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Interrupts

Embedded real-time systems have to take actions in response to
events that originate from the environment. For example, a
packet arriving on an Ethernet peripheral (the event) might require
passing to a TCP/IP stack for processing (the action).
In each case, a judgment has to be made as to the best event
processing implementation strategy:

How should the event be detected? Interrupts are normally
used, but inputs can also be polled.

When interrupts are used, how much processing should be
performed inside the interrupt service routine (ISR), and how
much outside? It is normally desirable to keep each ISR
as short as possible.
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Why ISR short?

Even if tasks have been assigned a very high priority, they will
only run if no interrupts are being serviced by the hardware.

ISRs can disrupt (add ’jitter’ to) both the start time, and the
execution time, of a task.

Depending on the architecture on which FreeRTOS is running,
it might not be possible to accept any new interrupts, or at
least a subset of new interrupts, while an ISR is executing.

The application writer needs to consider the consequences of,
and guard against, resources such as variables, peripherals,
and memory buffers being accessed by a task and an ISR at
the same time.

Some FreeRTOS ports allow interrupts to nest, but interrupt
nesting can increase complexity and reduce predictability. The
shorter an interrupt is, the less likely it is to nest.
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Interrupts

How can events be communicated to the main (non-ISR)
code, and how can this code be structured to best
accommodate processing of potentially asynchronous
occurrences?

API

Note that only API functions and macros ending in ‘FromISR’ or
‘FROM ISR’ should be used within an interrupt service routine.
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Deferred interrupt techniques

Binary semaphores

Counting semaphores

Queues

Use daemon task (xTimerPendFunctionCallFromISR())

Notification
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Deferred interrupt processing

A Binary Semaphore can be used to unblock a task each time a
particular interrupt occurs, effectively synchronizing the task with
the interrupt.
This allows the majority of the interrupt event processing to be
implemented within the synchronized task, with only a very fast
and short portion remaining directly in the ISR. The interrupt
processing is said to have been ‘deferred’ to a ‘handler’ task.
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Deferred interrupt processing

If the interrupt processing is particularly time critical, then the
handler task priority can be set to ensure that the handler task
always pre-empts the other tasks in the system. The ISR can
then be implemented to include a context switch to ensure
that the ISR returns directly to the handler task when the
ISR itself has completed executing. This has the effect of
ensuring that the entire event processing executes contiguously in
time, just as if it had all been implemented within the ISR itself.
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Deferred interrupt processing

Figure: Deferred interrupt
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Semaphore

The handler task uses a blocking ‘take’ call to a semaphore as a
means of entering the Blocked state to wait for the event to occur.
When the event occurs, the ISR uses a ‘give’ operation on the
same semaphore to unblock the task so that the required event
processing can proceed.

semaphore

The binary semaphore can be considered conceptually as a queue
with a length of one. By calling xSemaphoreTake(), the handler
task effectively attempts to read from the queue with a block time,
causing the task to enter the Blocked state if the queue is empty.
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Semaphore

From ISR

When the event occurs, the ISR uses the
xSemaphoreGiveFromISR() function to place a token (the
semaphore) into the queue, making the queue full.

This causes the handler task to exit the Blocked state and remove
the token, leaving the queue empty once more. When the handler
task has completed its processing, it once more attempts to read
from the queue and, finding the queue empty, re-enters the
Blocked state to wait for the next event.
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Semaphore
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FreeRTOS interrupt handlers

The Cortex-M3 architecture and FreeRTOS port both permit ISRs
to be written entirely in C, even when the ISR wants to cause a
context switch.
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vSemaphoreCreateBinary()

Handles to all the various types of FreeRTOS semaphore are stored
in a variable of type xSemaphoreHandle.
Before a semaphore can be used, it must be created. To create a
binary semaphore, use the vSemaphoreCreateBinary() API
function:

vo i d vSemaphoreCreateB inary ( xSemaphoreHandle xSemaphore ) ;

xSemaphore The semaphore being created (MACRO!).

Livio Tenze FreeRTOS and introduction to Linux embedded



xSemaphoreTake()

‘Taking’ a semaphore means to ‘obtain’ or ‘receive’ the semaphore.
The semaphore can be taken only if it is available (=P()).

ISR

xSemaphoreTake() must not be used from an interrupt service
routine.

portBASE TYPE xSemaphoreTake ( xSemaphoreHandle xSemaphore ,
por tT ickType xTicksToWait ) ;
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xSemaphoreTake()

xSemaphore The semaphore being ‘taken’.

xTicksToWait The maximum amount of time the task should
remain in the Blocked state to wait for the
semaphore, if it is not already available
(0=immediately, portMAX DELAY=forever).

return pdPASS is returned only if the call to
xSemaphoreTake() was successful in obtaining the
semaphore. pdFALSE=The semaphore is not
available.
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xSemaphoreGiveFromISR()

xSemaphoreGiveFromISR() is a special form of xSemaphoreGive()
that is specifically for use within an interrupt service routine.

portBASE_TYPE xSemaphoreGiveFromISR( xSemaphoreHandle xSemaphore ,

portBASE_TYPE *pxHigherPriorityTaskWoken );

xSemaphore The semaphore being ‘given’.

Livio Tenze FreeRTOS and introduction to Linux embedded



xSemaphoreGiveFromISR()

pxHigherPriorityTaskWoken It is possible that a single semaphore
will have one or more tasks blocked on it waiting for
the semaphore to become available. Calling
xSemaphoreGiveFromISR() can make the semaphore
available, and so cause such a task to leave the
Blocked state. If calling xSemaphoreGiveFromISR()
causes a task to leave the Blocked state, and the
unblocked task has a priority higher than or equal to
the currently executing task (the task that was
interrupted), then, internally,
xSemaphoreGiveFromISR() will set
pxHigherPriorityTaskWoken to pdTRUE.
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xSemaphoreGiveFromISR()

pxHigherPriorityTaskWoken If xSemaphoreGiveFromISR() sets this
value to pdTRUE, then a context switch should be
performed before the interrupt is exited. This will
ensure that the interrupt returns directly to the
highest priority Ready state task.

return pdPASS will be returned only if the call to
xSemaphoreGiveFromISR() is successful. pdFAIL if a
semaphore is already available, it cannot be given

Livio Tenze FreeRTOS and introduction to Linux embedded



Example 12

This example uses a binary semaphore to unblock a task from
within an interrupt service routine—effectively synchronizing the
task with the interrupt.
A simple periodic task is used to generate an interrupt every 500
milliseconds. In this case, a software generated interrupt is used
because it allows the time at which the interrupt occurs to be
controlled, which in turn allows the sequence of execution to be
observed more easily. Next slides show the implementation of the
periodic task. mainTRIGGER INTERRUPT() simply sets a bit in
the interrupt controller’s Set Pending register.
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Example 12: periodic task

static void vPeriodicTask( void *pvParameters )

{

/* As per most tasks , this task is implemented within an infinite loop. */

for( ;; )

{

/* This task is just used to ’simulate ’ an interrupt. This is done by

periodically generating a software interrupt. */

vTaskDelay( 500 / portTICK_RATE_MS );

/* Generate the interrupt , printing a message both before hand and

afterwards so the sequence of execution is evident from the output. */

vPrintString( "Periodic task - About to generate an interrupt.\n" );

mainTRIGGER_INTERRUPT ();

vPrintString( "Periodic task - Interrupt generated.\n\n" );

}

}
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Example 12: handler task

static void vHandlerTask( void *pvParameters )

{

/* As per most tasks , this task is implemented within an infinite loop.

Take the semaphore once to start with so the semaphore is empty before the

infinite loop is entered. The semaphore was created before the scheduler

was started so before this task ran for the first time.*/

xSemaphoreTake( xBinarySemaphore , 0 );

for( ;; )

{

/* Use the semaphore to wait for the event. The task blocks

indefinitely meaning this function call will only return once the

semaphore has been successfully obtained - so there is no need to check

the returned value. */

xSemaphoreTake( xBinarySemaphore , portMAX_DELAY );

/* To get here the event must have occurred. Process the event (in this

case we just print out a message). */

vPrintString( "Handler task - Processing event.\n" );

}

}
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Example 12: portEND SWITCHING ISR

The macro portEND SWITCHING ISR() is part of the FreeRTOS
Cortex-M3 port and is the ISR safe equivalent of taskYIELD(). It
will force a context switch only if its parameter is not zero (not
equal to pdFALSE).

Use portYIELD FROM ISR(xHigherPriorityTaskWoken) to simplify
the code and to use the latest coding style.
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Switch to the higher priority task

When the switch to the higher priority task actually occurs is
dependent on the context from which the API function is called:

If the API function was called from a task: if
configUSE PREEMPTION is set to 1 in FreeRTOSConfig.h
then the switch to the higher priority task occurs
automatically within the API function, in other words, before
the API function has exited.

If the API function was called from an interrupt: a switch
to a higher priority task will not occur automatically inside an
interrupt. Instead, a variable is set to inform the application
writer that a context switch should be performed.
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Example 12: interrupt handler

void vSoftwareInterruptHandler( void )

{

portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;

/* ’Give’ the semaphore to unblock the task. */

xSemaphoreGiveFromISR( xBinarySemaphore , &xHigherPriorityTaskWoken );

/* Clear the software interrupt bit using the interrupt controllers

Clear Pending register. */

mainCLEAR_INTERRUPT ();

/* Giving the semaphore may have unblocked a task - if it did and the

unblocked task has a priority equal to or above the currently executing

task then xHigherPriorityTaskWoken will have been set to pdTRUE and

portEND_SWITCHING_ISR () will force a context switch to the newly unblocked

higher priority task.

NOTE: The syntax for forcing a context switch within an ISR varies between

FreeRTOS ports. The portEND_SWITCHING_ISR () macro is provided as part of

the Corte M3 port layer for this purpose. taskYIELD () must never be called

from an ISR! */

portEND_SWITCHING_ISR( xHigherPriorityTaskWoken );

}
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Example 12: main

int main( void )

{

/* Configure both the hardware and the debug interface. */

vSetupEnvironment ();

/* Before a semaphore is used it must be explicitly created.

a binary semaphore is created. */

vSemaphoreCreateBinary( xBinarySemaphore );

/* Check the semaphore was created successfully. */

if( xBinarySemaphore != NULL )

{

/* Enable the software interrupt and set its priority. */

prvSetupSoftwareInterrupt ();

xTaskCreate( vHandlerTask , "Handler", 240, NULL , 3, NULL );

xTaskCreate( vPeriodicTask , "Periodic", 240, NULL , 1, NULL );

/* Start the scheduler so the created tasks start executing. */

vTaskStartScheduler ();

}

/* If all is well we will never reach here as the scheduler will now be

running the tasks. If we do reach here then it is likely that there was

insufficient heap memory available for a resource to be created. */

for( ;; );

}
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Example 12: timing diagram
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Counting semaphore

Example 12 demonstrates a binary semaphore:

An interrupt occurs.

The interrupt service routine executes, ‘giving’ the semaphore
to unblock the Handler task.

The Handler task executes as soon as the interrupt completes.
The first thing the Handler task does is ‘take’ the semaphore.

The Handler task processes the event before attempting to
‘take’ the semaphore again—entering the Blocked state if the
semaphore is not immediately available.
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Counting semaphore

This sequence is perfectly adequate if interrupts can occur
only at a relatively low frequency. If another interrupt occurs
before the Handler task has completed its processing of the first
interrupt, then the binary semaphore will effectively latch the
event, allowing the Handler task to process the new event
immediately after it has completed processing the original event.

