
FreeRTOS and introduction to Linux embedded

Livio Tenze

ltenze@units.it

April 1, 2025

Livio Tenze FreeRTOS and introduction to Linux embedded

Work experiences

Livio Tenze FreeRTOS and introduction to Linux embedded

Outline of lectures

STM32H7 platform description and development environment

FreeRTOS

Task management
Queues management
Interrupts
Resources management
Software timer
Event groups
Notification
Memory management

Simulation environment

Real board NUCLEO-H7A3ZI-Q

Livio Tenze FreeRTOS and introduction to Linux embedded

Outline of lectures

Linux embedded

Introduction to Linux embedded
Linux architecture
Yocto project and toolchain

Beaglebone Black (BBB)

SDcard + USB-serial converter

Livio Tenze FreeRTOS and introduction to Linux embedded

Basic knowledge

C (C++) programming and pointers

Versioning systems (git), compilation process (cmake,
Makefile)

Linux base commands, console (bash)

Docker to use containers used during lessons

Livio Tenze FreeRTOS and introduction to Linux embedded

Recommended texts

FreeRTOS (ST)

Richard Barry-Using the FreeRTOS Real Time Kernel - A
Practical Guide - Cortex-M3 Edition

Mastering the FreeRTOS Real Time Kernel
(https://github.com/FreeRTOS/
FreeRTOS-Kernel-Book/releases/download/V1.1.0/

Mastering-the-FreeRTOS-Real-Time-Kernel.v1.1.0.

pdf)

FreeRTOS reference manual (https://www.freertos.org/
media/2018/FreeRTOS_Reference_Manual_V10.0.0.pdf)

FreeRTOS on STM32 v2 https://www.youtube.com/

playlist?list=PLnMKNibPkDnExrAsDpjjF1PsvtoAIBquX

Corso STM32 di ElettronicaIn

Livio Tenze FreeRTOS and introduction to Linux embedded

https://github.com/FreeRTOS/FreeRTOS-Kernel-Book/releases/download/V1.1.0/Mastering-the-FreeRTOS-Real-Time-Kernel.v1.1.0.pdf
https://github.com/FreeRTOS/FreeRTOS-Kernel-Book/releases/download/V1.1.0/Mastering-the-FreeRTOS-Real-Time-Kernel.v1.1.0.pdf
https://github.com/FreeRTOS/FreeRTOS-Kernel-Book/releases/download/V1.1.0/Mastering-the-FreeRTOS-Real-Time-Kernel.v1.1.0.pdf
https://github.com/FreeRTOS/FreeRTOS-Kernel-Book/releases/download/V1.1.0/Mastering-the-FreeRTOS-Real-Time-Kernel.v1.1.0.pdf
https://www.freertos.org/media/2018/FreeRTOS_Reference_Manual_V10.0.0.pdf
https://www.freertos.org/media/2018/FreeRTOS_Reference_Manual_V10.0.0.pdf
https://www.youtube.com/playlist?list=PLnMKNibPkDnExrAsDpjjF1PsvtoAIBquX
https://www.youtube.com/playlist?list=PLnMKNibPkDnExrAsDpjjF1PsvtoAIBquX
https://futuranet.it/prodotto/stm32cubeide-e-schede-nucleo-la-potenza-dellembedded-a-portata-di-mano/

Recommended texts

Introduction to Embedded Linux (Beaglebone black)

Embedded Linux System with the Yocto Project

Using Yocto Project with BeagleBone Black

Building embedded linux systems - 2nd edition, Yaghmour et
al.

https://bootlin.com/pub/conferences/2011/

montpellier/presentation.pdf

Livio Tenze FreeRTOS and introduction to Linux embedded

https://bootlin.com/pub/conferences/2011/montpellier/presentation.pdf
https://bootlin.com/pub/conferences/2011/montpellier/presentation.pdf

Exam

Possible project on specific topic (FreeRTOS or Linux
embedded, or both)

Oral examination on subjects treated during lessons

Livio Tenze FreeRTOS and introduction to Linux embedded

Software facilities

Docker image with posix simulation environment and a
webserver to download posix examples and STM32CubeIDE
projects (Ubuntu 22.04)

Docker image with Yocto ready to use environment and with
jumpnowtek website (a good solution if you need to customize
your linux embedded system for BBB)

Livio Tenze FreeRTOS and introduction to Linux embedded

Part I

ST device and IDE

Livio Tenze FreeRTOS and introduction to Linux embedded

Board and IDE

Board NUCLEO-H7A3ZI-Q, Nucleo-144

Development system STMCubeIDE, based on eclipse

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS docker container

Instead of configuring from scratch the compilation environment, I
prepared a docker container where all requirements should be met:

docker run --name freertos -d -p 127.0.0.1:8080:80/ tcp livius147/freertos:latest

After start, test the following link:
http://localhost:8080/upload/

Show simulator compilation process with cmake

Livio Tenze FreeRTOS and introduction to Linux embedded

http://localhost:8080/upload/

Board Nucleo-144 STM32H7A3

Figure: NUCLEO-H7A3ZI-Q

Livio Tenze FreeRTOS and introduction to Linux embedded

Board introduction

The STM32H7 Nucleo-144 boards based on the MB1363 reference
board (NUCLEO-H745ZI-Q, NUCLEO-H755ZI-Q,
NUCLEO-H7A3ZI-Q) provide an affordable and flexible way for
users to try out new concepts and build prototypes, by choosing
from the various combinations of performance and
power-consumption features provided by the
STM32H7microcontroller.

Livio Tenze FreeRTOS and introduction to Linux embedded

Board introduction

The ST Zio connector, which extends the ARDUINO® Uno
V3 connectivity, and the ST morpho headers provide an easy
means of expanding the functionality of the Nucleo open
development platform with a wide choice of specialized
shields.

The STM32H7 Nucleo-144 boards do not require any separate
probe as they integrate the STLINK-V3E
debugger/programmer. The STM32H7 Nucleo-144 boards
come with comprehensive free software libraries and examples
available with the STM32Cube MCU Package.

Livio Tenze FreeRTOS and introduction to Linux embedded

Board details

Livio Tenze FreeRTOS and introduction to Linux embedded

STLINK USB connector

Livio Tenze FreeRTOS and introduction to Linux embedded

External power supply input from VIN (7-11 V, 800 mA
max)

Livio Tenze FreeRTOS and introduction to Linux embedded

Power supply input from 5V EXT

Livio Tenze FreeRTOS and introduction to Linux embedded

USB CHARGER (5V)

Livio Tenze FreeRTOS and introduction to Linux embedded

power supply input from 3V3 EXT

Livio Tenze FreeRTOS and introduction to Linux embedded

Extension connectors

Livio Tenze FreeRTOS and introduction to Linux embedded

Button, leds and other connections

Component GPIO
LD1 (green) PB0
LD2 (yellow) PE1
LD3 (red) PB14
Button B1 PC13

UART3 and SWD are connected to STLINK and are available via
the micro USB connection.

Livio Tenze FreeRTOS and introduction to Linux embedded

STM32H7A3ZI microcontroller

Schematics are available to check the behaviour of the board
(provided inside the freertos docker image).

The datasheet of the microcontroller is available at https:
//www.st.com/en/microcontrollers-microprocessors/

stm32h7a3zi.html?rt=ds&id=DS13195

Livio Tenze FreeRTOS and introduction to Linux embedded

https://www.st.com/en/microcontrollers-microprocessors/stm32h7a3zi.html?rt=ds&id=DS13195
https://www.st.com/en/microcontrollers-microprocessors/stm32h7a3zi.html?rt=ds&id=DS13195
https://www.st.com/en/microcontrollers-microprocessors/stm32h7a3zi.html?rt=ds&id=DS13195

STM32CubeIDE

Livio Tenze FreeRTOS and introduction to Linux embedded

STM32CubeIDE FreeRTOS

Livio Tenze FreeRTOS and introduction to Linux embedded

STM32CubeIDE clock

Livio Tenze FreeRTOS and introduction to Linux embedded

Summary for IDE

Warning: create a login account

Show how to setup a project

Show how to add middleware FreeRTOS

Configure FreeRTOS and tick timer (HAL)

Parameters and remarks about CMSIS

Project manager → Code generator

Blocks where to write new code, ALT+K

Show template from docker

Livio Tenze FreeRTOS and introduction to Linux embedded

Part II

FreeRTOS

Livio Tenze FreeRTOS and introduction to Linux embedded

Multitasking on microncontroller

Typically, applications of microncontrollers include a mix of
both hard and soft real-time requirements.

Soft real-time requirements are those that state a time
deadline—but breaching the deadline would not render the
system useless.

Hard real-time requirements are those that state a time
deadline—and breaching the deadline would result in absolute
failure of the system.

Livio Tenze FreeRTOS and introduction to Linux embedded

Multitasking on microncontroller

Typically, applications of microncontrollers include a mix of
both hard and soft real-time requirements.

Soft real-time requirements are those that state a time
deadline—but breaching the deadline would not render the
system useless.

Hard real-time requirements are those that state a time
deadline—and breaching the deadline would result in absolute
failure of the system.

Livio Tenze FreeRTOS and introduction to Linux embedded

Multitasking on microncontroller

Typically, applications of microncontrollers include a mix of
both hard and soft real-time requirements.

Soft real-time requirements are those that state a time
deadline—but breaching the deadline would not render the
system useless.

Hard real-time requirements are those that state a time
deadline—and breaching the deadline would result in absolute
failure of the system.

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS

FreeRTOS is a real-time kernel (or real-time scheduler) on top of
which microcontroller applications can be built to meet their hard
real-time requirements.

It allows microcontroller applications
to be organized as a collection of independent threads of
execution. As most Cortex-M3 microcontroller have only one core,
in reality only a single thread can be executing at any one time.
The kernel decides which thread should be executing by examining
the priority assigned to each thread by the application designer.

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS

FreeRTOS is a real-time kernel (or real-time scheduler) on top of
which microcontroller applications can be built to meet their hard
real-time requirements. It allows microcontroller applications
to be organized as a collection of independent threads of
execution. As most Cortex-M3 microcontroller have only one core,
in reality only a single thread can be executing at any one time.
The kernel decides which thread should be executing by examining
the priority assigned to each thread by the application designer.

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS

In the simplest case, the application designer could assign higher
priorities to threads that implement hard real-time
requirements, and lower priorities to threads that implement
soft real-time requirements. This would ensure that hard
real-time threads 1 are always executed ahead of soft real-time
threads, but priority assignment decisions are not always that
simplistic.

1In FreeRTOS, each thread of execution is called a task.
Livio Tenze FreeRTOS and introduction to Linux embedded

Why a real-time kernel

There are many well established techniques for writing good
embedded software without the use of a kernel, and, if the system
being developed is simple, then these techniques might provide the
most appropriate solution.

In more complex cases, it is likely that using a kernel would be
preferable, but where the crossover point occurs will always be
subjective.

