Multiparameter models

Teacher: Matilde Trevisani

DEAMS

A.A. 2024/2025

(aggiornato: 2025-04-13)

Agenda

Multiparameter models

- marginalization
- · Normal model with both mean and varianza unknowm
 - non-informative prior
 - conjugate prior (and semi-conjugate)
- Multinomial model with Dirichlet conjugate prior
- Normal multivariate model with unknown mean and covariance known/unknown

Two-parameters models

A model is specified with two real parameters $heta_1, heta_2$

$$p(y|\theta_1,\theta_2)$$

the prior is then a bivariate distribution

$$p(heta_1, heta_2)$$

and the posterior is then a bivariate distribution as well

$$p(\theta_1, \theta_2|y) \propto p(y|\theta_1, \theta_2)p(\theta_1, \theta_2)$$

Suppose that, say, θ_1 is the parameter of interest whereas θ_2 is a *nuisance* parameter.

Thus, we may be particularly interested in the marginal posterior for θ_1 .

Marginalization

We find the marginal posterior for θ_1 by marginalizing (averaging over θ_2) the joint posterior

$$\pi(heta_1|y) = \int \pi(heta_1, heta_2|y) d heta_2$$

The joint posterior is factorized

either as

$$\pi(heta_1|y) = \int p(y| heta_1, heta_2)\pi(heta_1, heta_2)d heta_2$$

or as a mixture of conditional posteriors

$$\pi(heta_1|y) = \int \pi(heta_1| heta_2,y)\pi(heta_2|y)d heta_2$$

Multiparameter models and marginalization

 θ_1 and θ_2 can be vectors, and in general we deal with multiparameter models.

The goal is to find the marginal posterior of a quantity of interest

- a model parameter
- a future event, e.g., the predictive posterior distribution which is obtained by marginalizing the posterior distribution

$$egin{aligned} p(ilde{y} \mid y) &= \int p(ilde{y}, heta \mid y) d heta \ &= \int p(ilde{y} \mid heta) p(heta \mid y) d heta \end{aligned}$$

(Univariate) normal model with μ and σ^2 unknown

Likelihood

Let

$$y_1,\ldots,y_n|\mu,\sigma^2\stackrel{iid}{\sim}N(\mu,\sigma^2)$$

The likelihood is

$$\begin{split} p(y|\mu,\sigma^2) &\propto (\sigma^2)^{-n/2} \exp \left\{ -\frac{1}{2\sigma^2} \sum_j (y_j - \mu)^2 \right\} \\ &\propto (\sigma^2)^{-n/2} \exp \left\{ -\frac{1}{2\sigma^2} \sum_j (y_j - \bar{y} + \bar{y} - \mu)^2 \right\} \\ &\propto (\sigma^2)^{-n/2} \exp \left\{ -\frac{1}{2\sigma^2} \left(\sum_j (y_j - \bar{y})^2 + n(\bar{y} - \mu)^2 + 2(\bar{y} - \mu) \sum_j (y_j - \bar{y}) \right) \right\} \\ &\propto (\sigma^2)^{-n/2} \exp \left\{ -\frac{n}{2\sigma^2} (\hat{\sigma}^2 + (\bar{y} - \mu)^2) \right\} \\ &\propto (\sigma^2)^{-n/2} \exp \left\{ -\frac{1}{2\sigma^2} ((n-1)s^2 + n(\bar{y} - \mu)^2) \right\} \end{split}$$

Likelihood

Let

$$y_1,\dots,y_n|\mu,\sigma^2\stackrel{iid}{\sim}N(\mu,\sigma^2)$$

The likelihood is

$$egin{split} p(y|\mu,\sigma^2) & \propto (\sigma^2)^{-n/2} \expiggl\{ -rac{n}{2\sigma^2} (\hat{\sigma}^2 + (ar{y}-\mu)^2) iggr\} \ & \propto (\sigma^2)^{-n/2} \expiggl\{ -rac{1}{2\sigma^2} ((n-1)s^2 + n(ar{y}-\mu)^2) iggr\} \end{split}$$

a function of the sufficient statistics

$$ar{y} = rac{1}{n} \sum_j y_j; \quad s^2 = rac{1}{n-1} \sum_j (y_j - ar{y})^2 = rac{n}{n-1} \hat{\sigma}^2.$$

