
PROGRAMMING FOR COMPUTATIONAL
CHEMISTRY

Global variables & make

Emanuele Coccia

Dipartimento di Scienze Chimiche e Farmaceutiche

E. Coccia (DSCF) 1 / 5



Global variables

’’Info transfer” between the calling program and the
subroutine/function:

Formal arguments (as previously seen)
Global variables

Sharing variables through the module
Access to the variables declared into a module: use
name_module

”Use” must be inserted before any variable declaration or
”implicit”
Example module.f90

E. Coccia (DSCF) 2 / 5



Global variables

’’Info transfer” between the calling program and the
subroutine/function:

Formal arguments (as previously seen)

Global variables

Sharing variables through the module
Access to the variables declared into a module: use
name_module

”Use” must be inserted before any variable declaration or
”implicit”
Example module.f90

E. Coccia (DSCF) 2 / 5



Global variables

’’Info transfer” between the calling program and the
subroutine/function:

Formal arguments (as previously seen)
Global variables

Sharing variables through the module
Access to the variables declared into a module: use
name_module

”Use” must be inserted before any variable declaration or
”implicit”
Example module.f90

E. Coccia (DSCF) 2 / 5



Global variables

’’Info transfer” between the calling program and the
subroutine/function:

Formal arguments (as previously seen)
Global variables

Sharing variables through the module

Access to the variables declared into a module: use
name_module

”Use” must be inserted before any variable declaration or
”implicit”
Example module.f90

E. Coccia (DSCF) 2 / 5



Global variables

’’Info transfer” between the calling program and the
subroutine/function:

Formal arguments (as previously seen)
Global variables

Sharing variables through the module
Access to the variables declared into a module: use
name_module

”Use” must be inserted before any variable declaration or
”implicit”
Example module.f90

E. Coccia (DSCF) 2 / 5



Global variables

’’Info transfer” between the calling program and the
subroutine/function:

Formal arguments (as previously seen)
Global variables

Sharing variables through the module
Access to the variables declared into a module: use
name_module

”Use” must be inserted before any variable declaration or
”implicit”

Example module.f90

E. Coccia (DSCF) 2 / 5



Global variables

’’Info transfer” between the calling program and the
subroutine/function:

Formal arguments (as previously seen)
Global variables

Sharing variables through the module
Access to the variables declared into a module: use
name_module

”Use” must be inserted before any variable declaration or
”implicit”
Example module.f90

E. Coccia (DSCF) 2 / 5



Module

A module can contain subroutines and/or functions

No need to pass global variables as arguments
Explicit (i.e., procedures in a module) versus implicit interface
(i.e., procedures not in a module)
Example module2.f90

E. Coccia (DSCF) 3 / 5



Module

A module can contain subroutines and/or functions
No need to pass global variables as arguments

Explicit (i.e., procedures in a module) versus implicit interface
(i.e., procedures not in a module)
Example module2.f90

E. Coccia (DSCF) 3 / 5



Module

A module can contain subroutines and/or functions
No need to pass global variables as arguments
Explicit (i.e., procedures in a module) versus implicit interface
(i.e., procedures not in a module)

Example module2.f90

E. Coccia (DSCF) 3 / 5



Module

A module can contain subroutines and/or functions
No need to pass global variables as arguments
Explicit (i.e., procedures in a module) versus implicit interface
(i.e., procedures not in a module)
Example module2.f90

E. Coccia (DSCF) 3 / 5



Make utility

Complex programs have several source files:

Modify one or few files
Only the last modified files should be recompiled
Make utility automatically recognizes files to be recompiled
Make knows dependencies between files

Mandatory Makefile file:
Describing connections between files
Commands to execute to update files

Type ”make” in the directory containing source files and
Makefile

E. Coccia (DSCF) 4 / 5



Make utility

Complex programs have several source files:
Modify one or few files

Only the last modified files should be recompiled
Make utility automatically recognizes files to be recompiled
Make knows dependencies between files

Mandatory Makefile file:
Describing connections between files
Commands to execute to update files