What does it happen if the interrupt is faster?
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Counting semaphore

This sequence is perfectly adequate if interrupts can occur
only at a relatively low frequency. If another interrupt occurs
before the Handler task has completed its processing of the first
interrupt, then the binary semaphore will effectively latch the
event, allowing the Handler task to process the new event
immediately after it has completed processing the original event.
What does it happen if the interrupt is faster?
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Counting semaphore
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Counting semaphore

A binary semaphore can latch, at most, one interrupt event. Any
subsequent events, occurring before the latched event has been
processed, will be lost.
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Counting semaphore: solution

Counting semaphores are typically used for two things:

Counting events

Resource management
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Counting events

In this scenario, an event handler will ’give’ a semaphore each time
an event occurs— causing the semaphore’s count value to be
incremented on each ‘give’. A handler task will ’take’ a semaphore
each time it processes an event—causing the semaphore’s count
value to be decremented on each take.
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Resource management

In this usage scenario, the count value indicates the number of
resources available. To obtain control of a resource a task must
first obtain a semaphore—decrementing the semaphore’s count
value. When the count value reaches zero, there are no free
resources. When a task finishes with the resource, it ’gives’ the
semaphore back—incrementing the semaphore’s count value.
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Counting semaphore: solution
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xSemaphoreCreateCounting()

xSemaphoreHandle xSemaphoreCreateCounting(unsigned portBASE_TYPE uxMaxCount ,

unsigned portBASE_TYPE uxInitialCount);

uxMaxCount The maximum value the semaphore will count to. To
continue the queueanalogy, the uxMaxCount value is
effectively the length of the queue.

uxInitialCount The initial count value of the semaphore after it
has been created.

return If NULL is returned, the semaphore cannot be
created because there is insufficient heap memory
available for FreeRTOS to allocate the semaphore
data structures.
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Example 13: main

It improves on the Example 12 implementation by using a counting
semaphore in place of the binary semaphore. main() is changed to
include a call to xSemaphoreCreateCounting() in place of the call
to xSemaphoreCreateBinary().

xCount ingSemaphore = xSemaphoreCreateCount ing ( 10 , 0 ) ;

Livio Tenze FreeRTOS and introduction to Linux embedded



Example 13: interrupt handler

void vSoftwareInterruptHandler( void )

{

portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;

/* ’Give’ the semaphore multiple times. The first will unblock the handler

task , the following ’gives’ are to demonstrate that the semaphore latches

the events to allow the handler task to process them in turn without any

events getting lost. This simulates multiple interrupts being taken by the

processor , even though in this case the events are simulated within a single

interrupt occurrence.*/

xSemaphoreGiveFromISR( xCountingSemaphore , &xHigherPriorityTaskWoken );

xSemaphoreGiveFromISR( xCountingSemaphore , &xHigherPriorityTaskWoken );

xSemaphoreGiveFromISR( xCountingSemaphore , &xHigherPriorityTaskWoken );

/* Clear the software interrupt bit using the interrupt controllers Clear

Pending register. */

mainCLEAR_INTERRUPT ();

/* Giving the semaphore may have unblocked a task - if it did and the

unblocked task has a priority equal to or above the currently executing

task then xHigherPriorityTaskWoken will have been set to pdTRUE and

portEND_SWITCHING_ISR () will force a context switch to the newly unblocked

higher priority task.

NOTE: The syntax for forcing a context switch within an ISR varies between

FreeRTOS ports. The portEND_SWITCHING_ISR () macro is provided as part of

the Cortex -M3 port layer for this purpose. taskYIELD () must never be called

from an ISR! */

portEND_SWITCHING_ISR( xHigherPriorityTaskWoken );

}
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Using queue within ISR

xQueueSendToFrontFromISR(),
xQueueSendToBackFromISR() and xQueueReceiveFromISR()
are versions of xQueueSendToFront(), xQueueSendToBack() and
xQueueReceive(), respectively, that are safe to use within an
interrupt service routine.

Queue vs semaphore

Semaphores are used to communicate events. Queues are used to
communicate events and to transfer data.
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xQueueSendToFrontFromISR() and
xQueueSendToBackFromISR()

portBASE_TYPE xQueueSendToFrontFromISR(xQueueHandle xQueue ,

void *pvItemToQueue

portBASE_TYPE *pxHigherPriorityTaskWoken);

portBASE_TYPE xQueueSendToBackFromISR( xQueueHandle xQueue ,

void *pvItemToQueue

portBASE_TYPE *pxHigherPriorityTaskWoken);

xQueue The handle of the queue to which the data is being
sent.

pvItemToQueue A pointer to the data to be copied into the queue.
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Using queue within ISR

pxHigherPriorityTaskWoken It is possible that a single queue will
have one or more tasks blocked on it waiting for data
to become available. Calling
xQueueSendToFrontFromISR() or
xQueueSendToBackFromISR() can make data
available, and so cause such a task to leave the
Blocked state. If calling the API function causes a
task to leave the Blocked state, and the unblocked
task has a priority equal to or higher than the
currently executing task (the task that was
interrupted), then, internally, the API function will
set *pxHigherPriorityTaskWoken to pdTRUE.
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Using queue within ISR

return pdPASS is returned only if data has been sent
successfully to the queue.
errQUEUE FULL is returned if data cannot be sent
to the queue because the queue is already full.
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Efficient queue usage

Most of the demo applications in the FreeRTOS download include
a simple UART driver that uses queues to pass characters into the
transmit interrupt handler and out of the receive interrupt handler.
Every character that is transmitted or received gets passed
individually through a queue. The UART drivers are implemented
in this manner purely as a convenient way of demonstrating queues
being used from within interrupts. Passing individual characters
through a queue is extremely inefficient (especially at high
baud rates) and is not recommended for production code.
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Efficient queue usage

More efficient techniques include:

Placing each received character in a simple RAM buffer, then
using a semaphore to unblock a task to process the buffer.

Interpreting the received characters directly within the
interrupt service routine, then using a queue to send the
interpreted and decoded commands to a task for processing.
This technique is suitable only if interpreting the data stream
is quick enough to be performed entirely from within an
interrupt.
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Example 14: generator

A periodic task is created that sends five numbers to a queue every
200 milliseconds. It generates a software interrupt only after all
five values have been sent.

static void vIntegerGenerator( void *pvParameters )

{

portTickType xLastExecutionTime;

unsigned long ulValueToSend = 0;

int i;

xLastExecutionTime = xTaskGetTickCount ();

for( ;; )

{

/* This is a periodic task. Block until it is time to run again.

The task will execute every 200ms. */

vTaskDelayUntil( &xLastExecutionTime , 200 / portTICK_RATE_MS );

for( i = 0; i < 5; i++ )

{

xQueueSendToBack( xIntegerQueue , &ulValueToSend , 0 );

ulValueToSend ++;

}

/* Force an interrupt so the interrupt service routine can read the

values from the queue. */

vPrintString( "Generator task - About to generate an interrupt.\n" );

mainTRIGGER_INTERRUPT ();

vPrintString( "Generator task - Interrupt generated.\n\n" );

}

}
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Example 14: interrupt handler

void vSoftwareInterruptHandler( void )

{

portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;

static unsigned long ulReceivedNumber;

/* The strings are declared static const to ensure they are not allocated to the

interrupt service routine stack , and exist even when the interrupt service routine

is not executing. */

static const char *pcStrings [] =

{

"String 0\n", "String 1\n",

"String 2\n", "String 3\n"

};

while( xQueueReceiveFromISR(xIntegerQueue ,

&ulReceivedNumber ,

&xHigherPriorityTaskWoken ) != errQUEUE_EMPTY )

{

/* Truncate the received value to the last two bits (values 0 to 3 inc.),

then send the string that corresponds to the truncated value to the other

queue. */

ulReceivedNumber &= 0x03;

xQueueSendToBackFromISR(xStringQueue ,

&pcStrings[ ulReceivedNumber ],

&xHigherPriorityTaskWoken );

}

/* Clear the software interrupt bit using the interrupt controllers Clear

Pending register. */

mainCLEAR_INTERRUPT ();

portEND_SWITCHING_ISR( xHigherPriorityTaskWoken );

}
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Example 14: printer task

static void vStringPrinter( void *pvParameters )

{

char *pcString;

for( ;; )

{

/* Block on the queue to wait for data to arrive. */

xQueueReceive( xStringQueue , &pcString , portMAX_DELAY );

/* Print out the string received. */

vPrintString( pcString );

}

}
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Example 14: main

int main( void )

{

/* Before a queue can be used it must first be created. Create both queues

used by this example. One queue can hold variables of type unsigned long ,

the other queue can hold variables of type char*. Both queues can hold a

maximum of 10 items. A real application should check the return values to

ensure the queues have been successfully created. */

xIntegerQueue = xQueueCreate( 10, sizeof( unsigned long ) );

xStringQueue = xQueueCreate( 10, sizeof( char * ) );

/* Enable the software interrupt and set its priority. */

prvSetupSoftwareInterrupt ();

/* Create the task that uses a queue to pass integers to the interrupt service

routine. The task is created at priority 1. */

xTaskCreate( vIntegerGenerator , "IntGen", 240, NULL , 1, NULL );

/* Create the task that prints out the strings sent to it from the interrupt

service routine. This task is created at the higher priority of 2. */

xTaskCreate( vStringPrinter , "String", 240, NULL , 2, NULL );

/* Start the scheduler so the created tasks start executing. */

vTaskStartScheduler ();

/* If all is well then main() will never reach here as the scheduler will

now be running the tasks. If main() does reach here then it is likely that

there was insufficient heap memory available for the idle task to be created.

*/

for( ;; );

}
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Example 14: timing
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Interrupt nesting

It is common for confusion to arise between task priorities and
interrupt priorities.

Interrupt priorities are the priorities at which interrupt service
routines (ISRs) execute relative to each other.

The priority assigned to a task is in no way related to the
priority assigned to an interrupt. Hardware decides when an
ISR will execute, whereas software decides when a task will
execute.

An ISR executed in response to a hardware interrupt will
interrupt a task, but a task cannot pre-empt an ISR.

Livio Tenze FreeRTOS and introduction to Linux embedded



Interrupt nesting

Ports that support interrupt nesting require one or both of the
constants detailed below to be defined in FreeRTOSConfig.h.

configMAX SYSCALL INTERRUPT PRIORITY and
configMAX API CALL INTERRUPT PRIORITY Sets the
highest interrupt priority from which interrupt-safe FreeRTOS
API functions can be called.

configKERNEL INTERRUPT PRIORITY sets the interrupt
priority used by the tick interrupt, and must always be set to
the lowest possible interrupt priority (Tick and PendSV).
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Interrupt nesting

Each interrupt source has a numeric priority, and a logical priority:

Numeric priority: the numeric priority is simply the number
assigned to the interrupt priority. For example, if an interrupt
is assigned a priority of 7, then its numeric priority is 7.
Likewise, if an interrupt is assigned a priority of 200, then its
numeric priority is 200.

