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A motivating example
Problem

Consider two bivariate data sets

(xi1, xi2); (yi1, yi2), i ∈ {1, . . . , n}

Each consists of n = 1000 independent observations (that is, a realization
of independent copies) of a bivariate random vector (X1,X2)
(respectively, (Y1,Y2)).

::::

Comparing the two data sets in terms of dependence means comparing
the way X1 and X2 are related with the way Y1 and Y2 are related.
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A motivating example
Scatter plots
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For which data is the dependence between the two variables larger?
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A motivating example
Data transformation

(X1,X2) → (U1,U2) ∈ [0, 1]2
(Y1,Y2) → (U ′1,U ′2) ∈ [0, 1]2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

U1

U
2

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

U1'

U
2'

The new observations give us insight in the actual dependence structure
(copula) underlying our data sets x and y.
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A motivating example
Rank transformation

Consider the bivariate sample (xi1, xi2), i = 1, . . . , n, from (X1,X2)

Let F̂n,j denote the (rescaled) empirical cumulative distribution
function of the j-th margin (j = 1, 2)

F̂n,j(x) =
1

n + 1

n∑
i=1

1{Xij≤x}, x ∈ R

A new sample (ui1, ui2), taking values in [0, 1]2 is obtained from (xi1, xi2)
as

uij = F̂n,j(xij) =
Rij

n + 1 , i = 1, . . . , n

for j = 1, 2, where Rij denotes the rank of xij among x1j , . . . , xnj .
Analogously, (u′i1, u′i2) is obtained from (yi1, yi2) (division by n + 1 keeps
transformed points away from the boundary of the unit cube).
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A motivating example
Pseudo-sample from the copula

Assume X1, . . . ,Xn form an iid data sample of a d-variate random vector
of interest X. Assuming F1, . . . ,Fd are all unknown,

Ui = (F̂n,1(Xi1), . . . , F̂n,d(Xid))

where i ∈ {1, . . . , n}, can be regarded as a
consistently estimated version of the
unobservable iid sample

(F1(Xi1), . . . ,Fd(Xid))

(U1, . . . ,Un) is frequently referred to as a
sample of pseudo-observations from the
copula of the data.
Note that the Uis are not independent,
because F̂n,j depends on the j-th component
sample X1j , . . . ,Xnj , j ∈ {1, . . . , d}.
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A motivating example
Informal notion of copula

The informal notion of dependence can be interpreted in terms of a
copula, that is, a multivariate df with standard uniform univariate
margins.

::::

Going back to the example, the copula of (X1,X2) and the copula of
(Y1,Y2) are simply the joint dfs of (F1(X1),F2(X2)) and
(G1(Y1),G2(Y2)), respectively, where F1,F2,G1,G2 are the marginal dfs
of X1,X2,Y1,Y2, respectively.

::::

The statement that (X1,X2) and (Y1,Y2) have the same dependence can
then be rephrased as (X1,X2) and (Y1,Y2) have the same copula C.
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Where does the word ‘copula’ come from?

In 1959 the American mathematician Abe Sklar published a 3-page note,
written in French [Sklar (1959)], showing that any multivariate
distribution function can be expressed in terms of its univariate margins
and a function C that he called ‘copula’ (usually linking subjects and
predicates).

::::

Two years later, he provides
interesting historical background
on the development of copula
theory, explaining that he felt this
word to be appropriate for a
function linking marginal laws to
a joint probability distribution
(for a review of his work see
Genest (2021))



A motivating example
Introduction

We are interested in how the dependence between the components of a
random vector X ∈ Rd , d ≥ 2, can be investigated and modelled.

