

Circuiti in logica combinatoria

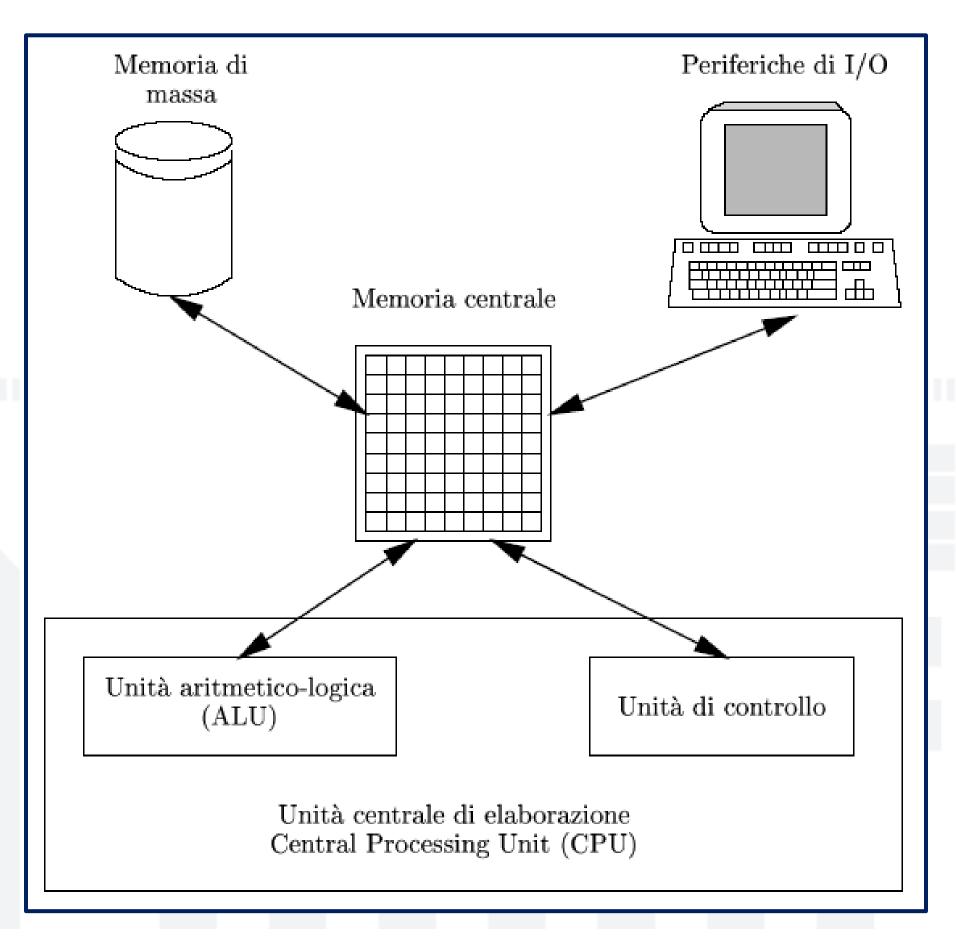
Prof.ssa Giulia Cisotto

giulia.cisotto@units.it

MODULO 1: Architettura degli elaboratori

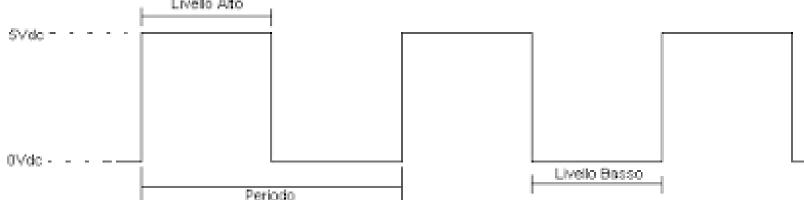
John Von Neumann

Matematico ed informatico di origine
ungherese che viveva e lavorava
negli Stati Uniti negli anni '40



Le varie parti dell'architettura devono sincronizzare le proprie attività:

serve un «CLOCK»



E' un segnale periodico.

Più è veloce, più attività si possono fare nell'unità di tempo!

 $1GHz = 10^9 Hz$

Quanto «dura» un'istruzione?

Durata in secondi? minuti? millisecondi? microsecondi?

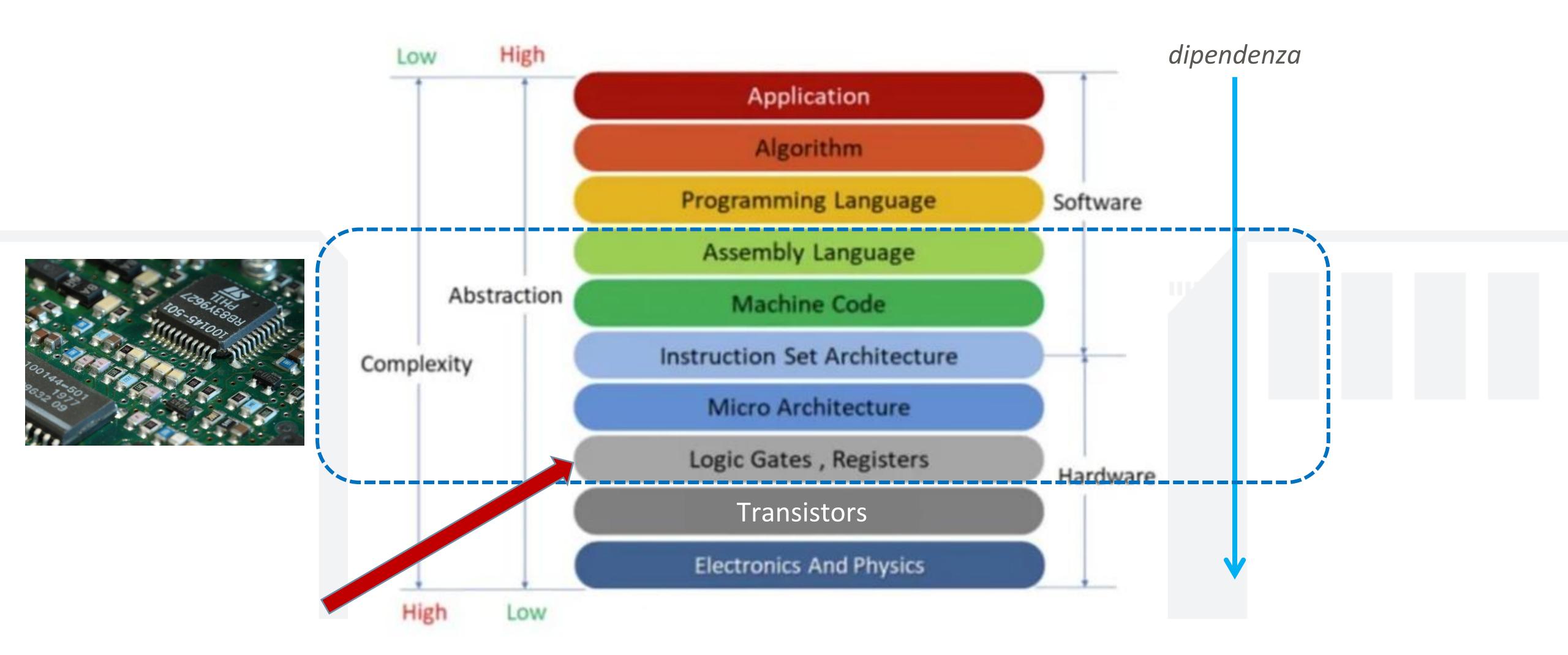
3 GRANDI DOMANDE

1.Come posso rappresentare l'informazione nel pc?

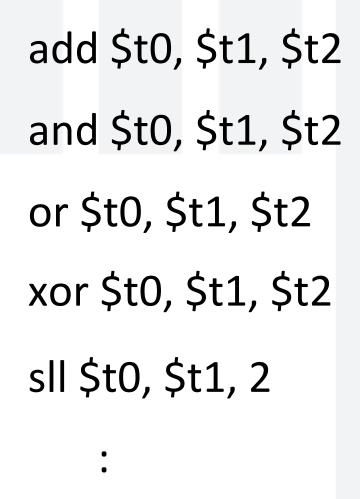
2. Come posso realizzare fisicamente tale rappresentazione?