Logical priority: an interrupt’s logical priority describes that
interrupt’s precedence over other interrupts.
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Interrupt nesting

If two interrupts of differing priority occur at the same time, then
the processor will execute the ISR for whichever of the two
interrupts has the higher logical priority before it executes the ISR
for whichever of the two interrupts has the lower logical priority.
An interrupt can interrupt (nest with) any interrupt that has
a lower logical priority, but an interrupt cannot interrupt
(nest with) any interrupt that has an equal or higher logical
priority.

https://developer.arm.com/documentation/ihi0048/b/

Interrupt-Handling-and-Prioritization/

Interrupt-prioritization/Priority-grouping?lang=en

Livio Tenze FreeRTOS and introduction to Linux embedded

https://developer.arm.com/documentation/ihi0048/b/Interrupt-Handling-and-Prioritization/Interrupt-prioritization/Priority-grouping?lang=en
https://developer.arm.com/documentation/ihi0048/b/Interrupt-Handling-and-Prioritization/Interrupt-prioritization/Priority-grouping?lang=en
https://developer.arm.com/documentation/ihi0048/b/Interrupt-Handling-and-Prioritization/Interrupt-prioritization/Priority-grouping?lang=en


Interrupt nesting

The relationship between an interrupt’s numeric priority and logical
priority is dependent on the processor architecture; on some
processors, the higher the numeric priority assigned to an interrupt
the higher that interrupt’s logical priority will be, while on other
processor architectures the higher the numeric priority assigned to
an interrupt the lower that interrupt’s logical priority will be.

Check the logical and numeric priority in STMCubeIDE FreeRTOS.
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Interrupt nesting
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Interrupt nesting

Interrupts that use priorities 1 to 3, inclusive, are prevented
from executing while the kernel or the application is inside a
critical section. ISRs running at these priorities can use
interrupt-safe FreeRTOS API functions.

Interrupts that use priority 4, or above, are not affected by
critical sections, so nothing the scheduler does will prevent
these interrupts from executing immediately—within the
limitations of the hardware itself. ISRs executing at these
priorities cannot use any FreeRTOS API functions.

Typically, functionality that requires very strict timing
accuracy (motor control, for example) would use a priority
above configMAX SYSCALL INTERRUPT PRIORITY to
ensure the scheduler does not introduce jitter into the
interrupt response time.
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Interrupt nesting in STM32

Livio Tenze FreeRTOS and introduction to Linux embedded



Resource access and conflicts

In a multitasking system, there is potential for conflict if one task
starts to access a resource, but does not complete its access before
being transitioned out of the Running state. If the task leaves the
resource in an inconsistent state, then access to the same resource
by any other task or interrupt could result in data corruption or
other similar error.

Remarks

The same behaviour you can find in the posix pthread environment,
where you can have a concurrent access to a shared resources.
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Resource management: examples

Accessing peripherals

Read, Modify, Write Operations

Non atomic access to variables

Function reentrancy: a function is reentrant if it is safe to
call the function from more than one task, or from both tasks
and interrupts.
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Resource management: reentrant

/* A parameter is passed into the function. This will either be

passed on the stack or in a CPU register. Either way is safe as

each task maintains its own stack and its own set of register

values. */

long lAddOneHundered( long lVar1 )

{

/* This function scope variable will also be allocated to the stack

or a register , depending on the compiler and optimization level. Each

task or interrupt that calls this function will have its own copy

of lVar2. */

long lVar2;

lVar2 = lVar1 + 100;

/* Most likely the return value will be placed in a CPU register ,

although it too could be placed on the stack. */

return lVar2;

}
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Resource management: non reentrant

/* In this case lVar1 is a global variable so every task that calls

the function will be accessing the same single copy of the variable. */

long lVar1;

long lNonsenseFunction( void )

{

/* This variable is static so is not allocated on the stack. Each task

that calls the function will be accessing the same single copy of the

variable. */

static long lState = 0;

long lReturn;

switch( lState )

{

case 0 : lReturn = lVar1 + 10;

lState = 1;

break;

case 1 : lReturn = lVar1 + 20;

lState = 0;

break;

}

}
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Mutual Exclusion

Access to a resource that is shared between tasks, or between tasks
and interrupts, must be managed using a ‘mutual exclusion’
technique, to ensure that data consistency is maintained at all
times. The goal is to ensure that, once a task starts to access a
shared resource, the same task has exclusive access until the
resource has been returned to a consistent state.

FreeRTOS provides several features that can be used to implement
mutual exclusion, but the best mutual exclusion method is to
(whenever possible) design the application in such a way that
resources are not shared and each resource is accessed only
from a single task.
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Management of mutual exclusion

Critical sections

Suspending the scheduler

Mutexes

Gatekeeper
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Critical sections

Basic critical sections are regions of code that are surrounded by
calls to the macros taskENTER CRITICAL() and
taskEXIT CRITICAL(), respectively. Critical sections are also
known as critical regions.

/* Ensure access to the GlobalVar variable cannot be interrupted by

placing it within a critical section. Enter the critical section. */

taskENTER_CRITICAL ();

/* A switch to another task cannot occur between the call to

taskENTER_CRITICAL () and the call to taskEXIT_CRITICAL (). Interrupts

may still execute , but only interrupts whose priority is above the

value assigned to the configMAX_SYSCALL_INTERRUPT_PRIORITY constant

- and those interrupts are not permitted to call FreeRTOS API

functions. */

GlobalVar |= 0x01;

/* Access to GlobalVar is complete so the critical section can be exited. */

taskEXIT_CRITICAL ();
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Critical sections

Critical sections implemented in this way are a very crude method
of providing mutual exclusion. They work by disabling
interrupts up to the interrupt priority set by
configMAX SYSCALL INTERRUPT PRIORITY. Pre-emptive
context switches can occur only from within an interrupt, so, as
long as interrupts remain disabled, the task that called
taskENTER CRITICAL() is guaranteed to remain in the Running
state until the critical section is exited.
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Context switching and interrupts
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Critical sections

It is safe for critical sections to become nested, because the kernel
keeps a count of the nesting depth. The critical section will be
exited only when the nesting depth returns to zero— which is
when one call to taskEXIT CRITICAL() has been executed for
every preceding call to taskENTER CRITICAL().
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Suspending the scheduler

Critical sections can also be created by suspending the scheduler.
Suspending the scheduler is sometimes also known as ‘locking’ the
scheduler.

vo i d vTaskSuspendAl l ( v o i d ) ;

A critical section that is too long to be implemented by simply
disabling interrupts can, instead, be implemented by suspending
the scheduler, However, resuming (or ‘un-suspending’) the
scheduler can be a relatively long operation, so consideration must
be given to which is the best method to use in each case.
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Suspending the scheduler

portBASE TYPE xTaskResumeAl l ( v o i d ) ;

return Context switches that are requested while the
scheduler is suspended are held pending and
performed only as the scheduler is being resumed. A
previously pending context switch being performed
before xTaskResumeAll() returns results in the
function returning pdTRUE. In all other cases,
xTaskResumeAll() returns pdFALSE.

It is safe for calls to vTaskSuspendAll() and xTaskResumeAll() to
become nested, because the kernel keeps a count of the nesting
depth.
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Mutexes

A Mutex is a special type of binary semaphore that is used to
control access to a resource that is shared between two or more
tasks. The word MUTEX originates from ‘MUTual EXclusion’.

When used in a mutual exclusion scenario, the mutex can be
thought of as a token that is associated with the resource being
shared. For a task to access the resource legitimately, it must first
successfully ‘take’ the token (be the token holder). When the
token holder has finished with the resource, it must ‘give’ the
token back. Only when the token has been returned can another
task successfully take the token and then safely access the same
shared resource.
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Mutexes

A Mutex is a special type of binary semaphore that is used to
control access to a resource that is shared between two or more
tasks. The word MUTEX originates from ‘MUTual EXclusion’.
When used in a mutual exclusion scenario, the mutex can be
thought of as a token that is associated with the resource being
shared. For a task to access the resource legitimately, it must first
successfully ‘take’ the token (be the token holder). When the
token holder has finished with the resource, it must ‘give’ the
token back. Only when the token has been returned can another
task successfully take the token and then safely access the same
shared resource.
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Mutexes

The primary difference is what happens to the semaphore after it
has been obtained:

A semaphore that is used for mutual exclusion must
always be returned.

A semaphore that is used for synchronization is normally
discarded and not returned.

Remarks

Semaphore are given or taken, mutexes usually need to be acquired
and released.
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Mutual exclusion with mutex
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xSemaphoreCreateMutex()

A mutex is a type of semaphore. Handles to all the various types
of FreeRTOS semaphore are stored in a variable of type
xSemaphoreHandle.

xSemaphoreHandle xSemaphoreCreateMutex ( vo i d ) ;

return If NULL is returned, then the mutex could not be
created because there is insufficient heap memory
available for FreeRTOS to allocate the mutex data
structures.

Livio Tenze FreeRTOS and introduction to Linux embedded



Example 15: print function

static void prvNewPrintString( const char *pcString )

{

static char cBuffer[ mainMAX_MSG_LEN ];

/* The mutex is created before the scheduler is started so already

exists by the time this task first executes.

Attempt to take the mutex , blocking indefinitely to wait for the mutex if

it is not available straight away. The call to xSemaphoreTake () will only

return when the mutex has been successfully obtained so there is no need to

check the function return value. If any other delay period was used then

the code must check that xSemaphoreTake () returns pdTRUE before accessing

the shared resource (which in this case is standard out). */

xSemaphoreTake( xMutex , portMAX_DELAY );

{

/* The following line will only execute once the mutex has been

successfully obtained. Standard out can be accessed freely now as

only one task can have the mutex at any one time. */

sprintf( cBuffer , "%s", pcString );

consoleprint( cBuffer );

/* The mutex MUST be given back! */

}

xSemaphoreGive( xMutex );

}
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Example 15: print task

static void prvPrintTask( void *pvParameters )

{

char *pcStringToPrint;

/* Two instances of this task are created so the string the task will send

to prvNewPrintString () is passed into the task using the task parameter.

Cast this to the required type. */

pcStringToPrint = ( char * ) pvParameters;

for( ;; )

{

/* Print out the string using the newly defined function. */

prvNewPrintString( pcStringToPrint );

/* Wait a pseudo random time. Note that rand() is not necessarily

reentrant , but in this case it does not really matter as the code does

not care what value is returned. In a more secure application a version

of rand() that is known to be reentrant should be used - or calls to

rand() should be protected using a critical section. */

vTaskDelay( ( rand() & 0x1FF ) );

}

}

Livio Tenze FreeRTOS and introduction to Linux embedded



Example 15: main

int main( void )

{

/* Before a semaphore is used it must be explicitly created.

a mutex type semaphore is created. */

xMutex = xSemaphoreCreateMutex ();

/* The tasks are going to use a pseudo random delay , seed the random number

generator. */

srand( 567 );

/* Only create the tasks if the semaphore was created successfully. */

if( xMutex != NULL )

{

/* Create two instances of the tasks that write to stdout. The string

they write is passed in as the task parameter. The tasks are created

at different priorities so some pre-emption will occur. */

xTaskCreate( prvPrintTask , "Print1", 240,

"Task 1 ******************************************\n", 1, NULL );

xTaskCreate( prvPrintTask , "Print2", 240,

"Task 2 ------------------------------------------\n", 2, NULL );

/* Start the scheduler so the created tasks start executing. */

vTaskStartScheduler ();

}

/* If all is well then main() will never reach here as the scheduler will

now be running the tasks. If main() does reach here then it is likely that

there was insufficient heap memory available for the idle task to be created.

