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Sample Size [basics] II

• Effect size approach for Sample Size

• Difference between means

• Difference between proportions 

• SS for the estimate of OR/RR

• Concluding remarks
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Two strategies for sample size

Precision (confidence intervals) Power of the statistical test

(effect size) 

True state of H0

(Unknown)

H0 true H0 false

Decision

(sample 

data)

Reject H0 Type I 

error*

ok

Do Not

reject H0

ok Type II 

error**
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Aim of the study

Prevalence/Incidence (p) 

Mean estimate(m) 

Odds ratio (OR)

Prediction/Explanatory

multivariable model 

Relative Risk (RR)

Sample size calculations depend on the primary

objective of the study design: 

Hypothesis testing

(RCTs usually)

In this context (sample size) we will

consider OR/RR as «effect size» 

(ingredient of the formula !!)  
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Checklist

- Type (scale of measure) of primary outcome 

- Size of the effect of interest

- Guess-estimate of the variability of the outcome

- Maximum number of patients available (if any) "eligible" or "compliant"

- Time needed to complete the study

Calculation of the sample size based on the effect 

size is a SET of calculations ... possibly presented in the 

form of a table or graph:

Example of sample size calculation

to compare two proportions

How many dropouts are expected?

(adjust in the calculation for this issue)
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Parameters required in input

• Alpha (a) significance level:

probability of concluding that there is a significant effect when there is not (5%)

• Power (1-b) :

probability of not missing a significant effect, when there is (80%)

• Difference / clinical effect / effect size: the difference / effect believed to be 

relevant ...

Effect size:
[if not available from previous studies / literature a pilot study can be carried out to determine it]

Sullivan GM, Feinn R, “Using Effect Size - or Why the P Value Is Not Enough”, J Grad Med Educ. 2012



mm 21 −
=ES
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What is the effect size?

Amplitude of the

difference between groups

(a) Absolute difference:

ES= 𝜇1 − 𝜇2

(b) Standardized difference: 



mm 21 −
=ES

(a) parameters have a clear numerical meaning: average systolic pressure, number of hospitalization events ...

(b) parameters do not have a direct numerical interpretation: 

scores on a scale; measurements on different scales [or they show significant variability]
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Why report an effect size measurement?

Statistical significance (p value) states that an effect probably exists but says 

nothing about its size; the substantial significance (effect size) must be 

reported as the main result of the study.

An estimate of the effect size must be made before the start of the study to 

determine the minimum sample size required, assuming as constant the 

probabilities of making mistakes in the hypothesis tests ...

Again: why isn't p value enough??
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Statistical significance (p value) corresponds to the probability that the 

difference between the groups is due to chance

If p value  > 5%, it is decided that the observed difference is explained by

random variability of the sample study, but does not reflect a true difference

Problem: in sufficiently large samples the statistical test will always produce a 

p value < 5% ... even for irrelevant observed differences (= negligible 

effect size)..

Similarly, in small sample studies, the p value > 5% also for relevant differences….
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In sufficiently large samples the 

statistical test will always 

produce a p value < 5% ... 

even for irrelevant observed 

differences (= negligible effect 

size)..

Similarly, in small sample 
studies, the p value > 5% also 

for relevant differences….
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(a) significant and clinically relevant 

(b) significant but it is unclear whether 

it is clinically relevant

(c) significant but not clinically relevant

(d) not significant but can be clinically 

relevant

(e) not significant and is not clinically 

relevant

The goal when planning a study should 

be to "guarantee" that if a clinically 

relevant difference exists, then we will 

be able to identify it through the 

statistical test (-> sample size).
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How do we define and calculate the effect size?

1. Differences/Ratios between groups: based on the outcome 

measurement scale (numeric / binary)
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2. Associations [continuous variables]: correlation/linear regression*
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metabolic rate 

explained

by body weight

How do we define and calculate the effect size?

