Geometria 3 - Curve e superfici 2024/2025 Foglio di esercizi 6

Prof. Valentina Beorchia

15 aprile 2025

- 1. Si verifichi che la definizione di applicazione differenziabile tra superfici regolari non dipende dalla scelta delle parametrizzazioni locali.
- 2. Si consideri la sfera unitaria $\mathbb{S}^2\subset\mathbb{R}^3$ e l'elissoide $E=\{(x,y,z)\mid \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\}$. Si verfichi che l'applicazione $\Phi:\mathbb{S}^2\to E$ data da $\Phi(x,y,z)=(ax,by,cz)$ verifica

$$\Phi(\mathbb{S}^2) = E.$$

3. Sia $\alpha:I\to\mathbb{R}^3$ una curva parametrizzata regolare, e supponiamo che la curvatura di α non si annulli mai: k(t)>0, per ogni $t\in I$. Poniamo

$$\varphi: I \times \mathbb{R}^* \to \mathbb{R}^3, \quad \varphi(t,s) = \alpha(t) + s\alpha'(t),$$

dove $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$.

Si dimostri che $\varphi(I \times \mathbb{R}^*) \subset \mathbb{R}^3$ è una superficie, detta *sviluppabile delle tangenti*, che verifica le condizioni 1 e 3 della definizione di superficie regolare.

Si verifichi, inoltre, che i piani tangenti alla superficie lungo le curve $\varphi(\cos t, s)$ sono costanti.

- 4. Sia $F:\mathbb{R}^3\to\mathbb{R}$ una funzione di classe \mathcal{C}^∞ . Sia $S\subset\mathbb{R}^3$ una superficie regolare e sia $p\in S$.
 - (a) Sia $\nabla_S F(p)$ la proiezione ortogonale del vettore gradiente $\nabla F(p)$ sul piano tangente vettoriale T_pS .

Si dimostri che se $\alpha:I\to S$ è una curva tale che $\alpha(I)\subset S$ e $\alpha(t_0)=p$, allora vale

$$(\nabla_S F(p)) \cdot \alpha'(t_0) = \frac{d}{dt} F(\alpha(t)).$$

Se ne deduca che se la restrizione $F_{|S|}$ ad S ha un minimo locale o un massino locale in p, allora $\nabla_S F(p) = (0,0,0)$.

(b) Supponiamo che S ammetta un'equazione implicita g(x,y,z)=0. Si dimostri che se la restrizione $F_{|S|}$ ad S ha un minimo locale o un massino locale in $p\in S$, allora

$$\nabla F(p) = \lambda \nabla g(p)$$

per un opportuno scalare λ (detto *moltiplicatore di Lagrange*).