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Some steps should be considered in developing prediction models:

/\ INITIAL DATA ANALYSIS 11!

Defining — Coding/measuring
features/variables

Checking data
problem

quality

e

v" Selection of variables VieE el
v Functional Forms —
v' Interactions

Parameters/Hyperparameters

. : = Performance
formula estimation

Presentation/Clinical
Implementation

Possibly on external dataset !l
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HOW TO EVALUATE MODEL PERFORMANCE* (internal validation)

K-fold Cross-validation

«Singlen Split
Booftstrap validation

Tl’Olnl ng Bootstrap Sampling Method
set
e s . N
L (size=m)
Original o o o O o
Dataset o) O o
(size=n) o O ©© O
Test set
\ _____/

(size=n-m)

*Note that [ideally] we should validate the enfire model building process...

=+ ML has a further distinction in validation set for hyperparameters and test set for performance
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Classical measure of overall performance: R squared

R? (coefficient of determination)

R? Values Interpretation Graph . . .
is the proportion of the variance
y=f(x)+e : for a erenden’r.vonoble that's
i / explained by an independent
g . . .
R?2 —1 Allthe variation in the y values is accounted for by the  values % . / variable in @ regression model.
&

:)_/ = —z yl el‘ = yl - ﬁ Independent variable x 2 _ SSreS
e ) R4 =1 — —
i SStOt

, A fraction of variance unexplained
SStor = Z(Yi - )_’)2 SSres = Z()’i - fl)z = z e; X
[ [

i gty ; SSyeq = Z(ﬁ 0%

R? = 0.83 83% of the variation in the y values is accounted for by the x values

Dependent varisble y
o

R?2 =0 None of the variation in the y values is accounted for by the x values

Dependent varisble y
“

Independent variable x
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R squared for multivariable (generalized) models

R? : % of variation in Y explained by the model d
grade vs age vs sex
[adjusted for p=#covariates, n=sample size| T

Rfmj:1—(1—1[22)71_29_1

Binary/[time-to-event] models:

« Cox and Snell R?
« Nagelkerke's R?

2
REs = 1 - exp|~ (1n(Liku) — In(Likysoge) |

!

likelihood of the null model with only the intercept vs a given set of parameters
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Measures of the accuracy of predictions

Are our predictions reliable?

TRAINING SET ‘ TEST SET

Calibration: does the model predict accurately?
calibration slope, 1 : perfect calibration

Discrimination: does the model discriminate well?
C statistic (AUCROC), 1: perfect discrimination, 0.5 : flipping a coin
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Calibration (binary outcome/logistic regression)

For given values of the model covariates, we can obtain the predicted probability:

X,) = odds _ exp(Bo + Prx1 + -+ Bpxp)
P77 1+odds 1+ exp(By+ rxs + -+ Bpxp)

P(Y = 1|X,, ..

The model is said to be well calibrated if the observed risk matches the predicted risk
(probability).

That is, if we were to take a large group of observations which are assigned a value P(Y=1)=0.2
the proportion of these observations with Y=1 ought to be close to 20%.

If instead the observed proportion was 80%, we would probably agree that the model is not
performing well - it is under-estimating risk for these observations.

The comparison between predicted probabilities and observed proportions is the basis for the
Hosmer-Lemeshow (HL) test.
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Based on the estimated parameter values fy, B4, ... B, . for each observation in the sample the probability
that Y=1 is calculated, depending on each observation's covariate values:

exp(Bo + Brxs + -+ + Bpxy)
1+ exp(,b’o + 1% + -+ ,[)’pxp)

T =

We divide the sample in groups up according to their predicted probabilities, or risks.

The observations in the sample are then split into g groups according to their predicted
probabilities.

Suppose (as is commonly done) that g=10.

Then the first group consists of the observations with the lowest 10% predicted probabilities.
The second group consists of the 10% of the sample whose predicted probabilities are next
smallest, etc efc...
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Suppose for the moment, arfificially, that all of the observations in the first group had a predicted
probability of 0.1.

Then, if our model is correctly specified, we would expect the proportion of these observations who have
Y=1 to be 10%.

Of course, even if the model is correctly specified, the observed proportion will deviate to some extent
from 10%, but not by too much (random variability...).

If the proportion of observations with Y=1 in the group were instead 90%, this is suggestive that our model
Is not accurately predicting probability (risk), i.e. an indication that our model is not fitting the data well.

To calculate how many “Y=1" observations we would expect, the Hosmer-Lemeshow test takes the
average of the predicted probabilities in the i-th group, and multiplies this by the number of
observations in the group.

