
INFORMATION
RETRIEVAL
Laura Nenzi
lnenzi@units.it

Lecture 2

mailto:lmanzoni@units.it

LECTURE OUTLINE

Array, linked lists,
 and skip lists

Phrase Queries, Biwords,
positional postings

Tokenization,
Stop Words, Normalization,
Stemming & Lemmatization

PRACTICAL PART
A PYTHON IMPLEMENTATION

OF A SIMPLE BOOLEAN
RETRIEVAL SYSTEM

Data Structures
for dictionaries

IMPROVING THE QUALITY OF RETRIEVAL

MAJOR STEPS

BUILDING AN INVERTED INDEX

1. Collect the documents to be indexed

2. Tokenize the text, turning each document into a list of tokens

3. Do linguistic preprocessing, producing a list of normalized
tokens, which are the indexing terms

4. Index the documents that each term occurs in by creating an
inverted index, consisting of a dictionary and postings.

 CHOOSING A DOCUMENT UNIT

• First step in the indexing process is to decide what is the granularity of
the indexing

• For very long documents, the issue of indexing granularity arises, e.g.
emails and attachments and zip files, html files, returning chapters or
paragraphs instead of entire books, individual sentences as mini-
document, …

• There is a precision/recall tradeoff

• For now, we will henceforth assume that a suitable size document unit
has been chose

• The problems with large document units can be alleviated by use of
explicit or implicit proximity search

THIS TIME FOR TOKENIZATION

TERMINOLOGY (4)

• Token: instance of a sequence of characters

• Type: collection of all tokens with the same character sequence

• Term: a type that is inserted into the dictionary

THE CAT IS INSIDE THE BOX Text

THE CAT IS INSIDE THE BOX Tokens

THE CAT IS INSIDE BOX Types (notice only one instance of “the”)

CAT INSIDE BOX Terms (after removal of common words
 and normalization)

SPLITTING THE TEXT IN WORDS

TOKENIZATION

• The second step is to split a text sequence into tokens.

• In some cases deciding where to split the text sequence is
simple…

• …but in many others it is not, even in English.

• For others languages it might not even be clear where a word
ends and the next one starts.

EXAMPLES OF PROBLEMATIC TOKENIZATION

Text Possible tokenizations

New York [New] [York]

File-system [File] [system], [File-system]

555-1234 567 [555] [1234] [567], [555-1234] [567], [555-1234 567]

Upper case [Upper] [case]

Uppercase [Uppercase]

O’Hara [O] [Hara], [O’Hara]

Aren’t [Aren][t], [Aren’t]

Possible (partial) solutions:
• use the same tokeniser for the documents and the queries
• use a collection of heuristics to decide where to split words

DROPPING COMMON TERMS

STOP WORDS

A 0 1 2

Some terms are not useful: “A” is in all the documents!

As anticipated before:

• Stop words: common words that do not help in selecting
a document. They are discarded from the indexing and
querying processes

• Stop list: list of stop words. Specific for a language/corpus.
Usually consists of the most frequent words, curated for
their semantic.

FREQUENCIES OF WORDS IN A CORPUS

DISTRIBUTION OF WORDS

Data extracted from the “Time” dataset

Stop words are usually located here

AND STOP WORDS FOR SPECIFIC TOPICS

STOP WORDS FOR THE ENGLISH LANGUAGE

• You can find multiple lists of stop words for the English language.
They usually include words like:

• a, about, above, after, again…

• … the, their, theirs, … , your, yours, yourself, yourselves.

• The list of stop words is language specific: stop words in Italian
are different (additional challenge: you might need to infer the
language of a document).

• Stop lists can be specific by topic. E.g., in a “books on cats”
corpus, the word “cat” might be a stop word.

SOMETIMES IT IS USEFUL

DROPPING STOP WORD

• Using a stop list significantly reduces the number of postings that
a system has to store

• And a lot of the time not indexing stop words does little harm

• but..

SOMETIMES STOP WORDS ARE USEFUL

PROBLEMS WITH STOP WORDS

• You now have a IR system that removes all stop words.

• You receive the queries:

• To be or not to be

• Dr Who

• Do it yourself

• Let it be

• Removing stop words can reduce the recall.