*/

for( ;; );

}
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Example 15: comments and timing

The two instances of prvPrintTask() are created at different
priorities, so the lower priority task will sometimes be pre-empted
by the higher priority task.
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Possible problems

Priority inversion

Priority inheritance

Deadlock

Livio Tenze FreeRTOS and introduction to Linux embedded



Priority inversion

The figure demonstrates
one of the potential
pitfalls of using a
mutex to provide mutual
exclusion. The possible
sequence of execution
depicted shows
the higher priority Task
2 having to wait for
the lower priority Task 1
to give up control of the

mutex. A higher priority task being delayed by a lower priority task
in this manner is called ‘priority inversion’.
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Priority inheritance

FreeRTOS
mutexes and binary
semaphores are very
similar—the difference
being that mutexes
include a basic ‘priority
inheritance’ mechanism,
whereas binary
semaphores do not.

The low priority task that holds the mutex ‘inherits’ the priority of
the task waiting for the mutex.
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Deadlock

‘Deadlock’ is another potential pitfall that can occur when using
mutexes for mutual exclusion.

Task A executes and successfully takes mutex X.

Task A is pre-empted by Task B.

Task B successfully takes mutex Y before attempting to also
take mutex X—but mutex X is held by Task A, so is not
available to Task B. Task B opts to enter the Blocked state to
wait for mutex X to be released.

Task A continues executing. It attempts to take mutex
Y—but mutex Y is held by Task B, so is not available to Task
A. Task A opts to enter the Blocked state to wait for mutex Y
to be released.
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Gatekeeper task

Gatekeeper tasks provide a clean method of implementing mutual
exclusion without the risk of priority inversion or deadlock.
A gatekeeper task is a task that has sole ownership of a resource.
Only the gatekeeper task is allowed to access the resource
directly—any other task requiring access to the resource can do so
only indirectly by using the services of the gatekeeper.
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Example 16

Example 16 provides an alternative implementation for
vPrintString(). This time, a gatekeeper task is used to manage
access to standard out. When a task wants to write a message to
the terminal, it does not call a print function directly but, instead,
sends the message to the gatekeeper.
The gatekeeper task uses a FreeRTOS queue to serialize
access to the terminal. The internal implementation of the
task does not have to consider mutual exclusion because it is
the only task permitted to access the terminal directly.
The gatekeeper task spends most of its time in the Blocked state,
waiting for messages to arrive on the queue.
A tick hook (or tick callback) is a function that is called by the
kernel during each tick interrupt.
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Example 16

static void prvStdioGatekeeperTask( void *pvParameters )

{

char *pcMessageToPrint;

static char cBuffer[ mainMAX_MSG_LEN ];

/* This is the only task that is allowed to write to the terminal output.

Any other task wanting to write a string to the output does not access the

terminal directly , but instead sends the string to this task. As only this

task accesses standard out there are no mutual exclusion or serialization

issues to consider within the implementation of the task itself. */

for( ;; )

{

/* Wait for a message to arrive. An indefinite block time is specified

so there is no need to check the return value - the function will only

return when a message has been successfully received. */

xQueueReceive( xPrintQueue , &pcMessageToPrint , portMAX_DELAY );

/* Output the received string. */

sprintf( cBuffer , "%s", pcMessageToPrint );

consoleprint( cBuffer );

/* Now go back to wait for the next message. */

}

}

The task that prints out the message is similar to that used in
Example 15, except that, here, the string is sent on the queue to
the gatekeeper task, rather than written out directly.
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Example 16

static void prvPrintTask( void *pvParameters )

{

int iIndexToString;

/* Two instances of this task are created. The task parameter is used to pass an

index into an array of strings into the task. Cast this to the required type. */

iIndexToString = ( int ) pvParameters;

for( ;; )

{

/* Print out the string , not directly but instead by passing a pointer to

the string to the gatekeeper task via a queue. The queue is created before

the scheduler is started so will already exist by the time this task executes

for the first time. A block time is not specified because there should

always be space in the queue. */

xQueueSendToBack( xPrintQueue , &( pcStringsToPrint[ iIndexToString ] ), 0 );

/* Wait a pseudo random time. Note that rand() is not necessarily

reentrant , but in this case it does not really matter as the code does

not care what value is returned. In a more secure application a version

of rand() that is known to be reentrant should be used - or calls to

rand() should be protected using a critical section. */

vTaskDelay( ( rand() & 0x1FF ) );

}

}
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Example 16

void vApplicationTickHook( void )

{

static int iCount = 0;

portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;

/* Print out a message every 200 ticks. The message is not written out

directly , but sent to the gatekeeper task. */

iCount ++;

if( iCount >= 200 )

{

/* In this case the last parameter (xHigherPriorityTaskWoken) is not

actually used but must still be supplied. */

xQueueSendToFrontFromISR( xPrintQueue ,

&( pcStringsToPrint[ 2 ] ),

&xHigherPriorityTaskWoken );

/* Reset the count ready to print out the string again in 200 ticks

time. */

iCount = 0;

}

}

Tick hook functions execute within the context of the tick
interrupt, and so must be kept very short, must use only a
moderate amount of stack space, and must not call any FreeRTOS
API function whose name does not end with ‘FromISR()’.
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Example 16

/* Define the strings that the tasks and interrupt will print out via the

gatekeeper. */

static char *pcStringsToPrint [] =

{

"Task 1 ****************************************************\n",

"Task 2 ----------------------------------------------------\n",

"Message printed from the tick hook interrupt ##############\n"

};

/*-----------------------------------------------------------*/

/* Declare a variable of type xQueueHandle. This is used to send messages from

the print tasks and the tick interrupt to the gatekeeper task. */

xQueueHandle xPrintQueue;

/*-----------------------------------------------------------*/
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Example 16

int main( void )

{

/* Before a queue is used it must be explicitly created.

to hold a maximum of 5 character pointers. */

xPrintQueue = xQueueCreate( 5, sizeof( char * ) );

/* The tasks are going to use a pseudo random delay , seed the random number

generator. */

srand( 567 );

/* Check the queue was created successfully. */

if( xPrintQueue != NULL )

{

/* Create two instances of the tasks that send messages to the gatekeeper.

The index to the string the task uses is passed to the task via the task

parameter (the 4th parameter to xTaskCreate ()). The tasks are created at

different priorities so the higher priority task will occasionally preempt

the lower priority task. */

xTaskCreate( prvPrintTask , "Print1", 240, ( void * ) 0, 1, NULL );

xTaskCreate( prvPrintTask , "Print2", 240, ( void * ) 1, 2, NULL );

/* Create the gatekeeper task. This is the only task that is permitted

to directly access standard out. */

xTaskCreate( prvStdioGatekeeperTask , "Gatekeeper", 240, NULL , 0, NULL );

/* Start the scheduler so the created tasks start executing. */

vTaskStartScheduler ();

}

/* If all is well then main() will never reach here as the scheduler will

now be running the tasks. If main() does reach here then it is likely that

there was insufficient heap memory available for the idle task to be created.

Chapter 5 provides more information on memory management. */

for( ;; );

}
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Example 16: final remarks

The gatekeeper task is assigned a lower priority than the print
tasks—so messages sent to the gatekeeper remain in the queue
until both print tasks are in the Blocked state. In some situations,
it would be appropriate to assign the gatekeeper a higher priority,
so that messages get processed sooner—but doing so would be at
the cost of the gatekeeper delaying lower priority tasks, until it had
completed accessing the protected resource.
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Switching Between Static and Dynamic Memory Allocation

The RAM required to hold these objects can be allocated statically
at compile-time or dynamically at run time.

Dynamic allocation reduces design and planning effort,
simplifies the API, and minimizes the RAM footprint.

Static allocation is more deterministic, removes the need
to handle memory allocation failures, and removes the risk of
heap fragmentation (where the heap has enough free memory
but not in one usable contiguous block).
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Dynamic allocation

Dynamic memory allocation is a C programming concept, not a
concept specific to either FreeRTOS or multitasking.
The general-purpose C library malloc() and free() functions may
not be suitable for one or more of the following reasons:

They are not always available on small embedded systems.

Their implementation can be relatively large, taking up
valuable code space.

They are rarely thread-safe.

They are not deterministic; the amount of time taken to
execute the functions will differ from call to call.
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Dynamic allocation

They can suffer from fragmentation (where the heap has
enough free memory but not in one usable contiguous block).

They can complicate the linker configuration.

They can be the source of difficult to debug errors if the
heap space is allowed to grow into memory used by
other variables.
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Dynamic allocation

Early versions of FreeRTOS used a memory pools allocation
scheme, where pools of different size memory blocks are
pre-allocated at compile-time, then returned by the memory
allocation functions.
Although block allocation is common in real-time systems, it was
removed from FreeRTOS because its inefficient use of RAM in
really small embedded systems led to many support requests.
FreeRTOS now treats memory allocation as part of the portable
layer (instead of part of the core codebase).
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Dynamic allocation API

When FreeRTOS requires RAM it calls pvPortMalloc()
instead of malloc().

Likewise, when FreeRTOS frees previously allocated RAM it
calls vPortFree() instead of free().

FreeRTOS comes with five example implementations of
pvPortMalloc() and vPortFree(). FreeRTOS applications can use
one of the example implementations or provide their own. The five
examples are defined in the heap_1.c, heap_2.c, heap_3.c,
heap_4.c and heap_5.c
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Heap 1

heap 1.c implements a very basic version of pvPortMalloc(), and
does not implement vPortFree().
Heap 1’s implementation of pvPortMalloc() simply subdivides a
simple uint8 t array called the FreeRTOS heap into smaller blocks
each time it’s called.

Critical systems often prohibit dynamic memory allocation because
of the uncertainties associated with non-determinism, memory
fragmentation, and failed allocations. Heap 1 is always
deterministic and cannot fragment memory.
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Heap 1
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Heap 2

heap 2 is superseded by heap 4, which includes enhanced
functionality.
heap 2.c also works by subdividing an array dimensioned by the
configTOTAL HEAP SIZE constant. It uses a best-fit algorithm to
allocate memory, and, unlike heap 1, it does implement
vPortFree().
Again, implementing the heap as a statically allocated array makes
FreeRTOS appear to consume a lot of RAM because the heap
becomes part of the FreeRTOS data.
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Heap 2: best fit

The best-fit algorithm ensures that pvPortMalloc() uses the free
block of memory that is closest in size to the number of bytes
requested. For example, consider the scenario where:

The heap contains three blocks of free memory that are 5
bytes, 25 bytes, and 100 bytes, respectively.

pvPortMalloc() requests 20 bytes of RAM.