0 ≤ 𝑟 ≤ 0.25 𝒍𝒐𝒘 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

0.25 < 𝑟 ≤ 0.50 𝒎𝒆𝒅𝒊𝒖𝒎 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

0.50 < 𝑟 ≤ 0.75 𝒈𝒐𝒐𝒅 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

𝑟 > 0.75 𝒗𝒆𝒓𝒚 𝒈𝒐𝒐𝒅 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

(linear correlation)
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Again (!) basic ingredients to determine the sample size:

• Alpha (a) significance level, probability of concluding that there is a 

significant effect when there is not (5%)

• Power (1-b), probability of not "missing" a significant effect, when there is 

(80%)

• Difference/clinical effect/effect size: effect believed to be relevant

Threshold for b (= 20%) was proposed by Cohen, who stated that 

since a first type error (false positive) was more relevant* than a 

second type one (false negative) it could be tolerated that it 

happened with a 4 times greater probability 

1923-1998

*It depends on the context !!



Block 2.4

Hypothesis test*: basic concepts

• There is a hypothesis on a certain phenomenon in the population to be 

tested (null hypothesis vs alternative hypothesis)

• We collect data relevant to the problem (sample data)

• The pieces of information are combined to obtain a measure of evidence in 

favor of against the null hypothesis

• It is decided whether there is enough evidence from the data to accept or 

reject the null hypothesis

And now a quick reminder… 

*frequentist point of view
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Hypothesis test: an analogy attempt

A person is accused of a crime: he/she is arrested and brought in a court

Null hypothesis: Presumption of innocence 
Alternative hypothesis: the suspect is guilty

Information (evidence = data) is collected on the matter

The judge evaluates the evidence collected

The judge decides whether to blame the suspect or not

The basic principle:

Not enough evidence -> Not guilty verdict (in dubio pro reo)

Unfortunately: it can happen that an innocent goes 

to jail,

just as a guilty is left free ...
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Type I and II errors

Sample study Probability of errors

True state of H0

(Unknown)

H0 true H0 false

Decision

(sample 
data)

Reject H0 Type I 

error*

ok

Do Not

reject H0

ok Type II 

error**

*Type I error:

Reject H0 when it is 

actually true

(innocent in jail)

A probability is 

associated with this 

error: level of 

significance a is 

under control, 

because the test is 

designed in such a 

way that a is not 

larger than a pre-

specified threshold.

**Type II error:

Do not reject H0 when 

it is actually false

(free guilty)

A probability b is 

associated with this 

error: 

1-b = Test power

b is not usually under 

control, because the 

distribution of the test 

statistics is known only

under the null 

hypothesis ...
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a/2
a/21−a

accept H0

Reject H0

Reject H0

Perform a statistical test (general strategy) 

• Null Hypothesis H0 versus Alternative hypothesis H1 (mutually exclusive)

• The study is designed with the RV (= Random Variables) relevant to the problem: X1, X2, ... 

• [A plausible model (data generating mechanism) is/could be assumed for RV]

• A test statistic T (x1, x2, ...) = t is calculated on the random sample; the probability distribution of T is 

known if H0 holds (and differs from what it would have under H1): 

the p-value is obtained

• H0 is rejected if p value is too unlikely (if H0 were true): 

if and only if p <= a

p-value: probability under H0 that the RV T has the value t

observed on the sample data or a more "extreme" value
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Under H0 H1 | ES 

Type II errorType I Error

True state of H0

(Unknown)

H0 true H0 false

Decision

(sample 

data)

Reject H0 Type I 

error*

ok

Do Not

reject H0

ok Type II 

error**

Defining the minimal clinically

relevant difference (effect

size) helps in determining the 

sample size required to control 

the type II error

0
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• The calculation of test statistic and p-value is usually done by the statistical software

• The value of p quantifies the plausibility of the null hypothesis: the smaller it is, the less plausible (likely) H0 appears…

• Unless an effect size is fixed it is not possible to define the probability distribution of the test statistic under H1 

