
Modes of mass transport in electrochemistry

Mass transport from one region in solution to another, arising from:

• Convection (net transport of a volume element of solution, e.g. stirring 
or hydrodynamics), which can be natural (presence of density gradient in 
solution) or forced (hydrodynamic techniques)

• Migration, which describes the transport of charges in solution under the 
effect of an electrical field (gradient of electrical potential)

• Diffusion, which describes the transport of a species in solution under 
the effect of a gradient of chemical potential ( or concentration) 

• Migration and diffusion arise from gradients of electrochemical potential   μi



Mass transport in solution: the flux (J)

The presence of gradients in solution is the driving force for mass transfer, 
which is described in terms of a flux, J, which operates to alleviate the 
magnitude of the gradients

𝑱𝒋 𝒙 = −𝑫𝒊
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Nernst-Planck Equation (for linear mass transfer)
[mol cm-2 s-1]

Diffusion 
Migration

Convection

Unstirred or stagnant solution 
approximation



The effect of gradients in electrochemical potential

• The flux is proportional to the gradient of electrochemical potential (i = 
charged species)

𝑱𝒊 𝒙 = −𝑫𝒊

𝜕𝐶𝑖 𝑥
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−
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𝑅𝑇
𝐷𝑖𝐶𝑖

𝜕φ 𝑥
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𝑱𝒊 ∝ 𝛁𝝁𝒊 𝛁 =
𝝏

𝝏𝒙
Vector operator (gradient) 

for linear mass transfer

• The flux is equivalent to a current density (i = charged species)

• Large concentration of supporting electrolyte: the effect of migration on 
the electroactive species i can be neglected



Diffusive mass transfer: the Fick’s laws

Fick’s laws: Differential equations describing the flux and the concentration 
gradient of a species as functions of time (t) and position (x)

−𝐽𝑖 𝑥, 𝑡 = 𝑫𝒊

𝜕𝐶𝑖 𝑥, 𝑡

𝜕𝑥
A. Fick (1829 - 1901)

Assumption: linear (1D) diffusion

Fick’s 1st law

Diffusion coefficient Net diffusive mass transport of a 
species i, described as number of 

moles passing through a unit area 
per unit time (mol s-1 cm-2)

Constant term 
[cm2/s]

Concentration gradient 
The flux is proportional to the 

concentration gradient



Diffusive mass transfer: the Fick’s laws

A. Fick (1829 - 1901)
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Diffusive mass transfer: the Fick’s laws

A. Fick (1829 - 1901) 𝑥2 = 2𝑫𝑡

root-mean-square displacement at time t

• The diffusion coefficient D reflects the intrinsic tendency of a 
molecule to diffuse and depends on the molecule size (bigger 
molecules have typically smaller D)

• Molecular species typically have D ≈ 10-6 – 10-5 cm2/s

• Determines how far a species diffuses in a certain time 

• Provides an estimation for the thickness of the diffusion layer

How thick is a diffusion layer? 



𝜕𝐶𝑖 𝑥, 𝑡

𝜕𝑡
= 𝑫𝒊

𝜕2𝐶𝑖 𝑥, 𝑡

𝜕𝑥2

Diffusive mass transfer: the Fick’s laws

A. Fick (1829 - 1901)

Fick’s 2nd law

Gradient of concentration of the species i with time 

Ji (x,t)Ji (x + dx, t)