This calculation is then stratified with respect to the observed relative frequency of the outcomes in the
groups.
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Provided p+1<g (p=#covariates) the test statistic
approximately follows a chi-squared distribution with g-2
degrees of freedom. Differences are computed for the
Yevent” (k=1)and for the “non-event” (k=0).

If the p-value is small, this is indicative of poor fit.

s
_ kl — %kl

k=01=1

But....a large p-value does not mean the model fits well,
since lack of evidence against a null hypothesis is not
equivalent to evidence in favour of the alternative hypothesis...

For example: if our sample size is small, do not reject Ho may
simply be a consequence of the test having lower power to

detect misspecification, rather than being indicative of good fit.

Observed risk of AKI

1.0

0.2 0.4 0.6 0.8

0.0

e Development cohort
Validation cohort

® Hosmer-Lemeshow test

e 1> =5.761, P=0.674
v?=7.388 , P=0.286

0.0

1 |
0.4 0.6

Predicted risk

0.8

1.0
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Derivation of Scores in the Prediction Rule

A | B C ] D E F | G | H
‘I'he multivariable logistic regression model can be 1 |Prediction rule for renal artery stenosis
written as: B
predicted probability of stenosis = 1/1 + ¢ 7, | 3 |Predictor Value  Score
where linear predictor LP = —7.859 + 0.059 X age + | 4 |Smoking former or current =1 1 -
, 5 |Current age years 45 44 o
0.033 X (75 — age) X ever smoked — 0.996 X sex + 0.585 x 5 Gender male = 1 1 0 - 7
atherosclerotic vascular disease + 0.642 X recent on [ 7 |Atheroscleroic vascular disease* ~ yes=1 0 0 [g= 7
D= ) . : T | 8 |Onset of hypertension within 2 years ~ yes=1 1 1 5
set = 1.027 X obesity + 1.693 x abdominal bruit - 5 [Bocy mass index >= 25 kgim? Yoo 1 0 ),  f //
0.502 X hypercholesterolemia + 0.032 X serum creatinine 10 |Presence of abdominal bruit yes=1 0 0 g™ —]
concentration. | 11]5erum creatinine concentration pmallL 12 41 e
12|Serum cholesterol level > 6.5 mmol/L*™ yes=1 0 0 'Em
=] o v
17 | Sumscore 11 o
i - -
100 H'L teSt, P > 02 | 18] Formula Score chart 0 TR EE:
| [ ] | 19| Predicted probability of renal artery stenosis 28% 25% Sum Score
20 | Confidence interval 17% 43% See figure for graphical illustration
20 ,
| 21" femoral or carotid bruit, angina pectoris, claudication, myocardial infarction, CVA, or vascular surgery
-‘?. a0 : ' 22" or cholesterol lowering therapy
g 70 ||
=
o 80 .
L5 , | 45-year-old male with recent onset of
3 50 il ol ! hypertension.
! i
g ‘O ! i . ope
3 ] | 1 The sum score was 11, the estimated probability
m . .
¥ ] | | or renal artery stenosis was 28% [95% confidence
8 20 | | | interval 17-43%].
10 ‘ (— LA ’ |
0 '_J_ - ._J L__j. > 1 b 1 ! L 1

0-10 10-20 20-30 30-40 40-50 50-60 6070 TO-80 BO-50 SO-100

Predicted Probability of Stenosis, %
Numnber of
panerts 204 79 S5 26 23 26 13 11 @9

13

Krijnen et al., A clinical prediction rule for renal artery
stenosis. Annals of Internal Medicine(1998)
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Observed risk

Observed risk

17 y
-~ A
o | r IDEAL MODEL:
0.6 | // _ « perfect calibration
i e « calibration slope = 1
////
0.2 //f
7
0 K—— ‘ '
0 0.2 0.4 0.6 0.8 1
Predicted risk
1 #
o -/ Uncalibrated MODEL:
L T _  predicted risks foo extreme
04 Prefff-)fbf:"f“ , . cdlibration slope < 1
/"' | R
02 1/ Pred > Obs may lead to harm!
0 '
0 0.2 0.4 0.6 0.8 1

Predicted risk



Observed risk

1.0

0.8

0.6

0.4

0.2

——— (Calibration curve
95% ClI
—— |deal calibration

Pred < Obs

0 0.2 0.4 0.6

Estimated risk

0.8 1.0

Recurrence

L.