SOMETIMES STOP WORDS ARE USEFUL

PROBLEMS WITH STOP WORDS

• A single stop word alone can usually be removed…

• …but in a phrase search it might be important

• The trend has been from large stop lists (200–300 terms) to very
small stop lists (7-12 terms) or no stop word list but:

• Use compression techniques to reduce the storage requirements

• Use weighting to limit the impact of stop words

• Use specific algorithms to limit the runtime impact of stop words

REMOVING SUPERFICIAL DIFFERENCES

NORMALIZATION

• The same word can be written in different ways and it must be
normalized to allow the matching to occur.

• The idea is to define equivalence classes of terms, for example:

• By ignoring capitalization (e.g., “HOME”, “home”, “HoMe”),
always or just at the beginning of a sentence and titles

• By removing accents and diacritics (e.g., cliché is considered the
same as cliche).

• Other normalization steps specific to the language, like ignoring
spelling differences (e.g., “colors” vs “colours”).

AN ALTERNATIVE TO EQUIVALENCE CLASSES

RELATIONS BETWEEN UNNORMALIZED TOKENS

Sometimes capitalization and other features are important

This can be solved by saving (possibly asymmetric) relations between token
in a query expansion list

windows (can mean both the object and the OS) Windows (the OS)

Query Term Equivalent terms

Windows Windows

windows Windows, windows, window

window windows, window

AN ALTERNATIVE TO EQUIVALENCE CLASSES

RELATIONS BETWEEN UNNORMALIZED TOKENS

Sometimes capitalization and other features are important

Or it can be solved performing the expansion during index construction.

windows (can mean both the object and the OS) Windows (the OS)

Term Indexing

automobile automobile, vehicle

car automobile, vehicle, car

WHICH IS IT BETTER?

PRO AND CONTRO

• Equivalence classing reduce information but has less postings to store
and merge

• A query expansion list adds a query expansion dictionary and requires
more processing at query time; the second method requires more
space for storing postings.

• But they are more flexible because the expansion lists can overlap
while not being identical (e.g. asymmetry in expansion)

• Traditionally, expanding the space required for the postings lists was
seen as more disadvantageous, but with modern storage costs, the
increased flexibility that comes from distinct postings lists is
appealing.

REDUCE WORDS TO A COMMON BASE FORM

STEMMING AND LEMMATIZATION

IS

ARE

WAS

WERE

BE

Idea
reduce all variants of a word
to a “common root”

Two main ways: stemming and lemmatization

Based on heuristics Uses a vocabulary and
morphological analysis

MOST USED STEMMER FOR THE ENGLISH LANGUAGE

PORTER STEMMER

Porter Stemmer implementations: https://tartarus.org/martin/PorterStemmer/
(or you can read the original paper and the BCLP implementation)

Invented in 1979 (published 1980) by Martin Porter,
it is one of the most common stemmers for the English language

Five stages applied sequentially.

Each stage consists of a series of rewriting rules for words,
an example is given here

Rule

SSES → SS caressess → caress

IES → I poinies → poni

SS → SS caress → caress

S → cats → cat

https://tartarus.org/martin/PorterStemmer/

WHAT CAN GO WRONG

• While it helps a lot for some queries, it equally hurts performance a
lot for others

• Stemming increases recall while harming precision

• e.g. the Porter stemmer stems all of the following words:

operate operating operates operation operative operatives operational ->
oper

losing precision on queries such as:

operational AND research, operating AND system, operative AND dentistry

LEMMATIZER FROM THE NLTK LIBRARY

WORDNET LEMMATIZER

Porter Stemmer implementations: https://tartarus.org/martin/PorterStemmer/
(or you can read the original paper and the BCLP implementation)

It uses the WordNet lexical database (Lemmas, Synonyms, Definitions
POS info, Semantic relations)

It's accurate when the correct POS is specified.

Form POS Lemma

running verb run

better adjective good

cars noun car

studies verb study

It requires a part of speech (POS) tagging for best results. It returns
the base (dictionary) form of a word, depending on its POS.

https://tartarus.org/martin/PorterStemmer/

THE “PREPROCESSING” PIPELINE

NORMALIZATION

STOP WORDS
REMOVAL

STEMMING/
LEMMATIZATION

DOCUMENTS

INDEXING

There are multiple steps,
this a possible way
of combining them

Additional steps might be present
and not all steps are mandatory
(e.g., if no stop list is present)

 The same steps applied to the queries!