Livio Tenze FreeRTOS and introduction to Linux embedded

Why a real-time kernel

There are many well established techniques for writing good
embedded software without the use of a kernel, and, if the system
being developed is simple, then these techniques might provide the
most appropriate solution.
In more complex cases, it is likely that using a kernel would be
preferable, but where the crossover point occurs will always be
subjective.

Livio Tenze FreeRTOS and introduction to Linux embedded

Real-time features

Abstracting away timing information

Maintainability/Extensibility

Modularity

Team development

Easier testing

Code reuse

Improved efficiency

Idle time

Flexible interrupt handling

Mixed processing requirements

Easier control over peripherals

Livio Tenze FreeRTOS and introduction to Linux embedded

Real-time features

Abstracting away timing information
The kernel is responsible for execution timing and provides a
time-related API to the application. This allows the structure
of the application code to be simpler and the overall code size
to be smaller.

Maintainability/Extensibility

Modularity

Team development

Easier testing

Code reuse

Improved efficiency

Idle time

Flexible interrupt handling

Mixed processing requirements

Easier control over peripherals

Livio Tenze FreeRTOS and introduction to Linux embedded

Real-time features

Abstracting away timing information

Maintainability/Extensibility
Abstracting away timing details results in fewer
interdependencies between modules and allows the software to
evolve in a controlled and predictable way. Also, the kernel is
responsible for timing, so application performance is less
susceptible to changes in the underlying hardware.

Modularity

Team development

Easier testing

Code reuse

Improved efficiency

Idle time

Flexible interrupt handling

Mixed processing requirements

Easier control over peripherals

Livio Tenze FreeRTOS and introduction to Linux embedded

Real-time features

Abstracting away timing information

Maintainability/Extensibility

Modularity
Tasks are independent modules, each of which should have a
well-defined purpose.

Team development

Easier testing

Code reuse

Improved efficiency

Idle time

Flexible interrupt handling

Mixed processing requirements

Easier control over peripherals

Livio Tenze FreeRTOS and introduction to Linux embedded

Real-time features

Abstracting away timing information

Maintainability/Extensibility

Modularity

Team development
Tasks should also have well-defined interfaces, allowing easier
development by teams.

Easier testing

Code reuse

Improved efficiency

Idle time

Flexible interrupt handling

Mixed processing requirements

Easier control over peripherals

Livio Tenze FreeRTOS and introduction to Linux embedded

Real-time features

Abstracting away timing information

Maintainability/Extensibility

Modularity

Team development

Easier testing
If tasks are well-defined independent modules with clean
interfaces, they can be tested in isolation.

Code reuse

Improved efficiency

Idle time

Flexible interrupt handling

Mixed processing requirements

Easier control over peripherals

Livio Tenze FreeRTOS and introduction to Linux embedded

Real-time features

Abstracting away timing information

Maintainability/Extensibility

Modularity

Team development

Easier testing

Code reuse
Greater modularity and fewer interdependencies can result in
code that can be re-used with less effort.

Improved efficiency

Idle time

Flexible interrupt handling

Mixed processing requirements

Easier control over peripherals

Livio Tenze FreeRTOS and introduction to Linux embedded

Real-time features

Abstracting away timing information

Maintainability/Extensibility

Modularity

Team development

Easier testing

Code reuse

Improved efficiency
Using a kernel allows software to be completely event-driven,
so no processing time is wasted by polling for events that have
not occurred. Code executes only when there is something
that must be done.

Idle time

Flexible interrupt handling

Mixed processing requirements

Easier control over peripherals

Livio Tenze FreeRTOS and introduction to Linux embedded

Real-time features

Abstracting away timing information

Maintainability/Extensibility

Modularity

Team development

Easier testing

Code reuse

Improved efficiency

Idle time
The Idle task is created automatically when the kernel is
started. It executes whenever there are no application tasks
wishing to execute. The idle task can be used to measure
spare processing capacity, to perform background checks, or
simply to place the processor into a low-power mode.

Flexible interrupt handling

Mixed processing requirements

Easier control over peripherals

Livio Tenze FreeRTOS and introduction to Linux embedded

Real-time features

Abstracting away timing information

Maintainability/Extensibility

Modularity

Team development

Easier testing

Code reuse

Improved efficiency

Idle time

Flexible interrupt handling
Interrupt handlers can be kept very short by deferring most of
the required processing to handler tasks.

Mixed processing requirements

Easier control over peripherals

Livio Tenze FreeRTOS and introduction to Linux embedded

Real-time features

Abstracting away timing information

Maintainability/Extensibility

Modularity

Team development

Easier testing

Code reuse

Improved efficiency

Idle time

Flexible interrupt handling

Mixed processing requirements
Simple design patterns can achieve a mix of periodic,
continuous, and event-driven processing within an application.
In addition, hard and soft real-time requirements can be met
by selecting appropriate task and interrupt priorities.

Easier control over peripherals

Livio Tenze FreeRTOS and introduction to Linux embedded

Real-time features

Abstracting away timing information

Maintainability/Extensibility

Modularity

Team development

Easier testing

Code reuse

Improved efficiency

Idle time

Flexible interrupt handling

Mixed processing requirements

Easier control over peripherals
Gatekeeper tasks can be used to serialize access to peripherals.

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS features 1/2

Pre-emptive or co-operative operation

Optional time-slicing

Very flexible task priority assignment

Flexible, fast and light-weight task notification mechanisms

Queues

Binary semaphores

Counting semaphores

Mutexes

Recursive mutexes

Software timers

Event groups

Stream buffer

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS features 1/2

Pre-emptive or co-operative operation

Optional time-slicing

Very flexible task priority assignment

Flexible, fast and light-weight task notification mechanisms

Queues

Binary semaphores

Counting semaphores

Mutexes

Recursive mutexes

Software timers

Event groups

Stream buffer

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS features 1/2

Pre-emptive or co-operative operation

Optional time-slicing

Very flexible task priority assignment

Flexible, fast and light-weight task notification mechanisms

Queues

Binary semaphores

Counting semaphores

Mutexes

Recursive mutexes

Software timers

Event groups

Stream buffer

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS features 1/2

Pre-emptive or co-operative operation

Optional time-slicing

Very flexible task priority assignment

Flexible, fast and light-weight task notification mechanisms

Queues

Binary semaphores

Counting semaphores

Mutexes

Recursive mutexes

Software timers

Event groups

Stream buffer

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS features 1/2

Pre-emptive or co-operative operation

Optional time-slicing

Very flexible task priority assignment

Flexible, fast and light-weight task notification mechanisms

Queues

Binary semaphores

Counting semaphores

Mutexes

Recursive mutexes

Software timers

Event groups

Stream buffer

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS features 1/2

Pre-emptive or co-operative operation

Optional time-slicing

Very flexible task priority assignment

Flexible, fast and light-weight task notification mechanisms

Queues

Binary semaphores

Counting semaphores

Mutexes

Recursive mutexes

Software timers

Event groups

Stream buffer

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS features 1/2

Pre-emptive or co-operative operation

Optional time-slicing

Very flexible task priority assignment

Flexible, fast and light-weight task notification mechanisms

Queues

Binary semaphores

Counting semaphores

Mutexes

Recursive mutexes

Software timers

Event groups

Stream buffer

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS features 1/2

Pre-emptive or co-operative operation

Optional time-slicing

Very flexible task priority assignment

Flexible, fast and light-weight task notification mechanisms

Queues

Binary semaphores

Counting semaphores

Mutexes

Recursive mutexes

Software timers

Event groups

Stream buffer

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS features 1/2

Pre-emptive or co-operative operation

Optional time-slicing

Very flexible task priority assignment

Flexible, fast and light-weight task notification mechanisms

Queues

Binary semaphores

Counting semaphores

Mutexes

Recursive mutexes

Software timers

Event groups

Stream buffer

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS features 1/2

Pre-emptive or co-operative operation

Optional time-slicing

Very flexible task priority assignment

Flexible, fast and light-weight task notification mechanisms

Queues

Binary semaphores

Counting semaphores

Mutexes

Recursive mutexes

Software timers

Event groups

Stream buffer

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS features 1/2

Pre-emptive or co-operative operation

Optional time-slicing

Very flexible task priority assignment

Flexible, fast and light-weight task notification mechanisms

Queues

Binary semaphores

Counting semaphores

Mutexes

Recursive mutexes

Software timers

Event groups

Stream buffer

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS features 1/2

Pre-emptive or co-operative operation

Optional time-slicing

Very flexible task priority assignment

Flexible, fast and light-weight task notification mechanisms

Queues

Binary semaphores

Counting semaphores

Mutexes

Recursive mutexes

Software timers

Event groups

Stream buffer

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS features 2/2

Message buffers

Co-routines (deprecated)

Tick hook functions

Idle hook functions

Stack overflow checking

Trace macros

Task run-time statistics gathering

Optional commercial licensing and support

Full interrupt nesting model (for some architectures)

A tick-less capability for extreme low power applications (for
some architectures)

Memory Protection Unit support for isolating tasks and
increasing application safety (for some architectures)

Software managed interrupt stack when appropriate (this can
help save RAM)

The ability to create RTOS objects using either statically or
dynamically allocated memory

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS features 2/2

Message buffers

Co-routines (deprecated)

Tick hook functions

Idle hook functions

Stack overflow checking

Trace macros

Task run-time statistics gathering

Optional commercial licensing and support

Full interrupt nesting model (for some architectures)

A tick-less capability for extreme low power applications (for
some architectures)

Memory Protection Unit support for isolating tasks and
increasing application safety (for some architectures)

Software managed interrupt stack when appropriate (this can
help save RAM)

The ability to create RTOS objects using either statically or
dynamically allocated memory

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS features 2/2

Message buffers

Co-routines (deprecated)

Tick hook functions

Idle hook functions

Stack overflow checking

Trace macros

Task run-time statistics gathering

Optional commercial licensing and support

Full interrupt nesting model (for some architectures)

A tick-less capability for extreme low power applications (for
some architectures)

Memory Protection Unit support for isolating tasks and
increasing application safety (for some architectures)

Software managed interrupt stack when appropriate (this can
help save RAM)

The ability to create RTOS objects using either statically or
dynamically allocated memory

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS features 2/2

Message buffers

Co-routines (deprecated)

Tick hook functions

Idle hook functions

Stack overflow checking

Trace macros

Task run-time statistics gathering

Optional commercial licensing and support

Full interrupt nesting model (for some architectures)

A tick-less capability for extreme low power applications (for
some architectures)

Memory Protection Unit support for isolating tasks and
increasing application safety (for some architectures)

Software managed interrupt stack when appropriate (this can
help save RAM)

The ability to create RTOS objects using either statically or
dynamically allocated memory

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS features 2/2

Message buffers

Co-routines (deprecated)

Tick hook functions

Idle hook functions

Stack overflow checking

Trace macros

Task run-time statistics gathering

Optional commercial licensing and support

Full interrupt nesting model (for some architectures)

A tick-less capability for extreme low power applications (for
some architectures)