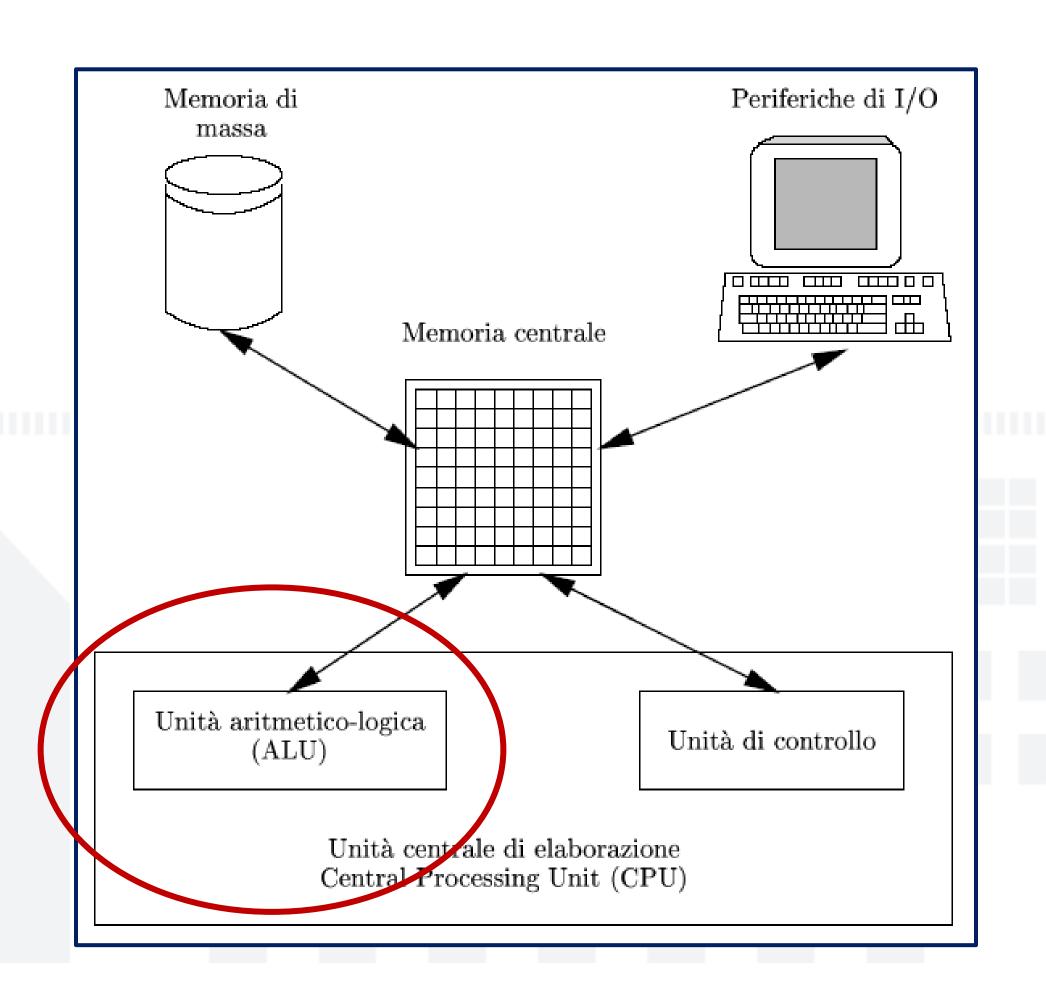
3. Come posso costruire il pc a partire dagli elementi di base?

INSTRUCTION SET ARCHITECTURE



ARITHMETIC-LOGIC UNIT (ALU)





Realizziamo su silicio (elettronica) CIRCUITI LOGICI!

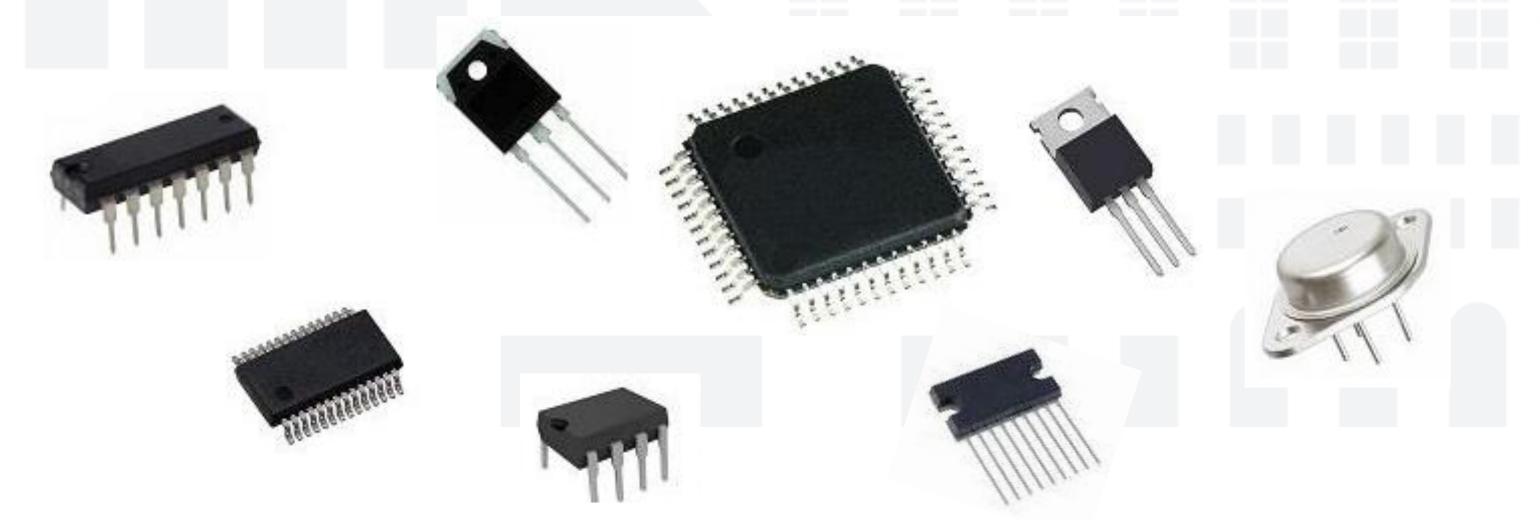
CIRCUITI LOGICI: INTRODUZIONE

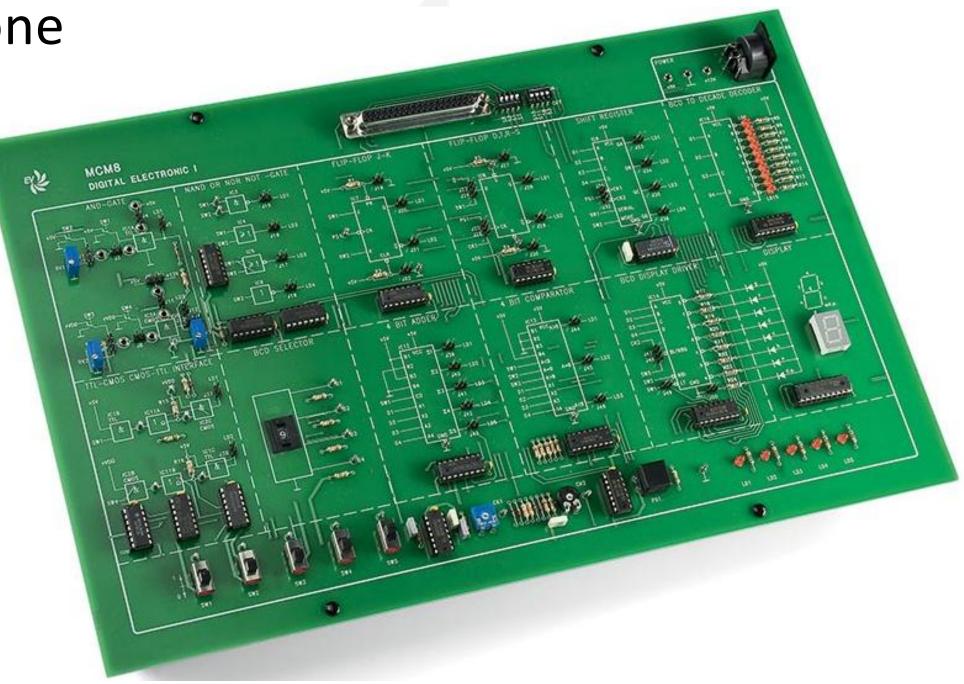
I circuiti logici sono realizzati come circuiti integrati su chip di silicio (piastrina)

• Porte (gate) e fili depositati su chip di silicio, inseriti in un package e collegati all'esterno con un certo insieme di pin (piedini)

• I circuiti integrati si distinguono per grado di integrazione

• Da singole porte indipendenti a circuiti più complessi





CIRCUITI LOGICI: INTEGRAZIONE

- Integrazione
 - SSI (Small Scale Integrated): 1-10 porte
 - MSI (Medium Scale Integrated): 10-100 porte
 - **LSI (Large Scale Integrated):** 100-100.000 porte
 - VLSI (Very Large Scale Integrated): > 100.000 porte
- Con SSI, i circuiti integrati contenevano poche porte, direttamente collegate ai pin esterni
- Con tecnologia MSI, i circuiti integrati contenevano alcuni componenti base
 - circuiti comunemente usati nel progetto di un computer
- Con tecnologia VLSI, i circuiti integrati possono oggi contenere una CPU completa (o più)
 - microprocessore

CIRCUITI LOGICI

Nell'elettronica digitale sia gli ingressi che le uscite possono assumere solo i valori di segnale alto (1 per convenzione) o basso (0 per convenzione).

In un circuito digitale i valori binari sono ottenuti tramite discretizzazione dei segnali:

Falso: segnali con voltaggio basso <= 1

Vero: segnali con voltaggio più alto >1

- Un circuito (o rete) combinatoria è quel circuito il cui lo stato delle uscite dipende solo dalla funzione logica applicata allo stato istantaneo (cioè in un determinato istante di tempo) delle sue entrate.
- Un circuito (o rete) sequenziale è quel circuito il cui lo stato delle uscite non dipende solo dalla funzione logica applicata ai suoi ingressi, ma anche sulla base di valori pregressi collocati in memoria.