ANSWERING PHRASE QUERIES

EXTENDING THE QUERY LANGUAGE

OUR GOAL

• We want to be able to ask queries consisting of multiple
consecutive words:

• “calico cat”

• “University of Trieste”

• A common syntax for this kind of queries is to enclose the words
in double quotes.

• Two approaches shown: biword indexes and positional indexes.

WORKING ON PAIRS OF WORDS

BIWORD INDEXES

THE CAT IS INSIDE THE BOX Text

THE CAT CAT IS IS INSIDE INSIDE THE THE BOX Terms

• The terms are pairs of words
• Queries need to be “rewritten”:

“inside the box” “inside the” AND “the box”

POSSIBLE PROBLEMS

BIWORD INDEXES

INSIDE THE HOUSE THERE IS THE BOXText:

“inside the box”Original Query: No Match

“inside the” AND “the box”Rewritten Query: Match

Rewriting the query might generate false positives
(but it works quite well in practice)

POSSIBLE PROBLEMS

BIWORD INDEXES

THE CAT

CAT IS

IS INSIDE

INSIDE THE

THE BOX

Dictionary

QUERY

CAT ?

We also need an index of single-word terms!

To answer the query
we would need to find

all terms containing “cat”

EXTENSIONS AND FURTHER OBSTACLES

BIWORD INDEXES

• The idea of using pair of words as terms can be extended to any
length, reducing the risk of false positives…

• …but increasing the amount of space needed.

• If the number of words in a term is variable it is called phrase index.

• It is also possible to “tag” the part of speech (i.e., names, verbs,
articles, prepositions, etc.) to add pairs of names separated by
articles and prepositions to the index.

• E.g., in “door at the entrance”, “door entrance” is considered a
term

ADDING POSITIONS TO THE POSTINGS

POSITIONAL INDEXES

FRANCE 0 8 12 22 25 26

82

509

555

557

865

398 130 0

193

193 130

208

551

Set of positions in which
the term “France” appears

One way to answer a phrase query is to add, for each posting,
the set of positions in which the term appear in the document.