Memory Protection Unit support for isolating tasks and
increasing application safety (for some architectures)

Software managed interrupt stack when appropriate (this can
help save RAM)

The ability to create RTOS objects using either statically or
dynamically allocated memory

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS features 2/2

Message buffers

Co-routines (deprecated)

Tick hook functions

Idle hook functions

Stack overflow checking

Trace macros

Task run-time statistics gathering

Optional commercial licensing and support

Full interrupt nesting model (for some architectures)

A tick-less capability for extreme low power applications (for
some architectures)

Memory Protection Unit support for isolating tasks and
increasing application safety (for some architectures)

Software managed interrupt stack when appropriate (this can
help save RAM)

The ability to create RTOS objects using either statically or
dynamically allocated memory

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS features 2/2

Message buffers

Co-routines (deprecated)

Tick hook functions

Idle hook functions

Stack overflow checking

Trace macros

Task run-time statistics gathering

Optional commercial licensing and support

Full interrupt nesting model (for some architectures)

A tick-less capability for extreme low power applications (for
some architectures)

Memory Protection Unit support for isolating tasks and
increasing application safety (for some architectures)

Software managed interrupt stack when appropriate (this can
help save RAM)

The ability to create RTOS objects using either statically or
dynamically allocated memory

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS features 2/2

Message buffers

Co-routines (deprecated)

Tick hook functions

Idle hook functions

Stack overflow checking

Trace macros

Task run-time statistics gathering

Optional commercial licensing and support

Full interrupt nesting model (for some architectures)

A tick-less capability for extreme low power applications (for
some architectures)

Memory Protection Unit support for isolating tasks and
increasing application safety (for some architectures)

Software managed interrupt stack when appropriate (this can
help save RAM)

The ability to create RTOS objects using either statically or
dynamically allocated memory

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS features 2/2

Message buffers

Co-routines (deprecated)

Tick hook functions

Idle hook functions

Stack overflow checking

Trace macros

Task run-time statistics gathering

Optional commercial licensing and support

Full interrupt nesting model (for some architectures)

A tick-less capability for extreme low power applications (for
some architectures)

Memory Protection Unit support for isolating tasks and
increasing application safety (for some architectures)

Software managed interrupt stack when appropriate (this can
help save RAM)

The ability to create RTOS objects using either statically or
dynamically allocated memory

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS features 2/2

Message buffers

Co-routines (deprecated)

Tick hook functions

Idle hook functions

Stack overflow checking

Trace macros

Task run-time statistics gathering

Optional commercial licensing and support

Full interrupt nesting model (for some architectures)

A tick-less capability for extreme low power applications (for
some architectures)

Memory Protection Unit support for isolating tasks and
increasing application safety (for some architectures)

Software managed interrupt stack when appropriate (this can
help save RAM)

The ability to create RTOS objects using either statically or
dynamically allocated memory

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS features 2/2

Message buffers

Co-routines (deprecated)

Tick hook functions

Idle hook functions

Stack overflow checking

Trace macros

Task run-time statistics gathering

Optional commercial licensing and support

Full interrupt nesting model (for some architectures)

A tick-less capability for extreme low power applications (for
some architectures)

Memory Protection Unit support for isolating tasks and
increasing application safety (for some architectures)

Software managed interrupt stack when appropriate (this can
help save RAM)

The ability to create RTOS objects using either statically or
dynamically allocated memory

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS features 2/2

Message buffers

Co-routines (deprecated)

Tick hook functions

Idle hook functions

Stack overflow checking

Trace macros

Task run-time statistics gathering

Optional commercial licensing and support

Full interrupt nesting model (for some architectures)

A tick-less capability for extreme low power applications (for
some architectures)

Memory Protection Unit support for isolating tasks and
increasing application safety (for some architectures)

Software managed interrupt stack when appropriate (this can
help save RAM)

The ability to create RTOS objects using either statically or
dynamically allocated memory

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS features 2/2

Message buffers

Co-routines (deprecated)

Tick hook functions

Idle hook functions

Stack overflow checking

Trace macros

Task run-time statistics gathering

Optional commercial licensing and support

Full interrupt nesting model (for some architectures)

A tick-less capability for extreme low power applications (for
some architectures)

Memory Protection Unit support for isolating tasks and
increasing application safety (for some architectures)

Software managed interrupt stack when appropriate (this can
help save RAM)

The ability to create RTOS objects using either statically or
dynamically allocated memory

Livio Tenze FreeRTOS and introduction to Linux embedded

Memory Protection Unit (MPU)

There are two versions of FreeRTOS for Cortex-M3:

FreeRTOS-MPU includes full Memory Protection Unit (MPU)
support. In this version, tasks can execute in either User mode
or Privileged mode. Also, access to Flash, RAM, and
peripheral memory regions can be tightly controlled, on a
task-by-task basis.

FreeRTOS (original) This does not include any MPU support.
All tasks execute in the Privileged mode and can access the
entire memory map.

Livio Tenze FreeRTOS and introduction to Linux embedded

Memory Protection Unit (MPU)

There are two versions of FreeRTOS for Cortex-M3:

FreeRTOS-MPU includes full Memory Protection Unit (MPU)
support. In this version, tasks can execute in either User mode
or Privileged mode. Also, access to Flash, RAM, and
peripheral memory regions can be tightly controlled, on a
task-by-task basis.

FreeRTOS (original) This does not include any MPU support.
All tasks execute in the Privileged mode and can access the
entire memory map.

Livio Tenze FreeRTOS and introduction to Linux embedded

Resources Used By FreeRTOS

FreeRTOS has a very small footprint. A typical kernel build will
consume approximately 6K bytes of Flash space and a few
hundred bytes of RAM. Each task also requires RAM to be
allocated for use as the task stack.

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS and versions

FreeRTOS MIT open source license is designed to ensure:

FreeRTOS can be used in commercial applications.

FreeRTOS itself remains open source.

FreeRTOS users retain ownership of their intellectual property.

Livio Tenze FreeRTOS and introduction to Linux embedded

FreeRTOS and versions

OpenRTOS is a commercially licensed version of the
FreeRTOS kernel that includes indemnification and dedicated
support. FreeRTOS and OPENRTOS share the same code
base. OPENRTOS is provided under license from AWS by
WITTENSTEIN high integrity systems - an AWS strategic
partner.

SafeRTOS has been developed in accordance with the
practices, procedures, and processes necessary to claim
compliance with various internationally recognized safety
related standards.

License details

Livio Tenze FreeRTOS and introduction to Linux embedded

https://freertos.org/Documentation/02-Kernel/01-About-the-FreeRTOS-kernel/04-Licensing

Data types

Each port of FreeRTOS has a unique portmacro.h header file that
contains (amongst other things) definitions for two port-specific
data types: TickType t and BaseType t. The following list
describes the macro or typedef used and the actual type:

TickType t: FreeRTOS configures a periodic interrupt called
the tick interrupt. The number of tick interrupts that have
occurred since the FreeRTOS application started is called the
tick count. The tick count is used as a measure of time.
TickType t is the data type used to hold the tick count value,
and to specify times.

Livio Tenze FreeRTOS and introduction to Linux embedded

Data types

BaseType t: this is always defined as the most efficient data
type for the architecture. Typically, this is a 64-bit type on a
64-bit architecture, a 32-bit type on a 32-bit architecture, a
16-bit type on a 16-bit architecture, and an 8-bit type on an
8-bit architecture
It is generally used for return types that take only a very
limited range of values, and for pdTRUE/pdFALSE type
Booleans.

Livio Tenze FreeRTOS and introduction to Linux embedded

Variable names

Variables are prefixed with their type:

’c’ for char

’s’ for int16 t (short)

’l’ for int32 t (long)

’x’ for BaseType t

’u’ for unsigned

’p’ for a pointer

and any other non-standard types (structures, task handles, queue
handles, etc.).
For example, a variable of type uint8 t will be prefixed with ’uc’,
and a variable of type pointer to char (char *) will be prefixed with
’pc’.

Livio Tenze FreeRTOS and introduction to Linux embedded

Function names

Functions are prefixed with both the type they return and the file
they are defined within. For example:

vTaskPrioritySet() returns a void and is defined within tasks.c.

xQueueReceive() returns a variable of type BaseType t and is
defined within queue.c.

pvTimerGetTimerID() returns a pointer to void and is defined
within timers.c.

File scope (private) functions are prefixed with ’prv’.

Livio Tenze FreeRTOS and introduction to Linux embedded

Macro names

Most macros are written in upper case, and prefixed with lower
case letters that indicate where the macro is defined. The
following table provides a list of prefixes.

Prefix Location
port (for example, portMAX DELAY) portable.h

or portmacro.h
task (for example, taskENTER CRITICAL()) task.h
pd (for example, pdTRUE) projdefs.h
config (for example, configUSE PREEMPTION) FreeRTOSConfig.h
err (for example, errQUEUE FULL) projdefs.h

Livio Tenze FreeRTOS and introduction to Linux embedded

Macro names

Macro Value
pdTRUE 1

pdFALSE 0

pdPASS 1

pdFAIL 0

Livio Tenze FreeRTOS and introduction to Linux embedded

Tasks

Each task is a small program in its own right. It has an entry point,
will normally run forever within an infinite loop, and will not exit.

FreeRTOS tasks must not be allowed to return from their
implementing function in any way they must not contain a ’return’
statement and must not be allowed to execute past the end of the
function. If a task is no longer required, it should instead be
explicitly deleted.

Livio Tenze FreeRTOS and introduction to Linux embedded

Tasks

Each task is a small program in its own right. It has an entry point,
will normally run forever within an infinite loop, and will not exit.
FreeRTOS tasks must not be allowed to return from their
implementing function in any way they must not contain a ’return’
statement and must not be allowed to execute past the end of the
function. If a task is no longer required, it should instead be
explicitly deleted.

Livio Tenze FreeRTOS and introduction to Linux embedded

Tasks

vo i d ATaskFunct ion (vo i d ∗ pvParameter s)
{

i n t iVa r i a b l eExamp l e = 0 ;

f o r (; ;)
{

/∗ The code to implement the t a s k
f u n c t i o n a l i t y w i l l go he r e . ∗/

}
vTaskDe le te (NULL) ;

}

Livio Tenze FreeRTOS and introduction to Linux embedded

Some notes

Variables can be declared just as per a normal function. Each
instance of a task created using this function will have its own
copy of the iVariableExample variable. This would not be true
if the variable was declared static – in which case only one
copy of the variable would exist and this copy would be shared
by each created instance of the task.

A task will normally be implemented as an infinite loop.

The code to implement the task functionality will go here.

Should the task implementation ever break out of the above
loop then the task must be deleted before reaching the end of
this function. The NULL parameter passed to the
vTaskDelete() function indicates that the task to be deleted is
the calling (this) task.

Livio Tenze FreeRTOS and introduction to Linux embedded

Running - Not running

An application can consist of many tasks.