Normal model with noninformative prior

Noninformative prior specification

Consider the improper prior

$$p(\mu,\sigma^2) \propto (\sigma^2)^{-1}$$

that is, μ and σ^2 are independent and

- $p(\mu) \propto k$
- $p(\sigma^2) \propto (\sigma^2)^{-1}$
 - Equivalently, we could say that (see Gelman p.21, change of variable)
 - $lacksquare p(\sigma) \propto \sigma^{-1}$
 - $p(\log \sigma^2) \propto k$
 - \circ In the model with known μ such a prior (corresponding to an ${
 m Inv-}\chi^2$ with $u_0=0$) leads to

$$p(\sigma^2|y) \sim \text{Inv-}\chi^2(n,\hat{\sigma}^2)$$

that is, conditional on $y, \sigma^2 =_d rac{n\hat{\sigma}^2}{\chi_n^2}$

Posterior with noninformative prior

The posterior is

$$p(\mu, \sigma^2|y) \propto (\sigma^2)^{-1} p(y|\mu, \sigma^2) \ \propto (\sigma^2)^{-1} (\sigma^2)^{-n/2} \exp\left\{-rac{1}{2\sigma^2} ((n-1)s^2 + n(ar{y} - \mu)^2)
ight\} \ \propto (\sigma^2)^{-1/2} \exp\left\{-rac{n}{2\sigma^2} (ar{y} - \mu)^2
ight\} (\sigma^2)^{-(n+1)/2} \exp\left\{-rac{1}{2\sigma^2} (n-1)s^2
ight\} \ \mu|\sigma^2, y \sim N\left(ar{y}, rac{\sigma^2}{n}
ight) \qquad \qquad \sigma^2|y \sim ext{Inv-}\chi^2(n-1, s^2)$$

That is,

$$egin{aligned} p(\mu,\sigma^2|y) &= p(\mu|\sigma^2,y)\,p(\sigma^2|y) \ &= N\left(ar{y},\sigma^2/n
ight) ext{Inv-}\chi^2(n-1,s^2) \end{aligned}$$

The factorization

$$p(\mu,\sigma^2|y) = p(\mu|\sigma^2,y)\,p(\sigma^2|y)$$

derives from

• the posterior for μ conditional on σ^2 is

$$p(\mu|\sigma^2,y)=N\left(ar{y},\sigma^2/n
ight)$$

which follows what was obtained (in the single parameter model) for the a posteriori of μ when σ^2 is known and the a priori for μ is uniform.

• the marginal posterior for σ^2

$$p(\sigma^2|y) = ext{Inv-}\chi^2(n-1,s^2)$$

which is like what is obtained in the single parameter model with μ known and with improper prior $p(\sigma^2) \propto 1/\sigma^2$, but here taking into account one less degree of freedom.

Marginal posterior for σ^2

The marginal posterior for σ^2 is

$$\begin{split} p(\sigma^2|y) &= \int p(\mu,\sigma^2|y) d\mu \\ &\propto \int \sigma^{-n-2} \exp\left\{-\frac{1}{2\sigma^2}((n-1)s^2 + n(\bar{y}-\mu)^2)\right\} d\mu \\ &\propto \sigma^{-n-2} \exp\left\{-\frac{(n-1)s^2}{2\sigma^2}\right\} \int \exp\left\{-\frac{n}{2\sigma^2}(\bar{y}-\mu)^2\right\} d\mu \\ &\qquad \qquad \text{Notice that } \int \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(y-\theta)^2\right) d\theta = 1 \\ &\propto \sigma^{-n-2} \exp\left\{-\frac{(n-1)s^2}{2\sigma^2}\right\} \sqrt{\frac{2\pi\sigma^2}{n}} \\ &\propto (\sigma^2)^{-(n+1)/2} \exp\left\{-\frac{(n-1)s^2}{2\sigma^2}\right\} \end{split}$$