WITH POSITIONAL INDEXING

ANSWERING A PHRASE QUERY

BRITAIN 0 6 8 10 12 19

80

111

125

252

517

546

855

529 1

161

419

461 181 1

53

284

371

396

633

GREAT 2 5 8 19 31 34

127 440

418

0

469

0 0 9

QUERY “GREAT BRITAIN” ANSWER

WITH POSITIONAL INDEXING

ANSWERING A PHRASE QUERY

BRITAIN 0 6 8 10 12 19

80

111

125

252

517

546

855

529 1

161

419

461 181 1

53

284

371

396

633

GREAT 2 5 8 19 31 34

127 440

418

0

469

0 0 9

QUERY “GREAT BRITAIN” ANSWER

WITH POSITIONAL INDEXING

ANSWERING A PHRASE QUERY

BRITAIN 0 6 8 10 12 19

80

111

125

252

517

546

855

529 1

161

419

461 181 1

53

284

371

396

633

GREAT 2 5 8 19 31 34

127 440

418

0

469

0 0 9

QUERY “GREAT BRITAIN” ANSWER

WITH POSITIONAL INDEXING

ANSWERING A PHRASE QUERY

BRITAIN 0 6 8 10 12 19

80

111

125

252

517

546

855

529 1

161

419

461 181 1

53

284

371

396

633

GREAT 2 5 8 19 31 34

127 440

418

0

469

0 0 9

QUERY “GREAT BRITAIN” ANSWER

WITH POSITIONAL INDEXING

ANSWERING A PHRASE QUERY

BRITAIN 0 6 8 10 12 19

80

111

125

252

517

546

855

529 1

161

419

461 181 1

53

284

371

396

633

GREAT 2 5 8 19 31 34

127 440

418

0

469

0 0 9

QUERY “GREAT BRITAIN” ANSWER

WITH POSITIONAL INDEXING

ANSWERING A PHRASE QUERY

BRITAIN 0 6 8 10 12 19

80

111

125

252

517

546

855

529 1

161

419

461 181 1

53

284

371

396

633

GREAT 2 5 8 19 31 34

127 440

418

0

469

0 0 9

QUERY “GREAT BRITAIN” ANSWER

WITH POSITIONAL INDEXING

ANSWERING A PHRASE QUERY

BRITAIN 0 6 8 10 12 19

80

111

125

252

517

546

855

529 1

161

419

461 181 1

53

284

371

396

633

GREAT 2 5 8 19 31 34

127 440

418

0

469

0 0 9

QUERY “GREAT BRITAIN” ANSWER

We need to check if the two terms
appear in adjacent positions

WITH POSITIONAL INDEXING

ANSWERING A PHRASE QUERY

BRITAIN 0 6 8 10 12 19

80

111

125

252

517

546

855

529 1

161

419

461 181 1

53

284

371

396

633

GREAT 2 5 8 19 31 34

127 440

418

0

469

0 0 9

QUERY “GREAT BRITAIN” ANSWER 8

0

WITH POSITIONAL INDEXING

ANSWERING A PHRASE QUERY

BRITAIN 0 6 8 10 12 19

80

111

125

252

517

546

855

529 1

161

419

461 181 1

53

284

371

396

633

GREAT 2 5 8 19 31 34

127 440

418

0

469

0 0 9

QUERY “GREAT BRITAIN” ANSWER 8

0

WITH POSITIONAL INDEXING

ANSWERING A PHRASE QUERY

BRITAIN 0 6 8 10 12 19

80

111

125

252

517

546

855

529 1

161

419

461 181 1

53

284

371

396

633

GREAT 2 5 8 19 31 34

127 440

418

0

469

0 0 9

QUERY “GREAT BRITAIN” ANSWER 8

0

WITH POSITIONAL INDEXING

ANSWERING A PHRASE QUERY

BRITAIN 0 6 8 10 12 19

80

111

125

252

517

546

855

529 1

161

419

461 181 1

53

284

371

396

633

GREAT 2 5 8 19 31 34

127 440

418

0

469

0 0 9

QUERY “GREAT BRITAIN” ANSWER 8

0

418

WITH POSITIONAL INDEXING

ANSWERING A PHRASE QUERY

BRITAIN 0 6 8 10 12 19

80

111

125

252

517

546

855

529 1

161

419

461 181 1

53

284

371

396

633

GREAT 2 5 8 19 31 34

127 440

418

0

469

0 0 9

QUERY “GREAT BRITAIN” ANSWER 8

0

418

WITH POSITIONAL INDEXING

ANSWERING A PHRASE QUERY

BRITAIN 0 6 8 10 12 19

80

111

125

252

517

546

855

529 1

161

419

461 181 1

53

284

371

396

633

GREAT 2 5 8 19 31 34

127 440

418

0

469

0 0 9

QUERY “GREAT BRITAIN” ANSWER 8

0

418

WITH POSITIONAL INDEXING

ANSWERING A PHRASE QUERY

BRITAIN 0 6 8 10 12 19

80

111

125

252

517

546

855

529 1

161

419

461 181 1

53

284

371

396

633

GREAT 2 5 8 19 31 34

127 440

418

0

469

0 0 9

QUERY “GREAT BRITAIN” ANSWER 8

0

418

WITH POSITIONAL INDEXING

ANSWERING A PHRASE QUERY

BRITAIN 0 6 8 10 12 19

80

111

125

252

517

546

855

529 1

161

419

461 181 1

53

284

371

396

633

GREAT 2 5 8 19 31 34

127 440

418

0

469

0 0 9

QUERY “GREAT BRITAIN” ANSWER 8

0

418

WITH POSITIONAL INDEXING

ANSWERING A PHRASE QUERY

BRITAIN 0 6 8 10 12 19

80

111

125

252

517

546

855

529 1

161

419

461 181 1

53

284

371

396

633

GREAT 2 5 8 19 31 34

127 440

418

0

469

0 0 9

QUERY “GREAT BRITAIN” ANSWER 8

0

418

19

0

THE GOOD, THE BAD, AND THE UGLY

POSITIONAL INDEXING: SUMMARY

• The positional index can be used to support the operators of the
form “term1 /k term2” with k an integer indicating the maximum
number of words that can be between term1 and term2.

• The complexity of performing a query is not bounded anymore by
the number of documents, but by the number of terms

• The size of the index now depends on the average document size.

COMBINING BIWORD AND POSITIONAL INDEXES

GREAT BRITAIN 8

0

418

19

0
…

…

Phrase index for
frequently asked queries

BRITAIN 0 6 8 10 12 19

80

111

125

252

517

546

529 1

161

419

461 181 1

53

284

371

396

633

GREAT 2 5 8 19 31 34

127 440
418
0

469
0 0 9

…

…

…

…

Positional index for
all other queries

IMPROVING THE INVERTED INDEX

WHAT TO USE FOR THE POSTING LISTS?