::::

A multivariate stochastic model is represented by means of the
d-dimensional cumulative distribution function (cdf) describing the
behavior of the random vector X:

FX(x1, . . . , xd) := F (x1, . . . , xd) = P(X1 ≤ x1, . . . ,Xd ≤ xd)

Every joint d.f. for a random vector contains the description of

the marginal behavior of the random variables (r.v.’s) Xis, i.e. the
probabilistic knowledge of the single components of X

the dependence structure between the individual components (we will see
that the copula approach provides a flexible way to describe complex
dependence structures).
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A motivating example
Multivariate risks: examples

Many real–world situations can be described by multivariate stochastic
models.

Portfolio Management: Xi ’s can represent (daily) returns on several assets

Credit risk: Xi ’s can represent lifetimes (time-to-default) of financial
institution exposed to some shock

Insurance: Xi ’s represent potential losses in different lines of business for
an insurance company

Environmental Extremes: many phenomena are described in terms of two or
more r.v.’s related to the same event (e.g., storm intensity-duration, flood
peak-volume, etc.) or observed at different locations (rainfall maxima)

Dependent risks have been modeled with simplified assumptions (e.g.,
normality, independence) and/or numerical quantities (e.g., correlation
coefficients) presenting well-known fallacies
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A motivating example
The problem of the Gaussian assumption

The extensive use of the multidimensional Gaussian distribution and its
generalizations is often not justified by the real situation that the model
purported to describe.

In 1937 de Finetti wrote:
[...] the unjustified and harmful habit of considering the Gaussian

distribution in too exclusive a way, as if it represented the rule in al-
most all the cases arising in probability and in statistics, and as if each
non–Gaussian distribution constituted an exceptional or irregular case

Two main features of the multivariate Gaussian distribution are often not
supported in practice:

the joint tails of the distribution do not assign enough weight to the
occurrence of several extreme outcomes at the same time
the distribution has a strong form of symmetry
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A motivating example
Some references

Since their introduction (Sklar (1959)), the literature on copulas has
considerably grew. Major references include

Foundations
Genest et al. (1995)
Nelsen (2006)
Durante and Sempi (2016)
Joe (1997), and many others!

Applications, Algorithms and simulation
Salvadori et al. (2007)
Patton (2013)
Hofert et al. (2018)
Aas et al. (2009)
Kojadinovic (2010), and many others!

Moreover, copula models have been largely implemented in various
statistical software, see e.g. the copula R package provided by Hofert et
al. (2014).
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A motivating example
Background

To any df F is associated a quantile function F← : I = [0, 1] → R defined
by

F←(t) := inf{x ∈ R : F (x) ≥ t}, t ∈]0, 1]

and F←(0) := inf{x ∈ R : F (x) > 0}. For continuous and strictly
increasing dfs, F← equals the ordinary inverse F−1.

::::

The following two classical results are fundamental:
Probability (integral) transform (PT). Let X be a r.v. with df F .
If F is continuous, then F (X) ∼ U(0, 1).
Quantile transform (QT). If U ∼ U(0, 1), then F←(U) has df
equal to F , that is P(F←(U) ≤ x) = F (x).
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Characterization

Definition: d-dimensional copula

Definition (Copula)
A d-dimensional copula is a distribution function on Id = [0, 1]d with
standard uniform marginal distributions.

Hence, the copula
C(u) = C(u1, . . . , ud)

is a mapping of the unit hypercube into the unit interval

C : [0, 1]d → [0, 1].

The set of d-copulas (d ≥ 2) is denoted by Cd .
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Characterization

C-volumes

In order to obtain a characterization of copulas we need the following
additional definitions.
Definition (C-volume)
For any a,b ∈ [0, 1]d , a ≤ b, let (a,b] denote the hyperrectangle defined by
u ∈ [0, 1]d : a < u ≤ b. Then, for any hyperrectangle (a,b], define its C-volume
as

