups

@ Stream buffer
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FreeRTOS features 2/2

@ Message buffers
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FreeRTOS features 2/2

@ Message buffers
e Co-routines (deprecated)

Livio Tenze FreeRTOS and introduction to Linux embedded



FreeRTOS features 2/2

@ Message buffers
e Co-routines (deprecated)
@ Tick hook functions
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FreeRTOS features 2/2

Message buffers
Co-routines (deprecated)
Tick hook functions

Idle hook functions
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FreeRTOS features 2/2

Message buffers
Co-routines (deprecated)
Tick hook functions

Idle hook functions
Stack overflow checking
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FreeRTOS features 2/2

Message buffers
Co-routines (deprecated)
Tick hook functions

Idle hook functions
Stack overflow checking
Trace macros

®© 6 6 6 6 o
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FreeRTOS features 2/2

Message buffers

Co-routines (deprecated)

Tick hook functions

Idle hook functions

Stack overflow checking

Trace macros

Task run-time statistics gathering

®© 6 6 6 6 o o
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FreeRTOS features 2/2

@ Message buffers

e Co-routines (deprecated)

@ Tick hook functions

@ Idle hook functions

@ Stack overflow checking

@ Trace macros

@ Task run-time statistics gathering

@ Optional commercial licensing and support
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FreeRTOS features 2/2

Message buffers

Co-routines (deprecated)

Tick hook functions

Idle hook functions

Stack overflow checking

Trace macros

Task run-time statistics gathering

Optional commercial licensing and support

Full interrupt nesting model (for some architectures)

®© 6 6 6 6 6 0 o6 o
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FreeRTOS features 2/2

Message buffers

Co-routines (deprecated)

Tick hook functions

Idle hook functions

Stack overflow checking

Trace macros

Task run-time statistics gathering

Optional commercial licensing and support

Full interrupt nesting model (for some architectures)
A tick-less capability for extreme low power applications (for
some architectures)

® 6 6 6 6 6 6 6 0 o
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FreeRTOS features 2/2
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Message buffers

Co-routines (deprecated)

Tick hook functions

Idle hook functions

Stack overflow checking

Trace macros

Task run-time statistics gathering

Optional commercial licensing and support

Full interrupt nesting model (for some architectures)

A tick-less capability for extreme low power applications (for
some architectures)

Memory Protection Unit support for isolating tasks and
increasing application safety (for some architectures)
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FreeRTOS features 2/2
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Message buffers

Co-routines (deprecated)

Tick hook functions

Idle hook functions

Stack overflow checking

Trace macros

Task run-time statistics gathering

Optional commercial licensing and support

Full interrupt nesting model (for some architectures)

A tick-less capability for extreme low power applications (for
some architectures)

Memory Protection Unit support for isolating tasks and
increasing application safety (for some architectures)

Software managed interrupt stack when appropriate (this can
help save RAM)
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FreeRTOS features 2/2
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Message buffers

Co-routines (deprecated)

Tick hook functions

Idle hook functions

Stack overflow checking

Trace macros

Task run-time statistics gathering

Optional commercial licensing and support

Full interrupt nesting model (for some architectures)

A tick-less capability for extreme low power applications (for
some architectures)

Memory Protection Unit support for isolating tasks and
increasing application safety (for some architectures)
Software managed interrupt stack when appropriate (this can
help save RAM)

The ability to create RTOS objects using either statically or
dynamically allocated memory
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Memory Protection Unit (MPU)

There are two versions of FreeRTOS for Cortex-M3:

@ FreeRTOS-MPU includes full Memory Protection Unit (MPU)
support. In this version, tasks can execute in either User mode
or Privileged mode. Also, access to Flash, RAM, and
peripheral memory regions can be tightly controlled, on a
task-by-task basis.
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Memory Protection Unit (MPU)

There are two versions of FreeRTOS for Cortex-M3:

@ FreeRTOS-MPU includes full Memory Protection Unit (MPU)
support. In this version, tasks can execute in either User mode
or Privileged mode. Also, access to Flash, RAM, and
peripheral memory regions can be tightly controlled, on a
task-by-task basis.

@ FreeRTOS (original) This does not include any MPU support.
All tasks execute in the Privileged mode and can access the
entire memory map.
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Resources Used By FreeRTOS

FreeRTOS has a very small footprint. A typical kernel build will
consume approximately 6K bytes of Flash space and a few
hundred bytes of RAM. Each task also requires RAM to be
allocated for use as the task stack.
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FreeRTOS and versions

FreeRTOS MIT open source license is designed to ensure:
@ FreeRTOS can be used in commercial applications.
@ FreeRTOS itself remains open source.

@ FreeRTOS users retain ownership of their intellectual property.
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FreeRTOS and versions

@ OpenRTOS is a commercially licensed version of the
FreeRTOS kernel that includes indemnification and dedicated
support. FreeRTOS and OPENRTOS share the same code
base. OPENRTOS is provided under license from AWS by
WITTENSTEIN high integrity systems - an AWS strategic
partner.

@ SafeRTOS has been developed in accordance with the
practices, procedures, and processes necessary to claim
compliance with various internationally recognized safety
related standards.

License details
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Each port of FreeRTOS has a unique portmacro.h header file that
contains (amongst other things) definitions for two port-specific
data types: TickType_t and BaseType_t. The following list
describes the macro or typedef used and the actual type:

@ TickType_t: FreeRTOS configures a periodic interrupt called
the tick interrupt. The number of tick interrupts that have
occurred since the FreeRTOS application started is called the
tick count. The tick count is used as a measure of time.
TickType_t is the data type used to hold the tick count value,
and to specify times.
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@ BaseType_t: this is always defined as the most efficient data
type for the architecture. Typically, this is a 64-bit type on a
64-bit architecture, a 32-bit type on a 32-bit architecture, a
16-bit type on a 16-bit architecture, and an 8-bit type on an
8-bit architecture
It is generally used for return types that take only a very

limited range of values, and for pd TRUE/pdFALSE type
Booleans.
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Variable names

Variables are prefixed with their type:
'c’ for char

's’ for int16_t (short)

'I" for int32_t (long)

'x' for BaseType_t

'u’ for unsigned

'p’ for a pointer

and any other non-standard types (structures, task handles, queue
handles, etc.).

For example, a variable of type uint8_t will be prefixed with 'uc’,
and a variable of type pointer to char (char *) will be prefixed with

pc’.
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Function names

Functions are prefixed with both the type they return and the file
they are defined within. For example:
e vTaskPrioritySet() returns a void and is defined within tasks.c.
@ xQueueReceive() returns a variable of type BaseType_t and is
defined within queue.c.
e pvTimerGetTimerID() returns a pointer to void and is defined
within timers.c.

File scope (private) functions are prefixed with "prv’.
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Macro names

Most macros are written in upper case, and prefixed with lower
case letters that indicate where the macro is defined. The
following table provides a list of prefixes.

Prefix Location

port (for example, portMAX_DELAY) portable.h
or portmacro.h

task (for example, taskENTER_CRITICAL()) task.h

pd (for example, pd TRUE) projdefs.h
config (for example, configUSE_PREEMPTION)  FreeRTOSConfig.h
err (for example, errQUEUE_FULL) projdefs.h
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Macro names

Macro Value

pdTRUE 1
pdFALSE 0
pdPASS 1
pdFAIL 0
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Each task is a small program in its own right. It has an entry point,
will normally run forever within an infinite loop, and will not exit.
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Each task is a small program in its own right. It has an entry point,
will normally run forever within an infinite loop, and will not exit.
FreeRTOS tasks must not be allowed to return from their
implementing function in any way they must not contain a 'return’
statement and must not be allowed to execute past the end of the
function. If a task is no longer required, it should instead be
explicitly deleted.
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void ATaskFunction( void xpvParameters )

{

int iVariableExample 0

for( )
{

/* The code to implement the task
functionality will go here. x/

}
vTaskDelete( NULL )
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Some notes

@ Variables can be declared just as per a normal function. Each
instance of a task created using this function will have its own
copy of the iVariableExample variable. This would not be true
if the variable was declared static — in which case only one
copy of the variable would exist and this copy would be shared
by each created instance of the task.