If the microcontroller running the application contains a single
core, then only one task can be executing at any given time. This
implies that a task can exist in one of two states, Running and Not
Running.

Livio Tenze FreeRTOS and introduction to Linux embedded

Running - Not running

An application can consist of many tasks.
If the microcontroller running the application contains a single
core, then only one task can be executing at any given time. This
implies that a task can exist in one of two states, Running and Not
Running.

Livio Tenze FreeRTOS and introduction to Linux embedded

Running - Not running

An application can consist of many tasks.
If the microcontroller running the application contains a single
core, then only one task can be executing at any given time. This
implies that a task can exist in one of two states, Running and Not
Running.

Livio Tenze FreeRTOS and introduction to Linux embedded

Creating Task

Tasks are created using the FreeRTOS xTaskCreate() API
function.

portBASE TYPE xTaskCreate (
pdTASK CODE pvTaskCode ,
con s t s i g n ed char ∗ con s t pcName ,
uns i gned s h o r t usStackDepth ,
vo i d ∗ pvParameters ,
un s i gned portBASE TYPE u xP r i o r i t y ,
xTaskHandle ∗ pxCreatedTask

) ;

Livio Tenze FreeRTOS and introduction to Linux embedded

xTaskCreate parameters

pvTaskCode The pvTaskCode parameter is simply a pointer to the
function.

pcName A descriptive name for the task.

usStackDepth The usStackDepth value tells the kernel how large
to make the stack. The value specifies the number of
words the stack can hold, not the number of bytes.
The size of the stack used by the idle task is defined
by the application-defined constant
configMINIMAL STACK SIZE, the minimum
recommended for any task.

Livio Tenze FreeRTOS and introduction to Linux embedded

xTaskCreate parameters

pvParameters Task functions accept a parameter of type pointer
to void (void*).

uxPriority Defines the priority at which the task will execute.
Priorities can be assigned from 0, which is the lowest
priority, to (configMAX PRIORITIES – 1), which is
the highest priority.

pxCreatedTask pxCreatedTask can be used to pass out a handle to
the task being created.

return pdTRUE This indicates that the task has been
created successfully.
errCOULD NOT ALLOCATE REQUIRED MEMORY
insufficient heap memory available.

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 1, task1

vo i d vTask1 (vo i d ∗pvParameter s)
{

con s t cha r ∗pcTaskName = ”Task 1 i s r unn ing\n” ;
v o l a t i l e un s i gned long u l ;
/∗ As pe r most ta sk s , t h i s t a s k i s implemented i n an i n f i n i t e l oop . ∗/
f o r (; ;)
{

/∗ P r i n t out the name o f t h i s t a s k . ∗/
vP r i n t S t r i n g (pcTaskName) ;
/∗ Delay f o r a p e r i o d . ∗/
f o r (u l = 0 ; u l < mainDELAY LOOP COUNT ; u l++)
{
/∗ This l oop i s j u s t a v e r y c rude d e l a y imp l ementa t i on . There i s
no th i ng to do i n he r e . La t e r examples w i l l r e p l a c e t h i s c rude
l oop wi th a p rope r d e l a y / s l e e p f u n c t i o n . ∗/
}

}
}

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 1, task2

vo i d vTask2 (vo i d ∗pvParameter s)
{

con s t cha r ∗pcTaskName = ”Task 2 i s r unn ing\n” ;
v o l a t i l e un s i gned long u l ;
/∗ As pe r most ta sk s , t h i s t a s k i s implemented i n an i n f i n i t e l oop . ∗/
f o r (; ;)
{

/∗ P r i n t out the name o f t h i s t a s k . ∗/
vP r i n t S t r i n g (pcTaskName) ;
/∗ Delay f o r a p e r i o d . ∗/
f o r (u l = 0 ; u l < mainDELAY LOOP COUNT ; u l++)
{

/∗ This l oop i s j u s t a v e r y c rude d e l a y imp l ementa t i on . There i s
no th i ng to do i n he r e . La t e r examples w i l l r e p l a c e t h i s c rude
l oop wi th a p rope r d e l a y / s l e e p f u n c t i o n . ∗/

}
}

}

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 1, main

int main(void)

{

/* Create one of the two tasks. Note that a real application should check

the return value of the xTaskCreate () call to ensure the task was created

successfully. */

xTaskCreate(

vTask1 , /* Pointer to the function that implements the task. */

"Task 1",/* Text name for the task. This is to facilitate

debugging only. */

240,

/* Stack depth in words. */

NULL ,

/* We are not using the task parameter. */

/* This task will run at priority 1. */

1,

NULL); /* We are not going to use the task handle. */

/* Create the other task in exactly the same way and at the same priority. */

xTaskCreate(vTask2 , "Task 2", 240, NULL , 1, NULL);

/* Start the scheduler so the tasks start executing. */

vTaskStartScheduler ();

/* If all is well then main() will never reach here as the scheduler will

now be running the tasks. If main() does reach here then it is likely that

there was insufficient heap memory available for the idle task to be created.*/

for(;;);

}

Livio Tenze FreeRTOS and introduction to Linux embedded

Execution pattern

Figure: Execution pattern of example1.

Livio Tenze FreeRTOS and introduction to Linux embedded

Alternative task creation

Example 1 created both tasks from within main(), prior to starting
the scheduler. It is also possible to create a task from within
another task.

void vTask1(void *pvParameters)

{

const char *pcTaskName = "Task 1 is running\n";

volatile unsigned long ul;

/* If this task code is executing then the scheduler must already have

been started. Create the other task before we enter the infinite loop. */

xTaskCreate(vTask2 , "Task 2", 240, NULL , 1, NULL);

for(;;)

{

/* Print out the name of this task. */

vPrintString(pcTaskName);

/* Delay for a period. */

for(ul = 0; ul < mainDELAY_LOOP_COUNT; ul++)

{

/* This loop is just a very crude delay implementation. There is

nothing to do in here. Later examples will replace this crude

loop with a proper delay/sleep function. */

}

}

}

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 2: optimizing the code

The two tasks created in Example 1 are almost identical, the only
difference between them being the text string they print out. This
duplication can be removed.

void vTaskFunction(void *pvParameters)

{

char *pcTaskName;

volatile unsigned long ul;

/* The string to print out is passed in via the parameter.

character pointer. */

pcTaskName = (char *) pvParameters;

/* As per most tasks , this task is implemented in an infinite loop. */

for(;;)

{

/* Print out the name of this task. */

vPrintString(pcTaskName);

/* Delay for a period. */

for(ul = 0; ul < mainDELAY_LOOP_COUNT; ul++)

{

/* This loop is just a very crude delay implementation. There is

nothing to do in here. Later exercises will replace this crude

loop with a proper delay/sleep function. */

}

}

}

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 2: how to use

Even though there is now only one task implementation
(vTaskFunction), more than one instance of the defined task can
be created. Each created instance will execute independently under
the control of the FreeRTOS scheduler.

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 2: main

static const char *pcTextForTask1 = "Task 1 is running\n";

static const char *pcTextForTask2 = "Task 2 is running\n";

int main(void)

{

/* Create one of the two tasks. */

xTaskCreate(vTaskFunction ,

"Task 1",

240,

(void*) pcTextForTask1 ,

1,

NULL);

/* Create the other task in exactly the same way. Note this time that multiple

tasks are being created from the SAME task implementation (vTaskFunction). Only

the value passed in the parameter is different. Two instances of the same

task are being created. */

xTaskCreate(vTaskFunction , "Task 2", 240, (void*) pcTextForTask2 , 1, NULL);

/* Start the scheduler so our tasks start executing. */

vTaskStartScheduler ();

/* If all is well then main() will never reach here as the scheduler will

now be running the tasks. If main() does reach here then it is likely that

there was insufficient heap memory available for the idle task to be created.*/

for(;;);

}

Livio Tenze FreeRTOS and introduction to Linux embedded

Scheduler API in FreeRTOS ST porting

Livio Tenze FreeRTOS and introduction to Linux embedded

Suggested exercise

Port the previous source code in the STMCubeIDE

Use volatile global variables and SWV plot tracking to show
the execution pattern figure

Use vApplicationTickHook() and
xTaskGetCurrentTaskHandle()

Livio Tenze FreeRTOS and introduction to Linux embedded

Task priorities

The uxPriority parameter of the xTaskCreate() API function
assigns an initial priority to the task being created. The
priority can be changed after the scheduler has been started
by using the vTaskPrioritySet() API function.

FreeRTOS imposes no restrictions on how priorities can be
assigned to tasks. Any number of tasks can share the same
priority—ensuring maximum design flexibility.

Low numeric priority values denote low-priority tasks,
with priority 0 being the lowest priority possible.

0 to (configMAX PRIORITIES – 1)

Livio Tenze FreeRTOS and introduction to Linux embedded

Task priorities

The scheduler will always ensure that the highest priority task that
is able to run is the task selected to enter the Running state.
Where more than one task of the same priority is able to run, the
scheduler will transition each task into and out of the Running
state, in turn.

Each such task executes for a ‘time slice‘; it enters the Running
state at the start of the time slice and exits the Running state at
the end of the time slice.

Livio Tenze FreeRTOS and introduction to Linux embedded

Task priorities

To be able to select the next task to run, the scheduler itself
must execute at the end of each time slice. A periodic
interrupt, called the tick interrupt, is used for this
purpose. The length of the time slice is effectively set by the
tick interrupt frequency, which is configured by the
configTICK RATE HZ.

The portTICK RATE MS constant is provided to allow time
delays to be converted from the number of tick interrupts into
milliseconds.

The ‘tick count’ value is the total number of tick interrupts
that have occurred since the scheduler was started; assuming
the tick count has not overflowed.

Livio Tenze FreeRTOS and introduction to Linux embedded

Interrupt tick

Figure: The execution sequence expanded to show the tick interrupt
executing

Livio Tenze FreeRTOS and introduction to Linux embedded

Context switch in FreeRTOS ST porting

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 3, change the priority

The scheduler will always ensure that the highest priority task that
is able to run is the task selected to enter the Running state.

static const char *pcTextForTask1 = "Task 1 is running\n";

static const char *pcTextForTask2 = "Task 2 is running\n";

int main(void)

{

/* Create the first task at priority 1. The priority is the second to last

parameter. */

xTaskCreate(vTaskFunction , "Task 1", 240, (void*) pcTextForTask1 , 1, NULL);

/* Create the second task at priority 2. */

xTaskCreate(vTaskFunction , "Task 2", 240, (void*) pcTextForTask2 , 2, NULL);

/* Start the scheduler so the tasks start executing. */

vTaskStartScheduler ();

/* If all is well we will never reach here as the scheduler will now be

running. If we do reach here then it is likely that there was insufficient

heap available for the idle task to be created. */

for(;;);

}

Livio Tenze FreeRTOS and introduction to Linux embedded

Task timing

The scheduler will always select the highest priority task that is
able to run. Task 2 has a higher priority than Task 1 and is always
able to run; therefore Task 2 is the only task to ever enter the
Running state.