ARRAYS OR LINKED LISTS?

FRANCE 0 8 12 22 25 26

Which data structures should we actually use for the postings list?

0 8 12 22 25 26

NEXT NEXT NEXT NEXT NEXT NEXT
Singly linked lists

cheap insertion and updates
pointer overhead, poor memory locality (pointers chasing)

0 8 12 22 25 26Variable length arrays

no pointers overhead, contiguous memory
difficult to update

FASTER INTERSECTION

SKIP LISTS

• We add additional forward pointers every k postings inside a list.
The forward pointer “skips” a certain number of postings.

• A rule of thumb is, for a postings list of postings to use
evenly spaced skip pointers

P P

FRANCE 0 8 12 22 25 26

BRITAIN 0 6 8 10 12 19

SAVING TIME WITH SKIP LISTS

AN EXAMPLE QUERY

QUERY FRANCE AND BRITAIN

ANSWER

FRANCE 0 8 12 22 25 26

BRITAIN 0 6 8 10 12 19

SAVING TIME WITH SKIP LISTS

AN EXAMPLE QUERY

QUERY FRANCE AND BRITAIN

ANSWER

FRANCE 0 8 12 22 25 26

BRITAIN 0 6 8 10 12 19

0

SAVING TIME WITH SKIP LISTS

AN EXAMPLE QUERY

QUERY FRANCE AND BRITAIN

ANSWER

FRANCE 0 8 12 22 25 26

BRITAIN 0 6 8 10 12 19

0

SAVING TIME WITH SKIP LISTS

AN EXAMPLE QUERY

QUERY FRANCE AND BRITAIN

ANSWER

FRANCE 0 8 12 22 25 26

BRITAIN 0 6 8 10 12 19

0 8

SAVING TIME WITH SKIP LISTS

AN EXAMPLE QUERY

QUERY FRANCE AND BRITAIN

ANSWER

FRANCE 0 8 12 22 25 26

BRITAIN 0 6 8 10 12 19

0 8

SAVING TIME WITH SKIP LISTS

AN EXAMPLE QUERY

QUERY FRANCE AND BRITAIN

ANSWER

FRANCE 0 8 12 22 25 26

BRITAIN 0 6 8 10 12 19

0 8 12

SAVING TIME WITH SKIP LISTS

AN EXAMPLE QUERY

QUERY FRANCE AND BRITAIN

ANSWER

FRANCE 0 8 12 22 25 26

BRITAIN 0 6 8 10 12 19

0 8 12

In some situations
we might only need

 steps
to traverse a list
O (P)

THE PRACTICAL PART

EXERCISES

• We are going to implement some of the algorithms and data
structure described in this course

• We use Python 3, but you can follow along with any other
programming language

• While IR systems must be efficient, we will sometimes allow for
inefficiencies for the sake of more readable code

• Dataset that we use: http://www.cs.cmu.edu/~ark/personas/,
more than 42k movie descriptions

http://www.cs.cmu.edu/~ark/personas/

DATA STRUCTURES FOR DICTIONARIES

HASH TABLES & TREES

HOW IS A DICTIONARY ACTUALLY REPRESENTED?

A

AACHEN

ABABA

ABABAS

ABACK

ABADAN

ABANDON

ABANDONED

ABANDONING

ABANDONMENT

• It is necessary to search in a dictionary
that can be quite large

• Something more efficient than a linear
scan is needed

• Two main approaches:

• Hash tables

• Trees (binary trees, b-trees, tries, etc.)

A BRIEF RECAP

HASH TABLES

HASH
FUNCTION

A

AACHEN

ABABA

ABABAS

ABACK

ABADAN

ABANDON

ABANDONED

ABANDONING

ABANDONMENT

0

1

2

3

4

5

6

7

8

9

A

AACHEN

ABABA

ABABAS

ABACK

ABADAN

ABANDONED

ABANDON
ABANDONING

ABANDONMENT

SOME EXAMPLES

HASH FUNCTIONS

Traditional for integers: where is the size of the tableh(x) = x mod m m

How to manage strings? H E L L O

Component sum
split the string into chunks and
sum (or xor) them.