@ A task will normally be implemented as an infinite loop.
@ The code to implement the task functionality will go here.

@ Should the task implementation ever break out of the above
loop then the task must be deleted before reaching the end of
this function. The NULL parameter passed to the
vTaskDelete() function indicates that the task to be deleted is
the calling (this) task.
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Running - Not running

An application can consist of many tasks.
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Running - Not running

An application can consist of many tasks.
If the microcontroller running the application contains a single
core, then only one task can be executing at any given time. This

implies that a task can exist in one of two states, Running and Not
Running.
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Running - Not running

An application can consist of many tasks.
If the microcontroller running the application contains a single
core, then only one task can be executing at any given time. This

implies that a task can exist in one of two states, Running and Not
Running.

All tasks that are Only one task
not currently can be in the
Running are in the Running state at
Not Running State any one time

Not Running
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Creating Task

Tasks are created using the FreeRTOS xTaskCreate() API
function.

portBASE_TYPE xTaskCreate(
pdTASK_CODE pvTaskCode,
const signed char xconst pcName,
unsigned short usStackDepth,
void xpvParameters,
unsigned portBASE_TYPE uxPriority ,
xTaskHandle xpxCreatedTask
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x TaskCreate parameters

pvTaskCode The pvTaskCode parameter is simply a pointer to the
function.

pcName A descriptive name for the task.

usStackDepth The usStackDepth value tells the kernel how large
to make the stack. The value specifies the number of
words the stack can hold, not the number of bytes.
The size of the stack used by the idle task is defined
by the application-defined constant
configMINIMAL_STACK_SIZE, the minimum
recommended for any task.
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x TaskCreate parameters

pvParameters Task functions accept a parameter of type pointer

to void ( void* ).
uxPriority Defines the priority at which the task will execute.

Priorities can be assigned from 0, which is the lowest
priority, to (configMAX_PRIORITIES - 1), which is
the highest priority.

pxCreatedTask pxCreatedTask can be used to pass out a handle to
the task being created.

return pdTRUE This indicates that the task has been
created successfully.

errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY
insufficient heap memory available.
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Example 1, taskl

void vTaskl( void xpvParameters )

const char *pcTaskName "Task 1 is running\n”
volatile unsigned long ul
/* As per most tasks, this task is implemented in an infinite loop. */
for( )
{
/* Print out the name of this task. x/
vPrintString ( pcTaskName )
/* Delay for a period. */
for( ul 0, ul mainDELAY_LOOP_COUNT . ul++)
{

/* This loop is just a very crude delay implementation. There is
nothing to do in here. Later examples will replace this crude
loop with a proper delay/sleep function. x/

}
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Example 1, task?2

void vTask2( void xpvParameters )

const char *pcTaskName "Task 2 is running\n”
volatile unsigned long ul
/* As per most tasks, this task is implemented in an infinite loop. */
for( )
{
/* Print out the name of this task. x/
vPrintString ( pcTaskName )
/* Delay for a period. */
for( ul 0, ul mainDELAY_LOOP_COUNT ; ul++ )
{

/* This loop is just a very crude delay implementation. There is
nothing to do in here. Later examples will replace this crude
loop with a proper delay/sleep function. =/
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Example 1, main

int main( void )

/* Create one of the two tasks. Note that a real application should check
the return value of the xTaskCreate() call to ensure the task was created
successfully. */
xTaskCreate (

vTaskl, /* Pointer to the function that implements the task. */

"Task 1",/* Text name for the task. This is to facilitate

debugging only. */

240,

/* Stack depth in words. */

NULL,

/* We are not using the task parameter. x/

/* This task will run at priority 1. */

1,

NULL ); /* We are not going to use the task handle. */
/* Create the other task in exactly the same way and at the same priority. */
xTaskCreate ( vTask2, "Task 2", 240, NULL, 1, NULL )
/* Start the scheduler so the tasks start executing. */
vTaskStartScheduler ()
/* If all is well then main() will never reach here as the scheduler will
now be running the tasks. If main() does reach here then it is likely that
there was insufficient heap memory available for the idle task to be created.*/
for( )
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Execution pattern

At time t1, Task 1 At time t2 Task 2 enters the Running
enters the Running state and executes until time t3 - at
state and executes which point Task1 re-enters the
until time t2 Running state
Task 1 s Y
Task2 | &
| t1 2 t3 Time

Figure: Execution pattern of examplel.
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Alternative task creation

Example 1 created both tasks from within main(), prior to starting
the scheduler. It is also possible to create a task from within
another task.

void vTaskl( void *pvParameters )

{

const char *pcTaskName "Task 1 is running\n"
volatile unsigned long ul
/* If this task code is executing then the scheduler must already have
been started. Create the other task before we enter the infinite loop. */
xTaskCreate ( vTask2, "Task 2", 240, NULL, 1, NULL )
for( )
{
/* Print out the name of this task. */
vPrintString( pcTaskName )
/* Delay for a period. */
for( ul 0; ul mainDELAY_LOOP_COUNT; ul++ )

{
/* This loop is just a very crude delay implementation. There is
nothing to do in here. Later examples will replace this crude
loop with a proper delay/sleep function. */

}
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Example 2: optimizing the code

The two tasks created in Example 1 are almost identical, the only
difference between them being the text string they print out. This
duplication can be removed.

void vTaskFunction( void *pvParameters )

{
char *pcTaskName
volatile unsigned long ul
/* The string to print out is passed in via the parameter.
character pointer. */
pcTaskName ( char * ) pvParameters
/* As per most tasks, this task is implemented in an infinite loop. */
for ( )
{
/* Print out the name of this task. */
vPrintString( pcTaskName )
/* Delay for a period. */
for( ul 0: ul mainDELAY_LOOP_COUNT; ul++ )
{
/* This loop is just a very crude delay implementation. There is
nothing to do in here. Later exercises will replace this crude
loop with a proper delay/sleep function. */
}
}
}
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Example 2: how to use

Even though there is now only one task implementation
(vTaskFunction), more than one instance of the defined task can
be created. Each created instance will execute independently under
the control of the FreeRTOS scheduler.
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Example 2: main

static const char *pcTextForTaskl "Task 1 is running\n"
static const char *pcTextForTask2 "Task 2 is running\n"
int main( void )
{
/* Create one of the two tasks. */
xTaskCreate ( vTaskFunction,
"Task 1",
240,
(void#*)pcTextForTaskl,
1,
NULL )
/* Create the other task in exactly the same way. Note this time that multiple
tasks are being created from the SAME task implementation (vTaskFunction). Only
the value passed in the parameter is different. Two instances of the same
task are being created. */
xTaskCreate ( vTaskFunction, "Task 2", 240, (void#*)pcTextForTask2, 1, NULL )
/* Start the scheduler so our tasks start executing. */
vTaskStartScheduler ()
/* If all is well then main() will never reach here as the scheduler will
now be running the tasks. If main() does reach here then it is likely that
there was insufficient heap memory available for the idle task to be created.*/
for( )
}
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uler APl in FreeRTOS ST portin

CMSIS_OS v1.x

osKernellnitialize() - empty
osKernelStart()
osKernelRunning()
osKernelSysTick()

21208 Scheduler [NaK tooplswlmky

osKernellnitialize()
osKernelStart()
osKernelGetState()
osKernelGetTickCount()

osKernelLock()
osKernelUnlock()

Scheduler APls

vTaskStartScheduler()
XxTaskGetSchedulerState()

XTaskGetTickCount()
XTaskGetTickCountFromISR()

vTaskSuspendAll()
XxTaskResumeAll()
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Suggested exercise

@ Port the previous source code in the STMCubelDE
@ Use volatile global variables and SWV plot tracking to show
the execution pattern figure

@ Use vApplicationTickHook() and
xTaskGetCurrentTaskHandle()
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@ The uxPriority parameter of the xTaskCreate() API function
assigns an initial priority to the task being created. The
priority can be changed after the scheduler has been started
by using the vTaskPrioritySet() API function.

@ FreeRTOS imposes no restrictions on how priorities can be
assigned to tasks. Any number of tasks can share the same
priority—ensuring maximum design flexibility.

@ Low numeric priority values denote low-priority tasks,
with priority 0 being the lowest priority possible.