dx
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𝜕𝑥
from Fick’s 1st law…



𝜕𝐶𝑖 𝑥, 𝑡

𝜕𝑡
= 𝐷𝑖

𝜕2𝐶𝑖 𝑥, 𝑡

𝜕𝑥2

Linear diffusion equation 

𝜕𝐶𝑖

𝜕𝑡
= 𝐷𝑖𝜵𝟐𝐶𝑖

General Fick’s 2nd law for 
any geometry 

Bard & Faulkner, Electrochemical Methods, 2nd Ed, 2001 

Diffusive mass transfer: the Fick’s laws

Laplacian operator



The electrochemical problem

Ox + ne–         Red

−𝑱𝑶𝒙 𝟎, 𝒕 =
𝒊

𝑛𝐹𝐴
= 𝐷𝑂𝑥

𝝏𝑪𝑶𝒙 𝒙, 𝒕

𝝏𝒙
𝒙=𝟎

Purely diffusive electroactive species 

Concentration profile 
at the electrode 

surface 

𝑖

𝐹𝐴
= − ෍

𝑖

𝑛𝑖 ∙ 𝐽𝑖 0, 𝑡 = ෍

𝑖

𝑛𝑖 ∙ 𝐷𝑖

𝜕𝐶𝑖 𝑥, 𝑡

𝜕𝑥
𝑥=0

Electrochemical problem

Solving the mass-transfer 
equations (diffusion)

Relationship describing the  
concentrations of the species as 
functions of the variables x and t

𝐽𝑂𝑥 0, 𝑡 = −𝐽𝑅𝑒𝑑 0, 𝑡



How to solve partial differential equations? 

𝜕𝐶 𝑥, 𝑡

𝜕𝑡
= 𝐷

𝜕2𝐶 𝑥, 𝑡

𝜕𝑥2

Partial differential equation (PDE)

• Concentration of the species are functions of both distance (x) and time (t)

• Ordinary differential equations (ODEs) contain derivatives of functions of a single variable 
only 

• PDEs are often characterized by multiple solutions

• The specific solution of a PDE requires the definition of the boundary conditions for each 
species involved in the redox process

• Different boundary conditions usually lead to different solutions of PDE



The boundary conditions 

1. Initial conditions (concentration profile at t = 0)

𝑪𝑶𝒙 𝒙, 𝟎 = 𝒇(𝒙) 𝐶𝑂𝑥 𝑥, 0 = 𝐶𝑂𝑥
∗ 𝐶𝑅𝑒𝑑 𝑥, 0 = 0Es. 

2. Semi-infinite boundary conditions (approximation related to the volume of the cell 
reactors compared to the size of the diffusion layer)

𝑙𝑖𝑚
𝑥→∞

𝐶𝑂𝑥 𝑥, 𝑡 = 𝐶𝑂𝑥
∗ 𝑙𝑖𝑚

𝑥→∞
𝐶𝑅𝑒𝑑 𝑥, 𝑡 = 0

electrochemical cells are usually (not always!) much bigger than the diffusion layer

𝐶𝑂𝑥 0, 𝑡 = 𝑓(𝐸)

3. Electrode surface boundary conditions (related to the concentrations of the 
species (or their gradients) at the electrode surface, x = 0)

This condition is specific for the particular electrochemical experiment considered

𝐶𝑂𝑥 0, 𝑡

𝐶𝑅𝑒𝑑 0, 𝑡
= 𝑓(𝐸)Potential-controlled 

experiments 



The Laplace transformation 

L 𝑭(𝒕) = ഥ𝑭 𝒔 ≡ 0׬

∞
𝑒−𝑠𝑡𝐹 𝑡 𝑑𝑡

PDE
𝑪 𝒙, 𝒕

ODE
ഥ𝑪 𝒙, 𝒔

ഥ𝑪 𝒙, 𝒔

Equation for the 
concentration expressed as a 

function of x and t

𝑪 𝒙, 𝒕Final solutions Solutions of the 
transformed concentration

Equation for the
transformed concentration

L 𝑪 𝒙, 𝒕

L-1 ഥ𝑪 𝒙, 𝒔

Conventional algebraic manipulation 
(boundary conditions) 

Laplace transformation is a mathematical tool, enabling a conversion of the problem into a 
domain where simpler mathematical manipulation is possible

t domain s domain

t domain s domain



E1

Step-potential experiment

0 t

(–)

E

E2

Eeq

Ox + e–        Red

Bard & Faulkner, 2nd Ed., Wiley, 2001 

Mass-transfer limited current region 
(η << 0)

