### Basic classification of electrochemical methods



### Potential sweep electrochemical methods: voltammetry



#### Linear Scan Voltammetry: boundary conditions

$$Ox + e^- \rightleftharpoons Red$$

- Planar electrode
- Initial conditions (1)  $C_{Ox}(x,0) = C^*_{Ox}$   $C_{Red}(x,0) = 0$  for t = 0
- <u>Semi-infinite conditions</u> (2) (linear diffusion)

$$\lim_{x\to\infty}C_{Ox}(x,t)=C_{Ox}^*$$

Flux balance (3)

$$J_{Ox}(0,t) = -J_{Red}(0,t)$$

$$D_{Ox}\left(\frac{\partial C_{Ox}(x,t)}{\partial x}\right)_{x=0} + D_{Red}\left(\frac{\partial C_{Red}(x,t)}{\partial x}\right)_{x=0} = 0$$

#### Common boundary conditions to potential step techniques

#### Linear Scan Voltammetry: boundary conditions

• Linear potential scan with time (LSV) (4)

$$E(t) = E_i - vt \quad \text{for } 0 < t \le \lambda$$

#### **Surface concentration condition**

$$\frac{C_{Ox}(0,t)}{C_{Red}(0,t)} = exp\left[\frac{nF}{RT}(E - E^{0'})\right]$$

Nernstian redox system (reversible)

$$\frac{C_{Ox}(0,t)}{C_{Red}(0,t)} = f(t) = exp\left[\frac{nF}{RT}(E_i - \nu t - E^{0\prime})\right]$$

#### *Time-dependent Nernst-type equation*

(more complicated rigorous mathematical treatment for solving the equations)

#### Linear Scan Voltammetry for a nernstian system



At 
$$T = 25^{\circ}C$$
  $i_p = (2.69 \times 10^5) n^{3/2} A D_{0x}^{1/2} C_{0x}^* v^{1/2}$ 

- $i_p \propto v^{1/2}$ : for a reversible wave, it indicates a diffusion control (Cottrellian  $i_d \propto t^{-1/2}$ )
- $D_{ox}$  can be estimated from  $i_p / v^{1/2} C_{ox}^*$  (if A and n are known)
- n can be estimated from  $i_p / v^{1/2} C_{Ox}^*$  (if A and  $D_{Ox}$  are known)

#### Linear Scan Voltammetry for a nernstian system



Peak width (independent on v)

# Cyclic Voltammetry (CV): a reversible nernstian system

*i-E cyclic voltammograms (CVs)* 



#### **Cyclic Voltammetry (CV)** (Reversal technique)

- $(0 < t \le \lambda) \qquad E(t) = E_i \nu t$  $(t > \lambda) \qquad E(t) = E_i 2\nu\lambda + \nu t$
- Shape of CVs depends on  $E_{\lambda}$
- For  $E_{\lambda} E_{p,c} > (35/n) \text{ mV}$ , the reverse peak has the same shape as the forward one
- For a reversible wave, *i<sub>p,a</sub>/i<sub>p,c</sub>* =1 (<u>independent</u>
  <u>on v</u>)
- *i<sub>p,a</sub>* is measured from the decaying cathodic current as baseline
- $\Delta E_{p}$  only slightly depends on  $E_{\lambda}$

$$\Delta E_p = E_{p,a} - E_{p,c} = 2.3 \frac{RT}{nF} \sim 57 \ mV$$
 (25°C, n=1)

# Cyclic Voltammetry (CV): a reversible nernstian system



# Understanding the peak shape: the concentration profiles



 $Ox + e^- \rightleftharpoons Red$ 

 $\frac{C_{Ox}(0,t)}{C_{Red}(0,t)} = exp\left[\frac{nF}{RT}(E - E^{0'})\right]$ 

- Concentration of the electroactive species (Ox/Red) near the electrode change over time according to the Nernst equation
- A → D: cathodic scan, Ox is depleted at the surface
- C: maximum cathodic current (i<sub>p,c</sub>), dictated by mass transport of Ox from bulk to surface