Under H0 Under H1

Type II errorType I error
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Conclusions & Consequences

Suppose that a is small, typically a ≤ 0.05 and that you have not fixed a priori an effect size 

• If H0 is rejected : this decision is considered reliable. Type I probability of error a is always

fixed a priori ("test result is statistically significant")

• If H0 is not rejected, it is concluded that the data do not offer sufficient evidence to reject

the null; but because b has been not fixed a priori could be large…

H0 may not be rejected because the sample size is too small …

“absence of evidence is not evidence of absence”
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Test Power: the hidden ingredient

For a fixed a, and for a (typically not known and not modifiable)  (variability of the

outcome) the power of the test answers these questions:

• Given a sample size N and a "difference" (ES) between treatments D, what is the power 
(1-b) to identify this difference, i.e. to conclude in favor of H1?

• Given a certain power (1-b) and a "difference" (ES) D, what sample size N is needed to 

identify the difference (i.e. support H1)?

• Given a certain sample size N and a power (1-b), what is the minimum difference D (ES) 

that can be identified with a 1-b probability?

To calculate power it is necessary to have an estimate 
of  and of the difference D (ES) under study

Power = P(reject H0 | true effect ≥ Effect Size)
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Power of a test 

t-test for two samples: 
H0: m1=m2 vs H1: m1≠m2

with 1=2=

Power of the test is function of:

D=m1-m2(/) (ES), ,n, a

Power= 1- b(D,,n,a) 
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Example (given the sample size):

Gold Standard vs New treatment: outcome is numerical (continous) with means m1 e m2 and 

standard deviations 1=2=

New treatment vs Gold standard are considered clinically different if the mean difference is

at least:

D=|m1−m2| >=0.3 units

We have n1=n2=50 patients eligible for each study arm

Significance level a=5% ; previous studies give an estimate of  ≤ 0.9 units

what is the power of the test?

Power of a test 
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Given n=50 and |D|=0.3 (with =0.9 and a=5%)  what is the power?

Example*

Power: 38% [Type II error = 62%] 

With this sample size

the study has a very

low power to detect

the hypothesized

difference

n <- 50

m <- 50 

sigma <- 0.9

delta <- 0.3

power <- 1 - pt(C, n+m-2, ncp=delta/se)

C= quantile of a noncentral

t distribution

C  <- qt(0.975, n + m - 2)

se <- sigma * sqrt( 1/n + 1/m )
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Assuming: 1-b=80% and n=50 (=0.9 and a=5%) what is the smallest difference D identifiable?

The minimum identifiable 

difference is 0.51 units

given the sample size 

available and the measure 

of variability of the 

outcome Delta <- (zb+za)*sigma*sqrt(2/n)

n <- 50

m <- 50 

sigma <- 0.9

zb <- qt(0.80, n + m - 2)

za <- qt(0.975, n + m - 2)
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Assuming: 1-b=80% and |D|=0.3 (=0.9 and a=5%) what is the 'smallest' sample size required ?

The minimum

sample size 

required is 141

patients in 

each group…  

Basic formula* assuming the normal approximation:  

zb <- qnorm(0.80)

za <- qnorm(0.975)

Delta <- 0.3 

Sigma <- 0.9

n <- ((2*Sigma**2)*(za+zb)**2)/(Delta)**2

𝑛 =
2 ∗ 𝑧𝛼

2
+ 𝑧𝛽

2 ∗ 𝜎2

𝜇1 − 𝜇2
2

*two-tailed test
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2.5% 2.5%
1.96-1.96

-1.645

5%

5%
1.645

One tail or two tails ??*
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
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* If the sampling distribution of the test statistic is symmetrical

Suppose we compare two drugs A 

and B.

If it is believed that drug A could be 

only  better than drug B, the one-

tailed test will be performed. 

Note that there is a risk of 

accepting the null hypothesis of 

equality even if A is worse than B.