@ 0 to (configMAX_PRIORITIES - 1)
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The scheduler will always ensure that the highest priority task that
is able to run is the task selected to enter the Running state.
Where more than one task of the same priority is able to run, the
scheduler will transition each task into and out of the Running
state, in turn.

Each such task executes for a ‘time slice’; it enters the Running
state at the start of the time slice and exits the Running state at
the end of the time slice.
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@ To be able to select the next task to run, the scheduler itself
must execute at the end of each time slice. A periodic
interrupt, called the tick interrupt, is used for this
purpose. The length of the time slice is effectively set by the
tick interrupt frequency, which is configured by the
configTICK_RATE_HZ.

@ The portTICK_RATE_MS constant is provided to allow time
delays to be converted from the number of tick interrupts into
milliseconds.

@ The ‘tick count’ value is the total number of tick interrupts
that have occurred since the scheduler was started; assuming
the tick count has not overflowed.
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Interrupt tick
Kernel runs in tick
interrupt to select
next task
Tick

interrupt ) " Newly selected task runs when!
oceurs the tick interrupt completes

Kernel

Task 1

Task 2
] t1 t2 3

Figure: The execution sequence expanded to show the tick interrupt
executing
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Example 3, change the priority

The scheduler will always ensure that the highest priority task that
is able to run is the task selected to enter the Running state.

static const char *pcTextForTaskl "Task 1 is running\n"
static const char *pcTextForTask2 "Task 2 is running\n"
int main( void )

{

/* Create the first task at priority 1. The priority is the second to last
parameter. */

xTaskCreate ( vTaskFunction, "Task 1", 240, (void#*)pcTextForTaskl, 1, NULL )
/* Create the second task at priority 2. */

xTaskCreate ( vTaskFunction, "Task 2", 240, (void#*)pcTextForTask2, 2, NULL )
/* Start the scheduler so the tasks start executing. */
vTaskStartScheduler ()

/* If all is well we will never reach here as the scheduler will now be
running. If we do reach here then it is likely that there was insufficient
heap available for the idle task to be created. */

for( )
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The scheduler will always select the highest priority task that is
able to run. Task 2 has a higher priority than Task 1 and is always
able to run; therefore Task 2 is the only task to ever enter the

Running state.

Tick —
interrupt
occurs

Kernel
Task 1
Task 2

but selects the same task. Task 2 is
always in the Running state and Task 1

The scheduler runs in the tick interrupt
is
always in the Not Running state

U 2 @3

Figure: The execution pattern when one task has a higher priority than

the other.
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Expanding not running state

So far, the created tasks have always had processing to perform
and have never had to wait for anything—as they never have to
wait for anything they are always able to enter the Running state.
This type of ‘continuous processing’ task has limited
usefulness because they can only be created at the very lowest
priority. If they run at any other priority they will prevent tasks of
lower priority ever running at all.

To make our tasks useful, we need a way to allow them to
be event-driven. An event-driven task has work (processing) to
perform only after the occurrence of the event that triggers it, and
is not able to enter the Running state before that event has
occurred.
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Event driven tasks

High priority tasks not being able to run means that the scheduler
cannot select them and must, instead, select a lower priority task
that is able to run.

Therefore, using event-driven tasks means that tasks can be
created at different priorities without the highest priority tasks
starving all the lower priority tasks of processing time.
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Blocked state

A task that is waiting for an event is said to be in the ‘Blocked’
state, which is a sub-state of the Not Running state.

e Temporal (time-related) events—the event being either a
delay period expiring, or an absolute time being reached.

@ Synchronization events—where the events originate from
another task or interrupt. For example, a task may enter the
Blocked state to wait for data to arrive on a queue.

Synchronization events

FreeRTOS queues, binary semaphores, counting semaphores,
recursive semaphores, and mutexes can all be used to create
synchronization events.

It is possible for a task to block on a synchronization event with a
timeout, effectively blocking on both types of event simultaneously.
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Suspended state

Suspended is also a sub-state of Not Running.

Tasks in the Suspended state are not available to the scheduler.
The only way into the Suspended state is through a call to the
vTaskSuspend() API function, the only way out being through a
call to the vTaskResume() or xTaskResumeFromISR() API
functions. Most applications do not use the Suspended state.

Livio Tenze FreeRTOS and introduction to Linux embedded



Tasks that are in the Not Running state but are not Blocked or
Suspended are said to be in the Ready state. They are able to run,
and therefore ready to run, but are not currently in the Running
state.
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Transition diagram

Not Running
(super state)

Suspended

vTaskSuspend() vTaskSuspend()
called called
vTaskResume()
called
VTaskSuspend()  Event Blocking API
called function called

Blocked

Figure: Full task state machine.
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Consideration about previous examples

All the tasks created in the examples presented so far have been
‘periodic’'—they have delayed for a period and printed out their
string, before delaying once more, and so on. The delay has been
generated very crudely using a null loop—the task effectively
polled an incrementing loop counter until it reached a fixed value.
Example 3 clearly demonstrated the disadvantage of this method.
While executing the null loop, the task remained in the
Ready state, ‘starving’ the other task of any processing time.
During polling, the task does not really have any work to do, but it
still uses maximum processing time and so wastes processor cycles.
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vTaskDelay() places the calling task into the Blocked state for a
fixed number of tick interrupts. While in the Blocked state the
task does not use any processing time, so processing time is
consumed only when there is work to be done.

void vTaskDelay( portTickType xTicksToDelay )

xTicksToDelay The number of tick interrupts that the calling task
should remain in the Blocked state before being
transitioned back into the Ready state.
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How to use vTaskDelay()

void vTaskFunction( void *pvParameters )

{
char *pcTaskName
/* The string to print out is passed in via the parameter.
character pointer. */
pcTaskName ( char * ) pvParameters
/* As per most tasks, this task is implemented in an infinite loop. */
for ( )
{
/* Print out the name of this task. */
vPrintString( pcTaskName )
/* Delay for a period. This time a call to vTaskDelay() is used which
places the task into the Blocked state until the delay period has expired.
The delay period is specified in ’ticks’, but the constant
portTICK_RATE_MS can be used to convert this to a more user friendly value
in milliseconds. In this case a period of 250 milliseconds is being
specified. */
vTaskDelay( 250 / portTICK_RATE_MS )
}
}
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Current behaviour

Even though the two tasks are still being created at different
priorities, both will now run. J

The idle task is created automatically when the scheduler is
started, to ensure there is always at least one task that is able to
run (at least one task in the Ready state).
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Example 4: timi

4 - When the delay expires the scheduler moves the|
2 - Task 1 prints out its string, then it too[ﬁ tasks back into the ready state, where both execute

enters the Blocked state by calling again before once again calling vTaskDelay() causing

vTaskDelay(). them to re-enter the Blocked state. Task 2 executes
L first as it has the higher priority.
Task1 ¢ T-
Task2 o e
ldle - —
[t B Time .t

1 - Task 2 has the highest priority so runs first. It .
prints out its string then calls vTaskDelay() - and in so 3 - At this point both application tasks are in
doing enters the Blocked state, permitting the lower the Blocked state - so the Idle task runs.

priority Task 1 to execute.

Figure: The execution sequence when the task uses vTaskDelay().
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Only the implementation of our two tasks has changed, not their
functionality. Comparing previous code with the current one
demonstrates clearly that this functionality is being achieved in
a much more efficient manner.

Each time the tasks leave the Blocked state they execute for a
fraction of a tick period before re-entering the Blocked state. Most
of the time there are no application tasks that are able to run (no
application tasks in the Ready state).

While this is the case, the idle task will run. The amount of
processing time the idle task gets is a measure of the spare
processing capacity in the system.
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Not Running
(super state) S
Suspended }q\
o 3 /‘
vTaskSuspend|() vTaskSuspend()
called called
vTaskResume()
called
»
"1 Running
vTaskSuspend() Event Blocking API
called function called
Blocked

Figure: State transitions performed by the task.
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vTaskDelayUntil()

vTaskDelayUntil() is similar to vTaskDelay().

As just demonstrated, the vTaskDelay() parameter specifies the
number of tick interrupts that should occur between a task calling
vTaskDelay() and the same task once again transitioning out of
the Blocked state.