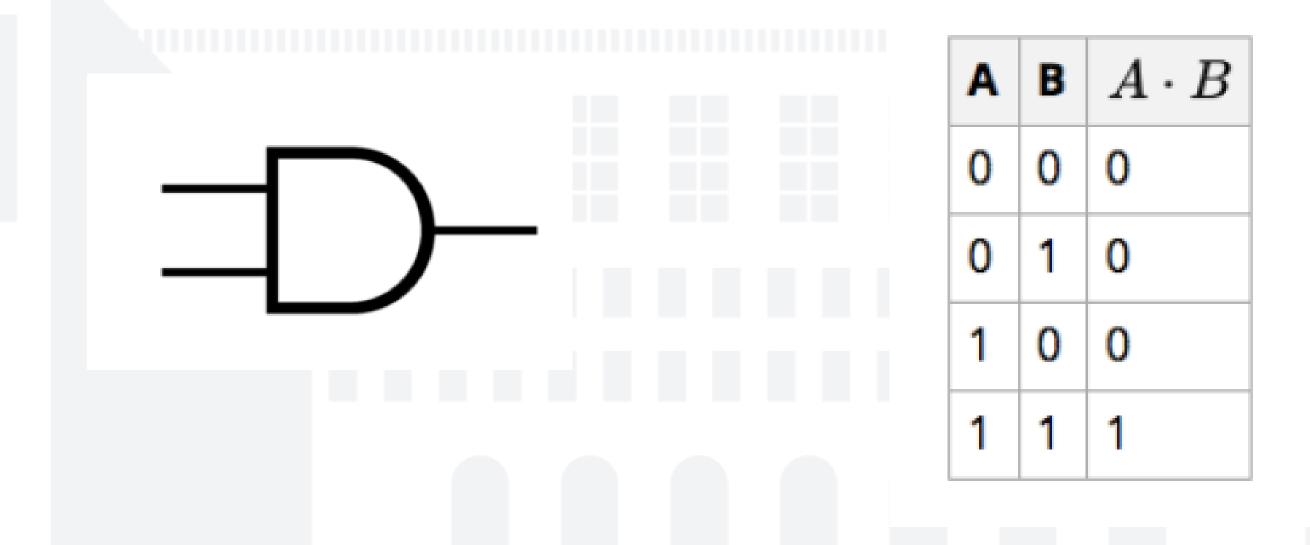
PORTE LOGICHE

- Le porte logiche sono i componenti elettronici che permettono di svolgere le operazioni logiche primitive oltre che a quelle direttamente derivate.
 - Le porte logiche che realizzano le operazioni principali dell'algebra booleana
 - Una porta logica è un circuito elettronico che, dati dei segnali 0 e 1 in input, produce un segnale in output ottenuto effettuando una operazione booleana sugli ingressi
- Le porte logiche hanno n input e generalmente 1 output
 - · A ogni combinazione di valori in ingresso corrisponde una e solo una combinazione in di valori uscita
 - Dati gli input, l'output corrispondente appare quasi istantaneamente
- Porte logiche fondamentali: AND, OR, NOT
- Porte logiche derivate: NAND, NOR, XOR

PORTA LOGICA AND

La porta logica AND svolge l'operazione logica di AND tra due bit, detta anche prodotto logico.

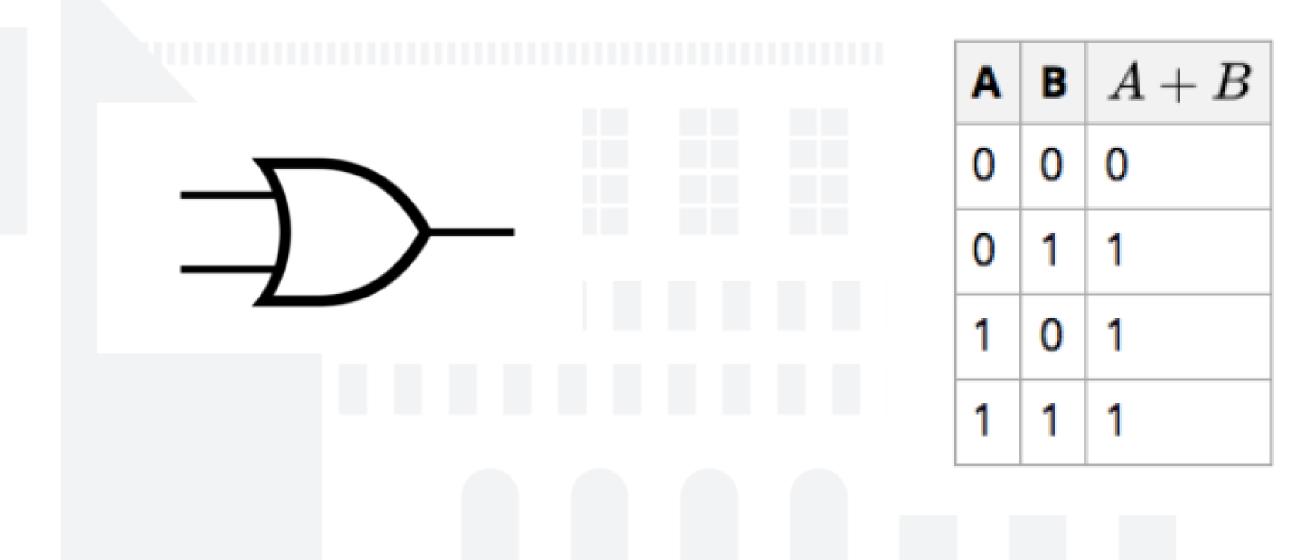
Considerando due entrate A e B, l'uscita A · B è data da:



PORTA LOGICA OR

La porta logica OR svolge l'operazione logica di OR tra due bit, detta anche somma logica.

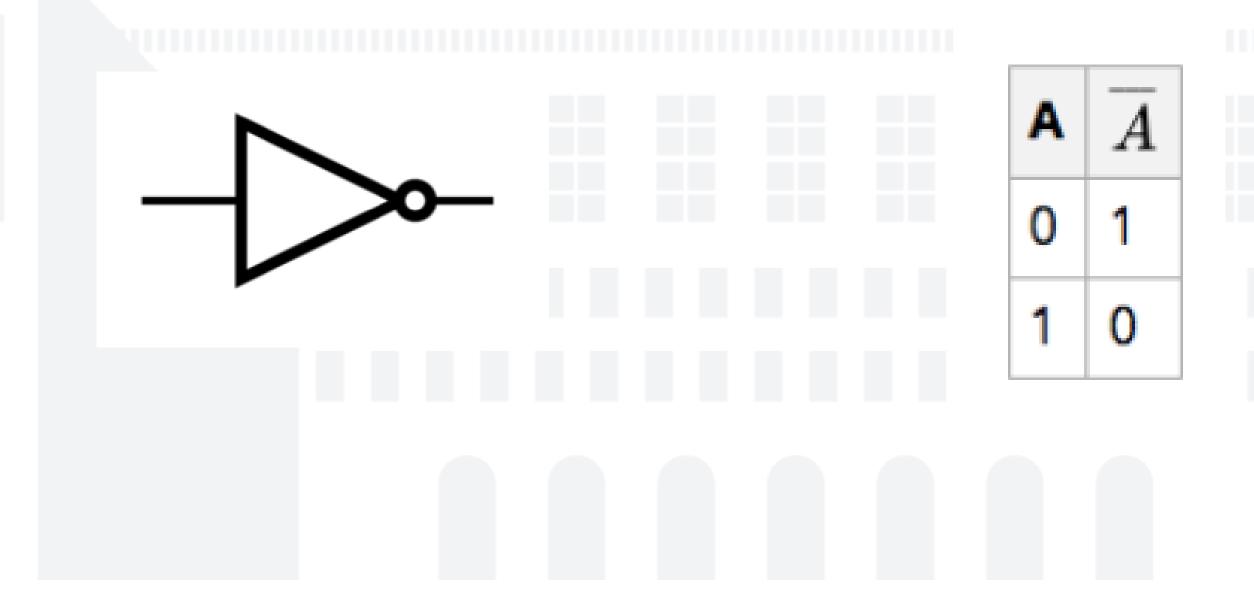
Considerando due entrate A e B, l'uscita A · B è data da:



PORTA LOGICA NOT

La porta logica NOT svolge l'operazione logica di NOT su un bit, detta anche negazione logica.

Considerando un'entrata A, l'uscita Ā è data da:



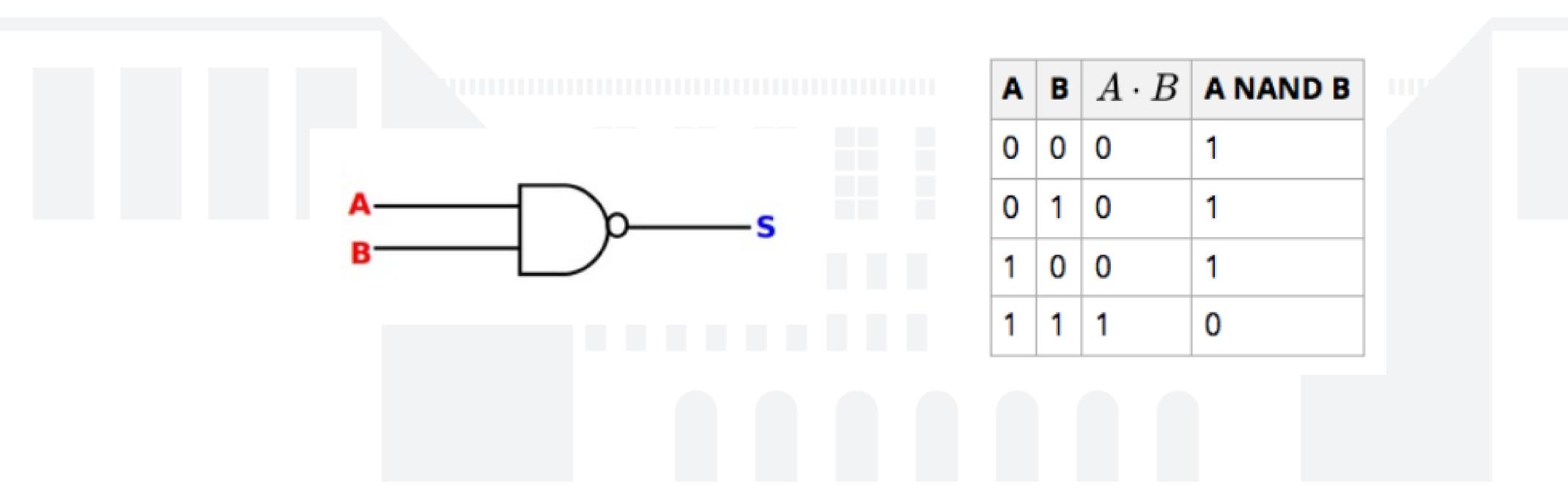
PORTE LOGICHE DERIVATE

Oltre alle porte logiche fondamentali (AND, OR, NOT) esistono altre porte che sono realizzate combinando le porte fondamentali, il cui principale scopo è la semplificazione dei circuiti (realizzando operazioni composte in un unico componente).