Only if this probability is considered 

negligible, the one-tailed test could

be used.
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One tail test [with a specific effect size]  

𝜀 = 𝜇2 − 𝜇1

𝐻0: 𝜀 ≤ 𝛿

𝐻1: 𝜀 > 𝛿

What change in the one-tail test is only the constant of the gaussian

distribution that fix the rejection threshold: for a 5% type I error instead of using

1.96, we will use 1.64. 

𝛿

0

(a) significant and clinically relevant 

(b) Not significant but it is 
unclear whether it is clinically 
relevant

(c) not significant 
and not clinically 
relevant

This zone < 0 is «impossible…»

We fix the sample size 

to try to avoid b !
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For a well planned and conducted RCT, Type I and Type II errors rank higher as possible explanations for 

a finding of “no statistically significant difference” because randomization has overcome the potential 

confounding, the protocol has reduced measurement error, etc…

The idea of statistical power (especially for RCT) is quite simple. 

1. We are going to do a study where we will evaluate the evidence using a significance test. 

2. We decide what the outcome variable is going to be and what the comparison is going to be. 

outcome=systolic blood pressure ; comparison would be between mean blood pressure in 2 groups. 

3. We then decide what the test of significance would be (ex: two sample t test comparing mean systolic 
pressure).

4. We decide how big a difference we want the study to detect - that is, how big a difference would be worth 
knowing about. For a two sample t test of mean systolic pressure, this could be the difference in mean pressure 

that would lead us to adopt the new treatment. 

5. We then identify a sample size so that if this difference were the actual difference in the population, a large 

proportion of possible samples would produce a statistically significant difference. 

This proportion is the power.
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Sample size for the estimate of the strength of an association measure

Effect size approach 

corresponds here to the 

strength of the association 

that we expect (odds ratio or

relative risk).

- incidence of event in the group of the unexposed

- not exposed / exposed ratio

- prevalence of exposure in the control group

- case-control ratio

RR:

OR:

Additional ingredients:

D Not D

E a b a+b

Not E c d c+d

a+c b+d n=a+b+c+d
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Sample size for hypothesis testing of the odds ratio 

When testing an hypothesis about the OR, the most common H0 is that of no effect is due to the 

exposure variable.  

Under H0 : OR=1 and the % of exposed among cases is equal to the % of exposed among the controls

Thus, H0 is equivalent to that of equality of the two proportions

For a specified H1, (OR is some number ≠ 1, effect size):  

𝑃1 = 𝑃 𝐸 𝐷

𝑃2 = 𝑃 𝐸 ഥ𝐷
Where: 𝑃1 =

𝑂𝑅 ∗ 𝑃2

𝑂𝑅 ∗ 𝑃2 + 1 − 𝑃2

𝑃2 is known: exposure rate among the controls

[Remind: the outcome of the analysis is exposure rather than disease, but symmetry of the roles!!]

Ingredients: 

• OR

• 𝑃2
• Ratio Cases/Controls

• Power

• Alpha
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D Not D

E a b a+b

Not E c d c+d

a+c b+d n=a+b+c+d

Sample size for hypothesis testing of the relative risk

𝑅𝑅 =
𝑃 𝐷 𝐸

𝑃 𝐷 ത𝐸

Under H0 : RR=1 and the % of disease among exposed is equal to the % of disease among the unexposed.

Thus, H0 is equivalent to that of equality of two proportions

For a specified H1, (RR is some number ≠ 1, effect size):  

𝑃1 = 𝑃 𝐷 𝐸

𝑃2 = 𝑃 𝐷 ത𝐸

𝑃1 = 𝑅𝑅 ∗ 𝑃2

𝑃2 is known: disease rate among the unexposed

Ingredients: 

• RR

• 𝑃2
• Ratio Exposed/Unexposed

• Power

• Alpha
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In most situations, a case-control study requires a much smaller sample size than does a cohort study or 

exposure-based study for the same problem. 