Figure: The execution pattern when one task has a higher priority than
the other.

Livio Tenze FreeRTOS and introduction to Linux embedded

Expanding not running state

So far, the created tasks have always had processing to perform
and have never had to wait for anything—as they never have to
wait for anything they are always able to enter the Running state.
This type of ‘continuous processing’ task has limited
usefulness because they can only be created at the very lowest
priority. If they run at any other priority they will prevent tasks of
lower priority ever running at all.
To make our tasks useful, we need a way to allow them to
be event-driven. An event-driven task has work (processing) to
perform only after the occurrence of the event that triggers it, and
is not able to enter the Running state before that event has
occurred.

Livio Tenze FreeRTOS and introduction to Linux embedded

Event driven tasks

High priority tasks not being able to run means that the scheduler
cannot select them and must, instead, select a lower priority task
that is able to run.

Therefore, using event-driven tasks means that tasks can be
created at different priorities without the highest priority tasks
starving all the lower priority tasks of processing time.

Livio Tenze FreeRTOS and introduction to Linux embedded

Blocked state

A task that is waiting for an event is said to be in the ‘Blocked’
state, which is a sub-state of the Not Running state.

Temporal (time-related) events—the event being either a
delay period expiring, or an absolute time being reached.

Synchronization events—where the events originate from
another task or interrupt. For example, a task may enter the
Blocked state to wait for data to arrive on a queue.

Synchronization events

FreeRTOS queues, binary semaphores, counting semaphores,
recursive semaphores, and mutexes can all be used to create
synchronization events.

It is possible for a task to block on a synchronization event with a
timeout, effectively blocking on both types of event simultaneously.

Livio Tenze FreeRTOS and introduction to Linux embedded

Suspended state

Suspended is also a sub-state of Not Running.
Tasks in the Suspended state are not available to the scheduler.
The only way into the Suspended state is through a call to the
vTaskSuspend() API function, the only way out being through a
call to the vTaskResume() or xTaskResumeFromISR() API
functions. Most applications do not use the Suspended state.

Livio Tenze FreeRTOS and introduction to Linux embedded

Ready state

Tasks that are in the Not Running state but are not Blocked or
Suspended are said to be in the Ready state. They are able to run,
and therefore ready to run, but are not currently in the Running
state.

Livio Tenze FreeRTOS and introduction to Linux embedded

Transition diagram

Figure: Full task state machine.

Livio Tenze FreeRTOS and introduction to Linux embedded

Consideration about previous examples

All the tasks created in the examples presented so far have been
‘periodic’—they have delayed for a period and printed out their
string, before delaying once more, and so on. The delay has been
generated very crudely using a null loop—the task effectively
polled an incrementing loop counter until it reached a fixed value.
Example 3 clearly demonstrated the disadvantage of this method.
While executing the null loop, the task remained in the
Ready state, ‘starving’ the other task of any processing time.
During polling, the task does not really have any work to do, but it
still uses maximum processing time and so wastes processor cycles.

Livio Tenze FreeRTOS and introduction to Linux embedded

Solution

vTaskDelay() places the calling task into the Blocked state for a
fixed number of tick interrupts. While in the Blocked state the
task does not use any processing time, so processing time is
consumed only when there is work to be done.

vo i d vTaskDelay (por tT ickType xTicksToDelay) ;

xTicksToDelay The number of tick interrupts that the calling task
should remain in the Blocked state before being
transitioned back into the Ready state.

Livio Tenze FreeRTOS and introduction to Linux embedded

How to use vTaskDelay()

void vTaskFunction(void *pvParameters)

{

char *pcTaskName;

/* The string to print out is passed in via the parameter.

character pointer. */

pcTaskName = (char *) pvParameters;

/* As per most tasks , this task is implemented in an infinite loop. */

for(;;)

{

/* Print out the name of this task. */

vPrintString(pcTaskName);

/* Delay for a period. This time a call to vTaskDelay () is used which

places the task into the Blocked state until the delay period has expired.

The delay period is specified in ’ticks ’, but the constant

portTICK_RATE_MS can be used to convert this to a more user friendly value

in milliseconds. In this case a period of 250 milliseconds is being

specified. */

vTaskDelay(250 / portTICK_RATE_MS);

}

}

Livio Tenze FreeRTOS and introduction to Linux embedded

Current behaviour

Even though the two tasks are still being created at different
priorities, both will now run.

The idle task is created automatically when the scheduler is
started, to ensure there is always at least one task that is able to
run (at least one task in the Ready state).

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 4: timing

Figure: The execution sequence when the task uses vTaskDelay().

Livio Tenze FreeRTOS and introduction to Linux embedded

Remarks

Only the implementation of our two tasks has changed, not their
functionality. Comparing previous code with the current one
demonstrates clearly that this functionality is being achieved in
a much more efficient manner.
Each time the tasks leave the Blocked state they execute for a
fraction of a tick period before re-entering the Blocked state. Most
of the time there are no application tasks that are able to run (no
application tasks in the Ready state).
While this is the case, the idle task will run. The amount of
processing time the idle task gets is a measure of the spare
processing capacity in the system.

Livio Tenze FreeRTOS and introduction to Linux embedded

Status diagram

Figure: State transitions performed by the task.

Livio Tenze FreeRTOS and introduction to Linux embedded

vTaskDelayUntil()

vTaskDelayUntil() is similar to vTaskDelay().
As just demonstrated, the vTaskDelay() parameter specifies the
number of tick interrupts that should occur between a task calling
vTaskDelay() and the same task once again transitioning out of
the Blocked state.

The actual time at which the task leaves the blocked state is
relative to the time at which vTaskDelay() was called.

The parameters to vTaskDelayUntil() specify, instead, the exact
tick count value at which the calling task should be moved from
the Blocked state into the Ready state.

Livio Tenze FreeRTOS and introduction to Linux embedded

vTaskDelayUntil()

vo i d vTaskDe l ayUnt i l (por tT ickType ∗pxPreviousWakeTime ,
por tT ickType xTimeIncrement) ;

pxPreviousWakeTime This time is used as a reference point to
calculate the time at which the task should next
leave the Blocked state. The variable pointed to by
pxPreviousWakeTime is updated automatically within
the vTaskDelayUntil() function.

xTimeIncrement xTimeIncrement is specified in ‘ticks’

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 5: periodicity

The two tasks created in Example 4 are periodic tasks, but using
vTaskDelay() does not guarantee that the frequency at which they
run is fixed, as the time at which the tasks leave the Blocked state
is relative to when they call vTaskDelay(). Converting the tasks to
use vTaskDelayUntil() instead of vTaskDelay() solves this potential
problem.

Livio Tenze FreeRTOS and introduction to Linux embedded

Solution

void vTaskFunction(void *pvParameters)

{

char *pcTaskName;

portTickType xLastWakeTime;

/* The string to print out is passed in via the parameter.

character pointer. */

pcTaskName = (char *) pvParameters;

xLastWakeTime = xTaskGetTickCount ();

/* As per most tasks , this task is implemented in an infinite loop. */

for(;;)

{

/* Print out the name of this task. */

vPrintString(pcTaskName);

/* This task should execute exactly every 250 milliseconds. As per

the vTaskDelay () function , time is measured in ticks , and the

portTICK_RATE_MS constant is used to convert milliseconds into ticks.

xLastWakeTime is automatically updated within vTaskDelayUntil () so is not

explicitly updated by the task. */

vTaskDelayUntil(&xLastWakeTime , (250 / portTICK RATE MS));

}

}

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 6: how to mix polling and blocking tasks

This example re-enforces the stated expected system behavior by
demonstrating an execution sequence when the two schemes are
combined, as follows:

Two tasks are created at priority 1. These do nothing other
than continuously print out a string.

The third task also just prints out a string, but this time
periodically, so uses the vTaskDelayUntil() API function to
place itself into the Blocked state between each print iteration.

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 6: code 1

void vContinuousProcessingTask(void *pvParameters)

{

char *pcTaskName;

/* The string to print out is passed in via the parameter.

character pointer. */

pcTaskName = (char *) pvParameters;

/* As per most tasks , this task is implemented in an infinite loop. */

for(;;)

{

/* Print out the name of this task. This task just does this repeatedly

without ever blocking or delaying. */

vPrintString(pcTaskName);

}

}

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 6: code 2

void vPeriodicTask(void *pvParameters)

{

portTickType xLastWakeTime;

/* The xLastWakeTime variable needs to be initialized with the current tick

count. Note that this is the only time the variable is explicitly written to.

After this xLastWakeTime is managed automatically by the vTaskDelayUntil ()

API function. */

xLastWakeTime = xTaskGetTickCount ();

/* As per most tasks , this task is implemented in an infinite loop. */

for(;;)

{

/* Print out the name of this task. */

vPrintString("Periodic task is running...\n");

/* The task should execute every 10 milliseconds exactly. */

vTaskDelayUntil(&LastWakeTime , (10 / portTICK RATE MS));

}

}

Livio Tenze FreeRTOS and introduction to Linux embedded

Timing diagram

Figure: Example 6: timing diagram.

Livio Tenze FreeRTOS and introduction to Linux embedded

The idle task

The tasks created in Example 4 spend most of their time in
the Blocked state. While in this state, they are not able to
run and cannot be selected by the scheduler.

The processor always needs something to execute—there must
always be at least one task that can enter the Running state.
To ensure this is the case, an Idle task is automatically
created by the scheduler when vTaskStartScheduler() is called.
The idle task does very little more than sit in a loop—so, like
the tasks in the original examples, it is always able to run.

The idle task has the lowest possible priority (priority zero).

Livio Tenze FreeRTOS and introduction to Linux embedded

Hook function

It is possible to add application specific functionality directly into
the idle task through the use of an idle hook.
Common uses:

Executing low priority, background, or continuous processing.

Measuring the amount of spare processing capacity.

Placing the processor into a low power mode.

Livio Tenze FreeRTOS and introduction to Linux embedded

Limitations on the implementation of idle task

An idle task hook function must never attempt to block or
suspend. Blocking the idle task in any way could cause a
scenario where no tasks are available to enter the Running
state.

If the application makes use of the vTaskDelete() API function
then the Idle task hook must always return to its caller within
a reasonable time period. This is because the Idle task is
responsible for cleaning up kernel resources after a task has
been deleted. If the idle task remains permanently in the
Idle hook function, then this clean-up cannot occur.

vo i d vApp l i c a t i o n I d l eHook (vo i d) ;

Livio Tenze FreeRTOS and introduction to Linux embedded

Simple idle hook

/* Declare a variable that will be incremented by the hook function. */

unsigned long ulIdleCycleCount = 0UL;

/* Idle hook functions MUST be called vApplicationIdleHook (), take no parameters ,

and return void. */

void vApplicationIdleHook(void)

{

/* This hook function does nothing but increment a counter. */

ulIdleCycleCount ++;

}

configUSE IDLE HOOK must be set to 1 within
FreeRTOSConfig.h for the idle hook function to get called.