# Understanding the peak shape: the concentration profiles



 $Ox + e^- \rightleftharpoons Red$ 

 $\frac{C_{Ox}(0,t)}{C_{Red}(0,t)} = exp\left[\frac{nF}{RT}(E - E^{0'})\right]$ 

- **Thickness of the diffusion layer** ( $\delta$ ) grows during the scan ( $\partial C / \partial x$  diminishes)  $\rightarrow$  slower mass transport from bulk to surface  $\rightarrow$  *i decrease*
- $\delta$  depends on the CV timescale
- $\delta$  decreases with increasing scan rates ( $\delta \sim \sqrt{Dt}$ ,  $t \propto 1/v$ )

### Understanding the peak shape: the concentration profiles



$$Ox + e^- \rightleftharpoons Red$$

$$\frac{C_{Ox}(0,t)}{C_{Red}(0,t)} = exp\left[\frac{nF}{RT}(E - E^{0'})\right]$$

- D → G: reverse anodic scan (Red is oxidized to Ox as E becomes increasingly positive)
  - B and E:

 $C_{Ox} (0,t) = C_{Red} (0,t)$  $E \approx E_{1/2}$  $E^{0'} \approx \frac{1}{2} (E_{p,c}(C) + E_{p,a}(F))$ 

 ΔE<sub>p</sub> is due to the diffusive mass transport of the electroactive species from/to surface-bulk

### Reversible voltammetric waves: diagnostic criteria

#### Potential

- $E_{p,c}$  independent on the scan rate (v)
- $\Delta E_p = 57/n \, mV$  (at 25°C) independently on the scan rate (this value varies with T!!!)
- Assuming that  $D_{Ox} = D_{Red}$ , the **formal potential**  $E^{0'}$  can be measured as:

$$E^{0'} = \frac{1}{2}(E_{p,c} + E_{p,a})$$

#### Current

- $i_{p,c} / v^{1/2}$  constant with the scan rate (v) (freely diffusing redox species)
- $i_{p,a}/i_{p,c}$  constant and equal to 1 (independent on the scan rate)

## The effect of double layer capacitance

- In potential sweep experiments, capacitive current (*i<sub>c</sub>*) always flows and is directly proportional to the scan rate (*v*):
- Both the faradaic and the capacitive currents increase with the scan rate, but *i<sub>c</sub>* increases faster

 $i_p \propto v^{1/2}$  Randles-Sevcik equation

$$\frac{|i_{C}|}{i_{p}} = \frac{(10^{-5}) C_{d} v^{1/2}}{2.69 n^{3/2} D_{0x}^{1/2} C_{0x}^{*}}$$

 $i_{c} \propto v$ 

 The extraction of the faradaic component in CV at high scan rates is problematic, especially in the presence of low concentration of the electroactive species (baseline correction)

### The effect of double layer capacitance



**Figure 1.7** Faradaic and double-layer charging currents for a cyclic voltammetric Nernstian wave. —, total current; · · ·, capacitive component.  $S = 0.05 \text{ cm}^2$ ,  $C^0 = 5 \times 10^{-4} \text{ M}$ ,  $C_d = 1 \mu\text{F}$ ,  $R_u = 100 \Omega$ .

Savéant, Elements of Molecular and Biomolecular Electrochemistry, 1st Ed., 2006

# The effect of the ohmic drop



- Uncompensated resistance (i $\mathbf{R}_{u}$ ) may lead to **severe distortion** of the CV shape, typically shifting away the cathodic and anodic peaks from each other ( $\Delta E_p$ *increase, lower*  $i_p$ , *peak broadening*)
- The effect of the ohmic drop increases at high scan rates (higher current), causing E<sub>p</sub>
  to be a function of v
  (diagnostic criteria for uncompensated ohmic drop)