that is

$$|\sigma^2|y\sim ext{inv-}\chi^2(n-1,s^2)$$

Marginal posterior for σ^2 : notes

Recall that by

$$\sigma^2|y\sim ext{inv-}\chi^2(n-1,s^2)$$

we mean that, conditional on y,

$$\sigma^2 =_d rac{(n-1)s^2}{X}, \quad X \sim \chi^2_{n-1}.$$

and compare this with the usual result on the sampling distribution of s^2 ,

$$rac{(n-1)s^2}{\sigma^2}|\sigma^2\sim\chi^2_{n-1}|$$

Note also that it is equivalent to write

$$\sigma^2|y\sim ext{Inv-gamma}\left(n-1/2,(n-1)s^2/2
ight)$$

$$(\sigma^2)^{-1}|y\sim \operatorname{Gamma}\left(n-1/2,(n-1)s^2/2
ight)$$

Marginal posterior for μ

$$egin{aligned} p(\mu|y) &= \int_0^\infty p(\mu,\sigma^2|y) d\sigma^2 \ &\propto \int_0^\infty \sigma^{-n-2} \exp \Biggl\{ -rac{1}{2\sigma^2} ((n-1)s^2 + n(ar y - \mu)^2) \ &z = rac{A}{2\sigma^2} = rac{(n-1)s^2 + n(ar y - \mu)^2}{2\sigma^2} \Biggr\} d\sigma^2 \ &\propto \int_0^\infty \left(rac{A}{2z}
ight)^{-(n+2)/2} \exp\{-z\} rac{A}{2z} dz \ &\propto A^{-n/2} \int_0^\infty z^{(n-2)/2} \exp\{-z\} dz \end{aligned}$$

And recognizing a non-normalized gamma integral $\Gamma(u) = \int_{0}^{\infty} x^{u-1} \exp(-x) dx$ $1 \propto ((n-1)s^2 + n(ar{y} - \mu)^2)^{-n/2}$ $\propto \left(1+rac{n(\mu-ar{y})^2}{(n-1)\,c^2}
ight)^{-n/2} \Rightarrow p(\mu|y)=t_{n-1}(ar{y},s^2/n)$

Marginal posterior for μ : notes

Hence

$$\mu|y\sim t_{n-1}(ar{y},s^2/n)$$

which is equivalent to

$$\left|rac{\mu-ar{y}}{s/\sqrt{n}}
ight|y\sim t_{n-1}$$

analogous to the usual result for the pivotal quantity

$$\left|rac{ar{y}-\mu}{s/\sqrt{n}}
ight|\mu,\sigma^2\sim t_{n-1}$$

- 1. the posterior distribution of the pivotal quantity does not depend on the data y,
- 2. the sampling distribution of the pivotal quantity does not depend on the parameters μ and σ^2

In general, a pivotal quantity for the parameter to be estimated is defined as a non-trivial function of the data and the estimand parameter whose sampling distribution is independent of all parameters and data.

Keep in mind that marginal posterior $p(\mu \mid y)$

$$p(\mu \mid y) = \int_0^\infty p(\mu \mid \sigma^2, y) p(\sigma^2 \mid y) d\sigma^2$$

is a mixture of normal distributions where the mixing density is the marginal posterior of σ^2

in order to derive the posterior predictive analytically.

Predictive distribution for $ilde{y}$

In general

$$p(ilde{y}|y) = \int \int p(ilde{y}|\mu,\sigma^2,y) p(\mu,\sigma^2|y) d\mu d\sigma^2$$

and it can be shown that

$$ilde{y}|y\sim t_{n-1}\left(ar{y},\left(1+rac{1}{n}
ight)s^2
ight)$$

Predictive distribution for \tilde{y} : proof

First note that we have proven that

$$p(\mu|y) = \int \underbrace{p(\mu|\sigma^2,y)}_{\mathcal{N}(ar{y},\sigma^2/n)} p(\sigma^2|y) d\sigma^2 = t_{n-1}(ar{y},s^2/n)$$