The smallest free block of RAM into which the requested number
of bytes fits is the 25-byte block, so pvPortMalloc() splits the
25-byte block into one block of 20 bytes and one block of 5 bytes
before returning a pointer to the 20-byte block. The new 5-byte
block remains available for future calls to pvPortMalloc().
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Heap 2

Livio Tenze FreeRTOS and introduction to Linux embedded



Heap 3

heap 3.c uses the standard library malloc() and free()
functions, so the linker configuration defines the heap size, and
the configTOTAL HEAP SIZE constant is not used.
heap 3 makes malloc() and free() thread-safe by temporarily
suspending the FreeRTOS scheduler for the duration of their
execution.
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Heap 4

Like heap 1 and heap 2, heap 4 works by subdividing an array into
smaller blocks. As before, the array is statically allocated and
dimensioned by configTOTAL HEAP SIZE. heap 4 uses a first-fit
algorithm to allocate memory. Unlike heap 2, it combines
(coalesces) adjacent free blocks of memory into a single larger
block, which minimizes the risk of memory fragmentation.
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Heap 4

The first fit algorithm ensures pvPortMalloc() uses the first free
block of memory that is large enough to hold the number of bytes
requested. For example, consider the scenario where:

The heap contains three blocks of free memory that, in the
order in which they appear in the array, are 5 bytes, 200 bytes,
and 100 bytes, respectively.

pvPortMalloc() requests 20 bytes of RAM.

The first free block of RAM that the requested number of bytes
fits is the 200-byte block, so pvPortMalloc() splits the 200-byte
block into one block of 20 bytes and one of 180 bytes, before
returning a pointer to the 20-byte block.
The new 180-byte block remains available to future calls to
pvPortMalloc().
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Heap 4
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Heap 5

heap 5 uses the same allocation algorithm as heap 4. Unlike
heap 4, which is limited to allocating memory from a single array,
heap 5 can combine memory from multiple separated memory
spaces into a single heap.
heap 5 is useful when the RAM provided by the system on which
FreeRTOS is running does not appear as a single contiguous
(without space) block in the system’s memory map.
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Software timers

Software timers are used to schedule the execution of a
function at a set time in the future, or periodically with a
fixed frequency. The function executed by the software
timer is called the software timer’s callback function.

Software timers are implemented by, and are under the control
of, the FreeRTOS kernel. They do not require hardware
support, and are not related to hardware timers or hardware
counters.

Note that, in line with the FreeRTOS philosophy of using
innovative design to ensure maximum efficiency, software
timers do not use any processing time unless a software timer
callback function is actually executing.

Software timer functionality is optional.
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Software timers callback

Software timer callback functions are implemented as C functions.
The only thing special about them is their prototype, which must
return void, and take a handle to a software timer as its only
parameter.

vo i d ATimerCa l lback ( T imerHand le t xTimer ) ;

Software timer callback functions execute from start to finish, and
exit in the normal way. They should be kept short, and must not
enter the Blocked state.
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Software timers callback

As will be seen, software timer callback functions execute in the
context of a task that is created automatically when the
FreeRTOS scheduler is started. Therefore, it is essential that
software timer callback functions never call FreeRTOS API
functions that will result in the calling task entering the Blocked
state. It is ok to call functions such as xQueueReceive(), but only
if the function’s xTicksToWait parameter (which specifies the
function’s block time) is set to 0. It is not ok to call functions such
as vTaskDelay(), as calling vTaskDelay() will always place the
calling task into the Blocked state.
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Attributes of software timers

A software timer’s ’period’ is the time between the software
timer being started, and the software timer’s callback
function executing. Two types of software timer:

One-shot timers

Auto-reload timers
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Attributes of software timers
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Software timer states

A software timer can be in one of the following two states:

Dormant: A Dormant software timer exists, and can be
referenced by its handle, but is not running, so its callback
functions will not execute.

Running: A Running software timer will execute its callback
function after a time equal to its period has elapsed since the
software timer entered the Running state, or since the
software timer was last reset.
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One-shot
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Autoreload
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Software timer context

All software timer callback functions execute in the context of
the same RTOS daemon (or ’timer service’) task. Now the
task is used for other purposes too, so it is known by the more
generic name of the ’RTOS daemon task’.

The daemon task is a standard FreeRTOS task that is
created automatically when the scheduler is started. Its
priority and stack size are set by the
configTIMER TASK PRIORITY and
configTIMER TASK STACK DEPTH compile time
configuration constants respectively.

Software timer callback functions must not call FreeRTOS
API functions that will result in the calling task entering the
Blocked state, as to do so will result in the daemon task
entering the Blocked state.
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The Timer Command Queue

Software timer API functions send commands from the calling task
to the daemon task on a queue called the ’timer command
queue’.
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The Timer Command Queue

The timer command queue is a standard FreeRTOS queue that is
created automatically when the scheduler is started.

The daemon task is scheduled like any other FreeRTOS task; it
will only process commands, or execute timer callback
functions, when it is the highest priority task that is able to
run.

The time at which the software timer being started will expire is
calculated from the time the ’start a timer’ command was sent to
the timer command queue—it is not calculated from the time the
daemon task received the ’start a timer’ command from the timer
command queue.
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The Timer Command Queue

The timer command queue is a standard FreeRTOS queue that is
created automatically when the scheduler is started.
The daemon task is scheduled like any other FreeRTOS task; it
will only process commands, or execute timer callback
functions, when it is the highest priority task that is able to
run.

The time at which the software timer being started will expire is
calculated from the time the ’start a timer’ command was sent to
the timer command queue—it is not calculated from the time the
daemon task received the ’start a timer’ command from the timer
command queue.

Livio Tenze FreeRTOS and introduction to Linux embedded



Daemon task priority: low
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Daemon task priority: high
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xTimerCreate()

Software timers are referenced by variables of type
TimerHandle t. Software timers are created in the Dormant
state.

xTimerCreateStatic() function allocates the memory required
to create a timer statically at compile time: a software timer
must be explicitly created before it can be used.
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xTimerCreate()

TimerHandle_t xTimerCreate( const char *const pcTimerName ,

const TickType_t xTimerPeriodInTicks ,

const BaseType_t xAutoReload ,

void * const pvTimerID ,

TimerCallbackFunction_t pxCallbackFunction );

pcTimerName A descriptive name for the timer.

xTimerPeriodInTicks The timer’s period specified in ticks. Cannot
be 0.

xAutoReload Set xAutoReload to pdFALSE to create a
one-shot timer.

pvTimerID Each software timer has an ID value. The ID is a
void pointer.

Livio Tenze FreeRTOS and introduction to Linux embedded



xTimerCreate()

pxCallbackFunction Software timer callback functions are simply C
functions that conform to the prototype.

return If a non-NULL value is returned it indicates that the
software timer has been created successfully. The
returned value is the handle of the created timer.
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xTimerStart()

xTimerStart() is used to start a software timer that is in the
Dormant state, or reset (re-start) a software timer that is in
the Running state.

xTimerStop() is used to stop a software timer that is in the
Running state. Stopping a software timer is the same as
transitioning the timer into the Dormant state.

xTimerStart() can be called before the scheduler is started,
but when this is done, the software timer will not actually
start until the time at which the scheduler starts.

The interrupt-safe version xTimerStartFromISR() should be used in
ISR.
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xTimerStart()

BaseType_t xTimerStart( TimerHandle_t xTimer , TickType_t xTicksToWait );

xTimer The handle of the software timer being started or
reset.

xTicksToWait xTimerStart() uses the timer command queue to
send the ’start a timer’ command to the daemon
task. xTicksToWait specifies the maximum amount
of time the calling task should remain in the Blocked
state to wait for space to become available on the
timer command queue, should the queue already be
full. xTimerStart() will return immediately if
xTicksToWait is zero and the timer command queue
is already full.
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xTimerStart()

return pdFAIL will be returned if the ’start a timer’
command could not be written to the timer
command queue because the queue was already full.
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Example 14b: main

/* The periods assigned to the one-shot and auto-reload timers are 3.333

second and half a second respectively. */

#define mainONE_SHOT_TIMER_PERIOD pdMS_TO_TICKS( 3333 )

#define mainAUTO_RELOAD_TIMER_PERIOD pdMS_TO_TICKS( 500 )

int main( void )

{

TimerHandle_t xAutoReloadTimer , xOneShotTimer;

BaseType_t xTimer1Started , xTimer2Started;

/* Create the one shot timer , storing the handle to the created timer in

xOneShotTimer. */

xOneShotTimer = xTimerCreate(

/* Text name for the software timer - not used by FreeRTOS. */

"OneShot",

/* The software timer’s period in ticks. */

mainONE_SHOT_TIMER_PERIOD ,

/* Setting uxAutoRealod to pdFALSE creates a one-shot software timer. */

pdFALSE ,

/* This example does not use the timer id. */

0,

/* Callback function to be used by the software timer being created. */

prvOneShotTimerCallback );

/* Create the auto-reload timer , storing the handle to the created timer

in xAutoReloadTimer. */
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Example 14b: main

xAutoReloadTimer = xTimerCreate(

/* Text name for the software timer - not used by FreeRTOS. */

"AutoReload",

/* The software timer’s period in ticks. */

mainAUTO_RELOAD_TIMER_PERIOD ,

/* Setting uxAutoRealod to pdTRUE creates an auto-reload timer. */

pdTRUE ,

/* This example does not use the timer id. */

0,

/* Callback function to be used by the software timer being created. */

prvAutoReloadTimerCallback );

/* Check the software timers were created. */

if( ( xOneShotTimer != NULL ) ( xAutoReloadTimer != NULL ) )

{

/* Start the software timers , using a block time of 0 (no block time).

The scheduler has not been started yet so any block time specified

here would be ignored anyway. */

xTimer1Started = xTimerStart( xOneShotTimer , 0 );

xTimer2Started = xTimerStart( xAutoReloadTimer , 0 );
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Example 14b: main

/* The implementation of xTimerStart () uses the timer command queue ,

and xTimerStart () will fail if the timer command queue gets full.

The timer service task does not get created until the scheduler is

started , so all commands sent to the command queue will stay in the

queue until after the scheduler has been started. Check both calls

to xTimerStart () passed. */

if( ( xTimer1Started == pdPASS ) ( xTimer2Started == pdPASS ) )

{

/* Start the scheduler. */

vTaskStartScheduler ();

}

}

/* As always , this line should not be reached. */

for( ;; );

}
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Example 14b: prvOneShotTimerCallback

static void prvOneShotTimerCallback( TimerHandle_t xTimer )

{

TickType_t xTimeNow;

/* Obtain the current tick count. */

xTimeNow = xTaskGetTickCount ();

/* Output a string to show the time at which the callback was executed. */

vPrintStringAndNumber( "One-shot timer callback executing", xTimeNow );

/* File scope variable. */

ulCallCount ++;

}
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Example 14b: prvAutoReloadTimerCallback

static void prvAutoReloadTimerCallback( TimerHandle_t xTimer )

{

TickType_t xTimeNow;

/* Obtain the current tick count. */

xTimeNow = xTaskGetTickCount ();

/* Output a string to show the time at which the callback was executed. */

vPrintStringAndNumber( "Auto-reload timer callback executing", xTimeNow);

ulCallCount ++;

}

The version provided in docker is a bit different...
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Other software timer APIs

void vTimerSetTimerID( const TimerHandle_t xTimer , void *pvNewID );

void *pvTimerGetTimerID( const TimerHandle_t xTimer );

BaseType_t xTimerChangePeriod( TimerHandle_t xTimer ,

TickType_t xNewPeriod ,

TickType_t xTicksToWait );

BaseType_t xTimerReset( TimerHandle_t xTimer , TickType_t xTicksToWait );

BaseType_t xTimerDelete( TimerHandle_t xTimer , TickType_t xTicksToWait );

Livio Tenze FreeRTOS and introduction to Linux embedded



Event group vs other sync methods

It has already been noted that real-time embedded systems have to
take actions in response to events.