Livio Tenze FreeRTOS and introduction to Linux embedded

...to print out the ulIdleCycleCount

void vTaskFunction(void *pvParameters)

{

char *pcTaskName;

/* The string to print out is passed in via the parameter.

character pointer. */

pcTaskName = (char *) pvParameters;

/* As per most tasks , this task is implemented in an infinite loop. */

for(;;)

{

/* Print out the name of this task AND the number of times ulIdleCycleCount

has been incremented. */

vPrintStringAndNumber(pcTaskName , ulIdleCycleCount);

/* Delay for a period of 250 milliseconds. */

vTaskDelay(250 / portTICK_RATE_MS);

}

}

Show Example 7

Livio Tenze FreeRTOS and introduction to Linux embedded

Changing the task priority

The vTaskPrioritySet() API function can be used to change the
priority of any task after the scheduler has been started.

Note that the vTaskPrioritySet() API function is available only
when INCLUDE vTaskPrioritySet is set to 1 in FreeRTOSConfig.h.

vo i d vTa s kP r i o r i t y S e t (xTaskHandle pxTask ,
un s i gned portBASE TYPE uxNewPr i o r i t y) ;

Livio Tenze FreeRTOS and introduction to Linux embedded

Changhing task priority

pxTask The handle of the task whose priority is being
modified. A task can change its own priority by
passing NULL in place of a valid task handle.

uxNewPriority The priority to which the subject task is to be set.
This is capped automatically to the maximum
available priority of (configMAX PRIORITIES – 1)

Livio Tenze FreeRTOS and introduction to Linux embedded

uxTaskPritorityGet()

The uxTaskPriorityGet() API function can be used to query the
priority of a task.

The uxTaskPriorityGet() API function is available only when
INCLUDE vTaskPriorityGet is set to 1 in FreeRTOSConfig.h.

uns i gned portBASE TYPE uxTa s kP r i o r i t yGe t (xTaskHandle pxTask) ;

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 8, changing task priority

The scheduler will always select the highest Ready state task as
the task to enter the Running state. Example 8 demonstrates this
by using the vTaskPrioritySet() API function to change the priority
of two tasks relative to each other.

Task 1 is created with the highest priority. Task 1 prints out a
couple of strings before raising the priority of Task 2 to above
its own priority.

Task 2 starts to run (enters the Running state) as soon as it
has the highest relative priority. Only one task can be in the
Running state at any one time; so, when Task 2 is in the
Running state, Task 1 is in the Ready state.

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 8, changing task priority

Task 2 prints out a message before setting its own priority
back to below that of Task 1.

Task 2 setting its priority back down means Task 1 is once
again the highest priority task, so Task 1 re-enters the
Running state.

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 8, source code

void vTask1(void *pvParameters)

{

unsigned portBASE_TYPE uxPriority;

/* This task will always run before Task 2 as it is created with the higher

priority. Neither Task 1 nor Task 2 ever block so both will always be in either

the Running or the Ready state.

Query the priority at which this task is running - passing in NULL means

"return my priority". */

uxPriority = uxTaskPriorityGet(NULL);

for(;;)

{

/* Print out the name of this task. */

vPrintString("Task 1 is running\n");

/* Setting the Task 2 priority above the Task 1 priority will cause

Task 2 to immediately start running (as then Task 2 will have the higher

priority of the two created tasks). Note the use of the handle to task

2 (xTask2Handle) in the call to vTaskPrioritySet (). Listing 24 shows how

the handle was obtained. */

vPrintString("About to raise the Task 2 priority\n");

vTaskPrioritySet(xTask2Handle , (uxPriority + 1));

/* Task 1 will only run when it has a priority higher than Task 2.

Therefore , for this task to reach this point Task 2 must already have

executed and set its priority back down to below the priority of this

task. */

}

}

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 8, source code

void vTask2(void *pvParameters)

{

unsigned portBASE_TYPE uxPriority;

/* Task 1 will always run before this task as Task 1 is created with the

higher priority. Neither Task 1 nor Task 2 ever block so will always be

in either the Running or the Ready state.

Query the priority at which this task is running - passing in NULL means

"return my priority". */

uxPriority = uxTaskPriorityGet(NULL);

for(;;)

{

/* For this task to reach this point Task 1 must have already run and

set the priority of this task higher than its own.

Print out the name of this task. */

vPrintString("Task2 is running\n");

/* Set our priority back down to its original value. Passing in NULL

as the task handle means "change my priority". Setting the

priority below that of Task 1 will cause Task 1 to immediately start

running again - pre-empting this task. */

vPrintString("About to lower the Task 2 priority\n");

vTaskPrioritySet(NULL , (uxPriority - 2));

}

}

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 8, source code

/* Declare a variable that is used to hold the handle of Task 2. */

xTaskHandle xTask2Handle;

int main(void)

{

/* Create the first task at priority 2. The task parameter is not used

and set to NULL. The task handle is also not used so is also set to NULL. */

xTaskCreate(vTask1 , "Task 1", 240, NULL , 2, NULL);

/* The task is created at priority 2 _____^. */

/* Create the second task at priority 1 - which is lower than the priority

given to Task 1. Again the task parameter is not used so is set to NULL -

BUT this time the task handle is required so the address of xTask2Handle

is passed in the last parameter. */

xTaskCreate(vTask2 , "Task 2", 240, NULL , 1, &xTask2Handle);

/* The task handle is the last parameter ____ ^^^^^^^^^^^^^ */

/* Start the scheduler so the tasks start executing. */

vTaskStartScheduler ();

/* If all is well then main() will never reach here as the scheduler will

now be running the tasks. If main() does reach here then it is likely that

there was insufficient heap memory available for the idle task to be created.

*/

for(;;);

}

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 8, timing diagram

Figure: The sequence of task execution.

Livio Tenze FreeRTOS and introduction to Linux embedded

Deleting a Task

A task can use the vTaskDelete() API function to delete itself or
any other task. Note that the vTaskDelete() API function is
available only when INCLUDE vTaskDelete is set to 1 in
FreeRTOSConfig.h.

It is the responsibility of the idle task to free memory allocated to
tasks that have since been deleted. Therefore, it is important that
applications using the vTaskDelete() API function do not
completely starve the idle task of all processing time.

Any memory or other resource that the implementation of the task
allocates itself must be freed explicitly.

Livio Tenze FreeRTOS and introduction to Linux embedded

vTaskDelete()

vo i d vTaskDe le te (xTaskHandle pxTaskToDelete) ;

pxTaskToDelete The handle of the task that is to be deleted (the
subject task) – see the pxCreatedTask parameter of
the xTaskCreate() API function for information on
obtaining handles to tasks.
A task can delete itself by passing NULL in
place of a valid task handle.

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 9: explanation

Task 1 is created by main() with priority 1. When it runs, it
creates Task 2 at priority 2. Task 2 is now the highest priority
task, so it starts to execute immediately.

Task 2 does nothing but delete itself.

When Task 2 has been deleted, Task 1 is again the highest
priority task, so continues executing—at which point it calls
vTaskDelay() to block for a short period.

The Idle task executes while Task 1 is in the blocked state
and frees the memory that was allocated to the now deleted
Task 2.

When Task 1 leaves the blocked state it again becomes the
highest priority Ready state task and so pre-empts the Idle
task. When it enters the Running state it creates Task 2
again, and so it goes on.

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 9: code

int main(void)

{

/* Create the first task at priority 1. The task parameter is not used

so is set to NULL. The task handle is also not used so likewise is set

to NULL. */

xTaskCreate(vTask1 , "Task 1", 240, NULL , 1, NULL);

/* The task is created at priority 1 _____^. */

/* Start the scheduler so the task starts executing. */

vTaskStartScheduler ();

/* main() should never reach here as the scheduler has been started. */

for(;;);

}

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 9: code

void vTask1(void *pvParameters)

{

const portTickType xDelay100ms = 100 / portTICK_RATE_MS;

for(;;)

{

/* Print out the name of this task. */

vPrintString("Task 1 is running\n");

/* Create task 2 at a higher priority. Again the task parameter is not

used so is set to NULL - BUT this time the task handle is required so

the address of xTask2Handle is passed as the last parameter. */

xTaskCreate(vTask2 , "Task 2", 240, NULL , 2, &xTask2Handle);

/* The task handle is the last parameter ____ ^^^^^^^^^^^^^ */

/* Task 2 has/had the higher priority , so for Task 1 to reach here Task 2

must have already executed and deleted itself. Delay for 100

milliseconds. */

vTaskDelay(xDelay100ms);

}

}

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 9: code

void vTask2(void *pvParameters)

{

/* Task 2 does nothing but delete itself. To do this it could call vTaskDelete ()

using NULL as the parameter , but instead and purely for demonstration purposes it

instead calls vTaskDelete () passing its own task handle. */

vPrintString("Task2 is running and about to delete itself\n");

vTaskDelete(xTask2Handle);

}

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 9: timing diagram

Figure: Example 9: timing diagram.

Livio Tenze FreeRTOS and introduction to Linux embedded

A review of scheduling algorithms

The examples illustrate how and when FreeRTOS selects which
task should be in the Running state.

Each task is assigned a priority.

Each task can exist in one of several states.

Only one task can exist in the Running state at any one time.

The scheduler always selects the highest priority Ready state
task to enter the Running state.

This type of scheme is called Fixed Priority Pre-emptive Scheduling

Livio Tenze FreeRTOS and introduction to Linux embedded

Fixed priority preemptive scheduling

Tasks can wait in the Blocked state for an event and are
automatically moved back to the Ready state when the event
occurs.
Temporal events occur at a particular time—for example, when a
block time expires. behavior. They are generally used to implement
periodic or timeout Synchronization events occur when a task or
interrupt service routine sends information to a queue or to one of
the many types of semaphore. They are generally used to signal
asynchronous activity, such as data arriving at a peripheral.

Livio Tenze FreeRTOS and introduction to Linux embedded

Preemption example

Livio Tenze FreeRTOS and introduction to Linux embedded

Preemption with continuous processing tasks

The Idle task sharing processing time with a task created by the
application writer. Allocating that much processing time to the
Idle task might not be desirable if the Idle priority tasks created by
the application writer have work to do, but the Idle task does not.
The configIDLE SHOULD YIELD compile time configuration
constant can be used to change how the Idle task is scheduled.

Livio Tenze FreeRTOS and introduction to Linux embedded

Preemption with IDLE SHOULD YIELD

Livio Tenze FreeRTOS and introduction to Linux embedded

Selecting task priorities.

As a general rule, tasks that implement hard real-time
functions are assigned priorities above those that
implement soft real-time functions. However, other
characteristics, such as execution times and processor
utilization, must also be taken into account to ensure the
entire application will never miss a hard real-time deadline.

Rate Monotonic Scheduling (RMS) is a common priority
assignment technique which dictates that a unique priority
be assigned to each task in accordance with the tasks
periodic execution rate.