∆(a,b]C =
∑

i∈{0,1}d

(−1)
∑d

j=1 ij C(ai1
1 b1−i1

1 , . . . , aid
d b1−id

d ) (1)

where the summation is taken over all 2d vectors (i1, . . . , id), ij ∈ 0, 1. If

∆(a,b]C ≥ 0 for all a,b ∈ [0, 1]d , a ≤ b

then C is called d-increasing. When d = 2, (1) becomes

∆(a,b]C = C(b1, b2)− C(b1, a2)− C(a1, b2) + C(a1, a2)
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Characterization

Characterization

The function C : [0, 1]d → [0, 1] is a copula if and only if
1 C is grounded, that is,

C(u1, . . . , ud) = 0 if uj = 0 for at least one j ∈ {1, . . . , d}

2 C has standard uniform univariate margins, that is,

C(1, . . . , 1, uj , 1, . . . , 1) = uj for all uj ∈ [0, 1] and j ∈ {1, . . . , d}

3 C is d-increasing, that is, any C-volume ∆(a,b]C is nonnegative, for
all a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ [0, 1]d , ai ≤ bi

Note that, for 2 ≤ k < d , the k-dimensional margins of a d-dimensional
copula are themselves copulas.
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Characterization

Copula density

A copula C is called absolutely continuous if it admits a density, that is, if

c(u) = c(u1, . . . , ud) =
∂d

∂ud . . . ∂u1
C(u1, . . . , ud), u ∈ (0, 1)d

exists and is integrable.

Remark: If the density c is nonnegative for all u ∈ (0, 1)d then C is
d-increasing.
Example: the independence copula Πd is absolutely continuous with
constant density c(u) = 1,u ∈ (0, 1)d .
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Characterization

Example: Independence Copula

One of the simplest copulas is the independence copula

Πd(u) =
d∏

j=1
uj , u ∈ [0, 1]d

Πd is the df which is the df of a random vector U = (U1, . . . ,Ud) with
independent components U1, . . . ,Ud ∼ U(0, 1):
For any u ∈ [0, 1]d ,

P(U ≤ u) = P(U1 ≤ u1, . . . ,Ud ≤ ud) =
d∏

j=1
P(Uj ≤ uj) =

d∏
j=1

uj = Πd(u)
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Characterization

Example: Independence Copula/ 2

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

u1

u2

pC
op

ul
a

u1

u 2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure: (Left) Surface (or perspective) plot and (right) contour plot of the
independence copula for d = 2.

Remark: Π2 is zero on all edges of the unit square which start at (0, 0),
Π2(u1, 1) = u1 and Π2(1, u2) = u2 ∀u1, u2 ∈ [0, 1], i.e. the copula is grounded
(C(u) = 0 if uj = 0 for at least one j) and has standard uniform univariate
margins (C(1, . . . , 1, uj , 1, . . . , 1) = uj , ∀uj)
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Characterization

Example: Independence Copula/ 3

Let C = Π2 = u1u2. It can be shown that
∆(a,b]C = P(U ∈ (a,b]). Using (1),

∆(a1,a2),(b1,b2)]C
= b1b2 − b1a2 − a1b2 + a1a2
= (b1 − a1)(b2 − a2)

On the other hand,

P(U ∈ (a,b])
= P(a1 < U1 ≤ b1)P(a2 < U2 ≤ b2)

= (b1 − a1)(b2 − a2)
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Approximation of the Π2-volume
of the hyperrectangle with lower
end point a = (1/4, 1/2) and
upper end point b = (1/3, 1)
based on 1000 independent
observations of U ∼ Π2.
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The Fréchet-Hoeffding Bounds
Theorem: Fréchet-Hoeffding Bounds

Any d-dimensional copula C is pointwise bounded from below by the
lower Fréchet-Hoeffding bound W and from above by the upper
Fréchet-Hoeffding bound M

W (u) ≤ C(u) ≤ M(u), u ∈ [0, 1]d

where

W (u) = max


d∑

j=1
uj − d + 1, 0

 and M(u) = min
1≤j≤d

(uj)

For d = 2,

W (u1, u2) = max {u1 + u2 − 1, 0} , M(u1, u2) = min{u1, u2}

Note that W is a copula only if d = 2 whereas M is a copula for all
d ≥ 2.
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The Fréchet-Hoeffding Bounds
Graphical visualization of copulas

The investigation of a given copula may require the preliminary
assessment of its behavior via a suitable graphical representation, at least
in the two–dimensional case.