Examples of such features
include semaphores and queues, both of which have the following
properties:

They allow a task to wait in the Blocked state for a single
event to occur.

They unblock a single task when the event occurs. The task
that is unblocked is the highest priority task that was
waiting for the event.
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Event group

Event groups are another feature of FreeRTOS that allow events
to be communicated to tasks. Unlike queues and semaphores:

Event groups allow a task to wait in the Blocked state for a
combination of one of more events to occur.

Event groups unblock all the tasks that were waiting for
the same event, or combination of events, when the event
occurs.
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Event group

Event groups also provide the opportunity to reduce the RAM
used by an application as, often, it is possible to replace many
binary semaphores with a single event group.

Event group functionality is optional. To include event group
functionality, build the FreeRTOS source file event groups.c as part
of your project.
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Event Groups, Event Flags and Event Bits

An event ’flag’ is a Boolean (1 or 0) value used to indicate if
an event has occurred or not.

An event ’group’ is a set of event flags.

The state of each event flag is represented by a single bit in a
variable of type EventBits t. For that reason, event flags are also
known as event ’bits’
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Event group example

It is up to the application writer to assign a meaning to individual
bits within an event group. For example, the application writer
might create an event group, then:

Define bit 0 within the event group to mean ”a message has
been received from the network”.

Define bit 1 within the event group to mean ”a message is
ready to be sent onto the network”.

Define bit 2 within the event group to mean ”abort the
current network connection”.
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Multiple tasks and compilation

Event groups are objects in their own right that can be accessed by
any task or ISR that knows of their existence.
Any number of tasks can set bits in the same event group, and any
number of tasks can read bits from the same event group.

The number of event bits in an event group is dependent on the
configTICK TYPE WIDTH IN BITS compile time configuration
constant in FreeRTOSConfig.h.
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xEventGroupCreate()

FreeRTOS also includes the xEventGroupCreateStatic() function,
which allocates the memory required to create an event group
statically at compile time.

EventGroupHand le t xEventGroupCreate ( vo i d ) ;

return If NULL is returned, then the event group cannot be
created because there is insufficient heap memory
available.
The returned value should be stored as the
handle to the created event group.
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xEventGroupSetBits()

The xEventGroupSetBits() API function sets one or more bits in
an event group, and is typically used to notify a task that the
events represented by the bit, or bits, being set has occurred.

EventBits_t xEventGroupSetBits(EventGroupHandle_t xEventGroup ,

const EventBits_t uxBitsToSet);

xEventGroup The handle of the event group in which bits are
being set.

uxBitsToSet A bit mask that specifies the event bit, or event bits,
to set to 1 in the event group. The value of the event
group is updated by bitwise ORing the event group’s
existing value with the value passed in uxBitsToSet.
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xEventGroupSetBits()

return The value of the event group at the time the call to
xEventGroupSetBits() returned. Note that the
value returned will not necessarily have the bits
specified by uxBitsToSet set, because the bits
may have been cleared again by a different task.
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xEventGroupSetBitsFroISR()

Giving a semaphore is a deterministic operation because it is
known in advance that giving a semaphore can result in at most
one task leaving the Blocked state. When bits are set in an event
group it is not known in advance how many tasks will leave
the Blocked state, so setting bits in an event group is not a
deterministic operation.

BaseType_t xEventGroupSetBitsFromISR( EventGroupHandle_t xEventGroup ,

const EventBits_t uxBitsToSet ,

BaseType_t *pxHigherPriorityTaskWoken );

pxHigherPriorityTaskWoken does not set the event bits directly
inside the interrupt service routine, but instead defers
the action to the RTOS daemon task by sending a
command on the timer command queue.
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xEventGroupSetBitsFroISR()

pxHigherPriorityTaskWoken xEventGroupSetBitsFromISR()
does not set the event bits directly inside the
interrupt service routine, but instead defers the
action to the RTOS daemon task by sending a
command on the timer command queue. If the
daemon task was in the Blocked state to wait for
data to become available on the timer command
queue, then writing to the timer command queue will
cause the daemon task to leave the Blocked state. If
the priority of the daemon task is higher than the
priority of the currently executing task (the task that
was interrupted), then, internally,
xEventGroupSetBitsFromISR() will set
pxHigherPriorityTaskWoken to pdTRUE.
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xEventGroupSetBitsFromISR()

return pdPASS will be returned only if data was successfully
sent to the timer command queue.
pdFALSE will be returned if the ’set bits’ command
could not be written to the timer command queue
because the queue was already full.
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xEventGroupWaitBits()

The xEventGroupWaitBits() API function allows a task to read the
value of an event group, and optionally wait in the Blocked state
for one or more event bits in the event group to become set, if the
event bits are not already set.

EventBits_t xEventGroupWaitBits( EventGroupHandle_t xEventGroup ,

const EventBits_t uxBitsToWaitFor ,

const BaseType_t xClearOnExit ,

const BaseType_t xWaitForAllBits ,

TickType_t xTicksToWait );

uxBitsToWaitFor specifies which event bits in the event group to
test

xWaitForAllBits specifies whether to use a bitwise OR test, or a
bitwise AND test.

Livio Tenze FreeRTOS and introduction to Linux embedded



xEventGroupWaitBits()

xClearOnExit If xClearOnExit is set to pdTRUE, then the testing
and clearing of event bits appears to the calling
task to be an atomic operation (uninterruptable
by other tasks or interrupts).

Clear bits

Event bits can be cleared using the xEventGroupClearBits() API
function, but using that function to manually clear event bits will
lead to race conditions in the application code if:

There is more than one task using the same event group.

Bits are set in the event group by a different task, or by an
interrupt service routine.
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xEventGroupWaitBits()

xTicksToWait The maximum amount of time the task should
remain in the Blocked state to wait for its unblock
condition to be met.

return If xEventGroupWaitBits() returned because the
calling task’s unblock condition was met, then the
returned value is the value of the event group at the
time the calling task’s unblock condition was met.
If xEventGroupWaitBits() returned because the block
time specified by the xTicksToWait parameter
expired, then the returned value is the value of the
event group at the time the block time expired.
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xEventGroupGetStaticBuffer()

The xEventGroupGetStaticBuffer() API function provides a
method to retrieve a pointer to a buffer of a statically created
event group. It is the same buffer that is supplied at the time of
creation of the event group.

BaseType_t xEventGroupGetStaticBuffer( EventGroupHandle_t xEventGroup ,

StaticEventGroup_t ** ppxEventGroupBuffer );

xEventGroup The event group for which to retrieve the buffer.

ppxEventGroupBuffer Used to return a pointer to the event
groups’s data structure buffer.

return pdTRUE will be returned if the buffer was
successfully retrieved, pdFALSE otherwise.
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Example 22: vEventBitSettingTask

static void vEventBitSettingTask( void *pvParameters )

{

const TickType_t xDelay200ms = pdMS_TO_TICKS( 200UL ), xDontBlock = 0;

for( ;; )

{

/* Delay for a short while before starting the next loop. */

vTaskDelay( xDelay200ms );

/* Print out a message to say event bit 0 is about to be set by the

task , then set event bit 0. */

vPrintString( "Bit setting task -\t about to set bit 0.\r\n" );

xEventGroupSetBits( xEventGroup , mainFIRST_TASK_BIT );

/* Delay for a short while before setting the other bit. */

vTaskDelay( xDelay200ms );

/* Print out a message to say event bit 1 is about to be set by the

task , then set event bit 1. */

vPrintString( "Bit setting task -\t about to set bit 1.\r\n" );

xEventGroupSetBits( xEventGroup , mainSECOND_TASK_BIT );

}

}
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Example 22: ulEventBitSettingISR

static uint32_t ulEventBitSettingISR( void )

{

/* The string is not printed within the interrupt service routine , but is

instead sent to the RTOS daemon task for printing. It is therefore

declared static to ensure the compiler does not allocate the string on

the stack of the ISR , as the ISR’s stack frame will not exist when the

string is printed from the daemon task. */

static const char *pcString = "Bit setting ISR -\t about to set bit 2.\r\n";

BaseType_t xHigherPriorityTaskWoken = pdFALSE;

/* Print out a message to say bit 2 is about to be set. Messages cannot

be printed from an ISR , so defer the actual output to the RTOS daemon

task by pending a function call to run in the context of the RTOS

daemon task. */

xTimerPendFunctionCallFromISR( vPrintStringFromDaemonTask ,

( void * ) pcString ,

0,

&xHigherPriorityTaskWoken );

/* Set bit 2 in the event group. */

xEventGroupSetBitsFromISR( xEventGroup ,

mainISR_BIT ,

&xHigherPriorityTaskWoken );
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Example 22: ulEventBitSettingISR

/* xTimerPendFunctionCallFromISR () and xEventGroupSetBitsFromISR () both

write to the timer command queue , and both used the same

xHigherPriorityTaskWoken variable. If writing to the timer command

queue resulted in the RTOS daemon task leaving the Blocked state , and

if the priority of the RTOS daemon task is higher than the priority of

the currently executing task (the task this interrupt interrupted) then

xHigherPriorityTaskWoken will have been set to pdTRUE.

xHigherPriorityTaskWoken is used as the parameter to

portYIELD_FROM_ISR (). If xHigherPriorityTaskWoken equals pdTRUE , then

calling portYIELD_FROM_ISR () will request a context switch. If

xHigherPriorityTaskWoken is still pdFALSE , then calling

portYIELD_FROM_ISR () will have no effect.

The implementation of portYIELD_FROM_ISR () used by the Windows port

includes a return statement , which is why this function does not

explicitly return a value. */

portYIELD_FROM_ISR( xHigherPriorityTaskWoken );

}
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Example 22: vEventBitReadingTask

static void vEventBitReadingTask( void *pvParameters )

{

EventBits_t xEventGroupValue;

const EventBits_t xBitsToWaitFor = ( mainFIRST_TASK_BIT |

mainSECOND_TASK_BIT |

mainISR_BIT );

for( ;; )

{

/* Block to wait for event bits to become set within the event

group. */

xEventGroupValue = xEventGroupWaitBits( /* The event group to read */

xEventGroup ,

/* Bits to test */

xBitsToWaitFor ,

/* Clear bits on exit if the

unblock condition is met */

pdTRUE ,

/* Don’t wait for all bits. This

parameter is set to pdTRUE for

the second execution. */

pdFALSE ,

/* Don’t time out. */

portMAX_DELAY );

/* Print a message for each bit that was set. */

if( ( xEventGroupValue & mainFIRST_TASK_BIT ) != 0 )

{
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Example 22: vEventBitReadingTask

vPrintString( "Bit reading task -\t Event bit 0 was set\r\n" );

}

if( ( xEventGroupValue & mainSECOND_TASK_BIT ) != 0 )

{

vPrintString( "Bit reading task -\t Event bit 1 was set\r\n" );

}

if( ( xEventGroupValue & mainISR_BIT ) != 0 )

{

vPrintString( "Bit reading task -\t Event bit 2 was set\r\n" );

}

}

}
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Example 22: main

int main( void )

{

/* Before an event group can be used it must first be created. */

xEventGroup = xEventGroupCreate ();

/* Create the task that sets event bits in the event group. */

xTaskCreate( vEventBitSettingTask , "Bit Setter", 1000, NULL , 1, NULL );

/* Create the task that waits for event bits to get set in the event

group. */

xTaskCreate( vEventBitReadingTask , "Bit Reader", 1000, NULL , 2, NULL );

/* Create the task that is used to periodically generate a software

interrupt. */

xTaskCreate( vInterruptGenerator , "Int Gen", 1000, NULL , 3, NULL );

/* Install the handler for the software interrupt. The syntax necessary

to do this is dependent on the FreeRTOS port being used. The syntax

shown here can only be used with the FreeRTOS Windows port , where such

interrupts are only simulated. */

vPortSetInterruptHandler( mainINTERRUPT_NUMBER , ulEventBitSettingISR );

/* Start the scheduler so the created tasks start executing. */

vTaskStartScheduler ();

/* The following line should never be reached. */

for( ;; );

return 0;

}
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Task synchronization

Sometimes the design of an application requires two or more tasks
to synchronize with each other.