• Le porte logiche derivate sono NAND, NOR e XOR.

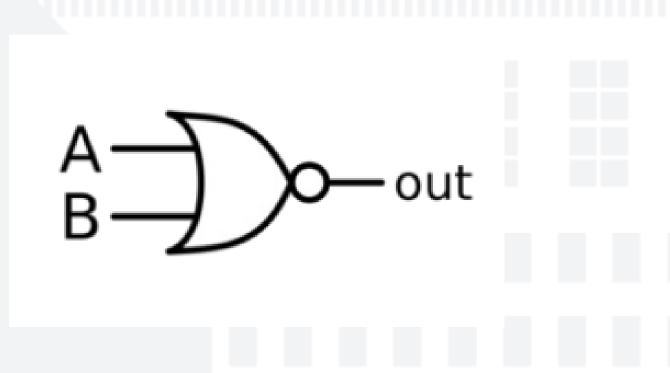
PORTA LOGICA NAND

La porta logica NAND svolge l'operazione logica di NOT sul bit risultante dall'operazione AND sui bit in ingresso.



PORTA LOGICA NOR

La porta logica NOR svolge l'operazione logica di NOT sul bit risultante dall'operazione AND sui bit in ingresso.



A	В	A + B	A NOR B
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

PORTA LOGICA XOR

La porta logica XOR opera come disgiunzione esclusiva tra due input.

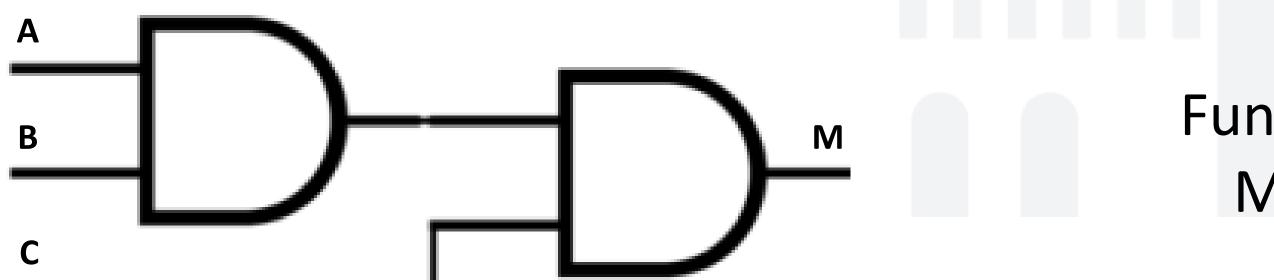
A	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

Funzione logica:

$$\mathbf{A} \oplus \mathbf{B} = \operatorname{not}(\mathbf{A}) \cdot \mathbf{B} + \mathbf{A} \cdot \operatorname{not}(\mathbf{B})$$

PORTE CON PIÙ DI DUE INGRESSI

- Ad eccezione della porta NOT, le altre porte logiche possono esistere anche ad N ingressi (2, 3, 4,...,N).
- Queste porte svolgono l'operazione logica associata su N bit invece che su 2.
 - > sono particolarmente comode nella rappresentazione grafica dei circuiti logici.
- Nella pratica, cioè nella realizzazione di circuiti, se si hanno a disposizione solo porte a 2 ingressi, è possibile realizzare porte a N ingressi collegando a cascata tra loro porte a 2 ingressi.
 - Esempio: una AND a 3 ingressi si può creare usando 2 AND a 2 ingressi come segue:



Funzione logica:

 $M = A \cdot B \cdot C$

OSSERVAZIONI

Qualunque funzione logica può essere costruita usando le porte logiche AND, OR e NOT.

Le porte NOR e NAND svolgono la funzione di inverter e sono definite universali.

NAND -> OR

A NAND $B = NOT(A \cdot B) = (NOT A) + (NOT B)$

La porta NAND si può quindi realizzare anche con una NOT e un AND in cascata, oppure con due NOT e una OR.

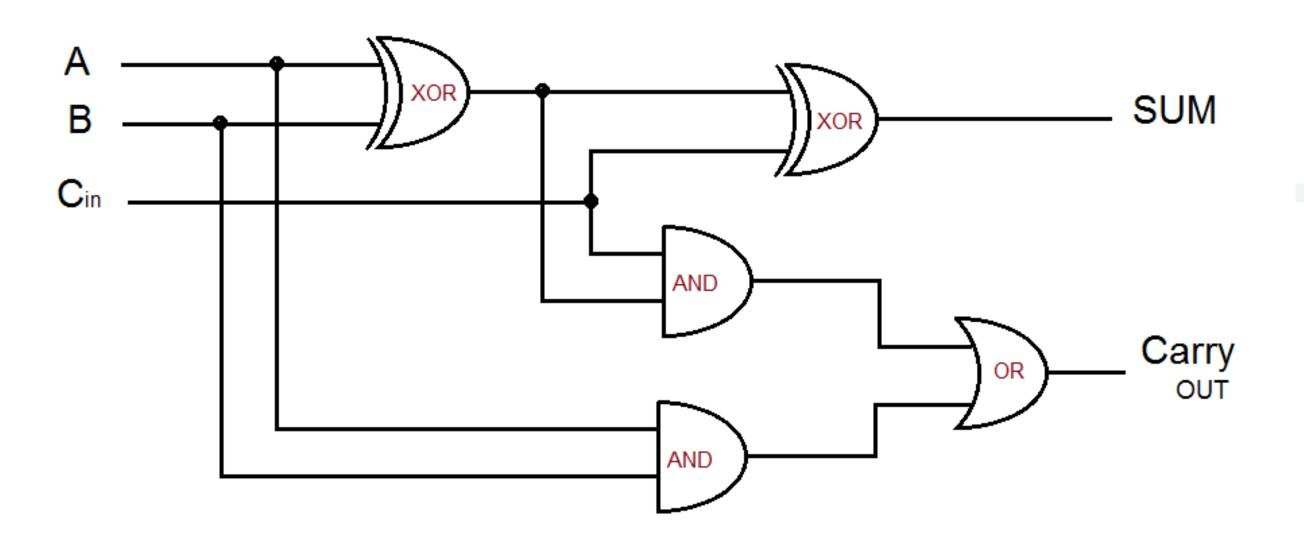
NAND > NOT

A NAND $1 = NOT(A \cdot 1) = (NOT A)$

Quando uno dei due ingressi alla NAND è 1, allora la porta equivale a negare l'altro input. In tal caso basta una porta NOT.

Full adder

]	nput	s	Out	tputs	
A	B	C_{in}	S	$C_{ m out}$	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	



Questo circuito realizza la SOMMA BINARIA tra due bit (con riporto).

PROPRIETA', ASSIOMI E TEOREMI DELL'ALGEBRA BOOLEANA

L'algebra di Boole (anche detta algebra booleana, logica booleana o reticolo booleano), in matematica e logica matematica, è il ramo dell'algebra in cui le variabili possono assumere solamente i valori vero e falso (valori di verità), generalmente denotati rispettivamente come 1 e 0.

N°	Nome	Proprietà	h
1	Proprietà associativa	a + (b + c) = (a + b) + c; a · (b · c) = (a · b) · c	
2	Proprietà commutativa	a + b = b + a; a · b = b · a	
3	Proprietà distributiva	a+(b·c)=(a+b)·(a+c) a·(b+c)=(a·b)+(a·c)	
4	Assioma dell'annullamento	a · 0 = 0; a + 1 = 1	
5	Assioma del Complemento	$(a + \bar{a}) = 1; (a \cdot \bar{a}) = 0$	
6	Assioma dell'idempotenza	a · a = a; a + a = a	
7	Assioma doppia negazione	ā = a	
8			l
	Teorema di DeMorgan	a + b = ā · b ; a · b = ā + b	
9	Teorema dell'assorbimento	Se Y = a + ab allora Y = a	
10	Teorema del consenso	Se Y = ab + āc + bc allora Y = ab + āc	

https://it.wikipedia.org/wiki/Algebra_di_Boole

Leggi di De Morgan

$$\overline{a+b} = \overline{a} \cdot \overline{b}$$

$$\overline{a \cdot b} = \overline{a} + \overline{b}$$

TEOREMA DI ESPRESSIONE CANONICA (O DEI MINTERMINI)

Qualunque funzione logica può essere costruita usando le porte logiche AND, OR e NOT.

Il Teorema dei Mintermini afferma che ogni funzione booleana può essere espressa come una somma (operazione OR) di mintermini.

Un **mintermine** è un prodotto (operazione AND) di tutte le variabili della funzione, ciascuna presente in forma diretta o negata, che rendono la funzione uguale a 1.