The actual time at which the task leaves the blocked state is
relative to the time at which vTaskDelay() was called. J

The parameters to vTaskDelayUntil() specify, instead, the exact
tick count value at which the calling task should be moved from
the Blocked state into the Ready state.
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vTaskDelayUntil()

void vTaskDelayUntil ( portTickType *pxPreviousWakeTime,
portTickType xTimelncrement )

pxPreviousWakeTime This time is used as a reference point to
calculate the time at which the task should next
leave the Blocked state. The variable pointed to by
pxPreviousWakeTime is updated automatically within
the vTaskDelayUntil() function.

xTimelncrement xTimelncrement is specified in ‘ticks’
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Example 5: periodicity

The two tasks created in Example 4 are periodic tasks, but using
vTaskDelay() does not guarantee that the frequency at which they
run is fixed, as the time at which the tasks leave the Blocked state
is relative to when they call vTaskDelay(). Converting the tasks to
use vTaskDelayUntil() instead of vTaskDelay() solves this potential
problem.
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Solution

void vTaskFunction( void *pvParameters )

{

char *pcTaskName

portTickType xLastWakeTime

/* The string to print out is passed in via the parameter.

character pointer. */

pcTaskName ( char * ) pvParameters

xLastWakeTime xTaskGetTickCount ()

/* As per most tasks, this task is implemented in an infinite loop. */

for ( )

{
/* Print out the name of this task. */
vPrintString( pcTaskName )
/* This task should execute exactly every 250 milliseconds. As per
the vTaskDelay() function, time is measured in ticks, and the
portTICK\ _RATE\_MS constant is used to convert milliseconds into ticks.
xLastWakeTime is automatically updated within vTaskDelayUntil() so is not
explicitly updated by the task. */
vTaskDelayUntil ( &xLastWakeTime, ( 250 / portTICK_RATEMS ) )

}

}
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Example 6: how to mix polling and blocking tasks

This example re-enforces the stated expected system behavior by
demonstrating an execution sequence when the two schemes are
combined, as follows:

@ Two tasks are created at priority 1. These do nothing other
than continuously print out a string.

@ The third task also just prints out a string, but this time
periodically, so uses the vTaskDelayUntil() API function to
place itself into the Blocked state between each print iteration.
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Example 6: code 1

void vContinuousProcessingTask( void *pvParameters )

{

char *pcTaskName
/* The string to print out is passed in via the parameter.

character pointer. */
pcTaskName ( char * ) pvParameters

/* As per most tasks, this task is implemented in an infinite loop. */
for( )

{
/* Print out the name of this task. This task just does this repeatedly
without ever blocking or delaying. */
vPrintString ( pcTaskName )

¥
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Example 6: code 2

void vPeriodicTask( void *pvParameters )

portTickType xLastWakeTime
/* The xLastWakeTime variable needs to be initialized with the current tick
count. Note that this is the only time the variable is explicitly written to.
After this xLastWakeTime is managed automatically by the vTaskDelayUntil ()
API function. */
xLastWakeTime xTaskGetTickCount ()
/* As per most tasks, this task is implemented in an infinite loop. */
for( )
{
/* Print out the name of this task. */
vPrintString( "Periodic task is running...\n" )
/* The task should execute every 10 milliseconds exactly. x/
vTaskDelayUntil ( &LastWakeTime, ( 10 / portTICK_RATE.MS ) )
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Timing diagram

4~ At time 15 the tick inferrupt finds that the Periodic task biock
period has expired so moved the Periodic task into the Ready
state. The Periodic task is the highest priority task so
immediately then enters the Running state where it prints out its
string exactly once before calling vTaskDelayUntil() to return to
the Blocked state.

5 - The Periodic task entering the

interrupt - during which time it could print
out ts string many times.

1- Continuous task 1 runs fora [\ Blocked state means the scheduler has
complete tick period (time slice again to choose a task to enter the
between times t1 and t2) - during ! | Running state - in this case Continuous
which time it could print out its } | 1is chosen and it runs up to the next fick
string many times. \

|

Periodic ﬂ

Continuous 1

The Idle task never enters the
Running state as there are

Yot | always higher priority task that
are able to do so.

Continuous 2

Idle /
i i
[ t1/t2 t3 i

2 - The tick interrupt occurs during which the [\
scheduler selects a new task to run. As both
Continuous tasks have the same priority and
both are always able to run the scheduler
shares processing time between the two - so
Continuous 2 enters the Running state where it
remains for the entire tick period - during which
time it could print out its string many times.

3 Attime 13 the tick interrupt
runs again, causing a switch back
to Continuous 1, and so it goes

on.

Figure: Example 6: timing diagram.
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The idle task

@ The tasks created in Example 4 spend most of their time in
the Blocked state. While in this state, they are not able to
run and cannot be selected by the scheduler.

@ The processor always needs something to execute—there must
always be at least one task that can enter the Running state.
To ensure this is the case, an Idle task is automatically
created by the scheduler when vTaskStartScheduler() is called.
The idle task does very little more than sit in a loop—so, like
the tasks in the original examples, it is always able to run.

@ The idle task has the lowest possible priority (priority zero).
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It is possible to add application specific functionality directly into
the idle task through the use of an idle hook.
Common uses:

@ Executing low priority, background, or continuous processing.
@ Measuring the amount of spare processing capacity.

o Placing the processor into a low power mode.
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Limitations on the implementation of idle task

@ An idle task hook function must never attempt to block or
suspend. Blocking the idle task in any way could cause a
scenario where no tasks are available to enter the Running
state.

o If the application makes use of the vTaskDelete() API function
then the Idle task hook must always return to its caller within
a reasonable time period. This is because the Idle task is
responsible for cleaning up kernel resources after a task has
been deleted. If the idle task remains permanently in the
Idle hook function, then this clean-up cannot occur.

void vApplicationldleHook( void )
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Simple idle hook

/* Declare a variable that will be incremented by the hook function. */

unsigned long ullIdleCycleCount OUL

/* Idle hook functions MUST be called vApplicationIdleHook(), take no parameters,

and return void. */

void vApplicationIdleHook( void )

{
/* This hook function does nothing but increment a counter. */
ulIdleCycleCount++

configUSE_IDLE_HOOK must be set to 1 within
FreeRTOSConfig.h for the idle hook function to get called.
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ulldleCycleCoun

void vTaskFunction( void *pvParameters )

{
char *pcTaskName
/* The string to print out is passed in via the parameter.
character pointer. */
pcTaskName ( char * ) pvParameters
/* As per most tasks, this task is implemented in an infinite loop. */
for ( )
{
/* Print out the name of this task AND the number of times ulIdleCycleCount
has been incremented. */
vPrintStringAndNumber ( pcTaskName, ulldleCycleCount )
/* Delay for a period of 250 milliseconds. */
vTaskDelay ( 250 / portTICK_RATE_MS )
}
}

Show Example 7
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Changing the task priority

The vTaskPrioritySet() API function can be used to change the
priority of any task after the scheduler has been started.

Note that the vTaskPrioritySet() API function is available only
when INCLUDE_vTaskPrioritySet is set to 1 in FreeRTOSConfig.h.J

void vTaskPrioritySet(xTaskHandle pxTask,
unsigned portBASE_TYPE uxNewPriority)
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Changhing task priority

pxTask The handle of the task whose priority is being
modified. A task can change its own priority by
passing NULL in place of a valid task handle.

uxNewPriority The priority to which the subject task is to be set.
This is capped automatically to the maximum
available priority of (configMAX_PRIORITIES — 1)
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uxTaskPritorityGet()

The uxTaskPriorityGet() API function can be used to query the
priority of a task.

The uxTaskPriorityGet() API function is available only when
INCLUDE vTaskPriorityGet is set to 1 in FreeRTOSConfig.h. J

unsigned portBASE_TYPE uxTaskPriorityGet(xTaskHandle pxTask)
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Example 8, changing task priority

The scheduler will always select the highest Ready state task as
the task to enter the Running state. Example 8 demonstrates this
by using the vTaskPrioritySet() API function to change the priority
of two tasks relative to each other.