For example, consider a design where Task A receives an event,
then delegates some of the processing necessitated by the event to
three other tasks: Task B, Task C and Task D.
If Task A cannot receive another event until tasks B, C and D have
all completed processing the previous event, then all four tasks will
need to synchronize with each other. Each task’s synchronization
point will be after that task has completed its processing, and
cannot proceed further until each of the other tasks have done the
same.
Task A can only receive another event after all four tasks have
reached their synchronization point.
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Task synchronization

An event group can be used to create a synchronization point:

Each task that must participate in the synchronization is
assigned a unique event bit within the event group.

Each task sets its own event bit when it reaches the
synchronization point.

Having set its own event bit, each task blocks on the event
group to wait for the event bits that represent all the other
synchronizing tasks to also become set.
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Task synchronization

However, the xEventGroupSetBits() and
xEventGroupWaitBits() API functions cannot be used in this
scenario. If they were used, then the setting of a bit (to indicate a
task had reached its synchronization point) and the testing of bits
(to determine if the other synchronizing tasks had reached their
synchronization point) would be performed as two separate
operations.

The xEventGroupSync() API function is provided for that purpose.
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xEventGroupSync()

xEventGroupSync() is provided to allow two or more tasks to use
an event group to synchronize with each other. The function
allows a task to set one or more event bits in an event group, then
wait for a combination of event bits to become set in the same
event group, as a single uninterruptable operation.

EventBits_t xEventGroupSync(EventGroupHandle_t xEventGroup ,

const EventBits_t uxBitsToSet ,

const EventBits_t uxBitsToWaitFor ,

TickType_t xTicksToWait);
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Example 23: vSyncingTask

static void vSyncingTask( void *pvParameters )

{

const TickType_t xMaxDelay = pdMS_TO_TICKS( 4000UL );

const TickType_t xMinDelay = pdMS_TO_TICKS( 200UL );

TickType_t xDelayTime;

EventBits_t uxThisTasksSyncBit;

const EventBits_t uxAllSyncBits = ( mainFIRST_TASK_BIT |

mainSECOND_TASK_BIT |

mainTHIRD_TASK_BIT );

/* Three instances of this task are created - each task uses a different

event bit in the synchronization. The event bit to use is passed into

each task instance using the task parameter. Store it in the

uxThisTasksSyncBit variable. */

uxThisTasksSyncBit = ( EventBits_t ) pvParameters;

for( ;; )

{

/* Simulate this task taking some time to perform an action by delaying

for a pseudo random time. This prevents all three instances of this

task reaching the synchronization point at the same time , and so

allows the example ’s behavior to be observed more easily. */

xDelayTime = ( rand() % xMaxDelay ) + xMinDelay;

vTaskDelay( xDelayTime );
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Example 23: vSyncingTask

/* Print out a message to show this task has reached its synchronization

point. pcTaskGetTaskName () is an API function that returns the name

assigned to the task when the task was created. */

vPrintTwoStrings( pcTaskGetTaskName( NULL ), "reached sync point" );

/* Wait for all the tasks to have reached their respective

synchronization points. */

xEventGroupSync(/* The event group used to synchronize. */

xEventGroup ,

/* The bit set by this task to indicate it has reached

the synchronization point. */

uxThisTasksSyncBit ,

/* The bits to wait for , one bit for each task taking

part in the synchronization. */

uxAllSyncBits ,

/* Wait indefinitely for all three tasks to reach the

synchronization point. */

portMAX_DELAY );

/* Print out a message to show this task has passed its synchronization

point. As an indefinite delay was used the following line will only

be executed after all the tasks reached their respective

synchronization points. */

vPrintTwoStrings( pcTaskGetTaskName( NULL ), "exited sync point" );

}

}

Livio Tenze FreeRTOS and introduction to Linux embedded



Example 23: main

#define mainFIRST_TASK_BIT ( 1UL << 0UL ) /* Event bit 0, set by the 1st task */

#define mainSECOND_TASK_BIT( 1UL << 1UL ) /* Event bit 1, set by the 2nd task */

#define mainTHIRD_TASK_BIT ( 1UL << 2UL ) /* Event bit 2, set by the 3rd task */

/* Declare the event group used to synchronize the three tasks. */

EventGroupHandle_t xEventGroup;

int main( void )

{

/* Before an event group can be used it must first be created. */

xEventGroup = xEventGroupCreate ();

/* Create three instances of the task. Each task is given a different

name , which is later printed out to give a visual indication of which

task is executing. The event bit to use when the task reaches its

synchronization point is passed into the task using the task parameter. */

xTaskCreate( vSyncingTask , "Task 1", 1000, mainFIRST_TASK_BIT , 1, NULL );

xTaskCreate( vSyncingTask , "Task 2", 1000, mainSECOND_TASK_BIT , 1, NULL );

xTaskCreate( vSyncingTask , "Task 3", 1000, mainTHIRD_TASK_BIT , 1, NULL );

/* Start the scheduler so the created tasks start executing. */

vTaskStartScheduler ();

/* As always , the following line should never be reached. */

for( ;; );

return 0;

}

Livio Tenze FreeRTOS and introduction to Linux embedded



Task notification: problem

Task notifications are an efficient mechanism allowing one task to
directly notify another task.
The methods described so far have required the creation of a
communication object. Examples of communication objects include
queues, event groups, and various different types of semaphore.
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Task notification: problem

When a communication object is used, events and data are not
sent directly to a receiving task, or a receiving ISR, but are instead
sent to the communication object.
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Task notification: solution

’Task Notifications’ allow tasks to interact with other tasks, and to
synchronize with ISRs, without the need for a separate
communication object. By using a task notification, a task or ISR
can send an event directly to the receiving task
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Task Notifications: Benefits

Using a task notification to send an event or data to a task is
significantly faster than equivalent operation.

Likewise, using a task notification to send an event or data to
a task requires significantly less RAM than using a queue,
semaphore or event group.

The RAM cost for task notifications is
configTASK NOTIFICATION ARRAY ENTRIES * 5 bytes per
task.

When configUSE TASK NOTIFICATIONS is set to 1, each task
has at least one ’Notification State’, which can be either ’Pending’
or ’Not-Pending’, and a ’Notification Value’, which is a 32-bit
unsigned integer. When a task receives a notification, its
notification state is set to pending. When a task reads its
notification value, its notification state is set to not-pending.
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Task Notifications: Limitations

Task Notification cannot be used:

Sending an event or data to an ISR

Enabling more than one receiving task

Buffering multiple data items

Broadcasting to more than one task

Waiting in the blocked state for a send to complete
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Task Notifications: how to use

Task notifications are a very powerful feature that can often be
used in place of a binary semaphore, a counting semaphore,
an event group, and sometimes even a queue. This wide range
of usage scenarios can be achieved by using the xTaskNotify() API
function to send a task notification, and the xTaskNotifyWait()
API function to receive a task notification.
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Task Notifications: how to use

However, in the majority of cases, the full flexibility provided by
the xTaskNotify() and xTaskNotifyWait() API functions is not
required, and simpler functions would suffice. Therefore, the
xTaskNotifyGive() API function is provided as a simpler but less
flexible alternative to xTaskNotify(), and the ulTaskNotifyTake()
API function is provided as a simpler but less flexible alternative to
xTaskNotifyWait().
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Task Notifications: how to use

The task notification system is not limited to a single notification
event. The configuration parameter
configTASK NOTIFICATION ARRAY ENTRIES is set to 1
by default. If it is set to a value greater than 1, an array of
notifications are created inside each task. This allows notifications
to be managed by index.
Every task notification api function has an indexed version. Using
the non-indexed version will result in accessing notification[0] (the
first one in the array).
The indexed version of each API function is identified by the suffix
Indexed so the function xTaskNotify becomes xTaskNotifyIndexed.
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Task Notifications: how to use

Note: The FromISR functions do not exist for receiving
notifications because a notification is always sent to a task and
interrupts are not associated with any task.
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xTaskNotifyGive()

xTaskNotifyGive() sends a notification directly to a task, and
increments (adds one to) the receiving task’s notification value.
Calling xTaskNotifyGive() will set the receiving task’s notification
state to pending, if it was not already pending.

BaseType_t xTaskNotifyGive( TaskHandle_t xTaskToNotify );

BaseType_t xTaskNotifyGiveIndexed( xTaskHandle_t xTaskToNotify ,

UBaseType_t uxIndexToNotify );

xTaskToNotify The handle of the task to which the notification is
being sent.

uxIndexToNotify The index into the array

return pdPASS is the only possible return value.
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xTaskNotifyGiveFromISR()

vTaskNotifyGiveFromISR() is a version of xTaskNotifyGive() that
can be used in an interrupt service routine.

void vTaskNotifyGiveFromISR( TaskHandle_t xTaskToNotify ,

BaseType_t *pxHigherPriorityTaskWoken );

pxHigherPriorityTaskWoken If the task to which the notification is
being sent is waiting in the Blocked state to receive a
notification, then sending the notification will cause
the task to leave the Blocked state. If calling
vTaskNotifyGiveFromISR() causes a task to leave the
Blocked state, and the unblocked task has a priority
higher than the priority of the currently executing
task (the task that was interrupted), then, internally,
vTaskNotifyGiveFromISR() will set
*pxHigherPriorityTaskWoken to pdTRUE.
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ulTaskNotifyTake()

ulTaskNotifyTake() allows a task to wait in the Blocked state for
its notification value to be greater than zero, and either
decrements (subtracts one from) or clears the task’s notification
value before it returns.
The ulTaskNotifyTake() API function is provided to allow a
task notification to be used as a lighter weight and faster
alternative to a binary or counting semaphore.

uint32_t ulTaskNotifyTake( BaseType_t xClearCountOnExit ,

TickType_t xTicksToWait );
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ulTaskNotifyTake()

xClearCountOnExit If xClearCountOnExit is set to pdTRUE, then
the calling task’s notification value will be cleared to
zero before the call to ulTaskNotifyTake() returns. If
xClearCountOnExit is set to pdFALSE, and the
calling task’s notification value is greater than zero,
then the calling task’s notification value will be
decremented before the call to ulTaskNotifyTake()
returns.

xTicksToWait The maximum amount of time the calling task
should remain in the Blocked state to wait for its
notification value to be greater than zero.
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ulTaskNotifyTake()

return The returned value is the calling task’s notification
value before it was either cleared to zero or
decremented, as specified by the value of the
xClearCountOnExit parameter.
If a block time was specified (xTicksToWait was not
zero), and the return value is not zero, then it is
possible the calling task was placed into the Blocked
state to wait for its notification value to be greater
than zero, and its notification value was updated
before the block time expired.
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Example 24: vHandlerTask