Constant applied potential E 
(potentiostatic) experiment

Objective: find out expressions describing the 
concentration profile (C(x,t)) of the 

electroactive species and the current vs. time 

Current (i) measured as a 
function of time or E 

…Recall…

E2 << Eeq

η << 0



• Planar electrode

• Unstirred solution 

• Only diffusive mass transport (linear diffusion)

• Initial condition

• Microelectrode (reaction volume is assumed to be so high and the area of the electrode 
so small that the current flowing does not significantly affect the bulk concentration of 
the electroactive species)

• Semi-infinite condition 

𝐶𝑂𝑥 𝑥, 0 = 𝐶𝑂𝑥
∗ for   t = 0

𝑙𝑖𝑚
𝑥→∞

𝐶𝑂𝑥 𝑥, 𝑡 = 𝐶𝑂𝑥
∗

• Surface concentration condition (very large η, diffusion-limited current regardless of the ET 
kinetics)

𝐶𝑂𝑥 0, 𝑡 = 0 for   t > 03rd boundary condition 
(specific step-E experiment)

Step-potential experiment



Solving the differential equation

𝜕𝐶𝑂𝑥 𝑥, 𝑡

𝜕𝑡
= 𝐷𝑂𝑥

𝜕2𝐶𝑂𝑥 𝑥, 𝑡

𝜕𝑥2

L

න
0

∞

𝑒−𝑠𝑡 𝐷𝑂𝑥

𝜕2𝐶𝑂𝑥 𝑥, 𝑡

𝜕𝑥2
𝑑𝑡 = 𝐷𝑂𝑥

𝜕2

𝜕𝑥2
න

0

∞

𝑒−𝑠𝑡𝐶𝑂𝑥 𝑥, 𝑡 𝑑𝑡 =

= 𝐷𝑂𝑥

𝜕2 ҧ𝐶𝑂𝑥 𝑥, 𝒔

𝜕𝑥2

ഥ𝑪𝑶𝒙 𝒙, 𝒔



𝜕𝐶𝑂𝑥 𝑥, 𝑡

𝜕𝑡
= 𝐷𝑂𝑥

𝜕2𝐶𝑂𝑥 𝑥, 𝑡

𝜕𝑥2L

න
0

∞

𝑒−𝑠𝑡
𝜕𝐶𝑂𝑥 𝑥, 𝑡

𝜕𝑡
𝑑𝑡 =  𝑒−𝑠𝑡𝐶𝑂𝑥 𝑥, 𝑡 0

∞ − න
0

∞

𝐶𝑂𝑥 𝑥, 𝑡 −𝑠𝑒−𝑠𝑡 𝑑𝑡

න
𝑎

𝑏

𝑔 𝑥 𝑓′ 𝑥 𝑑𝑥 = 𝑔 𝑥 𝑓(𝑥) 𝑎
𝑏 − න

𝑎

𝑏

𝑓 𝑥 𝑔′ 𝑥 𝑑𝑥

= −𝐶𝑂𝑥 𝑥, 0 + 𝑠 න
0

∞

𝐶𝑂𝑥 𝑥, 𝑡 𝑒−𝑠𝑡 𝑑𝑡

Integration by parts 

ഥ𝑪𝑶𝒙 𝒙, 𝒔𝑪𝑶𝒙
∗

Intial boundary 

condition

Solving the differential equation



−𝐶𝑂𝑥
∗ + 𝑠ഥ𝑪𝑶𝒙 𝒙, 𝒔 = 𝐷𝑂𝑥

𝜕2ഥ𝑪𝑶𝒙 𝒙, 𝒔

𝜕𝑥2

𝜕2ഥ𝑪𝑶𝒙 𝒙, 𝒔

𝜕𝑥2
−

𝑠

𝐷𝑂𝑥

ഥ𝑪𝑶𝒙 𝒙, 𝒔 +
𝐶𝑂𝑥

∗

𝐷𝑂𝑥
= 0

2nd order ordinary 

differential equation (ODE)

ഥ𝑪𝑶𝒙 𝒙, 𝒔 =
𝐶𝑂𝑥

∗

𝑠
+ 𝐴′ 𝑠 𝑒

−
𝑠

𝐷
𝑂𝑥

𝑥
+ 𝐵′ 𝑠 𝑒

𝑠
𝐷

𝑂𝑥
𝑥

General solution 

Constants 

Solving the differential equation

which values???



