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Global variables

’’Info transfer” between the calling program and the
subroutine/function:

Formal arguments (as previously seen)
Global variables

Sharing variables through the module
Access to the variables declared into a module: use
name_module

”Use” must be inserted before any variable declaration or
”implicit”
Example module.f90
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Module

A module can contain subroutines and/or functions

No need to pass global variables as arguments
Explicit (i.e., procedures in a module) versus implicit interface
(i.e., procedures not in a module)
Example module2.f90
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Make utility

Complex programs have several source files:

Modify one or few files
Only the last modified files should be recompiled
Make utility automatically recognizes files to be recompiled
Make knows dependencies between files

Mandatory Makefile file:
Describing connections between files
Commands to execute to update files

Type ”make” in the directory containing source files and
Makefile
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Make utility

Makefile:
TARGET ... : DEPENDENCIES ...

COMMAND
...
...

TARGET: exe or object name, action (e.g., clean)
DEPENDENCIES: inputs to generate TARGET
COMMAND: command(s) to be applied to DEPENDENCIES
Example make.f90
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