/* The rate at which the periodic task generates software interrupts. */

const TickType_t xInterruptFrequency = pdMS_TO_TICKS( 500UL );

static void vHandlerTask( void *pvParameters )

{

/* xMaxExpectedBlockTime is set to be a little longer than the maximum

expected time between events. */

const TickType_t xMaxExpectedBlockTime = xInterruptFrequency +

pdMS_TO_TICKS( 10 );

uint32_t ulEventsToProcess;

/* As per most tasks , this task is implemented within an infinite loop. */

for( ;; )

{

/* Wait to receive a notification sent directly to this task from the

interrupt service routine. */

ulEventsToProcess = ulTaskNotifyTake( pdTRUE , xMaxExpectedBlockTime );

if( ulEventsToProcess != 0 )

{

/* To get here at least one event must have occurred. Loop here

until all the pending events have been processed (in this case ,

just print out a message for each event). */

while( ulEventsToProcess > 0 )

{

vPrintString( "Handler task - Processing event.\r\n" );

ulEventsToProcess --;

}

}
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Example 24: vHandlerTask

else

{

/* If this part of the function is reached then an interrupt did

not arrive within the expected time , and (in a real application)

it may be necessary to perform some error recovery operations. */

}

}

}
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Example 24: ulExampleInterruptHandler

static uint32_t ulExampleInterruptHandler( void )

{

BaseType_t xHigherPriorityTaskWoken;

/* The xHigherPriorityTaskWoken parameter must be initialized to pdFALSE as

it will get set to pdTRUE inside the interrupt safe API function if a

context switch is required. */

xHigherPriorityTaskWoken = pdFALSE;

/* Send a notification directly to the task to which interrupt processing

is being deferred. */

vTaskNotifyGiveFromISR( /* The handle of the task to which the notification

is being sent. The handle was saved when the task

was created. */

xHandlerTask ,

/* xHigherPriorityTaskWoken is used in the usual

way. */

&xHigherPriorityTaskWoken );

/* Pass the xHigherPriorityTaskWoken value into portYIELD_FROM_ISR (). If

xHigherPriorityTaskWoken was set to pdTRUE inside vTaskNotifyGiveFromISR ()

then calling portYIELD_FROM_ISR () will request a context switch. If

xHigherPriorityTaskWoken is still pdFALSE then calling

portYIELD_FROM_ISR () will have no effect. The implementation of

portYIELD_FROM_ISR () used by the Windows port includes a return statement ,

which is why this function does not explicitly return a value. */

portYIELD_FROM_ISR( xHigherPriorityTaskWoken );

}
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Example 24: timing
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Troubleshooting: scope

These slides highlight the most common issues encountered by
users who are new to FreeRTOS. First, they focuse on three issues
that have proven to be the most frequent source of support
requests over the years:

incorrect interrupt priority assignment

stack overflow

inappropriate use of printf()

Using configASSERT() improves productivity by immediately
trapping and identifying many of the most common sources of
error. It is strongly advised to have configASSERT() defined while
developing or debugging a FreeRTOS application.
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Interrupt priority

If the FreeRTOS port in use supports interrupt nesting, and the
service routine for an interrupt makes use of the FreeRTOS API,
then it is essential the interrupt’s priority is set at or below
configMAX SYSCALL INTERRUPT PRIORITY.

Interrupt priorities default to having the highest possible
priority, which is the case on some ARM Cortex processors,
and possibly others. On such processors, the priority of an
interrupt that uses the FreeRTOS API cannot be left
uninitialized.
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Interrupt priority

Numerically high priority numbers represent logically low
interrupt priorities, which may seem counterintuitive, and
therefore cause confusion. Again this is the case on ARM
Cortex processors, and possibly others.

For example, on such a processor an interrupt that is
executing at priority 5 can itself be interrupted by an interrupt
that has a priority of 4. Therefore, if
configMAX SYSCALL INTERRUPT PRIORITY is set to 5,
any interrupt that uses the FreeRTOS API can only be
assigned a priority numerically higher than or equal to 5. In
that case, interrupt priorities of 5 or 6 would be valid, but an
interrupt priority of 3 is definitely invalid.
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Interrupt priority

Different library implementations expect the priority of an
interrupt to be specified in a different way. Again, this is
particularly relevant to libraries that target ARM Cortex
processors, where interrupt priorities are bit shifted before
being written to the hardware registers.

Different implementations of the same architecture implement
a different number of interrupt priority bits. For example, a
Cortex-M processor from one manufacturer may implement 3
priority bits, while a Cortex-M processor from another
manufacturer may implement 4 priority bits.
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Interrupt priority

The bits that define the priority of an interrupt can be split
between bits that define a pre-emption priority, and bits that
define a sub-priority. Ensure all the bits are assigned to
specifying a pre-emption priority, so that sub-priorities are not
used.
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Stack overflow

Stack overflow is the second most common source of support
requests. FreeRTOS provides several features to assist trapping
and debugging stack related issues.
Each task maintains its own stack, the total size of which is
specified when the task is created:
uxTaskGetStackHighWaterMark() is used to query how close
a task has come to overflowing the stack space allocated to
it.

UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask );

returns the minimum amount of remaining stack space that
has been available since the task started executing.
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Stack overflow

FreeRTOS includes three optional run time stack checking
mechanisms. These are controlled by the
configCHECK FOR STACK OVERFLOW compile time
configuration constant within FreeRTOSConfig.h.

Both methods increase the time it takes to perform a context
switch.

The stack overflow hook (or stack overflow callback) is a function
that is called by the kernel when it detects a stack overflow.

vo i d vApp l i c a t i onS tackOve r f l owHook ( TaskHand le t ∗pxTask ,
s i g n ed char ∗pcTaskName ) ;
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Stack overflow

Set configCHECK FOR STACK OVERFLOW to either 1, 2 or
3.

Provide the implementation of the hook function

The stack overflow hook is provided to make trapping and
debugging stack errors easier, but there is no real way to recover
from a stack overflow when it occurs. The function’s parameters
pass the handle and name of the task that has overflowed its
stack into the hook function. The stack overflow hook gets called
from the context of an interrupt.
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Stack overflow: method 1

A task’s entire execution context is saved onto its stack each time
it gets swapped out. It is likely that this will be the time at which
stack usage reaches its peak. The kernel checks that the stack
pointer remains within the valid stack space after the context has
been saved. The stack overflow hook is called if the stack pointer
is found to be outside its valid range.
Method 1 is quick to execute, but can miss stack overflows that
occur between context switches.
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Stack overflow: method 2

Method 2 performs additional checks to those already described for
method 1.
When a task is created, its stack is filled with a known pattern.
Method 2 tests the last valid 20 bytes of the task stack space to
verify that this pattern has not been overwritten. The stack
overflow hook function is called if any of the 20 bytes have
changed from their expected values.
Method 2 is not as quick to execute as method 1, but is still
relatively fast, as only 20 bytes are tested. Most likely, it will catch
all stack overflows; however, it is possible (but highly improbable)
that some overflows will be missed.
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Stack overflow: method 3

This method is available only for selected ports. When available,
this method enables ISR stack checking. When an ISR stack
overflow is detected, an assert is triggered. Note that the stack
overflow hook function is not called in this case because it is
specific to a task stack and not the ISR stack.
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Misuse of printf()

Logging via printf() is a common source of error, and, unaware of
this, it is common for application developers to then add further
calls to printf() to aid debugging, and in-so-doing, exacerbate the
problem.

Many cross compiler vendors will provide a printf() implementation
that is suitable for use in small embedded systems. Even when
that is the case, the implementation may not be thread safe,
probably won’t be suitable for use inside an interrupt service
routine, and depending on where the output is directed, take a
relatively long time to execute.
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Misuse of printf()

Particular care must be taken if a printf() implementation that is
specifically designed for small embedded systems is not available,
and a generic printf() implementation is used instead, as:

Just including a call to printf() or sprintf() can massively
increase the size of the application’s executable.

printf() and sprintf() may call malloc(), which might be invalid
if a memory allocation scheme otherthan heap 3 is in use.

printf() and sprintf() may require a stack that is many times
bigger than would otherwise be required.
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Other sources of errors

Adding a simple task to a demo causes the demo to crash

Using an API function within an interrupt causes the
application to crash

Sometimes the application crashes within an interrupt service
routine

Interrupts are unexpectedly left disabled, or critical sections
do not nest correctly

The application crashes even before the scheduler is started

Calling API functions while the scheduler is suspended, or
from inside a critical section, causes the application to crash
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Adding a simple task to a demo causes the demo to crash

Creating a task requires memory to be obtained from the heap.
Many of the demo application projects dimension the heap to be
exactly big enough to create the demo tasks—so, after the tasks
are created, there will be insufficient heap remaining for any
further tasks, queues, event groups, or semaphores to be added.

To be able to add more tasks, you must either increase the heap
size, or remove some of the existing demo tasks.
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Using an API function within an interrupt causes the
application to crash

Do not use API functions within interrupt service routines, unless
the name of the API function ends with ’...FromISR()’. In
particular, do not create a critical section within an interrupt
unless using the interrupt safe macros.

In FreeRTOS ports that support interrupt nesting, do not use any
API functions in an interrupt that has been assigned an interrupt
priority above configMAX SYSCALL INTERRUPT PRIORITY.
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Sometimes the application crashes within an interrupt
service routine

The first thing to check is that the interrupt is not causing a stack
overflow. Some ports only check for stack overflow within tasks,
and not within interrupts.
The way interrupts are defined and used differs between ports and
between compilers. Therefore, the second thing to check is that
the syntax, macros, and calling conventions used in the interrupt
service routine are exactly as described on the documentation page
provided for the port being used, and exactly as demonstrated in
the demo application provided with the port.
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Interrupts are unexpectedly left disabled, or critical
sections do not nest correctly

If a FreeRTOS API function is called before the scheduler has been
started then interrupts will deliberately be left disabled, and not
re-enabled again until the first task starts to execute. This is done
to protect the system from crashes caused by interrupts that
attempt to use FreeRTOS API functions during system
initialization, before the scheduler has been started, and while the
scheduler may be in an inconsistent state.

Do not alter the microcontroller interrupt enable bits or priority
flags using any method other than calls to
taskENTER CRITICAL() and taskEXIT CRITICAL().
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The application crashes even before the scheduler is started

An interrupt service routine that could potentially cause a context
switch must not be permitted to execute before the scheduler has
been started. The same applies to any interrupt service routine
that attempts to send to or receive from a FreeRTOS object, such
as a queue or semaphore. A context switch cannot occur until
after the scheduler has started.

Many API functions cannot be called until after the scheduler has
been started. It is best to restrict API usage to the creation of
objects such as tasks, queues, and semaphores, rather than the use
of these objects, until after vTaskStartScheduler() has been called.
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Calling API functions while the scheduler is suspended, or
from inside a critical section, causes the application to
crash

The scheduler is suspended by calling vTaskSuspendAll() and
resumed (unsuspended) by calling xTaskResumeAll(). A critical
section is entered by calling askENTER CRITICAL(), and exited by
calling taskEXIT CRITICAL().

Do not call API functions while the scheduler is suspended, or from
inside a critical section.
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