Vitamin B₁₂ A human body contains ca. 1 mg of Co; daily uptake 1 – 5 μg 5'-deoxyadenosylcobalamin 7 amidic lateral chains,9 chiral centers methylcobalamin (MeCbl or MeB₁₂) CN: cyanocobalamin (vitamin B₁₂) OH: hydroxycobalamin H₂O: aquacobalamin R: 5'-deoxyadenosylcobalamin (coenzyme B₁₂, AdoCbl or AdoB₁₂) R = 5'-deoxyadenosyl Distortion in the cobalamin #### Co is always low spin Co(III) d⁶ C. N. = 6 Co(II) d⁷ C. N. = 5 #### super-nucleophyle Co(I) d⁸ B # Reactions catalyzed by B₁₂ coenzyme | Enzyme | R ₁ | R ₂ | R ₃ | |--------------|--------------------|--------------------------|----------------| | Diol | CH ₃ | OH | ОН | | dehydratase | | | | | Ethanolamine | Н | NH ₂ | ОН | | deaminase | | | | | Glutamate | Н | CH(NH ₂)COOH | COOH | | mutase | | | | | Glycerol | CH ₂ OH | ОН | ОН | | dehydratase | _ | | | #### MethylMalonyl-Coenzyme A-Mutase (in mammals succinyl-CoA participates in the tricarboxylic acids cycle) d⁷, low spin The cleavage of the Co–C is 10¹² times faster in the full enzyme compared to the B_{12} coenzyme Active site and metal cofactors in different classes of Ribonucleotide reductases ### Methylcobalamin: cofactor in Methionine Syntase S-adenosyl-L-methionine Methyl is transfered as CH₃+ ### The four domains of Methyonine Syntase # Methylcobalamin in Cap-Cob: base-off/His-on # Conformational changes in methyonine syntase # Conformational changes in the Cap sub-domain The 3 proteins for the uptake and transport of Cobalamin # X-ray structure of TC+Cobalamin (2006) Coordination base-on/His-on (on β) # X-ray structure of IF-Cobalamin (2007) # Comparison between the structures of TC-Cbl (a) and IF-Cbl (b) # Adduct of IF-Cbl with CUB₅₋₈ receptors of cubilin