Consider, for example, a case-control study for the smoking and CHD problem:

A sample of men with newly diagnosed CHD will be compared for smoking status (smoker/non smoker) with a sample 

of controls. Assuming an equal number of cases and controls, how many are needed to detect an odds ratio of 2 with 
90% power using a two-sided 5% test? Government surveys have estimated that 30% of the male population are 

smokers. A total of 376 men need to be sampled: 188 cases and 188 controls.

To be able to calculate an equivalent value for SS in a cohort study, we need an estimate of the chance 

of a coronary event (morbid or mortal) amongst non smokers: 

Let us suppose that the cohort study is to last 10 years, and for this period 𝑃2 is estimated from a previous 

study to be 0.09. Note that here for simplicity we are treating incidence as cumulative (i.e. a proportion). 

602 subjects need to be enrolled in a cohort study. 

𝑃2 = 𝑃 𝐷 ത𝐸
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In Table are compared SS for the two study designs over a range of values for the relative risk (or at least 

its approximate value that could be derived from a case–control study). 

This illustrates the great advantage, in terms of sample size requirements, of a case-control study when 

the relative risk to be detected is small. Of note: coronary disease is not as rare as many diseases that are 

the subject of case–control studies (there are even greater savings with very rare diseases).
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Case-Control ratio (or 

Exposed/Not exposed):  

it is rarely necessary to 

include more than 3 or 

4 controls (or not 

exposed) compared to 

the cases (or exposed).
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We reported various examples that give approximate sample size in the most straightforward situations that 

arise in clinical/epidemiological research.

One of the common requirement is to specify the effect size that we want to be able to detect with some 

high probability. 

This requires careful thought. Often the researcher will begin by being overoptimistic, specifying an effect 

size so small that it requires an enormous sample to have a good chance of detecting it. 

Usually the value ultimately decided upon is some compromise between various objectives, including 

conserving resources. 

The ultimate decision may only be obtained after a few trial calculations. In this context, the ‘inverse’ 

formulae for power and minimum detectable effect size may well be useful. 

It is quite possible that the value for SS needed to be able to detect the effect size that we would really like 

to find with high probability is beyond our resources. This problem has no easy solution: we must find more 

resources or accept reduced power.
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Throughout, we have assumed that sample size may be determined by considering only one variable of 

interest (exposure/risk factor). 

Frequently, the study will include several variables; for instance, we might be planning a lifestyle survey 

that will measure height, weight, blood pressure, cholesterol, daily cigarette consumption and several 

other things.

We might well find that the optimal value of SS for analysing height, say, is considerably different from that 

for analysing cholesterol.

Similarly, there could be several end-points of interest.

If there are multiple outcomes, ideally the value for SS might be calculated for each criterion.

The maximum of all these gives the value for SS(tot) that satisfies all requirements. 

This will often be far more than is needed for some of the criteria and hence may be considered too 

wasteful. 

An alternative approach is to pick the most important criterion (primary outcome) and use this alone. 
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A limitation with the examples provided is that they make no allowance for confounding variables. 

That is, they consider only unadjusted/univariable comparisons.

In general, the issue of allowing for confounding in sample size estimation is very complex. 

We will discuss in Block 3 more specific approaches for SS estimation when the objective is the estimation of 

a multivariable regression model. 

We should remember that the equations for sample size are based upon probabilities (through the 

power) and assumptions. 

There can be no absolute guarantee that the important difference will be detected, when it does exist, 

even with a very high power specification.

All we can say is that we will run very little risk of missing it when we specify a high value for the power. The 

higher the power is, the lower is the risk (if the assumption hold). 

Sample size evaluation is not an exact science, even when some so-called exact methods are used,

because assumptions made may be violated by the data collected. 

We can regard the sample size computed only as a reasonable guide. 
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To end with a little fun: 

https://www.youtube.com/watch?v=PbODigCZqL8

https://www.youtube.com/watch?v=PbODigCZqL8