Then note that

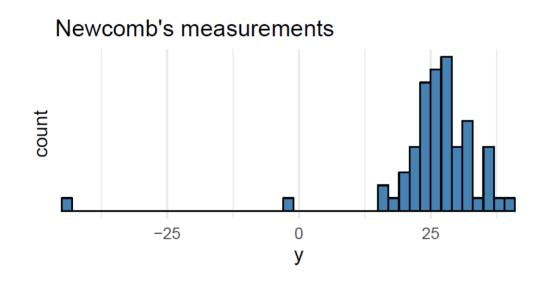
$$egin{aligned} p(ilde{y}|y) &= \int \int p(ilde{y}|\mu,\sigma^2,y) p(\mu,\sigma^2|y) d\mu d\sigma^2 \ &= \int \int p(ilde{y}|\mu,\sigma^2) p(\mu,\sigma^2|y) d\mu d\sigma^2 \ &= \int \underbrace{\left(\int \underbrace{p(ilde{y}|\mu,\sigma^2) p(\mu|\sigma^2,y)}_{\mathcal{N}(\mu,\sigma^2)} d\mu \right)}_{\mathcal{N}(ar{y},\sigma^2/n)} p(\sigma^2|y) d\sigma^2 \end{aligned}$$

This is the posterior predictive distribution when variance is known, $p(\tilde{y}|\sigma^2, y)$

$$t_{n-1}\left(ar{y},s^2\left(1+rac{1}{n}
ight)
ight)$$

Simon Newcomb Experiment (1882): Speed of Light

Newcomb measured (n=66) the time required for light to travel a total distance of 7,422 meters: the distance from his laboratory on the Potomac River to a mirror at the base of the Washington Monument and back.



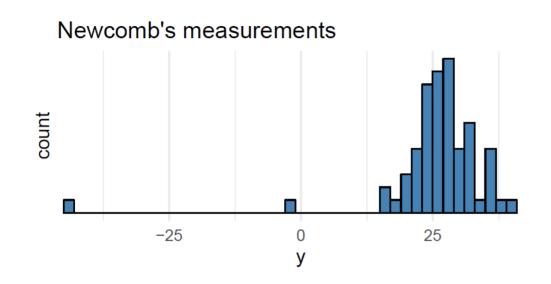
$$n = 66$$
 $\bar{z} = 24826.2$
 $s = 10.8$

True value is 24833.02 (in nanoseconds)

Transformation: y = z - 24800 $\bar{y} = 26.2$

True value: 33.02

Newcomb data: Normal model with noninformative prior

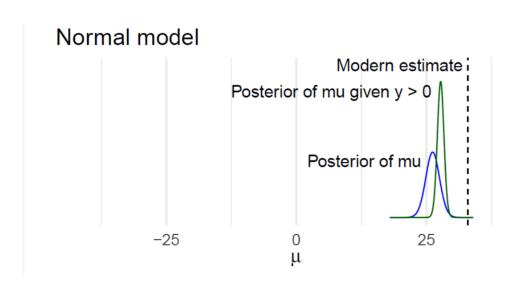


$$n = 66 \ ar{y} = 26.2 \ s = 10.8$$

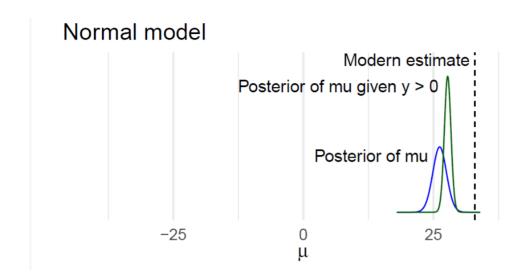
Only positive values:

$$ar{y}=27.8 \ s=5.1$$

True value: 33.02



Newcomb data: posterior for μ



$$\mu|y\sim t_{65}\left(26.2,rac{10.8^2}{66}{=}1.329^2
ight)$$

posterior interval:

$$egin{aligned} ar{y} &\pm t_{65,0.975} rac{s}{\sqrt{66}} = \ 26.2 \pm 1.997 imes 1.329 = \ [23.6, 28.8] \end{aligned}$$

only positive data:

$$ar{y}\pm t_{63,0.975}rac{s}{\sqrt{64}}= \ 27.8\pm 1.998 imes 0.635= \ [26.5,29.0]$$