Livio Tenze FreeRTOS and introduction to Linux embedded

Scheduling algorithms

The scheduling algorithm is the software routine that decides
which Ready state task to transition into the Running state.

The algorithm can be changed using the
configUSE PREEMPTION and configUSE TIME SLICING
configuration constants.

A third configuration constant, configUSE TICKLESS IDLE, also
affects the scheduling algorithm, as its use can result in the tick
interrupt being turned off completely for extended periods: it is an
advanced option provided specifically for use in applications that
must minimize their power consumption.

Livio Tenze FreeRTOS and introduction to Linux embedded

Scheduling algorithms

Scheduling algorithm Prioritized USE USE

PREEMPTION TIME

SLICING

Preempt. with timeslicing Yes 1 1
Preempt. without timeslicing Yes 1 0
Co-operative No 0 Any

Livio Tenze FreeRTOS and introduction to Linux embedded

Scheduling algorithms

Scheduling algorithms described as Fixed Priority do not change
the priority assigned to the tasks being scheduled, but also do not
prevent the tasks themselves from changing their own priority or
that of other tasks.

Livio Tenze FreeRTOS and introduction to Linux embedded

Scheduling algorithms

Preemptive scheduling algorithms will immediately ’preempt’ the
Running state task if a task that has a priority higher than the
Running state task enters the Ready state. Being preempted
means being involuntarily moved out of the Running state and into
the Ready state (without explicitly yielding or blocking) to allow a
different task to enter the Running state. Task preemption can
occur at any time, not just in the RTOS tick interrupt.

Livio Tenze FreeRTOS and introduction to Linux embedded

Scheduling algorithms

Time slicing is used to share processing time between tasks of
equal priority, even when the tasks do not explicitly yield or enter
the Blocked state. Scheduling algorithms described as using Time
Slicing select a new task to enter the Running state at the end of
each time slice if there are other Ready state tasks that have the
same priority as the Running task. A time slice is equal to the time
between two RTOS tick interrupts.

Livio Tenze FreeRTOS and introduction to Linux embedded

Without time slicing

Prioritized Preemptive Scheduling without time slicing maintains
the same task selection and preemption algorithms as described in
the previous section, but does not use time slicing to share
processing time between tasks of equal priority.
There are fewer task context switches when time slicing is not used
than when time slicing is used. Therefore, turning time slicing off
results in a reduction in the scheduler’s processing overhead.
However, turning time slicing off can also result in tasks of equal
priority receiving greatly different amounts of processing time.

Livio Tenze FreeRTOS and introduction to Linux embedded

Without time slicing

Livio Tenze FreeRTOS and introduction to Linux embedded

Cooperative scheduling

FreeRTOS can also optionally use co-operative scheduling.

When a pure co-operative scheduler is used, a context switch
will occur only when either the Running state task enters the
Blocked state or the Running state task explicitly calls
taskYIELD().

Tasks will never be pre-empted and tasks of equal priority will
not automatically share processing time.

Co-operative scheduling in this manner is simpler but can
potentially result in a less responsive system.

Livio Tenze FreeRTOS and introduction to Linux embedded

Cooperative scheduling

Livio Tenze FreeRTOS and introduction to Linux embedded

Queue: introduction

Applications that use FreeRTOS are structured as a set of
independent tasks—each task is effectively a mini program in its
own right.
It is likely that these autonomous tasks will have to
communicate with each other so that, collectively, they can
provide useful system functionality. The ‘queue’ is the
underlying primitive used by all FreeRTOS communication and
synchronization mechanisms.

Livio Tenze FreeRTOS and introduction to Linux embedded

Queues

A queue can hold a finite number of fixed size data items.
The maximum number of items a queue can hold is called its
‘length’. Both the length and the size of each data item are
set when the queue is created.

Normally, queues are used as First In First Out (FIFO) buffers
where data is written to the end (tail) of the queue and
removed from the front (head) of the queue. It is also
possible to write to the front of a queue.

Writing data to a queue causes a byte-for-byte copy of
the data to be stored in the queue itself. Reading data
from a queue causes the copy of the data to be removed
from the queue.

Livio Tenze FreeRTOS and introduction to Linux embedded

Queues: access by tasks

Queues are objects in their own right that are not owned by or
assigned to any particular task.

Any number of tasks can write to the same queue and any number
of tasks can read from the same queue.
A queue having multiple writers is very common, whereas a queue
having multiple readers is quite rare.

Livio Tenze FreeRTOS and introduction to Linux embedded

Queues: access by tasks

Queues are objects in their own right that are not owned by or
assigned to any particular task.
Any number of tasks can write to the same queue and any number
of tasks can read from the same queue.

A queue having multiple writers is very common, whereas a queue
having multiple readers is quite rare.

Livio Tenze FreeRTOS and introduction to Linux embedded

Queues: access by tasks

Queues are objects in their own right that are not owned by or
assigned to any particular task.
Any number of tasks can write to the same queue and any number
of tasks can read from the same queue.
A queue having multiple writers is very common, whereas a queue
having multiple readers is quite rare.

Livio Tenze FreeRTOS and introduction to Linux embedded

Queues: blocking on read

When a task attempts to read from a queue it can optionally
specify a ‘block’ time. This is the time the task should be
kept in the Blocked state to wait for data to be available
from the queue should the queue already be empty.
A task that is in the Blocked state, waiting for data to become
available from a queue, is automatically moved to the Ready state
when another task or interrupt places data into the queue. The
task will also be moved automatically from the Blocked state to
the Ready state if the specified block time expires before data
becomes available.

Livio Tenze FreeRTOS and introduction to Linux embedded

Queues: blocking on read

Queues can have multiple readers so it is possible for a single
queue to have more than one task blocked on it waiting for data.
When this is the case, only one task will be unblocked when data
becomes available. The task that is unblocked will always be the
highest priority task that is waiting for data. If the blocked tasks
have equal priority, then the task that has been waiting for
data the longest will be unblocked.

Livio Tenze FreeRTOS and introduction to Linux embedded

Queue: blocking on write

Just as when reading from a queue, a task can optionally specify a
block time when writing to a queue. In this case, the block time is
the maximum time the task should be held in the Blocked state to
wait for space to become available on the queue, should the queue
already be full.

Livio Tenze FreeRTOS and introduction to Linux embedded

Queue: blocking on write

Queues can have multiple writers, so it is possible for a full queue
to have more than one task blocked on it waiting to complete a
send operation. When this is the case, only one task will be
unblocked when space on the queue becomes available. The task
that is unblocked will always be the highest priority task that is
waiting for space. If the blocked tasks have equal priority, then
the task that has been waiting for space the longest will be
unblocked.

Livio Tenze FreeRTOS and introduction to Linux embedded

Queue

Figure: Queue
Livio Tenze FreeRTOS and introduction to Linux embedded

Using a queue

A queue must be explicitly created before it can be used.

Queues are referenced using variables of type xQueueHandle.
xQueueCreate() is used to create a queue and returns an
xQueueHandle to reference the queue it creates.

FreeRTOS allocates RAM from the FreeRTOS heap when a
queue is created. The RAM is used to hold both the queue
data structures and the items that are contained in the queue.
xQueueCreate() will return NULL if there is insufficient heap
RAM available for the queue to be created.

Livio Tenze FreeRTOS and introduction to Linux embedded

Using a queue: xQueueCreate

xQueueHandle xQueueCreate(unsigned portBASE_TYPE uxQueueLength ,

unsigned portBASE_TYPE uxItemSize);

uxQueueLength The maximum number of items that the queue
being created can hold at any one time.

uxItemSize The size in bytes of each data item that can be
stored in the queue.

return If NULL is returned, then the queue cannot be
created because there is insufficient heap memory
available.

Livio Tenze FreeRTOS and introduction to Linux embedded

Using a queue: xQueueSendToBack, xQueueSendToFront

As might be expected, xQueueSendToBack() is used to send data
to the back (tail) of a queue, and xQueueSendToFront() is used to
send data to the front (head) of a queue.
xQueueSend() is equivalent to and exactly the same as
xQueueSendToBack().

Interrupt routine

Never call xQueueSendToFront() or xQueueSendToBack() from an
interrupt service routine. The interrupt-safe versions
xQueueSendToFrontFromISR() and xQueueSendToBackFromISR()
should be used in their place.

Livio Tenze FreeRTOS and introduction to Linux embedded

Using a queue: xQueueSendToBack, xQueueSendToFront

portBASE TYPE xQueueSendToFront (xQueueHandle xQueue ,
con s t vo i d ∗ pvItemToQueue ,
por tT ickType xTicksToWait) ;

portBASE TYPE xQueueSendToBack (xQueueHandle xQueue ,
con s t vo i d ∗ pvItemToQueue ,
por tT ickType xTicksToWait) ;

xQueue The handle of the queue to which the data is being
sent (written).

pvItemToQueue A pointer to the data to be copied into the queue.

Livio Tenze FreeRTOS and introduction to Linux embedded

Using a queue: xQueueSendToBack, xQueueSendToFront

xTicksToWait The maximum amount of time the task should
remain in the Blocked state to wait for space to
become available on the queue. Value
portMAX DELAY will cause the task to wait
indefinitely, provided INCLUDE vTaskSuspend is set
to 1 in FreeRTOSConfig.h.

return pdPASS will be returned only if data was successfully
sent to the queue. errQUEUE FULL will be returned
if data could not be written to the queue because the
queue was already full.

Livio Tenze FreeRTOS and introduction to Linux embedded

Using a queue: xQueueReceive, xQueuePeek

xQueueReceive() is used to receive (read) an item from a
queue. The item that is received is removed from the queue.

xQueuePeek() is used to receive an item from a queue
without the item being removed from the queue.

Interrupt routine

Never call xQueueReceive() or xQueuePeek() from an interrupt
service routine. Use interrupt-safe xQueueReceiveFromISR().

Livio Tenze FreeRTOS and introduction to Linux embedded

Using a queue: xQueueReceive, xQueuePeek

portBASE TYPE xQueueRece ive (xQueueHandle xQueue ,
con s t vo i d ∗ pvBuf f e r ,
por tT ickType xTicksToWait)

portBASE TYPE xQueuePeek (xQueueHandle xQueue ,
con s t vo i d ∗ pvBuf f e r ,
por tT ickType xTicksToWait)

xQueue The handle of the queue from which the data is
being received (read).

pvBuffer A pointer to the memory into which the received
data will be copied.

Livio Tenze FreeRTOS and introduction to Linux embedded

Using a queue: xQueueReceive, xQueuePeek

xTickToWait The maximum amount of time the task should
remain in the Blocked state to wait for data to
become available on the queue. If xTicksToWait is
zero, then both xQueueReceive() and xQueuePeek()
will return immediately if the queue is already empty.
Setting xTicksToWait to portMAX DELAY will cause
the task to wait indefinitely.

return pdPASS will be returned only if data was successfully
read from the queue. errQUEUE EMPTY will be
returned if data cannot be read from the queue
because the queue is already empty.