@ Task 1 is created with the highest priority. Task 1 prints out a
couple of strings before raising the priority of Task 2 to above
its own priority.

@ Task 2 starts to run (enters the Running state) as soon as it
has the highest relative priority. Only one task can be in the
Running state at any one time; so, when Task 2 is in the
Running state, Task 1 is in the Ready state.
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Example 8, changing task priority

@ Task 2 prints out a message before setting its own priority
back to below that of Task 1.

@ Task 2 setting its priority back down means Task 1 is once
again the highest priority task, so Task 1 re-enters the
Running state.
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Example 8, source code

void vTask1( void *pvParameters )

{

unsigned portBASE_TYPE uxPriority

/* This task will always run before Task 2 as it is created with the higher
priority. Neither Task 1 nor Task 2 ever block so both will always be in either
the Running or the Ready state.

Query the priority at which this task is running - passing in NULL means
"return my priority". x/

uxPriority uxTaskPriorityGet ( NULL )

for ( )

{

/* Print out the name of this task. */

vPrintString( "Task 1 is running\n" )

/* Setting the Task 2 priority above the Task 1 priority will cause

Task 2 to immediately start running (as then Task 2 will have the higher
priority of the two created tasks). Note the use of the handle to task

2 (xTask2Handle) in the call to vTaskPrioritySet(). Listing 24 shows how
the handle was obtained. */

vPrintString ( "About to raise the Task 2 priority\n" )

vTaskPrioritySet ( xTask2Handle, ( uxPriority + 1 ) )

/* Task 1 will only run when it has a priority higher than Task 2.
Therefore, for this task to reach this point Task 2 must already have
executed and set its priority back down to below the priority of this
task. */
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Example 8, source code

void vTask2( void *pvParameters )

{
unsigned portBASE_TYPE uxPriority
/* Task 1 will always run before this task as Task 1 is created with the
higher priority. Neither Task 1 nor Task 2 ever block so will always be
in either the Running or the Ready state.
Query the priority at which this task is running - passing in NULL means
"return my priority". x/
uxPriority uxTaskPriorityGet ( NULL )
for( )
{
/* For this task to reach this point Task 1 must have already run and
set the priority of this task higher than its own.
Print out the name of this task. */
vPrintString( "Task2 is running\n" )
/* Set our priority back down to its original value. Passing in NULL
as the task handle means "change my priority". Setting the
priority below that of Task 1 will cause Task 1 to immediately start
running again - pre-empting this task. */
vPrintString ( "About to lower the Task 2 priority\n" )
vTaskPrioritySet ( NULL, ( uxPriority 2) )
}
}
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Example 8, source code

/* Declare a variable that is used to hold the handle of Task 2. */
xTaskHandle xTask2Handle
int main( void )

/* Create the first task at priority 2. The task parameter is not used

and set to NULL. The task handle is also not used so is also set to NULL. */
xTaskCreate( vTaskl, "Task 1", 240, NULL, 2, NULL )

/* The task is created at priority 2 _____ T/

/* Create the second task at priority 1 - which is lower than the priority
given to Task 1. Again the task parameter is not used so is set to NULL -
BUT this time the task handle is required so the address of xTask2Handle

is passed in the last parameter. */

xTaskCreate( vTask2, "Task 2", 240, NULL, 1, &xTask2Handle )

/* The task handle is the last parameter ____""""""""""""" */

/* Start the scheduler so the tasks start executing. */

vTaskStartScheduler ()

/* If all is well then main() will never reach here as the scheduler will
now be running the tasks. If main() does reach here then it is likely that
there was insufficient heap memory available for the idle task to be created.
*/

for ( )
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Example 8, timing diagram

3 - Task1 runs again when
Task2 lowers its awn priority
back to being below the
Task1 priority, and s0 on

1-Task1 runs
first as it has the
highest priority

Task1

The Idle task never runs [,

Task 2 | as both application tasks
| are always able to run and

i | always have a priority
|dle 3 i | above the idle priority

] w2 Tme

|
2 - Task2 runs each
time Task1 sets the
Task2 priority to be
the highest

Figure: The sequence of task execution.
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Deleting a Task

A task can use the vTaskDelete() API function to delete itself or
any other task. Note that the vTaskDelete() API function is
available only when INCLUDE vTaskDelete is set to 1 in
FreeRTOSConfig.h.

It is the responsibility of the idle task to free memory allocated to
tasks that have since been deleted. Therefore, it is important that
applications using the vTaskDelete() API function do not
completely starve the idle task of all processing time.

Any memory or other resource that the implementation of the task
allocates itself must be freed explicitly.
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vTaskDelete()

void vTaskDelete(xTaskHandle pxTaskToDelete)

pxTaskToDelete The handle of the task that is to be deleted (the
subject task) — see the pxCreatedTask parameter of
the xTaskCreate() API function for information on
obtaining handles to tasks.
A task can delete itself by passing NULL in
place of a valid task handle.
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Example 9: explanation

@ Task 1 is created by main() with priority 1. When it runs, it
creates Task 2 at priority 2. Task 2 is now the highest priority
task, so it starts to execute immediately.

@ Task 2 does nothing but delete itself.

@ When Task 2 has been deleted, Task 1 is again the highest
priority task, so continues executing—at which point it calls
vTaskDelay() to block for a short period.

@ The Idle task executes while Task 1 is in the blocked state
and frees the memory that was allocated to the now deleted
Task 2.

@ When Task 1 leaves the blocked state it again becomes the
highest priority Ready state task and so pre-empts the Idle
task. When it enters the Running state it creates Task 2
again, and so it goes on.
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Example 9: code

int main( void )

{

/* Create the first task at priority 1. The task parameter is not used
so is set to NULL. The task handle is also not used so likewise is set
to NULL. */

xTaskCreate( vTaskl, "Task 1", 240, NULL, 1, NULL )

/* The task is created at priority 1 _____ cLo*/

/* Start the scheduler so the task starts executing. */
vTaskStartScheduler ()

/* main() should never reach here as the scheduler has been started. */
for ( )
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Example 9: code

void vTaskl( void *pvParameters )

{

const portTickType xDelay100ms 100 / portTICK_RATE_MS

for (

{

)

/* Print out the name of this task. */

vPrintString( "Task 1 is running\n" )

/* Create task 2 at a higher priority. Again the task parameter is not
used so is set to NULL - BUT this time the task handle is required so
the address of xTask2Handle is passed as the last parameter. */
xTaskCreate ( vTask2, "Task 2", 240, NULL, 2, &xTask2Handle )

/* The task handle is the last parameter ____""""""""""""" */

/* Task 2 has/had the higher priority, so for Task 1 to reach here Task 2
must have already executed and deleted itself. Delay for 100
milliseconds. */

vTaskDelay ( xDelay100ms )
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Example 9: code

void vTask2( void *pvParameters )

{

/* Task 2 does nothing but delete itself. To do this it could call vTaskDelete ()
using NULL as the parameter, but instead and purely for demonstration purposes it
instead calls vTaskDelete() passing its own task handle. */

vPrintString( "Task2 is running and about to delete itself\n" )

vTaskDelete ( xTask2Handle )
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Example 9: timing diagram

2 - Task 2 does nothing other than delete
itself, allowing execution to return to Task 1.

o

Task 2
Task 1

ldle

_
g |
-«

1

1-Task 1 runs and creates Task 2.
Task 2 starts to run immediately as it
has the higher priority.

Time tn

.

3- Task 1 calls vTaskDelay(), allowing
the idle task to run until the delay time
expires, and the whole sequence repeats

Figure: Example 9: timing diagram.
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A review of scheduling algorithms

The examples illustrate how and when FreeRTOS selects which
task should be in the Running state.

Each task is assigned a priority.

@ Each task can exist in one of several states.
@ Only one task can exist in the Running state at any one time.
°

The scheduler always selects the highest priority Ready state
task to enter the Running state.

This type of scheme is called Fixed Priority Pre-emptive SchedulingJ
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Fixed priority preemptive scheduling

Tasks can wait in the Blocked state for an event and are
automatically moved back to the Ready state when the event
occurs.

