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Agenda

Multiparameter models

e marginalization
e Normal model with both mean and varianza unknowm
o non-informative prior
o conjugate prior (and semi-conjugate)
e Multinomial model with Dirichlet conjugate prior
e Normal multivariate model with unknown mean and covariance
known/unknown
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Two-parameters models

A model is specified with two real parameters 61, 65

p(y‘ 017 92)
the prior is then a bivariate distribution
p(el ’ 92)

and the posterior is then a bivariate distribution as well

P(91, 02|y) X P(y|91, 92)29(91, 92)

Suppose that, say, #; is the parameter of interest whereas 6, is a nuisance
parameter.

Thus, we may be particularly interested in the marginal posterior for 6.
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Marginalization

We find the marginal posterior for #; by marginalizing (averaging over 65) the
joint posterior

7T(91|y) = /7T(91,02|y)d92

The joint posterior is factorized

 either as
w(611y) = [ DLy, 02)m(61,62)d6:
e Or as a mixture of conditional posteriors

M&W%j/ﬂ&Wmmﬂ%WM%
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Multiparameter models and marginalization

6, and 65 can be vectors, and in general we deal with multiparameter models.
The goal is to find the marginal posterior of a quantity of interest

e amodel parameter
 afuture event, e.g., the predictive posterior distribution which is obtained
by marginalizing the posterior distribution

p( | y) = / p(5,6 | y)do

_ / p( | 0)p(6 | y)db

5/35



(Univariate) normal model with 1« and o2
unknown



Likelihood

Let
Y1, - .- 7yn|:u7 02 %i N(,U,, 02)
The likelihood is
p(ylp, 0°) o () 2 eXP{‘Tiz 2w - “)2}
x (02)—n/2 eXp{_Tiz Z(y] —g+g— 'u)2}
o (%) "? exp{—%z (Z(yj —9)" + (i — 1)’ + 27— ) Y _(y; - ﬂ)) }
x (02)~/2 eXp{—%(&2 + (7 ,U)2)}
2\—n/2 1 2 2
o (0) " exp{ ~ 5z (0~ D5+l - )
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Likelihood

Let
Yis- - Ynls 0% % N, 07)
The likelihood is
pluli o) o (%) " exp{ — 7 6+ (5 - ") |
o« (0) " exp{ ~ 5z (0= D)5+ g — )|

a function of the sufficient statistics

8/35



Normal model with noninformative prior



Noninformative prior specification

Consider the improper prior

p(p,0%) o (¢%) 7"

that is, o and o2 are independent and

« p(p) < k
» p(0?) o (0%)7"
o Equivalently, we could say that (see Gelman p.21, change of variable)
« p(o) x o
« p(logo?) x k
o In the model with known p such a prior (corresponding to an Inv-y
with vy = 0) leads to

2

p(a®[y) ~ Inv-x*(n,5°)

né?

X5

that is, conditional on v, o? —d
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Posterior with noninformative prior

The posterior is

p(u, o*ly) o (%) 'p(y|p, o)

o 1 )
o (0) (o) e~ (0 D ol - )}
_ n o, _ “(n 1
o (0) M exp{ o 7 - 7 po?) O e 1))
20 20
,u,|a2,y~N(g,%> o2y~Inv-y2(n—1,s?)

That is,

p(u, *ly) = p(plo®, y) p(o°|y)
= N (g, 02/77,) Inv-x*(n — 1, %)
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The factorization

p(p, o’ly) = p(plo?, y) p(o?|y)

derives from

. the posterior for  conditional on ¢2 is

p(plo®,y) = N (g,0°/n)

which follows what was obtained (in the single parameter model ) for the
a posteriori of x when ¢ is known and the a priori for u is uniform.