Livio Tenze FreeRTOS and introduction to Linux embedded

uxQueueMessagesWaiting()

uxQueueMessagesWaiting() is used to query the number of items
that are currently in a queue.

Interrupt routine

Never call uxQueueMessagesWaiting() from an interrupt service
routine. The interrupt-safe uxQueueMessagesWaitingFromISR()
should be used in its place.

Livio Tenze FreeRTOS and introduction to Linux embedded

uxQueueMessagesWaiting()

uns i gned portBASE TYPE uxQueueMessagesWait ing (xQueueHandle xQueue) ;

xQueue The handle of the queue being queried.

return The number of items that the queue being queried is
currently holding.

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 10

This example demonstrates a queue being created, data being sent
to the queue from multiple tasks, and data being received from the
queue. The queue is created to hold data items of type long. The
tasks that send to the queue do not specify a block time, whereas
the task that receives from the queue does.
The priority of the tasks that send to the queue is lower than the
priority of the task that receives from the queue. This means that
the queue should never contain more than one item because,
as soon as data is sent to the queue the receiving task will
unblock, pre-empt the sending task, and remove the
data—leaving the queue empty once again.

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 10

static void vSenderTask(void *pvParameters)

{

long lValueToSend;

portBASE_TYPE xStatus;

/* Two instances of this task are created so the value that is sent to the

queue is passed in via the task parameter - this way each instance can use

a different value. The queue was created to hold values of type long ,

so cast the parameter to the required type. */

lValueToSend = (long) pvParameters;

/* As per most tasks , this task is implemented within an infinite loop. */

for(;;)

{

xStatus = xQueueSendToBack(xQueue , &lValueToSend , 0);

if(xStatus != pdPASS)

{

/* The send operation could not complete because the queue was full -

this must be an error as the queue should never contain more than

one item! */

vPrintString("Could not send to the queue.\n");

}

/* Allow the other sender task to execute. taskYIELD () informs the

scheduler that a switch to another task should occur now rather than

keeping this task in the Running state until the end of the current time

slice. */

taskYIELD ();

}

}

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 10

static void vReceiverTask(void *pvParameters)

{

/* Declare the variable that will hold the values received from the queue. */

long lReceivedValue;

portBASE_TYPE xStatus;

const portTickType xTicksToWait = 100 / portTICK_RATE_MS;

/* This task is also defined within an infinite loop. */

for(;;)

{

/* This call should always find the queue empty because this task will

immediately remove any data that is written to the queue. */

if(uxQueueMessagesWaiting(xQueue) != 0)

{

vPrintString("Queue should have been empty!\n");

}

xStatus = xQueueReceive(xQueue , &lReceivedValue , xTicksToWait);

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 10

if(xStatus == pdPASS)

{

/* Data was successfully received from the queue , print out the received

value. */

vPrintStringAndNumber("Received = ", lReceivedValue);

}

else

{

/* Data was not received from the queue even after waiting for 100ms.

This must be an error as the sending tasks are free running and will be

continuously writing to the queue. */

vPrintString("Could not receive from the queue.\n");

}

}

}

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 10

/* Declare a variable of type xQueueHandle. This is used to store the handle

to the queue that is accessed by all three tasks. */

xQueueHandle xQueue;

int main(void)

{

/* The queue is created to hold a maximum of 5 values , each of which is

large enough to hold a variable of type long. */

xQueue = xQueueCreate(5, sizeof(long));

if(xQueue != NULL)

{

/* Create two instances of the task that will send to the queue. The task

parameter is used to pass the value that the task will write to the queue ,

so one task will continuously write 100 to the queue while the other task

will continuously write 200 to the queue. Both tasks are created at

priority 1. */

xTaskCreate(vSenderTask , "Sender1", 240, (void *) 100, 1, NULL);

xTaskCreate(vSenderTask , "Sender2", 240, (void *) 200, 1, NULL);

/* Create the task that will read from the queue. The task is created with

priority 2, so above the priority of the sender tasks. */

xTaskCreate(vReceiverTask , "Receiver", 240, NULL , 2, NULL);

/* Start the scheduler so the created tasks start executing. */

vTaskStartScheduler ();

}

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 10

else

{

/* The queue could not be created. */

}

/* If all is well then main() will never reach here as the scheduler will

now be running the tasks. If main() does reach here then it is likely that

there was insufficient heap memory available for the idle task to be created.

*/

for(;;);

}

The tasks that send to the queue call taskYIELD() on each
iteration of their infinite loop. taskYIELD() informs the scheduler
that a switch to another task should occur now, rather than
keeping the executing task in the Running state until the end of
the current time slice. A task that calls taskYIELD() is in effect
volunteering to be removed from the Running state.

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 10: timing diagram

Figure: Example 10

Livio Tenze FreeRTOS and introduction to Linux embedded

Transfer Compound Types

It is common for a task to receive data from multiple sources on a
single queue. Often, the receiver of the data needs to know where
the data came from, to allow it to determine how the data should
be processed. A simple way to achieve this is to use the queue to
transfer structures where both the value of the data and the source
of the data are contained in the structure fields.

Livio Tenze FreeRTOS and introduction to Linux embedded

Compound types

Figure: Compound type example.

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 11

Example 11 is similar to Example 10, but the task priorities are
reversed so the receiving task has a lower priority than the sending
tasks. Also the queue is used to pass structures, rather than simple
long integers, between the tasks.

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 11

/* Define the structure type that will be passed on the queue. */

typedef struct

{

unsigned char ucValue;

unsigned char ucSource;

} xData;

/* Declare two variables of type xData that will be passed on the queue. */

static const xData xStructsToSend[2] =

{

{ 100, mainSENDER_1 }, /* Used by Sender1. */

{ 200, mainSENDER_2 } /* Used by Sender2. */

};

In Example 11, the sending tasks have the higher priority, so the
queue will normally be full. This occurs because, as soon as the
receiving task removes an item from the queue, it is pre-empted by
one of the sending tasks which then immediately re-fills the queue.
The sending task then re-enters the Blocked state to wait for space
to become available on the queue again.

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 11

static void vSenderTask(void *pvParameters)

{

portBASE_TYPE xStatus;

const portTickType xTicksToWait = 100 / portTICK_RATE_MS;

/* As per most tasks , this task is implemented within an infinite loop. */

for(;;)

{

/* Send to the queue.

The second parameter is the address of the structure being sent. The

address is passed in as the task parameter so pvParameters is used

directly.

The third parameter is the Block time - the time the task should be kept

in the Blocked state to wait for space to become available on the queue

if the queue is already full. A block time is specified because the

sending tasks have a higher priority than the receiving task so the queue

is expected to become full. The receiving task will remove items from

the queue when both sending tasks are in the Blocked state. */

xStatus = xQueueSendToBack(xQueue , pvParameters , xTicksToWait);

if(xStatus != pdPASS)

{

/* The send operation could not complete , even after waiting for 100ms.

This must be an error as the receiving task should make space in the

queue as soon as both sending tasks are in the Blocked state. */

vPrintString("Could not send to the queue.\n");

}

/* Allow the other sender task to execute. */

taskYIELD ();

}

}

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 11

static void vReceiverTask(void *pvParameters)

{

/* Declare the structure that will hold the values received from the queue. */

xData xReceivedStructure;

portBASE_TYPE xStatus;

/* This task is also defined within an infinite loop. */

for(;;)

{

if(uxQueueMessagesWaiting(xQueue) != 3)

{

vPrintString("Queue should have been full!\n");

}

xStatus = xQueueReceive(xQueue , &xReceivedStructure , 0);

if(xStatus == pdPASS)

{

/* Data was successfully received from the queue , print out the received

value and the source of the value. */

if(xReceivedStructure.ucSource == mainSENDER_1)

{

vPrintStringAndNumber("From Sender 1 = ", xReceivedStructure.ucValue);

}

else

{

vPrintStringAndNumber("From Sender 2 = ", xReceivedStructure.ucValue);

}

}

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 11

else

{

vPrintStringAndNumber("From Sender 2 = ", xReceivedStructure.ucValue);

}

}

else

{

/* Nothing was received from the queue. This must be an error

as this task should only run when the queue is full. */

vPrintString("Could not receive from the queue.\n");

}

}

}

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 11

int main(void)

{

/* The queue is created to hold a maximum of 3 structures of type xData. */

xQueue = xQueueCreate(3, sizeof(xData));

if(xQueue != NULL)

{

/* Create two instances of the task that will write to the queue. The

parameter is used to pass the structure that the task will write to the

queue , so one task will continuously send xStructsToSend[0] to the queue

while the other task will continuously send xStructsToSend[1]. Both tasks

are created at priority 2 which is above the priority of the receiver. */

xTaskCreate(vSenderTask , "Sender1", 240, &(xStructsToSend[0]), 2, NULL);

xTaskCreate(vSenderTask , "Sender2", 240, &(xStructsToSend[1]), 2, NULL);

/* Create the task that will read from the queue. The task is created with

priority 1, so below the priority of the sender tasks. */

xTaskCreate(vReceiverTask , "Receiver", 240, NULL , 1, NULL);

/* Start the scheduler so the created tasks start executing. */

vTaskStartScheduler ();

}

else

{

/* The queue could not be created. */

}

/* If all is well then main() will never reach here as the scheduler will

now be running the tasks. If main() does reach here then it is likely that

there was insufficient heap memory available for the idle task to be created. */

for(;;);

}

Livio Tenze FreeRTOS and introduction to Linux embedded

Example 11: timing diagram

Figure: Example 11

Livio Tenze FreeRTOS and introduction to Linux embedded

Working with large data

If the size of the data being stored in the queue is large, then it is
preferable to use the queue to transfer pointers to the data, rather
than copy the data itself into and out of the queue byte by byte.
Transferring pointers is more efficient in both processing time and
the amount of RAM required to create the queue. However, when
queuing pointers, extreme care must be taken to ensure that:

The owner of the RAM being pointed to is clearly defined.
When sharing memory between tasks via a pointer, it is
essential to ensure that both tasks do not modify the
memory contents simultaneously.

Livio Tenze FreeRTOS and introduction to Linux embedded

Working with large data

The RAM being pointed to remains valid. If the memory being
pointed to was allocated dynamically, then exactly one task
should be responsible for freeing the memory. No task
should attempt to access the memory after it has been freed.

Pointer to stack data

A pointer should never be used to access data that has been
allocated on a task stack. The data will not be valid after the
stack frame has changed.

Livio Tenze FreeRTOS and introduction to Linux embedded

Alternative usage of queue objects

Queue set with xQueueCreateSet, xQueueAddToSet and
xQueueSelectFromSet.

Mailbox with xQueuePeek and xQueueOverwrite

Livio Tenze FreeRTOS and introduction to Linux embedded

	ST device and IDE
	Board
	IDE

	FreeRTOS
	FreeRTOS introduction
	Data types and coding style
	Task management
	Queue management