Temporal events occur at a particular time—for example, when a
block time expires. behavior. They are generally used to implement
periodic or timeout Synchronization events occur when a task or
interrupt service routine sends information to a queue or to one of
the many types of semaphore. They are generally used to signal
asynchronous activity, such as data arriving at a peripheral.
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Preemption example

Task 2 pre-empts Task 3 BW | Task 1 pre-empts Task 2|¥

RS
",

Task1 |_h|gh,evemj§ \ i
Task2 (med, periodlc)—é i \@—
Task3 (low, event)i ' : ;

Idle task (continuous) — L
‘n 2/ B B 17 8

9 11 13
tp_ 112

7 - i
) ; Task 2 pre-empts E Event processing is
‘ Task 3 pre-empts the idle task. % he Idle task delayed until higher
priority tasks block

Livio Tenze FreeRTOS and introduction to Linux embedded



Preemption with continuous processing tasks

Task 1 re-enters the Blocked state’%

Task1 (high, event) e +
Task2 (ldle priority, continuous) — — - —
Idle task (continuous) me— — - — —

’ t t2 3 “ t9 t10 t1

t5 t8
t6 t7

l Task 1 leaves the Blocked state and pre-empts the Idle Task[%

The Idle task sharing processing time with a task created by the
application writer. Allocating that much processing time to the
Idle task might not be desirable if the Idle priority tasks created by
the application writer have work to do, but the Idle task does not.
The configIDLE_.SHOULD_YIELD compile time configuration
constant can be used to change how the Idle task is scheduled.
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Preemption with IDLE_.SHOULD_YIELD

Task 2 runs for the remainder Task 1 re-enters the Blocked state,
of the time slice allowing Task 2 to continue running

Task1 (high, event)
Task2 (Idle priority, continuous)

L] L]
9 t10 t11

Idle task (continuous)s ™ . n
2 B W

[
16 17

Task 1 leaves the Blocked
state and pre-empts Task 2

implementing loop, then yields to allow t
scheduler to select another task

The Idle task runs for one iteration of its ﬁ
he
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Selecting task priorities.

@ As a general rule, tasks that implement hard real-time
functions are assigned priorities above those that
implement soft real-time functions. However, other
characteristics, such as execution times and processor
utilization, must also be taken into account to ensure the
entire application will never miss a hard real-time deadline.

e Rate Monotonic Scheduling (RMS) is a common priority
assignment technique which dictates that a unique priority
be assigned to each task in accordance with the tasks
periodic execution rate.
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Scheduling algorithms

The scheduling algorithm is the software routine that decides
which Ready state task to transition into the Running state.

The algorithm can be changed using the
configUSE_PREEMPTION and configUSE_TIME_SLICING
configuration constants.

A third configuration constant, configUSE_TICKLESS_IDLE, also
affects the scheduling algorithm, as its use can result in the tick
interrupt being turned off completely for extended periods: it is an
advanced option provided specifically for use in applications that
must minimize their power consumption.
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Scheduling algorithms

Scheduling algorithm Prioritized USE USE
PREEMPTION TIME
SLICING
Preempt. with timeslicing Yes 1 1
Preempt. without timeslicing Yes 1 0
Co-operative No 0 Any
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Scheduling algorithms

Scheduling algorithms described as Fixed Priority do not change
the priority assigned to the tasks being scheduled, but also do not
prevent the tasks themselves from changing their own priority or
that of other tasks.
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Scheduling algorithms

Preemptive scheduling algorithms will immediately 'preempt’ the
Running state task if a task that has a priority higher than the
Running state task enters the Ready state. Being preempted
means being involuntarily moved out of the Running state and into
the Ready state (without explicitly yielding or blocking) to allow a
different task to enter the Running state. Task preemption can
occur at any time, not just in the RTOS tick interrupt.
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Scheduling algorithms

Time slicing is used to share processing time between tasks of
equal priority, even when the tasks do not explicitly yield or enter
the Blocked state. Scheduling algorithms described as using Time
Slicing select a new task to enter the Running state at the end of
each time slice if there are other Ready state tasks that have the
same priority as the Running task. A time slice is equal to the time
between two RTOS tick interrupts.
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Without time slicing

Prioritized Preemptive Scheduling without time slicing maintains
the same task selection and preemption algorithms as described in
the previous section, but does not use time slicing to share
processing time between tasks of equal priority.

There are fewer task context switches when time slicing is not used
than when time slicing is used. Therefore, turning time slicing off
results in a reduction in the scheduler's processing overhead.
However, turning time slicing off can also result in tasks of equal
priority receiving greatly different amounts of processing time.
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Without time slicing

Task 1 leaves the Blocked state Task 1 re-enters the
and pre-empts the Idle task Blocked state

Task1 (high, event); : ’MA o)
Task2 (Idle priority, continuous); ‘ i [

Idle task (continuous)» - ——
| 1 t2 t3 t4 t12 t13

B 18
ZCe 7 1910

Task 1 leaves the Blocked Task 1 re-enters the|
state and pre-empts Task 2 Blocked state
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Cooperative scheduling

FreeRTOS can also optionally use co-operative scheduling.

@ When a pure co-operative scheduler is used, a context switch
will occur only when either the Running state task enters the
Blocked state or the Running state task explicitly calls
taskYIELD().

@ Tasks will never be pre-empted and tasks of equal priority will
not automatically share processing time.

@ Co-operative scheduling in this manner is simpler but can
potentially result in a less responsive system.
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Cooperative scheduling

Task 1 unblocks when an B‘ Task 1 enters the Blocked state, allowing
interrupt writes to a semaphore Task 2 to enter the Running state
Task1 (high priority c;>
Task2 (medium priority) @ i
Task3 (low priority)j , o
t1 v;' 2 t3 t4 (5 t6

Task 2 unbloéks when Task 3 calls téskYIELD(), allowing
Task 3 writes to a queue Task 1 to enter the Running state
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Queue: introduction

Applications that use FreeRTOS are structured as a set of
independent tasks—each task is effectively a mini program in its
own right.

It is likely that these autonomous tasks will have to
communicate with each other so that, collectively, they can
provide useful system functionality. The ‘queue’ is the
underlying primitive used by all FreeRTOS communication and
synchronization mechanisms.
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@ A queue can hold a finite number of fixed size data items.
The maximum number of items a queue can hold is called its
‘length’. Both the length and the size of each data item are
set when the queue is created.

e Normally, queues are used as First In First Out (FIFO) buffers
where data is written to the end (tail) of the queue and
removed from the front (head) of the queue. It is also
possible to write to the front of a queue.

e Writing data to a queue causes a byte-for-byte copy of
the data to be stored in the queue itself. Reading data
from a queue causes the copy of the data to be removed
from the queue.
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Queues: access by tasks

Queues are objects in their own right that are not owned by or
assigned to any particular task.
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Queues: access by tasks

Queues are objects in their own right that are not owned by or

assigned to any particular task.
Any number of tasks can write to the same queue and any number
of tasks can read from the same queue.
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Queues: access by tasks

Queues are objects in their own right that are not owned by or
assigned to any particular task.

Any number of tasks can write to the same queue and any number
of tasks can read from the same queue.

A queue having multiple writers is very common, whereas a queue
having multiple readers is quite rare.

Livio Tenze FreeRTOS and introduction to Linux embedded



Queues: blocking on read

When a task attempts to read from a queue it can optionally
specify a ‘block’ time. This is the time the task should be
kept in the Blocked state to wait for data to be available
from the queue should the queue already be empty.

A task that is in the Blocked state, waiting for data to become
available from a queue, is automatically moved to the Ready state
when another task or interrupt places data into the queue. The
task will also be moved automatically from the Blocked state to
the Ready state if the specified block time expires before data
becomes available.
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Queues: blocking on read

Queues can have multiple readers so it is possible for a single
queue to have more than one task blocked on it waiting for data.
When this is the case, only one task will be unblocked when data
becomes available. The task that is unblocked will always be the
highest priority task that is waiting for data. If the blocked tasks
have equal priority, then the task that has been waiting for
data the longest will be unblocked.
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Queue: blocking on write

Just as when reading from a queue, a task can optionally specify a
block time when writing to a queue. In this case, the block time is
the maximum time the task should be held in the Blocked state to
wait for space to become available on the queue, should the queue
already be full.
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Queue: blocking on write

Queues can have multiple writers, so it is possible for a full queue
to have more than one task blocked on it waiting to complete a
send operation. When this is the case, only one task will be
unblocked when space on the queue becomes available. The task
that is unblocked will always be the highest priority task that is
waiting for space. If the blocked tasks have equal priority, then
the task that has been waiting for space the longest will be
unblocked.
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Queue

Task B

- El:l:ll:l:l -

A queue s created 1o allow Task A and Task B to communicate. The queue can hold a maximum of §
integers. When the queue is created it does not contain any values s is empty.