In altre parole, <u>per ogni combinazione di variabili in cui la funzione booleana restituisce 1</u>, esiste un mintermine corrispondente. La somma di tutti questi mintermini fornisce una rappresentazione completa della funzione, nota come <u>prima forma canonica o forma normale disgiuntiva</u> (Sum of Products, SOP).

È un **modo standard per rappresentare una funzione logica** usando solo AND (prodotto logico), OR (somma logica), NOT (negazione).

TEOREMA DI ESPRESSIONE CANONICA DUALE (O DEI MAXTERMINI)

Qualunque funzione logica può essere costruita usando le porte logiche AND, OR e NOT.

Il Teorema dei Maxtermini afferma che ogni funzione booleana può essere espressa come un prodotto (operazione AND) di maxtermini.

Un maxtermine è una somma (operazione OR) di tutte le variabili della funzione, ciascuna presente in forma diretta o negata, che rendono la funzione uguale a 0.

In altre parole, <u>per ogni combinazione di variabili in cui la funzione booleana restituisce 0</u>, esiste un maxtermine (somma) corrispondente. La somma di tutti questi maxtermini fornisce una rappresentazione completa della funzione, nota come seconda forma canonica o forma normale congiuntiva (Product of Sums, POS).

È un altro modo standard per rappresentare una funzione logica usando solo AND (prodotto logico), OR (somma logica), NOT (negazione).

Full adder

]	nput	ts Outputs		tputs	
A	B	C_{in}	S		
0	0	0	0		
0	0	1	1		
0	1	0	1		Ogni riga della tabella di verità
0	1	1	0		genera un MINTERMINE.
1	0	0	1		
1	0	1	0		
1	1	0	0		
1	1	1	1		

A seconda di quale forma del *Teorema dei Mintermini* usiamo, dobbiamo formare i mintermini e poi combinarli tra loro in modo diverso.

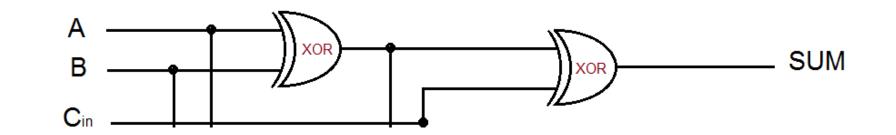
- (1)Nel caso della forma SOP, cerchiamo le righe dove S=1, formiamo i mintermini come prodotto delle variabili e poi li sommiamo.
- (2)Nel caso della forma POS, cerchiamo le righe dove S=0, i mintermini sono somma delle variabili e vengono moltiplicati tra loro.

Full adder

Considerando la forma SOP del Teorema.. (continua..)

	Inputs Outputs		tputs			
	A	B	C_{in}	S		
	0	0	0	0		
Ш	0	0	1	1		$not(A) \cdot not(B) \cdot C$
П	0	1	0	1		not(A) · B · not(C)
	0	1	1	0		
	1	0	0	1		$A \cdot not(B) \cdot not(C)$
	1	0	1	0		
	1	1	0	0		
	1	1	1	1		A · B · C

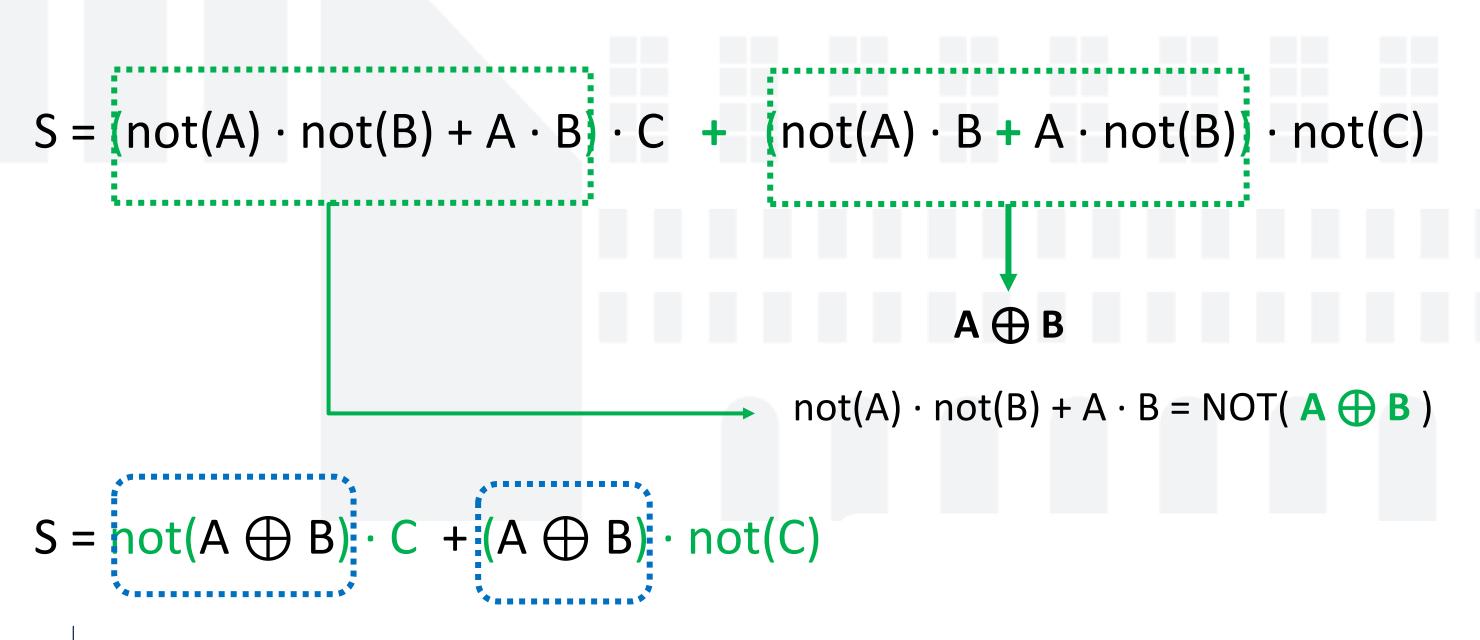
 $S = not(A) \cdot not(B) \cdot C + not(A) \cdot B \cdot not(C) + A \cdot not(B) \cdot not(C) + A \cdot B \cdot C$



Full adder

Considerando la forma SOP del Teorema.. (continua..)

$$S = not(A) \cdot not(B) \cdot C + not(A) \cdot B \cdot not(C) + A \cdot not(B) \cdot not(C) + A \cdot B \cdot C$$



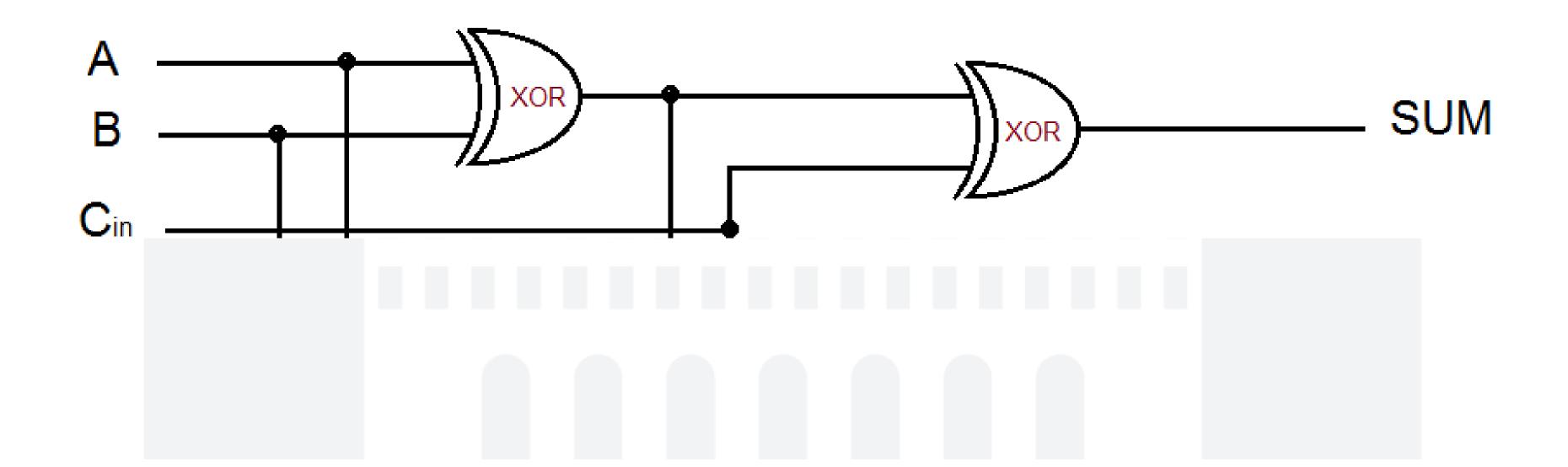
pr. distrib. inversa

A	В	A XOR B	NOT(A XOR B)
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

Full adder

Considerando la forma SOP del Teorema..

$$S = (A \oplus B) \oplus C$$



Full adder

Considerando la forma POS del Teorema.. (continua..)