H Mo recurrence

Calibration plot and its 95% confidence interval,
from an external validation of a model to
estimate five year recurrence risk after a primary
breast cancer diagnosis.

If a new individual is estimated a risk of 0.8 by
the model, we could say:

In a group of 100 individuals with the same
estimated risk as you, the model suggests that
between 78 and 100 will have a recurrence by
five years.

Distribution of estimated risks for those with and with
no recurrence by five years.
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Discrimination of a regression model [binary outcome] : AUC of the ROC curve

Should we be content to use a model so long as it is well calibrated? Unfortunately not.

To see why, suppose we fit a logistic model for our outcome Y but without any covariates, i.e. the model:
Bo

This (null) model assigns every observation the same predicted probability : it does not use any
covariates.

Therefore g, will be the observed overall log odds of a positive outcome, such that the predicted value
of P(Y=1) will be identical to the proportion of Y=1 observations in the dataset.

This (rather useless) model assigns every observation the same predicted probability. It will have good
calibration ! - in future samples the observed proportion will be close to our estimated probability.

However, the model isn't really useful because it doesn't discriminate between those at high risk and those at low
risk. The situation is analogous to a weather forecaster who, every day, says the chance of rain ftomorrow is 10%. This
prediction might be well calibrated (over a long period), but it doesn't tell people whether it is more or less likely to
rain on a given day, and so isn't really a helpful forecast!
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As well as being well calibrated, we would therefore like our model to have high discrimination ability.

In the binary outcome context, this means that observations with Y=1 ought to be predicted high
probabilities, and those with Y=0 ought to be assigned low probabilities.

Such a model allows us to discriminate between low and high risk observations.

Recall the important notions of sensitivity and specificity of a test or prediction rule (from block 1!):
Sensitivity: probability of the model predicting an observation as ‘positive’ given that is frue (Y=1).

In words, the sensitivity is the proportion of truly positive observations which is classified as such by the
model or fest.

Specificity: probability of the model predicting 'negative’ given that the observation is 'negative’ (Y=0).

Our model or prediction rule is perfect at classifying observations if it has 100% sensitivity and 100%
specificity. In practice this is (usually) not aftainable.

So how can we summarize the discrimination ability of our logistic regression modele
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For each observation, our fitted model can be used to calculate the fitted probabilities P(Y = 1|Xy, ... X;)

On their own, these don't tell us how to classify observations as positive or negative.

One way to create such a classification rule is to choose a cut-point ¢, and classify those observations
with a fitted probability > ¢ as positive and those <= ¢ as negative.

For this specific cut-off, the sensitivity is the proportion of observations with Y=1 which have a predicted
probability > ¢, and similarly the specificity is the proportion of Y=0 observations with a predicted
probability <= c:

Predicted Ovuticome
Probability
Y=1 Y=0 Tot Sensibility=a/a+c
cutoff >C a o) a+b
<= S
= S Sute Specificity=d/b+d
Tot a+C b+d N
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If we increase the cut-point ¢, fewer observations will be predicted as positive.

This will mean that fewer of the Y=1 observations will be predicted as positive (reduced sensitivity), but
more of the Y=0 observations will be predicted as negative (increased specificity).

In picking the cut-point, there is thus an intrinsic trade-off between sensitivity and specificity.

Now we come to the ROC curve: we plot all the values of sensitivity against (1-specificity), as the value
of the cut-point ¢ is increased from O through to 1:

=
—

A model with high discrimination ability will
t have high sensitivity and specificity
simultaneously, leading to a ROC curve
which goes close to the top left corner of the

‘ plof.

A model with no discrimination ability will
have an ROC curve which is the 45 degree
diagonal line.

08
|

Sensitivity
06
|

04

0.0
\

1.0 0.8 0.6 0.4 0.2 0.0
Specificity
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Area under the ROC curve:

To summarize the discrimination ability of a model we can report the area under the ROC curve (with
corresponding 95% ClI).

A model with high discrimination ability has an ROC curve which goes closer 1o the top left hand corner
of the plot, whereas a model with low discrimination ability has an ROC curve close to a 45 degree line.

Thus AUC ranges from 1, corresponding to perfect discrimination, to 0.5, corresponding to a model with
no discrimination ability.

The area under the ROC curve is also sometimes referred to as the c-stafistic (c for concordance).

The AUC has a somewhat appealing interpretation:

The AUC is the probability that if you were to take a random pair of observations, one with Y=1 and one
with Y=0, the observation with Y=1 has a higher predicted probability than the other. The AUC thus gives
the probability that the model correctly ranks the risk of such pairs of observations.
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To summarize again... it is a quite long journey ...!