Task B

int yi

Task A writes (sends) the value of a local variable o the back of the queue. As the queue was previously
lempty the value writien is now the only item in the queue, and is therefore both the value at the back of thj
queue and the value at the front of the queue.

Task B

int yi

Task A changes the value of its local variable before writing it to the queue again. The queue now
contains copies of both values written to the queue. The first value written remains at the front of the:
queue, the new value is inserted at the end of the queue. The queue has three emply Spaces remaining.

Task B reads (receives) from the queue into a different variable. The value received by Task B is the
value from the head of the queue, which is the first value Task Awrote to the queue (10 in this ilustration).

Task B
Queue

Task B has removed one ilem, leaving only the second value written by Task A remaining in the queue.
This is the value Task B would receive nextif it read from the queue again. The queue now has four

emply spaces remaining
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@ A queue must be explicitly created before it can be used.

@ Queues are referenced using variables of type xQueueHandle.
xQueueCreate() is used to create a queue and returns an
xQueueHandle to reference the queue it creates.

@ FreeRTOS allocates RAM from the FreeRTOS heap when a
queue is created. The RAM is used to hold both the queue
data structures and the items that are contained in the queue.
xQueueCreate() will return NULL if there is insufficient heap
RAM available for the queue to be created.
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Using a queue: xQueueCreate

xQueueHandle xQueueCreate( unsigned portBASE_TYPE uxQueuelength,
unsigned portBASE_TYPE uxItemSize )

uxQueuelLength The maximum number of items that the queue
being created can hold at any one time.

uxltemSize The size in bytes of each data item that can be
stored in the queue.

return If NULL is returned, then the queue cannot be
created because there is insufficient heap memory
available.
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Using a queue: xQueueSendToBack, xQueueSendToFront

As might be expected, xQueueSendToBack() is used to send data
to the back (tail) of a queue, and xQueueSendToFront() is used to
send data to the front (head) of a queue.

xQueueSend() is equivalent to and exactly the same as
xQueueSendToBack().

Interrupt routine

Never call xQueueSendToFront() or xQueueSendToBack() from an
interrupt service routine. The interrupt-safe versions
xQueueSendToFrontFromISR() and xQueueSendToBackFromISR()
should be used in their place.
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Using a queue: xQueueSendToBack, xQueueSendToFront

portBASE_TYPE xQueueSendToFront(xQueueHandle xQueue,
const void x pvitemToQueue,
portTickType xTicksToWait)

portBASE_TYPE xQueueSendToBack(xQueueHandle xQueue,
const void * pvltemToQueue,
portTickType xTicksToWait)

xQueue The handle of the queue to which the data is being
sent (written).

pvitemToQueue A pointer to the data to be copied into the queue.
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Using a queue: xQueueSendToBack, xQueueSendToFront

xTicksToWait The maximum amount of time the task should
remain in the Blocked state to wait for space to
become available on the queue. Value
portMAX_DELAY will cause the task to wait
indefinitely, provided INCLUDE _vTaskSuspend is set
to 1 in FreeRTOSConfig.h.

return pdPASS will be returned only if data was successfully
sent to the queue. errQUEUE_FULL will be returned
if data could not be written to the queue because the
queue was already full.
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Using a queue: xQueueReceive, xQueuePeek

o xQueueReceive() is used to receive (read) an item from a
queue. The item that is received is removed from the queue.

o xQueuePeek() is used to receive an item from a queue
without the item being removed from the queue.

Interrupt routine

Never call xQueueReceive() or xQueuePeek() from an interrupt
service routine. Use interrupt-safe xQueueReceiveFromISR().
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Using a queue: xQueueReceive, xQueuePeek

portBASE_TYPE xQueueReceive (xQueueHandle xQueue,
const void x pvBuffer,
portTickType xTicksToWait)

portBASE_TYPE xQueuePeek (xQueueHandle xQueue,
const void % pvBuffer,
portTickType xTicksToWait)

xQueue The handle of the queue from which the data is
being received (read).

pvBuffer A pointer to the memory into which the received
data will be copied.
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Using a queue: xQueueReceive, xQueuePeek

xTickToWait The maximum amount of time the task should
remain in the Blocked state to wait for data to
become available on the queue. If xTicksToWait is
zero, then both xQueueReceive() and xQueuePeek()
will return immediately if the queue is already empty.
Setting xTicksToWait to portMAX_DELAY will cause
the task to wait indefinitely.

return pdPASS will be returned only if data was successfully
read from the queue. errQUEUE_EMPTY will be
returned if data cannot be read from the queue
because the queue is already empty.
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uxQueueMessagesWaiting()

uxQueueMessagesWaiting() is used to query the number of items
that are currently in a queue.

Interrupt routine

Never call uxQueueMessagesWaiting() from an interrupt service
routine. The interrupt-safe uxQueueMessagesWaitingFromISR()
should be used in its place.
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uxQueueMessagesWaiting()

unsigned portBASE_TYPE uxQueueMessagesWaiting (xQueueHandle xQueue)

xQueue The handle of the queue being queried.

return The number of items that the queue being queried is
currently holding.
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Example 10

This example demonstrates a queue being created, data being sent
to the queue from multiple tasks, and data being received from the
queue. The queue is created to hold data items of type long. The
tasks that send to the queue do not specify a block time, whereas
the task that receives from the queue does.

The priority of the tasks that send to the queue is lower than the
priority of the task that receives from the queue. This means that
the queue should never contain more than one item because,
as soon as data is sent to the queue the receiving task will
unblock, pre-empt the sending task, and remove the
data—leaving the queue empty once again.
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Example 10

static void vSenderTask( void *pvParameters )

{

long 1lValueToSend

portBASE_TYPE xStatus

/* Two instances of this task are created so the value that is sent to the
queue is passed in via the task parameter - this way each instance can use
a different value. The queue was created to hold values of type long,

so cast the parameter to the required type. */

1ValueToSend ( long ) pvParameters

/* As per most tasks, this task is implemented within an infinite loop. */
for( )

{
xStatus xQueueSendToBack ( xQueue, &lValueToSend, 0 )
if ( xStatus pdPASS )
{
/* The send operation could not complete because the queue was full -
this must be an error as the queue should never contain more than
one item! */
vPrintString( "Could not send to the queue.\n" )
}
/* Allow the other sender task to execute. taskYIELD() informs the
scheduler that a switch to another task should occur now rather than
keeping this task in the Running state until the end of the current time
slice. */
taskYIELD ()

}
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Example 10

static void vReceiverTask( void *pvParameters )

{

/* Declare the variable that will hold the values received from the queue. */

long 1lReceivedValue

portBASE_TYPE xStatus

const portTickType xTicksToWait 100 / portTICK_RATE_MS

/* This task is also defined within an infinite loop. */

for ( )

{
/* This call should always find the queue empty because this task will
immediately remove any data that is written to the queue. */

if ( uxQueueMessagesWaiting( xQueue ) 0 )
{
vPrintString ( "Queue should have been empty!\n" )
¥
xStatus xQueueReceive ( xQueue, &lReceivedValue, xTicksToWait )
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Example 10

if ( xStatus pdPASS )

{
/* Data was successfully received from the queue, print out the received
value. */

vPrintStringAndNumber ( "Received = ", 1lReceivedValue )

}

else

{
/* Data was not received from the queue even after waiting for 100ms.
This must be an error as the sending tasks are free running and will be
continuously writing to the queue. */
vPrintString( "Could not receive from the queue.\n" )

+

e FreeRTOS and introduction to Linux embedded




Example 10

/* Declare a variable of type xQueueHandle. This is used to store the handle
to the queue that is accessed by all three tasks. */

xQueueHandle xQueue

int main( void )