Definition (Graph of a Copula)
The graph of a copula C ∈ Cd is the set of all points x ∈ Id+1 that can
be expressed as x = (u,C(u)) for u ∈ Id .

3-d graphs of the basic copulas W2 (left), Π2 (center) and M2 (right).
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The Fréchet-Hoeffding Bounds
Graphical visualization of copulas (cont)

Let C belong to Cd and let t be in I. The t-level set

Lt
C = {u ∈ Id : C(u) = t}

is the set of all points u ∈ Id such that the copula has value t. Notice
that, for every t ∈ I, all the points of type (t, 1, . . . , 1), (1, t, 1, . . . , 1),
..., (1, 1, . . . , 1, t) belong to Lt

C .

Levels plots of the basic copulas W2 (left), Π2 (center) and M2 (right).
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The Fréchet-Hoeffding Bounds
Graphical visualization of copulas (cont)

Since a copula is the d.f. of a random vector U, with uniform margins,
we may also visualize its behavior by random sampling points that are
identically distributed as U:

Scatter-plots of 1000 random points simulated from W2 (left), Π2 (center) and M2 (right).
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The Fréchet-Hoeffding Bounds
Graphical visualization of copulas (cont)

The scatter plot from a copula C can help the visual identification of the
following features:

Symmetry (Exchangeability): the sample cloud is symmetric with
respect to the line joining (0, 0) with (1, 1);
Radial symmetry: The sample cloud is symmetric with respect to the
line joining (1, 0) with (0, 1);
Concordance: small (respectively large) values of one variable are
associated with small (respectively large) values of the other variable;
Tail dependence: The points tend to cluster near some of the
corners of the copula domain
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Sklar’s Theorem

Sklar’s Theorem: preliminaries

Sklar’s Theorem Sklar (1959) is the main result of copula theory: it
explains how copulas determine the dependence between the components
of a random vector.

Some notation:
given a univariate df F , ranF = {F (x) : x ∈ R} denotes the range of
F
F← denotes the quantile function associated with F (this is the
ordinary inverse F−1 if F is continuous and strictly increasing.
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Sklar’s Theorem

Sklar’s Theorem

Theorem (Sklar)
1 For any d-dimensional df H with univariate margins F1, . . . ,Fd ,

there exists a d-dimensional copula C such that

H(x) = C(F1(x1), . . . ,Fd(xd)), x ∈ Rd . (2)

The copula C is uniquely defined on ranF1 × · · · × ranFd =
∏

j ranFj :

C(u) = H(F←1 (u1), . . . ,F←d (ud)), u ∈
d∏

j=1
ranFj (3)

2 Conversely, given a d-dimensional copula C and univariate dfs
F1, . . . ,Fd ,H defined by (2) is a d-dimensional df with margins
F1, . . . ,Fd .
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Sklar’s Theorem

Sklar’s Theorem: remarks

Part [1] of Sklar’s Theorem states the decomposition of any
d-dimensional df H into its univariate margins F1, . . . ,Fd and a copula C .