« the marginal posterior for o2

p(o?ly) = Inv-x*(n — 1, 5°)

which is like what is obtained in the single parameter model with
known and with improper prior p(c?) o< 1/02, but here taking into
account one less degree of freedom.
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Marginal posterior for o2

The marginal posterior for o2 is

p(o?ly) = / p(1, o%ly)du

o« [aTexpd o0 - 05 40 - )

o

ox o " exp{— % 2_0?82 } /exp{—%(g — u)2}du

1 1
Notice that / exp (——(y — 9)2) dg =1
o

V2T 202
- (n—1)s? 202
X O exp 52 -
2
- (0_2)—(n+1)/2 exp{ — (n o 1)3
202

that is

o’y ~ inv-x*(n — 1, s%)

13/35



2

Marginal posterior for o“: notes

Recall that by
o?ly ~ inv-x*(n — 1, s%)
we mean that, conditional on y,

n —1)s?
0'2:d( X) ’ XNX?;,—I

and compare this with the usual result on the sampling distribution of s2,

(n —1)s? ) )
o2 |J ~ Xp—1

Note also that it is equivalent to write
0’|y ~ Inv-gamma (n — 1/2, (n — 1)s°/2)

(%) 'y ~ Gamma (n — 1/2, (n — 1)s*/2)
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Marginal posterior for 14

p(ply) = /0 Oop(u, o’|y)do*

( \

> 1
OC/ O-—’I’L—2 exp< —F((n _ 1)82 _|_n(,g . M)2) >d0_2
0 o

A J/
~

p=-A _ (n=1)s?+n(g—p)®
\ 202 252 )

00 —(n+2)/2 A
X /0 (%) exp{—z}2—zdz

x A—n/2/ Z(n—2)/2 eXp{—z}dz
0

o0
And recognizing a non-normalized gamma integral I'(u) = / % ! exp(—z)dz
0

o ((n—1)s* +n(y — p)*) ™
—n/2
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Marginal posterior for u: notes
Hence

ply ~ to1(g, $*/n)

which is equivalent to

H—y
s/\/n

analogous to the usual result for the pivotal quantity

Yy~ tn—1

y—p
s/v/n

1. the posterior distribution of the pivotal quantity does not depend on the
data v,

2. the sampling distribution of the pivotal quantity does not depend on the
parameters . and o

2
H, 0 ~ tn—1

In general, a pivotal quantity for the parameter to be estimated is defined as a
non-trivial function of the data and the estimand parameter whose sampling
distribution is independent of all parameters and data.
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Keep in mind that marginal posterior p(u | y)

p(u | ) = / " p(n] 0% y)p(o? | y)do?

is a mixture of normal distributions where the mixing density is the marginal
posterior of o2

in order to derive the posterior predictive analytically.

17/ 35



Predictive distribution for g

In general

p(ily) = / / p(iili, 0%, y)p(1, 0|y) dudo?

and it can be shown that

- _ 1Y\ ,
y‘y'\“tn—l Yy, 1+ —|s
n
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Predictive distribution for y: proof

First note that we have proven that

p(uly) = / p(ulo?, y)p(0®ly)do® = tn_1(§, 5*/m)
N——
N (g,0%/n)

Then note that
p(gly) = / / p(§lu, o, y)p(p, o |y)dudo®

— [ [ plalo*)(u, 0% dpsdo’

_ / / p( 111, o2)p(ulo”, y)du | p(o®]y)do”

o

N(ao?)  N(Goin)

\ . 7
~~

N (g,0%(1+1/n))

This is the posterior predictive distribution when variance is known, p(§|o?, y)

1
~ ty_1 (g,s2 (1 + —))
n 19/35




Simon Newcomb Experiment (1882): Speed of Light

Newcomb measured (n = 66) the time required for light to travel a total
distance of 7,422 meters: the distance from his laboratory on the Potomac
River to a mirror at the base of the Washington Monument and back.

count

Newcomb's measurements

o

25

66
24826.2
10.8

True value is 24833.02
(in nanoseconds)

w3
1

Trasformation:
y = z — 24800
7y = 26.2

True value: 33.02
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Newcomb data: Normal model with noninformative prior

Newcomb's measurements

count

Normal model

o

Posterior of mu giveny >0

Posterior of mu

25

Modern estimate

25

n = 66
g = 26.2
s = 10.8

Only positive values:

27.8
= 5.1

(]
s

True value: 33.02
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Newcomb data: posterior for p

10.82 2
Normal model ply ~ tgs (26.2, 5 =1.329 )
Modern estimate

Posterior of mu giveny >0 posterior interval:

y = t65,0.975ﬁ =

26.2 + 1.997 x 1.329 =
[23.6, 28.8]

Posterior of mu

only positive data:

25 0 25 g+ t63,0.975ﬁ =
H 27.8 +1.998 x 0.635 =
26.5, 29.0]
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Normal model with conjugate prior