/\ INITIAL DATA ANALYSIS 11!

Defining — Coding/measuring
features/variables

Checking data
problem

quality

e

v" Selection of variables VieE el
v Functional Forms —
v' Interactions

Parameters/Hyperparameters [ 3 Performance

formula estimation

m —) Presentation/Clinical Implementation

On external dataseft !l
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Last but not Least ! B =

° / \ﬂ‘_ T ' \\ .(/ i . 3

Sample Size RN it
\,\ \ ,kvm ; 1-,’ @//

Model development phase: ~

e We should have a large enough sample size 1o develop a model that
provides accurate risk predictions in new individuals from target population

e Many (most?) models do not perform well in new data
Why?

Often:

- small sample sizes (large imprecision)
- overfitting (poor generalization) e

7 N
W
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The well-known concept of degrees of freedom

Yi = Bo + b1 X; + &

What is the minimum number of observations required to estimate this simple linear regression model?

Y Independently from where the second point is, we will always
fit a prefect regression line with two points (R? = 1)...

Only when a third point is included the
model gain some freedom to assess the
best fitting line...(df=1)

v
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Y = Bo + b1X1; + 2X5; + &

What is the minimum number of observations required to estimate this multivariable linear regression model?

Any 3 points in a 3-
dimensional space can
identify a perfect plane

grade vs age vs sex

We need at least 4 points to
gain 1 degree of freedom !

Given k parameters (regression coeff) to be estimated:

df =n—k—1
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Rule-of-thumb: a fitted regression model is likely to be
reliable when the number of predictors p is less than
m/10 or m/20, where m is the limiting sample size

Type of Outcome Limiting sample Size m

Confinuous n (total sample size)
Binary min(n1, n2) Linear regression
Time-to-event Number of failures ror Jpreticion e nesd = 9110 =
30 individuals

Survival model o :

For 3 predictors we need more than 3*10=30 Logistic regression

failure events (eg degﬂqg) ASSUI’ﬂiﬂg that cases is the rarer

category,

for 3 predictors we need more than
3*10=30 cases
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Recent guidelines have been proposed:

Sample size for model Sarpplg size for model
development validation

SLaLiaucs
RESEARCH ARTICLE WILEY

2020

Minimum sample size for external validation of a clinical
prediction model with a continuous outcome

RESEARCH ARTICLE 2018 WILEY Statistics

Minimum sample size for developing a multivariable

prediction model: Part I - Continuous outcomes
Lucinda Archer'® | Kym I. E. Snell’® | Joie Ensor'® | Mohammed T. Hudda?® |

Richard D. Riley'™ | Kym LE. Snell! | Joie Ensor'™® | Danielle L. Burke!® | Gary S. Collins®® | Richard D. Riley'

Frank E. Harrell It? | Karel G.M. Moons® | Gary S. Collins*
Statstics

RESEARCH ARTICLE 2020 WILEY
RESEARCH ARTICLE WILEY Statistics

2018 Minimum sample size for external validation of a clinical
prediction model with a binary outcome

Minimum sample size for developing a multivariable
prediction model: PART II - binary Richard D. Riley'® | Thomas P. A. Debray?® | GaryS. Collins** | Lucinda Archer'® |
and time-to-event outcomes Joie Ensor'® | Maarten van Smeden?® | Kym I. E. Snell

e . STAtstcs \'V]LEY
Richard D Riley!® | Kym IE Snell' | Joie Ensor'® | Danielle L Burke'® | RESEARCH ARTICLE 2021
Frank E Harrell Jr? | Karel GM Moons® | Gary S Collins*
Cal Iat | . Hat i ded to: Minimum sample size calculations for external validation
aiculale sampie size aris neeae O. of a clinical prediction model with a time-to-event outcome
« minimise potential overfitting _ . L 1
. . . Richard D. Riley © | Gary S. Collins* | Joie Ensor'® | Lucinda Archer @ |
) eS'I'lmO'I'e OverO” rISk prec’se’y Sarah Booth*® | Sarwar I. Mozumder*® | Mark J. Rutherford*® |

Maarten van Smeden’® | Paul C. Lambert*¢® | Kym I. E. Snell!