Let X = (X1, . . . ,Xd) ∼ H and continuous margins F1, . . . ,Fd . Hence,
Ui = Fi(Xi) ∼ U(0, 1) (PT).
Let C denote the df of (U1, . . . ,Ud), then

H(x1, . . . , xd) = P(X1 ≤ x1, . . . ,Xd ≤ xd)

= P(F←1 (U1) ≤ x1, . . . ,F←d (Ud) ≤ xd)

= P(U1 ≤ F1(x1), . . . ,Ud ≤ Fd(xd))

= C(F1(x1), . . . ,Fd(xd))

If the margins are continuous, then C is unique; otherwise C is uniquely
determined on ranF1 × · · · × ranFd .
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Sklar’s Theorem

Sklar’s Theorem: remarks

The explicit representation of the copula of X can be obtained by
evaluating (2) at the arguments xi = F←i (ui), 0 ≤ ui ≤ 1, i = 1, . . . , d

C(u1, . . . , ud) = C(F1(F←1 (u1)), . . . ,Fd(F←d (ud)))

= H(F←1 (u1), . . . ,F←d (ud))

For a given continuous multivariate df, part [1] of Sklar’s Theorem
implies that the underlying unknown copula is unique, which justifies its
estimation from available data.

If X ∼ H with margins Fj and the decomposition (2) holds, we say that
X (or H) has copula C . Moreover, the copula expresses the dependence
on a quantile scale

C(u1, . . . , ud) = P(X1 ≤ F←1 (u1), . . . ,Xd ≤ F←d (ud))
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Sklar’s Theorem

Sklar’s Theorem: remarks

From [1] , it also follows that H is absolutely continuous if and only if C
and the Fis are absolutely continuous. In that case, the density of H
satisfies

h(x) = c(F1(x1), . . . ,Fd(xd))
d∏

j=1
fj(xj), x ∈

d∏
j=1

ranXj

where, for any j ∈ {1, . . . , d}, ranXj is the range of the rv Xj , fj denotes
the density of Fj and c denotes the density of C . Hence, c can be
recovered from h via

c(u) = h(F←1 (u1), . . . ,F←d (ud))

 d∏
j=1

fj(F←j (uj))

−1

, u ∈ (0, 1)d

and used in likelihood-based copula estimation methods.
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Sklar’s Theorem

Sklar’s Theorem: remarks

Part [2] of Sklar’s Theorem:

Given any copula C and univariate dfs F1, . . . ,Fd , a multivariate df H
can be composed via (2) which then has univariate margins F1, . . . ,Fd
(continuous if H is continuous) and ’dependence structure’ C

Let U ∼ C and set X := (F←1 (U1), . . . ,F←d (Ud)). Then

P(X ≤ x) = P(F←1 (U1) ≤ x1, . . . ,F←d (Ud) ≤ xd)

= P(U1 ≤ F1(x1), . . . ,Ud ≤ Fd(xd)) (QT )

= C(F1(x1), . . . ,Fd(xd)) = H(x), x ∈ Rd

New multivariate dfs can be constructed with given univariate
margins
Copulas can be used to formulate dependence scenarios and to
evaluate risk measures of interest by means of simulation.
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Properties
Invariance property

Let X ∼ H with continuous margins Fj (j ∈ {1, . . . , d}) and (unique)
copula C . If T1, . . . ,Td are strictly increasing functions, then

(T1(X1), . . . ,Td(Xd)) ∼ C

that is, copulas are invariant under strictly increasing transformations (on
the ranges) of the underlying random variables.

C(u1, . . . , ud) = P(X1 ≤ F←1 (u1), . . . ,Xd ≤ F←d (ud))

= P(T1(X1) ≤ T1(F←1 (u1)), . . . ,Td(Xd) ≤ Td(F←d (ud)))

= P
(

T1(X1) ≤ F←T1(X1)
(u1), . . . ,Td(Xd) ≤ F←Td (Xd )

(ud)
)
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Properties
Invariance property

Let X ∼ H with continuous margins Fj (j ∈ {1, . . . , d}) and (unique)
copula C . If T1, . . . ,Td are strictly increasing functions, then

(T1(X1), . . . ,Td(Xd)) ∼ C

that is, copulas are invariant under strictly increasing transformations (on
the ranges) of the underlying random variables.