Conjugate prior specification

The conjugate prior must have the form

p(o®)p(p | o°)
(see the form of the likelihood in the previous section)

A convenient parametrization is

plo® ~N(ug, 0% /o)
o2 ~ Inv—x2(1/0, 03)

which can be written as
p(p, %) = N-Inv-x*(po, 02 /Ko; v0, 02)

e nand o? are dependent a priori
— ifo?is large, then p has a less precise prior

+ Marginally, p(s1) = t,, (10, 02/ ko)
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Joint posterior

Joint posterior is

p(/’l" o’ ‘ y) — N'IHV'XQ(,U%,O'?L/K%; Vn,0'2)

n

where
_ ko no _

b e+ 1 ko + 1

Kp =Ko+ 1

Up =10 +tn

RoMN
Va0 = 1ol + (n = 1)s” + - (5 — o)

Note that
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Marginal for o and p

o Conditional p(,u \ o 279)

wlo®y~ N(pn, o /ky)

%Mo—l—%g 1
:N K0 n A ) n
?‘F? — T

o g

N Kopo +ny o
o Ko+ 1n ,li()—l—n

. Marginal p(o? | y)
o2 |y ~ IDV-XQ(Vna o)
» Marginal p(p | y)

ply~ty, (1] bn, of/ k)
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Multinomial model



Multinomial model for categorical data

See BDA3 p. 69

« Extension of binomial
» y; number of observations of category j

e y=(y1,...,Yx) vector of counts of number of observations for each
category, with ) |y, = n

e Observational model

k

Yj

p(y | 0) Hej ;
j=1

with Z 9j =1
(Analogously to the binomial, we assume that the distribution is conditional to the
number n of observations.)

« Conjugate prior is the Dirichlet

k
Oéj—l
p(0 | a) x HHj x D(a)
=1 29/ 35



Conjugate prior

o The Dirichlet, D(«) - is in the exponential family and - is the multivariate
generalization of the Beta distribution

« The 6; are nonnegative and sum to 1. More formally, the support of a k-
dimensional Dirichlet is the (k — 1-)simplex of R*

k
{eeRk;9j>o, Zej1}
=1
* D(a) is defined for a; > O and if ag = ) oy, E(0;) = aj/ e

+ The Dirichlet prior contains an equivalent information to » ,.(c; — 1)
observations with a; — 1 observations of category j

e ap = Zj a; determines the concentration of a Dirichlet, that is, how
much the distribution is dense (high «) or sparse (low )
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Posterior

e Posterior

k
p(0|a,y) o« [0V xD(y+a)
j=1

Yt Y% n L%
n+ay 00N ntaoy Qg ntaoyg

« Notice that E(6;|y) =

o There are several plausible noninformative priors:

o uniform prior: a; = 1V}
o improper prior: a; = 03, i.e., uniform on log(6;)
= posterior is proper if there is at least one observation in each
category, so that each component of y is positive.
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Example of simplex

The support {2, is the space of all the probability vectors of k probabilities
that sum to 1.

Because of the constraint on the components of a probability vector, £, is
k — 1 dimensional and is the standard or probability X — 1-simplex.

For k = 3 the support is the triangle with vertices (1, 0, 0), (0,1,0), (0,0, 1)

fT\
(0,0,1)

Example: (13 is a 2-dimensional
equilateral triangle.

(0,1,0)

32 /35



D(«) with different o

3-dimensional Dirichlet distribution on a 2-simplex for different values of a.

(6.85, 0.85, ©.85) (1, 1, 1) (5, 5, 5)

AL A

(1, 2, 3) (2, 5, 10) (50, 50, 50)

A

Properties:

A

Symmetric, flat Dirichlet; concentration parameter Z i Ol
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Multivariate Normal model



Multivariate Normal

BDA3 p. 70-73

 yis a vector of d components
e y|lp, X~Ny(y|p X

» Observational model
~1/2 1 Ty —1
p(y | p2) o B[ exp| =5 (y—p) B (y—n) ),
e Multivariate normal with known variance p. 70-71
e Multivariate normal with unknown mean and variance p. 72-73

The two cases follow the development seen in the univariate context but with
matrix expressions since the distributions are here multivariate
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