Inputs		puts Outputs		puts	
A	B	$C_{ m in}$	S		
0	0	0	0		not(A) · not(B) · not(C)
0	0	1	1		
0	1	0	1		
0	1	1	0		not(A) · B · C
1	0	0	1		
1	0	1	0		A·not(B)·C
1	1	0	0		A · B · not(C)
1	1	1	1		

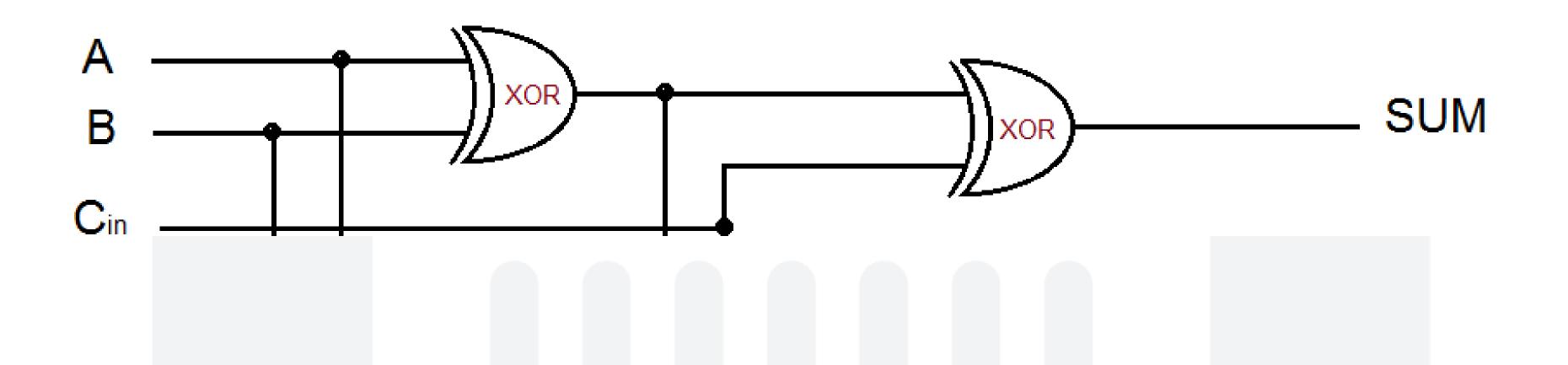
 $S = not(A) \cdot not(B) \cdot not(C) + not(A) \cdot B \cdot C + A \cdot not(B) \cdot C + A \cdot B \cdot not(C)$

Full adder

Considerando la forma POS del Teorema.. (continua..)

$$S = not(A) \cdot not(B) \cdot not(C) + not(A) \cdot B \cdot C + A \cdot not(B) \cdot C + A \cdot B \cdot not(C)$$

=
$$(not(A) \cdot not(B) + A \cdot B) \cdot not(C)$$
 + $(not(A) \cdot B + A \cdot not(B)) \cdot C = (A \oplus B) \oplus C$



LOGICHE A DUE LIVELLI E PLA

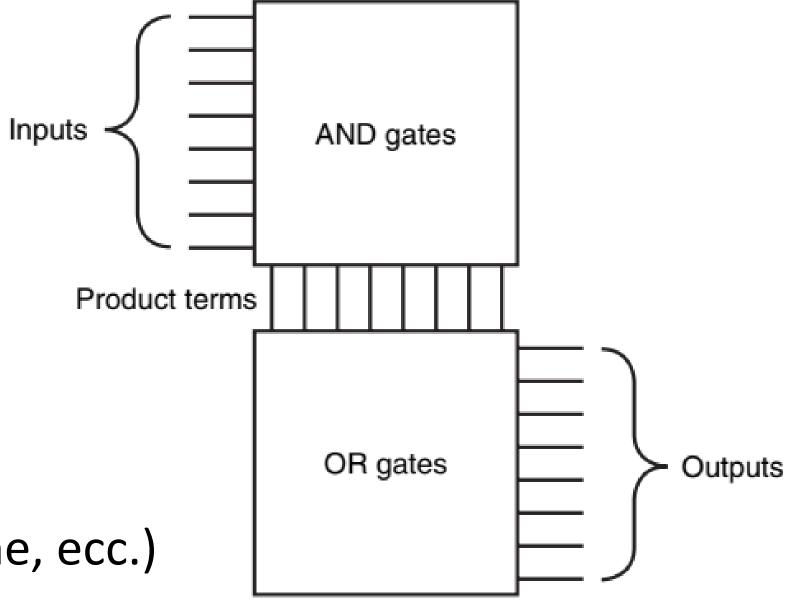
Qualunque funzione logica può essere costruita usando porte AND, OR e NOT.

Possiamo creare logiche a due livelli:

- Somma di prodotti: somma logica (OR) di prodotti (AND)
- Prodotto di somme: prodotto (AND) di somme (OR)

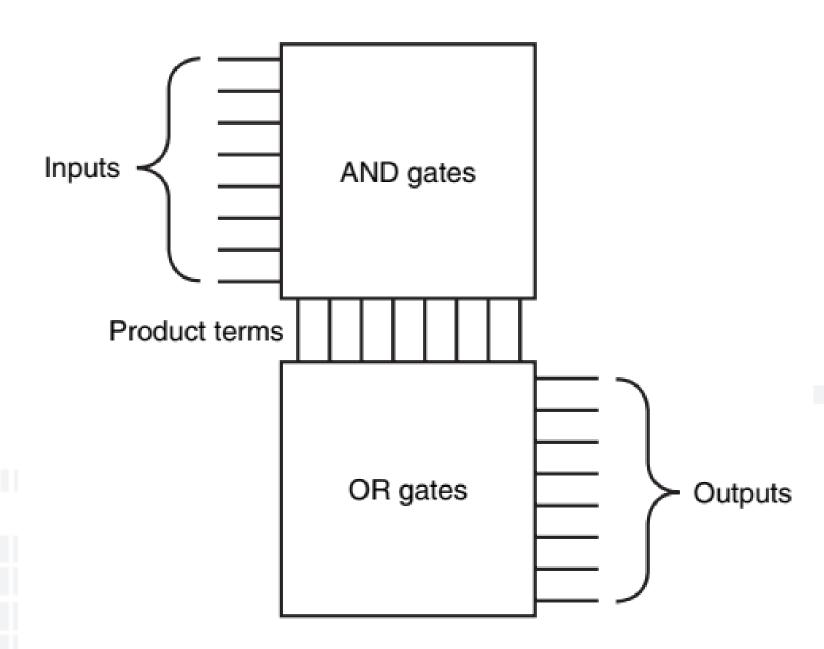
Esempi di uso di circuiti in PLA:

- Circuiti di controllo
- Decoder personalizzati
- Più segnali di uscita da input comuni (es. segnali di stato, di selezione, ecc.)



PROGRAMMABLE LOGICAL ARRAY

Una **PLA** è un circuito logico programmabile che implementa **una o più funzioni booleane** nella forma Somma di Prodotti (SOP): $F = P_1 + P_2 + \cdots + P_n$ dove ciascun P_i è un prodotto logico (AND) di input o dei loro complementi.



- Un insieme di **input**
- I corrispondenti input complementati (mediante inverter) per poter gestire più uscite
- Una logica a due stage:

Primo stage: un array di porte logiche AND (prodotto)

Secondo stage: un array di porte logiche OR (somma)

Output: una stessa base di prodotti logici (AND) può essere combinata in modi diversi per produrre diverse funzioni logiche. Ogni uscita può combinare (OR) i prodotti in modo diverso.

PLA

Esempio

Consideriamo la seguente tabella di verità.

	Inputs			Outputs	
A	В	C	D	E	F
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	0	1

Costruire il PLA corrispondente come somme di prodotto

Come si fa?

Si costruisce la SOP per ogni colonna. Si tratta ogni colonna come una funzione logica indipendente.