C(u1, . . . , ud) = P(X1 ≤ F←1 (u1), . . . ,Xd ≤ F←d (ud))

= P(T1(X1) ≤ T1(F←1 (u1)), . . . ,Td(Xd) ≤ Td(F←d (ud)))

= P
(

T1(X1) ≤ F←T1(X1)
(u1), . . . ,Td(Xd) ≤ F←Td (Xd )

(ud)
)
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Properties
Invariance property/ 2

The invariance property allows us to transform X = (X1, . . . ,Xd) to
U = (F1(X1), . . . ,Fd(Xd)) without changing the underlying copula

X has copula C ⇐⇒ (F1(X1), . . . ,Fd(Xd)) ∼ C .

that is, X and U have the same copula!
Hence, regardless of the marginals, we can study the dependence between
X1, . . . ,Xd by studying the dependence between the components of U

::::

Assume d = 2, and (X1,X2) ∼ H with continuous margins F1,F2. Then

(U,V ) = (F1(X1),F2(X2))

gives the corresponding copula defined on [0, 1]2.
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Properties
Invariance property: Examples

From bivariate normal to normal copula
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Figure: (Left) Scatter plot of n = 1000 independent observations from (X1,X2)

having a joint bivariate Gaussian distribution N2(0,P), P =

(
1 0.7

0.7 1

)
.

(Right) The corresponding (probability transformed) sample from the Gaussian
copula is obtained by applying the df Φ (the Fj ’s here) to each pair of points.
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Properties
Invariance property: Examples

From normal copula to meta-Gaussian sample with exponential margins
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Figure: (Left) Same Gaussian copula scatter plot as before. (Right) The
corresponding (quantile transformed) sample having a Gaussian copula and
exponentially distributed marginals Fj ∼ exp(2) (apply F−1

j (u) = −log(1 − u)/2
to each pair of points on the left plot.)
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Properties
Simulation of Copula and Meta-C Model

Algorithm 1: Sample from C (C is defined by (3) in Sklar’s Th)
1 Sample X ∼ H, where H is a d-dimensional df with continuous

margins F1, . . . ,Fd

2 Return U = (F1(X1), . . . ,Fd(Xd))

Algorithm 2: sample from a Meta-C model
1 Sample U ∼ C
2 Return X = (F←1 (U1), . . . ,F←d (Ud))
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Properties
Survival copula

Suppose the marginal dfs Fi are continuous and strictly increasing. Then

H̄(x1, . . . , xd) = P(X1 > x1, . . . ,Xd > xd)

= P(1 − F1(X1) ≤ F̄1(x1), . . . , 1 − Fd(Xd) ≤ F̄d(xd))

= Ĉ(F̄1(x1), . . . , F̄d(xd))

where Ĉ is the survival copula of X1, . . . ,Xd , that is, the df of
1 − U = (1 − F1(X1), . . . , 1 − Fd(Xd)).
A representation of Ĉ is

Ĉ(u1, . . . , ud) = H̄(F̄ −1
1 (u1), . . . , F̄ −1

d (ud))

Data Science for InsuranceIntroduction to Copulas a.a. 24-25 43



Properties
Survival copula (cont.)

Let d = 2. We want to compute the survival function of (X1,X2) and the
survival copula Ĉ of C :

H̄(x1, x2) = P(X1 > x1,X2 > x2)

= 1 − (P(X1 ≤ x1) + P(X2 ≤ x2)− P(X1 ≤ x1,X2 ≤ x2))

= 1 − F1(x1)− F2(x2) + F (x1, x2)

= 1 − (1 − F̄1(x1))− (1 − F̄2(x2)) + C(1 − F̄1(x1), 1 − F̄2(x2))

= F̄1(x1) + F̄2(x2)− 1 + C(1 − F̄1(x1), 1 − F̄2(x2))

The survival copula is Ĉ(u1, u2) = u1 + u2 − 1 + C(1 − u1, 1 − u2).
Notice in particular that this function is not equal to the survival function C̄
corresponding to the copula C :