ഥ𝑪𝑶𝒙 𝒙, 𝒔 =
𝐶𝑂𝑥

∗

𝑠
+ 𝐴′ 𝑠 𝑒

−
𝑠

𝐷𝑂𝑥
𝑥

+ 𝐵′ 𝑠 𝑒

𝑠
𝐷𝑂𝑥

𝑥

𝑙𝑖𝑚
𝑥→∞

𝐶𝑂𝑥 𝑥, 𝑡 = 𝐶𝑂𝑥
∗

Semi-infinite boundary 

condition

𝑙𝑖𝑚
𝑥→∞

ഥ𝑪𝑶𝒙 𝒙, 𝒔 =
𝐶𝑂𝑥

∗

𝑠

B’(s) should be equal to 0

ഥ𝑪𝑶𝒙 𝒙, 𝒔 =
𝐶𝑂𝑥

∗

𝑠
+ 𝐴′ 𝑠 𝑒

−
𝑠

𝐷
𝑂𝑥

𝑥

L

Solving the differential equation

(use Table)



ഥ𝑪𝑶𝒙 𝒙, 𝒔 =
𝐶𝑂𝑥

∗

𝑠
+ 𝐴′ 𝑠 𝑒

−
𝑠

𝐷
𝑂𝑥

𝑥

3rd boundary condition

(surface concentration)

𝐶𝑂𝑥 0, 𝑡 = 0
x = 0
t > 0

for 

0 =
𝐶𝑂𝑥

∗

𝑠
+ 𝐴′(𝑠)𝑒

−
𝑠

𝐷𝑂𝑥
𝑥

x = 0

𝑨′(𝒔)  = −
𝑪𝑶𝒙

∗

𝒔

ഥ𝑪𝑶𝒙 𝟎, 𝒔 = 0

L

ഥ𝑪𝑶𝒙 𝒙, 𝒔 =
𝐶𝑂𝑥

∗

𝑠
−

𝐶𝑂𝑥
∗

𝑠
𝑒

−
𝑠

𝐷𝑂𝑥
𝑥

Solving the differential equation



The concentration profiles

ഥ𝑪𝑶𝒙 𝒙, 𝒔 =
𝐶𝑂𝑥

∗

𝑠
−

𝐶𝑂𝑥
∗

𝑠
𝑒

−
𝑠

𝐷
𝑂𝑥

𝑥
L-1

𝑪𝑶𝒙 𝒙, 𝒕 = 𝐶𝑂𝑥
∗ 1 − 𝒆𝒓𝒇𝒄

𝑥

2 𝐷𝑂𝑥𝑡

𝑪𝑶𝒙 𝒙, 𝒕 = 𝐶𝑂𝑥
∗  𝒆𝒓𝒇

𝑥

2 𝐷𝑂𝑥𝑡

𝒆𝒓𝒇(𝑥) ≡
2

𝜋1/2
න

0

𝑥

𝑒−𝑦2
𝑑𝑦

𝒆𝒓𝒇𝒄 𝑥 ≡ 1 − erf(𝑥)

Error function

𝑬𝒓𝒇(𝒙)  →  𝟏 

Complementary function 

for large x 

Bard & Faulkner, 2nd Ed., 
Wiley, 2001 

(use Table)



The concentration profiles

Bard & Faulkner, 2nd Ed., Wiley, 2001 

𝑪𝑶𝒙 𝒙, 𝒕 = 𝐶𝑂𝑥
∗  𝒆𝒓𝒇

𝑥

2 𝐷𝑂𝑥𝑡

Time after the application 

of the step potential 

Dox = 1x10-5 cm2/s

𝐶𝑂𝑥 𝑥, 0 = 𝐶𝑂𝑥
∗

• Time-dependent concentration 
profiles near the electrode 
surface (as a function of the 
distance)