Normal model with conjugate prior

Conjugate prior specification

The conjugate prior must have the form

$$p(\sigma^2)p(\mu\mid\sigma^2)$$

(see the form of the likelihood in the previous section)

A convenient parametrization is

$$egin{aligned} \mu \mid \sigma^2 &\sim \mathrm{N}(\mu_0, \sigma^2/\kappa_0) \ \sigma^2 &\sim \mathrm{Inv-}\chi^2(
u_0, \sigma_0^2) \end{aligned}$$

which can be written as

$$p(\mu,\sigma^2)= ext{N-Inv-}\chi^2(\mu_0,\sigma_0^2/\kappa_0;
u_0,\sigma_0^2)$$

- μ and σ^2 are dependent a priori o if σ^2 is large, then μ has a less precise prior
- Marginally, $p(\mu)=t_{
 u_0}(\mu_0,\sigma_0^2/\kappa_0)$

Joint posterior

Joint posterior is

$$p(\mu, \sigma^2 \mid y) = ext{N-Inv-}\chi^2(\mu_n, \sigma_n^2/\kappa_n;
u_n, \sigma_n^2)$$

where

$$egin{align} \mu_n &= rac{\kappa_0}{\kappa_0 + n} \mu_0 + rac{n}{\kappa_0 + n} ar{y} \ \kappa_n &= \kappa_0 + n \
u_n &=
u_0 + n \
u_n \sigma_n^2 &=
u_0 \sigma_0^2 + (n-1) s^2 + rac{\kappa_0 n}{\kappa_0 + n} (ar{y} - \mu_0)^2
onumber \
onumber \$$

Note that

$$E(\sigma^2|y) = rac{
u_n \sigma_n^2}{
u_n - 2} = rac{
u_0 \sigma_0^2 + (n-1) s^2 + rac{\kappa_0 n}{\kappa_0 + n} (ar{y} - \mu_0)^2}{
u_0 + n - 2}$$

Marginal for σ^2 and μ

• Conditional $p(\mu \mid \sigma^2, y)$

$$egin{aligned} \mu \mid \sigma^2, y &\sim \mathrm{N}(\mu_n, \sigma^2/\kappa_n) \ &= \mathrm{N}\left(rac{rac{\kappa_0}{\sigma^2}\mu_0 + rac{n}{\sigma^2}ar{y}}{rac{\kappa_0}{\sigma^2} + rac{n}{\sigma^2}}, rac{1}{rac{\kappa_0}{\sigma^2} + rac{n}{\sigma^2}}
ight) \ &= \mathrm{N}\left(rac{\kappa_0\mu_0 + nar{y}}{\kappa_0 + n}, rac{\sigma^2}{\kappa_0 + n}
ight) \end{aligned}$$

• Marginal $p(\sigma^2 \mid y)$

$$\sigma^2 \mid y \sim ext{Inv-}\chi^2(
u_n, \sigma_n^2)$$

• Marginal $p(\mu \mid y)$

$$\mu \mid y \sim t_{
u_n}(\mu \mid \mu_n, \sigma_n^2/\kappa_n)$$

Multinomial model

Multinomial model for categorical data

See BDA3 p. 69

- Extension of binomial
- y_j number of observations of category j
- $y=(y_1,\ldots,y_k)$ vector of counts of number of observations for each category, with $\sum y_j=n$
- Observational model

$$p(y\mid heta) \propto \prod_{j=1}^k heta_j^{y_j},$$

with
$$\sum \theta_j = 1$$

(Analogously to the binomial, we assume that the distribution is conditional to the number n of observations.)