C̄(u1, u2) = P(U1 > u1,U2 > u2)

= P(1 − U1 ≤ 1 − u1, 1 − U2 ≤ 1 − u2)

= Ĉ(1 − u1, 1 − u2) = C(u1, u2)− u1 − u2 + 1
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Properties
Radial Symmetry and Exchangeability

1 A random vector X is called radially symmetric about a ∈ Rd if
X − a d

= a − X, that is, if X − a and a − X are equal in distribution

If Xj is symmetric about aj , then X is radially symmetric about a if
and only if C = Ĉ (C radially symmetric)

2 The random vector X is called exchangeable if
(Xj1, . . . ,Xjd)

d
= (X1, . . . ,Xd) for all permutations (j1, . . . , jd) of

{1, . . . , d}

If C(uj1, . . . , ujd) = C(u1, . . . , ud) for all u1, . . . , ud ∈ [0, 1] and all
permutations (j1, . . . , jd) of {1, . . . , , d}, we call C exchangeable

Wd=2, Π, and M are both radially symmetric and exchangeable
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Models
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Models

Some copula families

Parametric copula families play a key role in the applications of copulas:
Implicit copula families arise from well-known multivariate
distributions via Sklar’s Theorem

→ Elliptical copulas Gaussian copulas and Student-t copulas from
the Gaussian and t distributions, respectively

Explicit (or closed-form) parametric copula families
→ Archimedean copulas:

By far the most popular class of copulas
Many parametric models: Gumbel, Clayton, Frank, Joe,
Ali–Mikhail–Haq,...

Extreme value copulas emerges as the class of natural limiting
dependence structures for multivariate maxima: the Gumbel copula
provides an example of a parametric EV copula family (see McNeil
et al. (2015))
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Models

Elliptical Copulas

A copula is elliptical if it is the copula of an elliptical distribution
Z ∼ Nd(0,Σ)
T ∼ Studentd(0,Σ, ν)

Without loss of generality, we can assume that
µ = 0
Σ is a correlation matrix, we denote it by P

Note that when ν → ∞, then the Student-t tends to the Gaussian
distribution
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Models

Gaussian copulas

The Gaussian copula is the copula of Z ∼ Nd(0,P)

CGa
P (u) = P(Φ(Z1) ≤ u1, . . . ,Φ(Zd) ≤ ud)

= P(Z1 ≤ Φ−1(u1), . . . ,Zd ≤ Φ−1(ud))

= P(Φ
−1(u1), . . . ,Φ

−1(ud))

where P is the joint df of Z, and Φ is the cdf of N (0, 1).
if d = 2, then CGa

P ≡ CGa
ρ , where ρ = corr(Z1,Z2)

P = Id gives independence
If P = Jd , a d × d matrix of ones, then C is the comonotonicity
copula (M)
For d = 2 and ρ = −1, CGa

ρ is the countermonotonicity copula (W )
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Models

Gaussian copulas
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Figure: (Top) Density of the bivariate normal df with ρ = 0.5 (left), perspective
plot of CGa

ρ (middle), and corresponding copula density cGa
ρ (right). (Bottom)

Sample of size 1000 from CGa
ρ with ρ = 0.1, 0.5, 0.7 (from left to right).
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Models

t copulas

The t copula is the copula of T ∼ Studentd(0,Σ, ν)
with location vector 0, scale matrix P , and ν > 0 degrees of freedom:

C t
P,ν(u) = P(tν(T1) ≤ u1, . . . , tν(Td) ≤ ud)

= tP,ν(t−1
ν (u1), . . . , t−1

ν (ud))

where tν is the univariate Student-t distribution with ν degrees of freedom and
tP,ν is the d-variate t distribution.