{

/* The queue is created to hold a maximum of 5 values, each of which is
large enough to hold a variable of type long. */

xQueue xQueueCreate( 5, sizeof ( long ) )
if ( xQueue NULL )
{

/* Create two instances of the task that will send to the queue. The task
parameter is used to pass the value that the task will write to the queue,
so one task will continuously write 100 to the queue while the other task
will continuously write 200 to the queue. Both tasks are created at
priority 1. */

xTaskCreate( vSenderTask, "Senderil", 240, ( void * ) 100, 1, NULL )
xTaskCreate( vSenderTask, "Sender2", 240, ( void * ) 200, 1, NULL )

/* Create the task that will read from the queue. The task is created with
priority 2, so above the priority of the sender tasks. */

xTaskCreate ( vReceiverTask, "Receiver", 240, NULL, 2, NULL )

/* Start the scheduler so the created tasks start executing. */
vTaskStartScheduler ()
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else

{

/* The queue could not be created. */
}
/* If all is well then main() will never reach here as the scheduler will
now be running the tasks. If main() does reach here then it is likely that
there was insufficient heap memory available for the idle task to be created.
*/
for( )

The tasks that send to the queue call taskYIELD() on each
iteration of their infinite loop. taskYIELD() informs the scheduler
that a switch to another task should occur now, rather than
keeping the executing task in the Running state until the end of
the current time slice. A task that calls taskYIELD() is in effect
volunteering to be removed from the Running state.
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Example 10: timing diagram

1 - The Receiver task runs first because it has the
highest priority. It attempts to read from the queue. The
queue is empty so the Receiver enters the Blocked state
to wait for data to become available. Once the Receiver
is blocked Sender 2 can run.

3 - The Receiver task empties the queue
then enters the Blocked state again,
allowing Sender 2 to execute once more:
Sender 2 immediately Yields to Sender 1.
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2- Sender two writes o the queLs, i

causing the Receiver to exit the Blocked 4 - Sender 1 writes to the queue, causing
state. The Reciver has the highest the Receiver to exit the Blocked state and
priority s0 pre-empts Sender 2. pre-empt Sender 1 - and so0 it goes on ...

Figure: Example 10
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Transfer Compound Types

It is common for a task to receive data from multiple sources on a
single queue. Often, the receiver of the data needs to know where
the data came from, to allow it to determine how the data should
be processed. A simple way to achieve this is to use the queue to
transfer structures where both the value of the data and the source
of the data are contained in the structure fields.
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Compound types

typedef struct
{

int iValue;
int iMeaning;
} xData;

CAN bus
Task

Another Task Controller

\ 4

HMI Task

Figure: Compound type example.
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Example 11

Example 11 is similar to Example 10, but the task priorities are
reversed so the receiving task has a lower priority than the sending
tasks. Also the queue is used to pass structures, rather than simple
long integers, between the tasks.
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Example 11

/* Define the structure type that will be passed on the queue. */
typedef struct
{

unsigned char ucValue
unsigned char ucSource
} xData
/* Declare two variables of type xData that will be passed on the queue. */
static const xData xStructsToSend[ 2 ]
{
{ 100, mainSENDER_1 }, /* Used by Senderl. */
{ 200, mainSENDER_2 } /* Used by Sender2. */

In Example 11, the sending tasks have the higher priority, so the
queue will normally be full. This occurs because, as soon as the
receiving task removes an item from the queue, it is pre-empted by
one of the sending tasks which then immediately re-fills the queue.
The sending task then re-enters the Blocked state to wait for space
to become available on the queue again.
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Example 11

static void vSenderTask( void *pvParameters )

{

portBASE_TYPE xStatus

const portTickType xTicksToWait 100 / portTICK_RATE_MS

/* As per most tasks, this task is implemented within an infinite loop. */

for( )

{
/* Send to the queue.
The second parameter is the address of the structure being sent. The
address is passed in as the task parameter so pvParameters is used
directly.
The third parameter is the Block time - the time the task should be kept
in the Blocked state to wait for space to become available on the queue
if the queue is already full. A block time is specified because the
sending tasks have a higher priority than the receiving task so the queue
is expected to become full. The receiving task will remove items from
the queue when both sending tasks are in the Blocked state. */
xStatus xQueueSendToBack ( xQueue, pvParameters, xTicksToWait )
if ( xStatus pdPASS )
{
/* The send operation could not complete, even after waiting for 100ms.
This must be an error as the receiving task should make space in the
queue as soon as both sending tasks are in the Blocked state. */

vPrintString( "Could not send to the queue.\n" )

}
/* Allow the other sender task to execute. */
taskYIELD ()

}

}
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Example 11

static void vReceiverTask( void *pvParameters )

{

/* Declare the structure that will hold the values received from the queue. */
xData xReceivedStructure

portBASE_TYPE xStatus

/* This task is also defined within an infinite loop. */

for( )
{
if ( uxQueueMessagesWaiting( xQueue ) 3 )
{
vPrintString ( "Queue should have been full!\n" )
¥
xStatus xQueueReceive ( xQueue, &xReceivedStructure, 0 )
if ( xStatus pdPASS )
{
/* Data was successfully received from the queue, print out the received
value and the source of the value. */
if ( xReceivedStructure.ucSource mainSENDER_1 )
{
vPrintStringAndNumber ( "From Sender 1 = ", xReceivedStructure.ucValue )
else
{
vPrintStringAndNumber ( "From Sender 2 = ", xReceivedStructure.ucValue )
}
}
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else
{
vPrintStringAndNumber ( "From Sender 2 = ", xReceivedStructure.ucValue )
¥
}
else
{

/* Nothing was received from the queue. This must be an error
as this task should only run when the queue is full. */
vPrintString( "Could not receive from the queue.\n" )

}
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Example 11

int main( void )

{

/* The queue is created to hold a maximum of 3 structures of type xData. */

xQueue xQueueCreate( 3, sizeof ( xData ) )

if ( xQueue NULL )

{
/* Create two instances of the task that will write to the queue. The
parameter is used to pass the structure that the task will write to the
queue, so one task will continuously send xStructsToSend[ O ] to the queue
while the other task will continuously send xStructsToSend[ 1 ]. Both tasks
are created at priority 2 which is above the priority of the receiver. */
xTaskCreate ( vSenderTask, "Senderl", 240, &( xStructsToSend[ 0 ] ), 2, NULL )
xTaskCreate( vSenderTask, "Sender2", 240, &( xStructsToSend[ 1 ] ), 2, NULL )
/* Create the task that will read from the queue. The task is created with
priority 1, so below the priority of the sender tasks. */
xTaskCreate ( vReceiverTask, "Receiver", 240, NULL, 1, NULL )
/* Start the scheduler so the created tasks start executing. */
vTaskStartScheduler ()

¥

else

{
/* The queue could not be created. */

¥

/* If all is well then main() will never reach here as the scheduler will

now be running the tasks. If main() does reach here then it is likely that

there was insufficient heap memory available for the idle task to be created. */

for( )

}
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Example 11: timing diagram

Receiver
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Figure: Example 11
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Working with large data

If the size of the data being stored in the queue is large, then it is
preferable to use the queue to transfer pointers to the data, rather
than copy the data itself into and out of the queue byte by byte.
Transferring pointers is more efficient in both processing time and
the amount of RAM required to create the queue. However, when
queuing pointers, extreme care must be taken to ensure that:

@ The owner of the RAM being pointed to is clearly defined.
When sharing memory between tasks via a pointer, it is
essential to ensure that both tasks do not modify the
memory contents simultaneously.
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Working with large data

@ The RAM being pointed to remains valid. If the memory being
pointed to was allocated dynamically, then exactly one task
should be responsible for freeing the memory. No task
should attempt to access the memory after it has been freed.

Pointer to stack data

A pointer should never be used to access data that has been
allocated on a task stack. The data will not be valid after the
stack frame has changed.
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Alternative usage of queue objects

@ Queue set with xQueueCreateSet, xQueueAddToSet and
xQueueSelectFromSet.

@ Mailbox with xQueuePeek and xQueueOverwrite
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