• Conjugate prior is the Dirichlet

$$p(heta \mid lpha) \propto \prod_{j=1}^k heta_j^{lpha_j-1} \, \propto \mathcal{D}(lpha)$$

Conjugate prior

- The Dirichlet, $\mathcal{D}(\alpha)$ is in the exponential family and is the multivariate generalization of the $\mathcal{B}eta$ distribution
- The $heta_j$ are nonnegative and sum to 1. More formally, the support of a k-dimensional Dirichlet is the $(k-1 ext{-})$ simplex of R^k

$$\left\{ heta \in \mathbb{R}^k: heta_j > 0, \; \sum_{j=1}^k heta_j = 1
ight\}$$

- $\mathcal{D}(lpha)$ is defined for $lpha_j>0$ and if $lpha_0=\sum_j lpha_j$, $E(heta_j)=lpha_j/lpha_0$
- The Dirichlet prior contains an equivalent information to $\sum_j (\alpha_j-1)$ observations with α_j-1 observations of category j
- $\alpha_0 = \sum_j \alpha_j$ determines the *concentration* of a Dirichlet, that is, how much the distribution is dense (high α_0) or sparse (low α_0)

Posterior

Posterior

$$p(heta \mid lpha, \, y) \propto \prod_{j=1}^k heta_j^{y_j + lpha_j - 1} \, \propto \mathcal{D}(y + lpha)$$

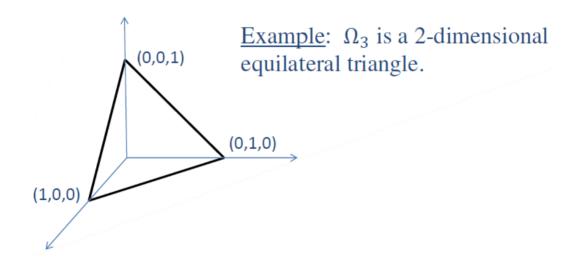
- Notice that $E(\theta_j|y)=rac{y_j+lpha_j}{n+lpha_0}=rac{y_j}{n}\cdotrac{n}{n+lpha_0}+rac{lpha_j}{lpha_0}\cdotrac{lpha_j}{n+lpha_0}$
- There are several plausible noninformative priors:
 - \circ uniform prior: $lpha_j = 1 \, orall j$
 - \circ improper prior: $lpha_j = 0 \ orall j$, i.e., uniform on $\log(heta_j)$
 - posterior is proper if there is at least one observation in each category, so that each component of y is positive.

Example of simplex

The support Ω_k is the space of all the probability vectors of k probabilities that sum to 1.

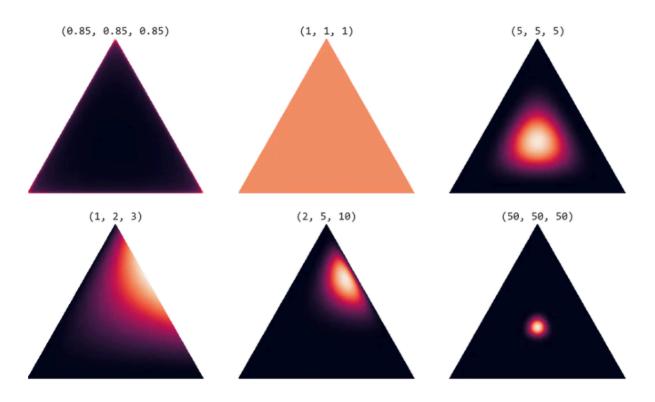
Because of the constraint on the components of a probability vector, Ω_k is k-1 dimensional and is the **standard or probability** K-1-**simplex**.

For k=3 the support is the triangle with vertices (1,0,0), (0,1,0), (0,0,1)



$\mathcal{D}(lpha)$ with different lpha

3-dimensional Dirichlet distribution on a 2-simplex for different values of α .



Properties:

Symmetric, flat Dirichlet; concentration parameter $\sum_k \alpha_k$.

Multivariate Normal model

Multivariate Normal

BDA3 p. 70-73

- y is a vector of d components
- $y \mid \mu, \ \Sigma \sim \mathrm{N}_d(y \mid \mu, \ \Sigma)$
- Observational model

$$p(y \mid \mu, \Sigma) \propto \mid \Sigma \mid^{-1/2} \expigg(-rac{1}{2}(y-\mu)^T \Sigma^{-1}(y-\mu)igg),$$

- Multivariate normal with known variance p. 70-71
- Multivariate normal with unknown mean and variance p. 72-73

The two cases follow the development seen in the univariate context but with matrix expressions since the distributions are here multivariate