Type ”make” in the directory containing source files and
Makefile

E. Coccia (DSCF) 4 / 5



Make utility

Complex programs have several source files:
Modify one or few files
Only the last modified files should be recompiled

Make utility automatically recognizes files to be recompiled
Make knows dependencies between files

Mandatory Makefile file:
Describing connections between files
Commands to execute to update files

Type ”make” in the directory containing source files and
Makefile

E. Coccia (DSCF) 4 / 5



Make utility

Complex programs have several source files:
Modify one or few files
Only the last modified files should be recompiled
Make utility automatically recognizes files to be recompiled

Make knows dependencies between files
Mandatory Makefile file:

Describing connections between files
Commands to execute to update files

Type ”make” in the directory containing source files and
Makefile

E. Coccia (DSCF) 4 / 5



Make utility

Complex programs have several source files:
Modify one or few files
Only the last modified files should be recompiled
Make utility automatically recognizes files to be recompiled
Make knows dependencies between files

Mandatory Makefile file:
Describing connections between files
Commands to execute to update files

Type ”make” in the directory containing source files and
Makefile

E. Coccia (DSCF) 4 / 5



Make utility

Complex programs have several source files:
Modify one or few files
Only the last modified files should be recompiled
Make utility automatically recognizes files to be recompiled
Make knows dependencies between files

Mandatory Makefile file:

Describing connections between files
Commands to execute to update files

Type ”make” in the directory containing source files and
Makefile

E. Coccia (DSCF) 4 / 5



Make utility

Complex programs have several source files:
Modify one or few files
Only the last modified files should be recompiled
Make utility automatically recognizes files to be recompiled
Make knows dependencies between files

Mandatory Makefile file:
Describing connections between files

Commands to execute to update files

Type ”make” in the directory containing source files and
Makefile

E. Coccia (DSCF) 4 / 5



Make utility

Complex programs have several source files:
Modify one or few files
Only the last modified files should be recompiled
Make utility automatically recognizes files to be recompiled
Make knows dependencies between files

Mandatory Makefile file:
Describing connections between files
Commands to execute to update files

Type ”make” in the directory containing source files and
Makefile

E. Coccia (DSCF) 4 / 5



Make utility

Complex programs have several source files:
Modify one or few files
Only the last modified files should be recompiled
Make utility automatically recognizes files to be recompiled
Make knows dependencies between files

Mandatory Makefile file:
Describing connections between files
Commands to execute to update files

Type ”make” in the directory containing source files and
Makefile

E. Coccia (DSCF) 4 / 5



Make utility

Makefile:
TARGET ... : DEPENDENCIES ...

COMMAND
...
...

TARGET: exe or object name, action (e.g., clean)
DEPENDENCIES: inputs to generate TARGET
COMMAND: command(s) to be applied to DEPENDENCIES
Example make.f90

E. Coccia (DSCF) 5 / 5



Make utility

Makefile:
TARGET ... : DEPENDENCIES ...

COMMAND
...
...

TARGET: exe or object name, action (e.g., clean)

DEPENDENCIES: inputs to generate TARGET
COMMAND: command(s) to be applied to DEPENDENCIES
Example make.f90

E. Coccia (DSCF) 5 / 5



Make utility

Makefile:
TARGET ... : DEPENDENCIES ...

COMMAND
...
...

TARGET: exe or object name, action (e.g., clean)
DEPENDENCIES: inputs to generate TARGET

COMMAND: command(s) to be applied to DEPENDENCIES
Example make.f90

E. Coccia (DSCF) 5 / 5



Make utility

Makefile:
TARGET ... : DEPENDENCIES ...

COMMAND
...
...

TARGET: exe or object name, action (e.g., clean)
DEPENDENCIES: inputs to generate TARGET
COMMAND: command(s) to be applied to DEPENDENCIES

Example make.f90

E. Coccia (DSCF) 5 / 5



Make utility

Makefile:
TARGET ... : DEPENDENCIES ...

COMMAND
...
...

TARGET: exe or object name, action (e.g., clean)
DEPENDENCIES: inputs to generate TARGET
COMMAND: command(s) to be applied to DEPENDENCIES
Example make.f90

E. Coccia (DSCF) 5 / 5