Requires calculations for multiple criterion
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Example: sample size for binary [& fime-to-event] outcomes

Example of criteria o meet: Closed-form formulae for each criterion:

« §20.9 (calibration slope) You should pre-specify:
[< 10% overfitting]

# predictors parameters

desired S (calibration)

Overall «risk» in the target population
Model’'s anticipated R2 / AUC

« R2apparent — R? adjusted < 0.05

« AUC 20.80

pmsampsize

STata

Stata module by Ensor et al: PMSAMPSIZE
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Binary outcome

075 AUC values

300004 , , ' Prevalence/Incidence
20000 - | | | l Sample Size
100004+ | /

cu Prevalence

N "‘ # parameters

CEL | - 0.1 "‘ Sample Size

(g0

W) 300004 | 0.2

200004 - | ‘
| t AUC/R?

100004 |
// __—e———2 Sample
o —— T | Size
10 50 10010 50 100 o
Num. of parameters [similar to larger

effects size in
hypothesis tests]
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We can estimate minimum sample size for contfinuous, binary, and survival
outcomes [sfandard regression approaches]

For ML algorithms, work is in progress in developing simulation-based approaches

Start — Fit surrogate model and predict ¢ —
. l . No .
Stopping ctiterion met? ———  Updating

Yesl

End
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Basic idea : estimation of the shape of the learning curve for increasing sample size, to reach a pre-
defermined performance (with real or simulafed data):

Figueroa et al. BMC Medical Informatics and Decision Making 2012, 12:8 -
http:y/'www biomedcentral.com/1472-6947/12/8 BMC
Medical Informatics & Decision Making

RESEARCH ARTICLE Open Access

Predicting sample size required for classification
performance

5 - IR E 2% B ’ 2 3t
Rosa L Figueroa ', Qing Zeng-Treitler © ', Sasikiran Kandula™ and Long H Ngo

48

v Flexible and applicable to any model and
data format

Learning Curves: Asymptotic Values and
Rate of Convergence

Conn oo, L. Skl S .Sl Vit Voet X Require pre-hoc model specification
(hyperparameters/# of layers..)
The Shape of Learning Curves: a Review X Require available [or syntethic?¢] data

Tom Viering, Marco Loog
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Supplementary materials
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Last but not least (ll) ...clinical usefulness !

npj | precision oncology Comment
Published in partnership with The Hormel Institute, University of Minnesota ] . SUCCGSS |n CICCIdemIO is nOT The SO me

as success in the clinic

https://doi.org/10.1038/s41698-024-00553-6

All models are wrong and yours are useless:
making clinical prediction models impactful

for patients 3. Successful models are linked to actions

2. Successful models use data that are
available in routine practice

https://qithub.com/WintonCentre/predict-v21-main

How might different
treatments for early
invasive breast
COncer improve Home About Predict- Predict Tool Contact Legal~ Cha
survival rates after

surgery 2 What is Predict?

Predict is an online tool that helps patients and clinicians see how different treatments for early invasive breast
cancer might improve survival rates after surgery.

predXCt hitps://breast.predict.cam/

breast cancer

It i= endnread hv the American (lnint Cammittes nn Cancer (AT


https://breast.predict.cam/
https://github.com/WintonCentre/predict-v21-main
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Clinical Usefulness: the Net Benefit

25 predicted probability from the model

s True Positive False Positive ( D¢ )
Pt threshold probability n n 1—p:

p = p¢ Cclinical kactiony % 0.06
® @il [P Madl faun § — Treat all Treatnone -=--- Treat per model
the relative harm is 2 %01
increasing over p, \ R
0.02 :
The true- and false-positives when el .
considering all patients as negative .0 el
are both 0, and NBisO. T e
-0.02
0.2 0.4 0.6 0.8 1.0

Threshold probability

https://mskcc-epi-bio.github.io/decisioncurveanalysis/index.himl



https://mskcc-epi-bio.github.io/decisioncurveanalysis/index.html
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15 20

Relative harm FP/FMN
10

»

Treat none s
(I do not care about FNI)

Treat all 0
(I do not care about FP!) &

Threshald probability

. Chose a value for p;.
. Calculate TP and FP using p; as the cut-point.
. Calculate NB of the prediction model.

. Vary p, over an appropriate range and repeat

steps 2 — 3.

. Plot NB on the y axis against p, on the x axis.

. Repeat steps 1 -5 for each model under

consideration.

. Repeat steps 1 - 5 for the strategy of assuming all

patients are positive (TP and FP fixed).

. Draw a straight line at y=0 : NB assuming that all

patients are negative
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Intervention
for all

—

Benefit

—
h o~

Intervention for none

I'm worried about I'm worried about
disease biopsy

Preference