PLA

Esempio

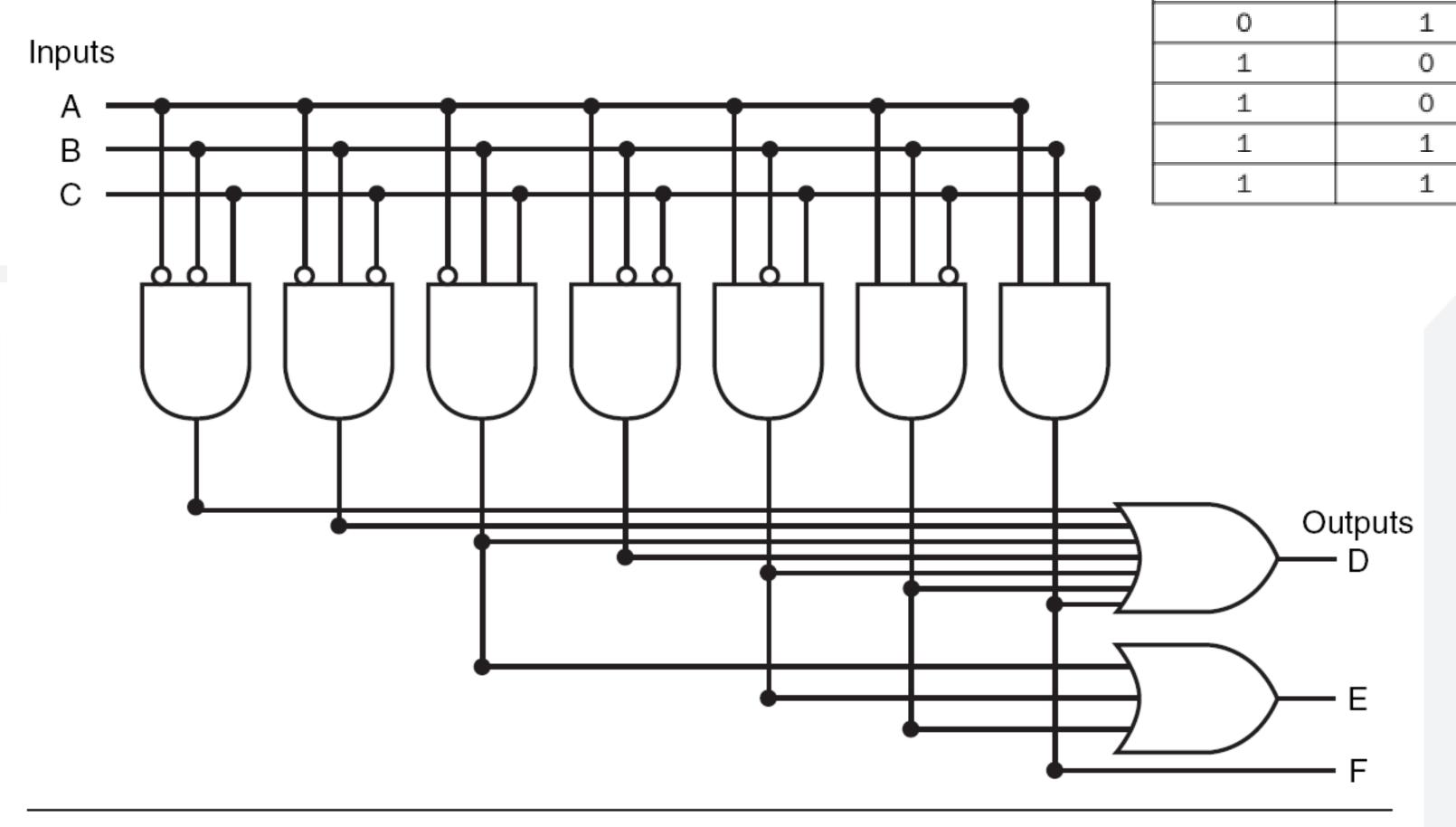


FIGURE C.3.4 The PLA for implementing the logic function described in the example.

Inputs

В

C

A

DECODER (1/2)

Un decoder è un componente elettronico caratterizzato dall'avere n ingressi e 2ⁿ uscite.

Lo scopo del decoder è di **impostare allo stato alto l'uscita corrispondente alla conversione in base 10** della codifica binaria a n bit ricevuta **in input** (e di impostare allo stato basso tutte le altre).

In pratica:

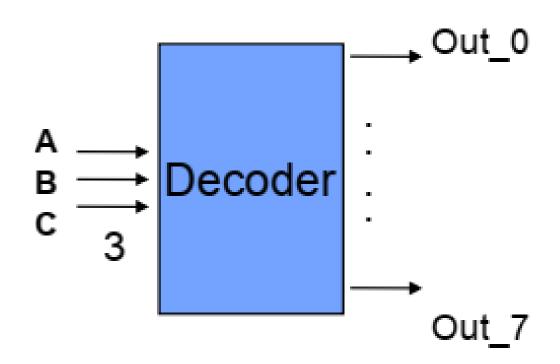
- gli n input sono interpretati come un numero unsigned
- se questo numero rappresenta il numero i, allora
 - solo il bit in output di indice i (i=0,1,...,2ⁿ⁻¹) verrà posto ad 1
 - tutti gli altri verranno posti a 0

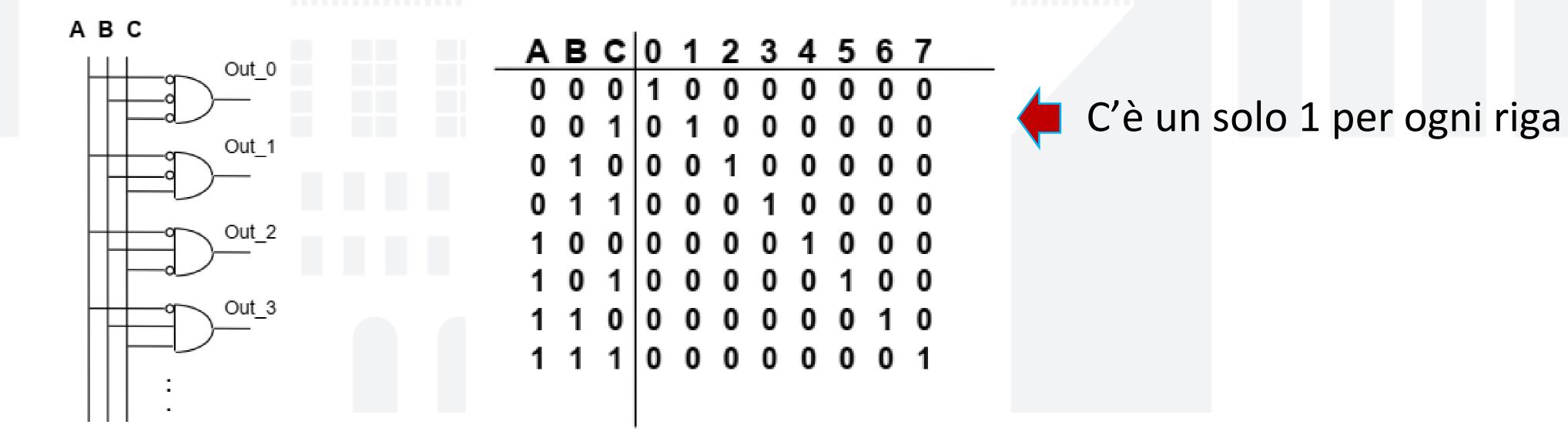
DECODER (2/2)

2ⁿ uscite, solo 1 valore è attivo per ogni combinazione di input.

Quindi:

- l'ingresso seleziona una delle uscite;
- l'uscita selezionata ha valore 1 tutte le altre 0



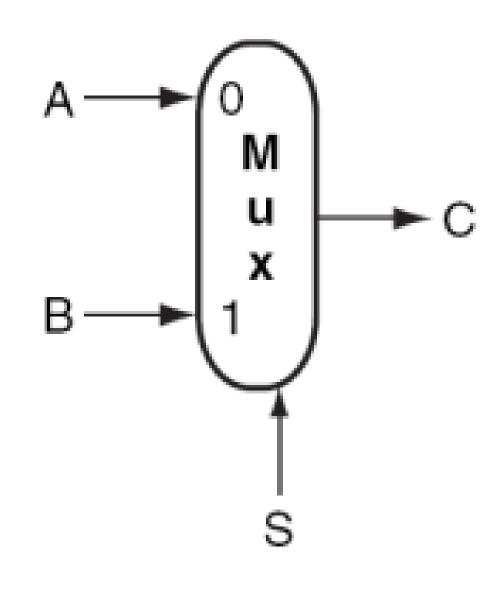


Con 3 bit possiamo selezionare UNA di 2^3 = 8 uscite

Un multiplexer, detto anche selettore, è un componente elettronico caratterizzato da:

- 2ⁿ entrate principali
- n entrate di controllo (selettore)
- 1 uscita

Il valore del selettore determina quale input diviene output.



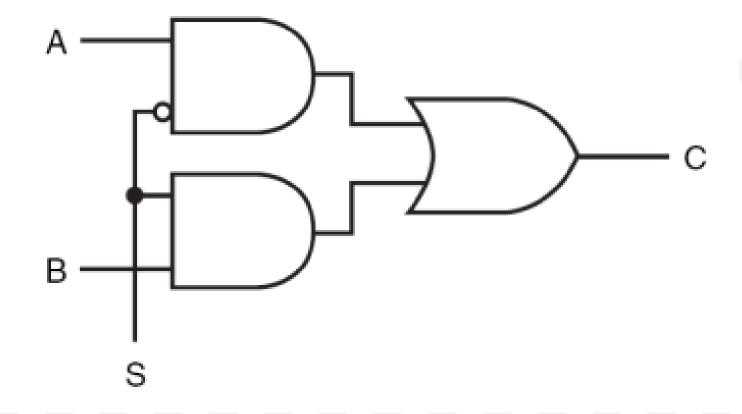
Esempio 1

Funzione logica

$$C = (A \cdot \bar{S}) + (B \cdot S)$$

Qual è la tabella di verità di questo circuito?

Circuito logico equivalente



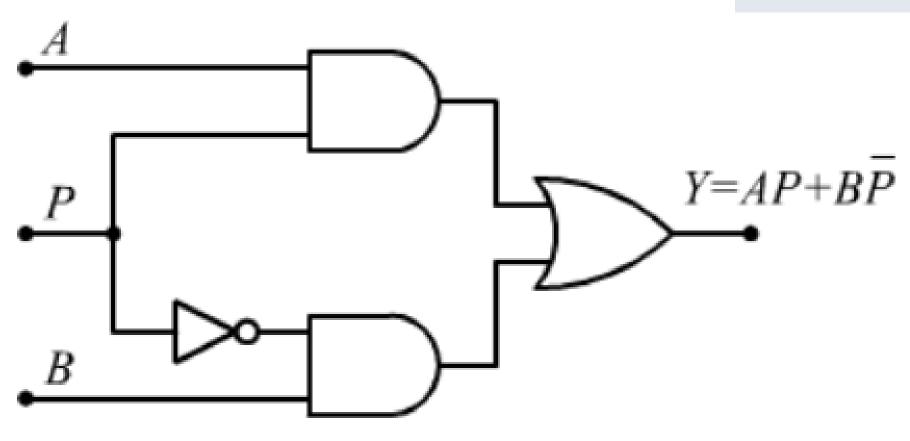
S ha la funzione di segnale di controllo

S	A	В	С
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Esempio 2

Circuito logico equivalente

Nota. Questo circuito è equivalente al precedente, ma il controllo dato dal segnale P è invertito rispetto a prima. In questo caso, se P=1, viene abilitato l'ingresso A.