H E L L O

104 + 101 + 108 + 108 + 111 = 532

Polynomial accumulation
consider each chunk as a coefficient of
a polynomial, then evaluate it for a fixed
value of the unknown

H E L L O

104 + 101x + 108x2 + 108x3 + 111x4

for x = 33 it evalues to 135639476

A BRIEF RECAP

HASH TABLES

• A hash function assign to each input (term) an integer number,
which is the position of the term in a table.

• Collisions: sometimes for two different inputs the hash function
returns the same value.

• Load factor: .

• Lower load factor: higher memory usage but less risk of collisions

• Higher load factor: lower memory usage but higher risk of
collisions

elements
size of the table

MANAGING COLLISIONS

HASH TABLES

• Open addressing. All entries are stored in the table, in case of
collision the first free slot according to some probe sequence is
found (e.g., linear or quadratic probing).

• Chaining. Each “cell” is a list of all entries with the same hash.

• Perfect hashing. For a fixed set it is possible to compute an
hashing function with no collisions.

• Other collision resolution techniques, like cuckoo hashing. It
shares some characteristic of perfect hashing while allowing
updates.

THE GOOD, THE BAD, AND THE UGLY

HASH TABLES

• Finding an element in a hash table requires expected time.

• In some cases (e.g., perfect hashing) this can also be the worst
case time.

• Adding new elements might require rehashing (i.e., reinsertion of
all elements into a bigger table) which is costly. This is needed to
keep the load factor low enough.

• Some kind of searches are not possible, like looking for a prefix.
In general anything that requires something different form the
exact term.

O(1)

A BRIEF RECAP

BINARY TREES

A binary tree is a tree in which
each node has at most two
children

Each node has an associated value
(a term in our case)

A binary search tree has the property
that the left subtree has only vales
smaller than the value in the root and the right subtree only values
that are larger.

This means that, if the tree is balanced, search can happen in
 steps.O(log n)

AN EXAMPLE OF BINARY SEARCH TREE

A

AACHEN

ABABA

ABABAS

ABACK

ABADAN

ABANDON

ABANDONMENT

ABANDONING

ABANDONED

THE GOOD, THE BAD, AND THE UGLY

BINARY TREES

Binary search trees solve most of the problems of hash tables:

• Insertion (and deletion) are not expensive.

• Searching a prefix is possible.

• As long as the tree is kept balanced, search il efficient.

• But binary trees do no play well with disk access.
accesses to the main storage might be costly.

• A way to reduce the number of disk accesses while still using
trees is via B-trees.

O(log n)

B-TREES

ABANDONAACHEN

A ABABA

ABANDONED ABANDONING ABANDONMENT

ABABAS ABACK ABADAN

B-trees can be seen as a generalisation of binary search trees in
which each node has between and children.a b

STRUCTURE OF A B-TREE NODE

a1 a2 a3 a4

The node can contain up to four values
and five pointers to subtrees each respecting
a “generalised” version of the BST property

x < a1 a1 < x < a2 a2 < x < a3 a3 < x < a4 x > a4

The size of a node is usually selected to be a “block”

AND NOT SIMPLY BINARY SEARCH TREES?

WHY B-TREES?

• If you have to search across elements then you need to go
through at most:

• nodes in a binary search tree.

• nodes in a B-tree, where is the size of the block.
Suppose , then .

• This number corresponds to the number of disk accesses, which
are the ones dominating the running time.

106

⌈log2(106)⌉ = 20

⌈logB(106)⌉ B
B = 100 ⌈log100(106)⌉ = 3

ALSO KNOWN AS PREFIX TREES

TRIES

A trie is a special kind of tree based on the idea of searching
by looking at the prefix of a key

The key itself (the term in our case) provides the path along
the edges of the trie

Access time: worst case where is the size of the key.
This is optimal because we must read the key.

Insertion is still possible and efficient.

O(m) m

TRIES: AN EXAMPLE

A

ACHEN BA

BA CK DAN NDON

S
ED ING MENT

There isn’t key corresponding to the path from the root to this node

There is a key corresponding to the path from the root to this node

Where are the terms?
They are encoded
in the paths from the
root of the tree to a node

TRIES: PROS AND CONS

• Tries have access time that is as good as hash tables
(the time for hash tables assumes a constant-length key)

• Differently from hash tables, there cannot be collisions.

• Insertion is still efficient.

• Search inside a range of key is very efficient.

• There can still be problems of too many accesses to disk.

• There ara variants of tries for external storage that mitigate the
problem

O(1)