• Ox depletion at the surface with 
increasing times 

• The slope of each concentration 
profile indicates the Ox 
concentration gradient 
(𝜕𝐶𝑂𝑥 𝑥, 𝑡 /𝜕𝑥) at various t



The concentration profiles

Bard & Faulkner, 2nd Ed., Wiley, 2001 

𝑪𝑶𝒙 𝒙, 𝒕 = 𝐶𝑂𝑥
∗  𝒆𝒓𝒇

𝑥

2 𝐷𝑂𝑥𝑡

Time after the application 

of the step potential 

Dox = 1x10-5 cm2/s

𝐶𝑂𝑥 𝑥, 0 = 𝐶𝑂𝑥
∗

• Profiles asymptotically tend to 
COx* value

• Time-dependent thickness of 
the diffusion layer, which can 

be defined in terms of 𝑫𝑶𝒙𝒕 (≈ 

6 𝐷𝑂𝑥𝑡 )

𝜕𝐶𝑂𝑥 𝑥, 𝑡

𝜕𝑥
= 0 𝐶𝑂𝑥 𝑥, 𝑡 = 𝐶𝑂𝑥

∗



The Cottrell Equation

−𝑱𝑶𝒙 𝟎, 𝒕 =
𝒊

𝑛𝐹𝐴
= 𝐷𝑂𝑥

𝝏𝑪𝑶𝒙 𝒙, 𝒕

𝝏𝒙
𝒙=𝟎

ഥ𝑪𝑶𝒙 𝒙, 𝒔 =
𝐶𝑂𝑥

∗

𝑠
−

𝐶𝑂𝑥
∗

𝑠
𝑒

−
𝑠

𝐷
𝑂𝑥

𝑥

L

ҧ𝒊(𝒔)

𝑛𝐹𝐴
= 𝐷𝑂𝑥

𝝏ഥ𝑪𝑶𝒙 𝒙, 𝒔

𝝏𝒙
𝒙=𝟎

= 𝐷𝑂𝑥 −
𝐶𝑂𝑥

∗

𝑠
−

𝑠1/2

𝐷𝑂𝑥
1/2

𝑒
−

𝑠
𝐷

𝑂𝑥

𝑥

𝑥=0

= 𝐷𝑂𝑥

𝐶𝑂𝑥
∗

𝑠1/2𝐷𝑂𝑥
1/2

ҧ𝒊(𝒔) =
𝑛𝐹𝐴𝐷𝑂𝑥

1/2
𝐶𝑂𝑥

∗

𝒔𝟏/𝟐

L-1

𝒊(𝒕) =
𝑛𝐹𝐴𝐷𝑂𝑥

1/2
𝐶𝑂𝑥

∗

𝜋1/2𝒕𝟏/𝟐

Cottrell Equation



The Cottrell Equation

𝒊(𝒕) =
𝑛𝐹𝐴𝐷𝑂𝑥

1/2
𝐶𝑂𝑥

∗

𝜋1/2𝒕𝟏/𝟐

t

i 

• Effect of depletion of Ox near the surface 

• Faradaic current inversely proportional to 
t1/2 (i decrease with time)

• The linear dependence of i vs. 1/t1/2 is 
diagnostic test for diffusion-controlled 
electrochemical process

• Cottrell behaviour not observed at very 
short times due to capacitive or non-
faradaic current (“charging” current),

𝒊𝑪 ∝ 𝟏/𝐞𝐱𝐩(𝒕)

F. G. Cottrell 
(1877 - 1948)



Chronoamperometry 

E1

0 t

(–)

E

E2

Eeq

x

COx

0

t1

t=0

t2 t3

Cox*

t

i 

0

𝒊(𝒕) =
𝑛𝐹𝐴𝐷𝑂𝑥

1/2
𝐶𝑂𝑥

∗

𝜋1/2𝒕𝟏/𝟐
Diffusion-limited current at E2

Current recorded as a 

function of time

0 t

(–)

E

t

i 
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