$$A=0, B=0, P=0$$

$$0 \text{ OR } 0 >> 0$$

$$A=1, B=0, P=0$$

$$0 \text{ OR } 0 >> 0$$

$$A=1, B=1, P=0$$

$$0 \text{ OR } 1 >> 1$$

$$A=0, B=1, P=0$$

$$0 \text{ OR } 1 >> 1$$

Esempio 2

Circuito logico equivalente

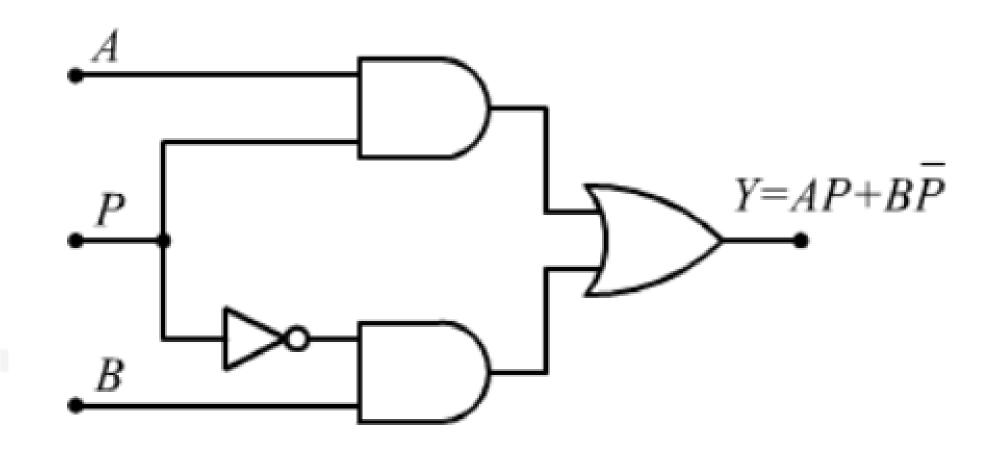


Tabella di verità

$$egin{array}{c|c} P & Y \\ \hline 0 & B \\ I & A \\ \hline \end{array}$$

$$A=0, B=0, P=1$$

$$0 \text{ OR } 0 >> 0$$

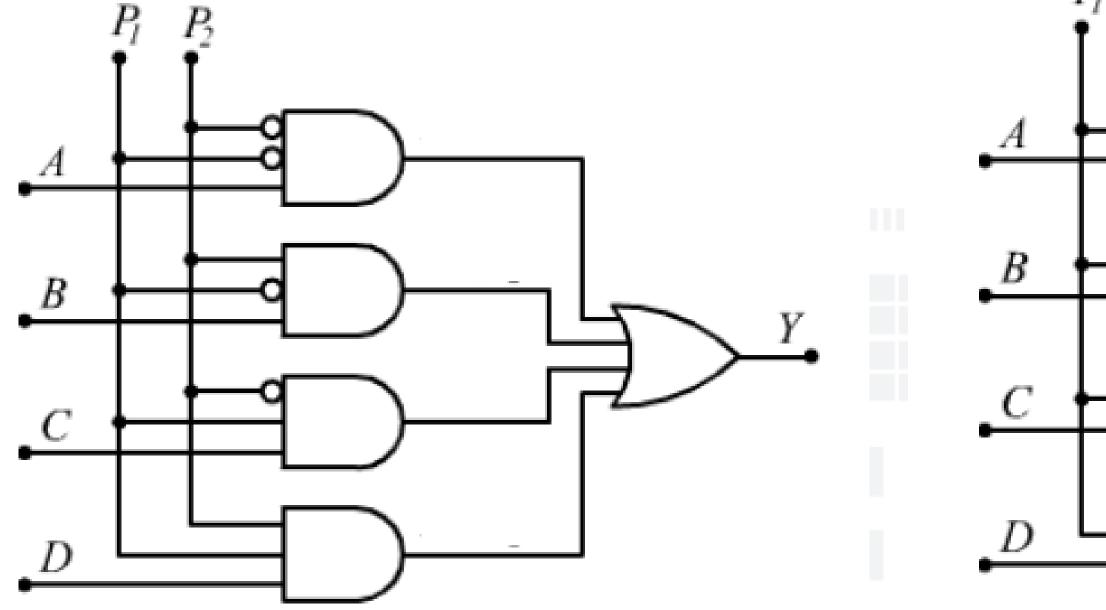
$$1 \text{ OR } 0 >> 1$$

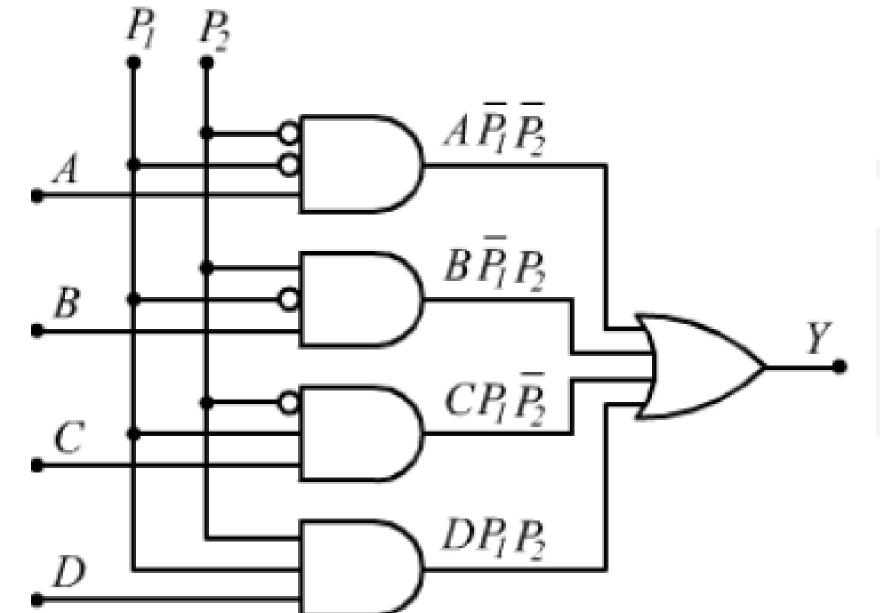
$$A=0, B=1, P=1$$

$$0 \text{ OR } 1 >> 1$$

Esempio 3

Circuito logico



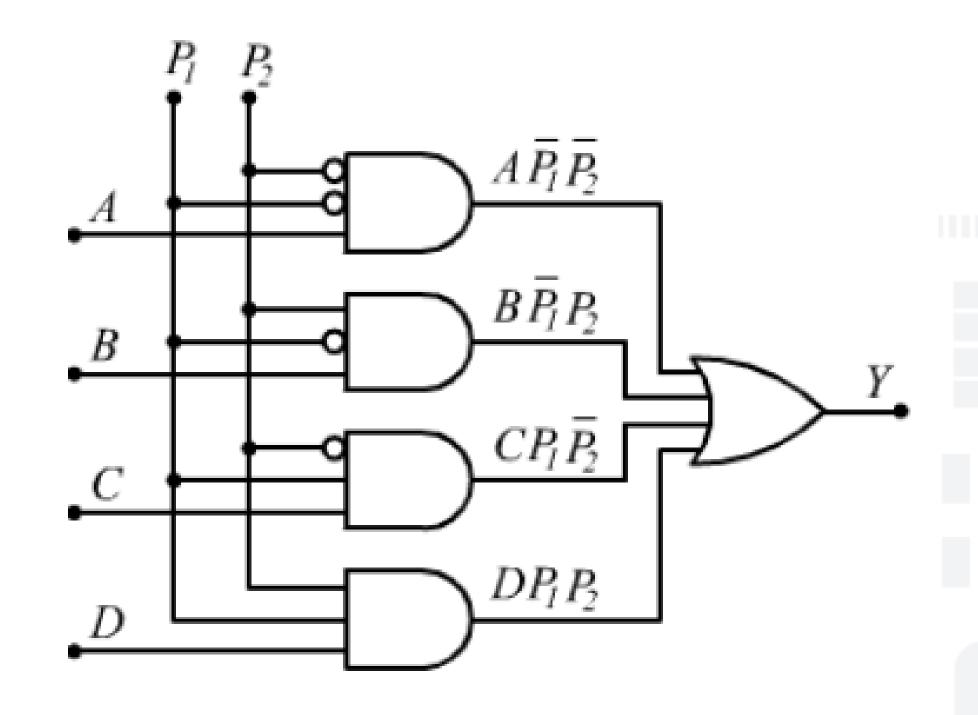


$$Y = A\bar{P}_1\bar{P}_2 + B\bar{P}_1P_2 + CP_1\bar{P}_2 + DP_1P_2$$

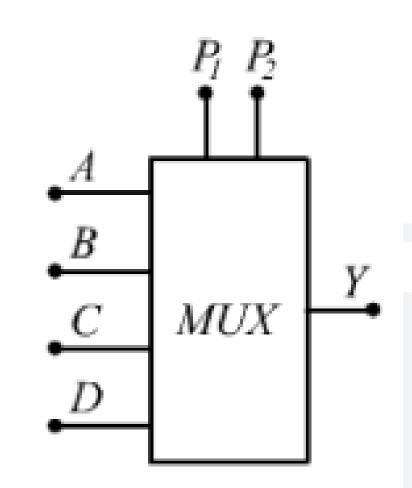
Esempio 3

$$Y = A\bar{P}_1\bar{P}_2 + B\bar{P}_1P_2 + CP_1\bar{P}_2 + DP_1P_2$$

Tabella di verità



P_{l}	P_2	Y
0	θ	A
0	1	B
I	0	C
I	1	D



Circuito con 2 segnali di controllo

Materiale per la lezione

Appendice B, Patterson & Hennessy