For d = 2, C t
−1,ν is the lower Fréchet-Hoeffding bound W ,

For d ≥ 2, if P only consists of entries equal to 1, C t
P,ν is the upper

Fréchet–Hoeffding bound M

P = Id does not lead to the independence copula
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t copulas /2
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Left: Density plot of ct
ρ,ν for

ρ ≈ 0.81 (Kendall’tau
τ = 0.6) and ν = 4 degrees of
freedom, contour plot of ct

ρ,ν

Right: Scatter plot of a
sample of size n = 1000 from
C t
ρ,ν and contour plot of C t

ρ,ν

Bivariate t-copulas are both
radially symmetric and
exchangeable
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Models

Explicit copulas

A number of copula families have simple closed forms.

Some examples:
Gumbel-Hougaard Copula

(d=2) CGu
θ (u1, u2) = exp(−((−log(u1))

θ + (−log(u2))
θ)1/θ)

θ ≥ 1: θ = 1 gives independence; θ → ∞ gives
comonotonicity

Clayton copula (d=2) CC
θ (u1, u2) = (u−θ1 + u−θ2 − 1)−1/θ, θ > 0

θ → 0 gives independence; θ → ∞ gives comonotonicity
Frank copula CF

θ (u1, u2) = −1
θ log

(
1 + (e−θu1−1)(e−θu2−1)

e−θ−1

)
θ → 0 gives independence; θ → ∞ gives comonotonicity
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Comparison of some copulas
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Figure: Copula parameters are chosen such that linear correlation between the
(quantile transformed) N(0, 1) margins is roughly 0.7
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Comparison of some copulas/ 2
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Figure: Copula parameters are chosen such that linear correlation between the
(quantile transformed) N(0, 1) margins is roughly 0.7
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Comparison of some copulas/ 3
Meta−Frank density − N(0,1) margins
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Figure: Copula parameters are chosen such that linear correlation between the
(quantile transformed) N(0, 1) margins is roughly 0.7
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Comparison of some copulas/ 4

Meta−Frank contours − N(0,1) margins

x1

x 2

−2

−1

0

1

2

−2 −1 0 1 2

0.00

0.05

0.10

0.15

0.20

0.25

Meta−Gumbel contours − N(0,1) margins

x1

x 2

−2

−1

0

1

2

−2 −1 0 1 2

0.00

0.05

0.10

0.15

0.20

0.25

Meta−Clayton contours − N(0,1) margins

x1

x 2

−2

−1

0

1

2

−2 −1 0 1 2

0.00

0.05

0.10

0.15

0.20

0.25

Meta−t4 contours − N(0,1) margins

x1

x 2

−2

−1

0

1

2

−2 −1 0 1 2

0.00

0.05

0.10

0.15

0.20

0.25

Figure: Copula parameters are chosen such that linear correlation between the
(quantile transformed) N(0, 1) margins is roughly 0.7
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Assessing Symmetry/Exchangeability
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Bivariate t copulas
(ρ = 0.7, ν = 3.5) are
both radially symmet-
ric (symmetry wrt the
point (1/2, 1/2)) and
exchangeable;

The copulas in the
Gumbel-Hougaard
family (here θ = 2)
are exchangeable
(symmetry of the
density with respect
to the main diagonal)
but not radially
symmetric
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Conditional distributions of copulas

Suppose (U1,U2) ∼ C . Recall that a copula is an increasing continuous
function in each argument. Hence

CU2|U1(u2|u1) = P(U2 ≤ u2|U1 = u1)

= lim
δ→0

C(u1 + δ, u2)− C(u1, u2)

δ
=

∂

∂u1
C(u1, u2)

(see Nelsen (2006)). The conditional distribution CU2|U1(u2|u1) is a df on
[0, 1] which is uniform only in the case C = Π.
Interpretation in Risk management. (X1,X2) is a pair of two
continuous risks having (unique) copula C . Then

1 − CU2|U1(q|p) = 1 − P(U2 ≤ q|U1 = p)
= P(U2 > q|U1 = p)
= P(X2 > F−1

2 (q)|X1 = F−1
1 (p))
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