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Prediction Models (II): 

performance & sample size

George E.P. Box

(1919 – 2013)

All models are wrong 

but some are useful. 
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Some steps should be considered in developing prediction models:

Validity
Presentation/Clinical 

Implementation

Possibly on external dataset !!!

Defining

problem
Coding/measuring

features/variables
Checking data 

quality

Model’s 

formula

Parameters/Hyperparameters 

estimation
Performance

INITIAL DATA ANALYSIS !!!

✓ Selection of variables

✓ Functional Forms 

✓ Interactions
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HOW TO EVALUATE MODEL PERFORMANCE* (internal validation)

** ML has a further distinction in validation set for hyperparameters and test set for performance  

«Single» Split

K-fold Cross-validation

Original

Dataset 

(size=n)

Training 

set 

(size=m)

Test set 

(size=n-m)

Bootstrap validation

*Note that [ideally] we should validate the entire model building process…
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Classical measure of overall performance: R squared

𝑅2 (coefficient of determination) 

is the proportion of the variance 

for a dependent variable that's 

explained by an independent 

variable in a regression model.

𝑦 = 𝑓 𝑥 + 𝜀
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R squared for multivariable (generalized) models

𝑅2 : % of variation in Y explained by the model 

[adjusted for p=#covariates, n=sample size] 

Binary/[time-to-event] models: 

• Cox and Snell 𝑅2

• Nagelkerke’s 𝑅2

𝑅𝑎𝑑𝑗
2 = 1 − 1 − 𝑅2

𝑛 − 1

𝑛 − 𝑝 − 1

likelihood of the null model with only the intercept vs a given set of parameters

𝑅𝐶𝑆
2 = 1 − exp

2

𝑛
𝑙𝑛 𝐿𝑖𝑘𝑁𝑢𝑙𝑙 − 𝑙𝑛 𝐿𝑖𝑘𝑀𝑜𝑑𝑒𝑙
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Measures of the accuracy of predictions

Are our predictions reliable? 

Calibration: does the model predict accurately? 
calibration slope, 1 : perfect calibration

Discrimination: does the model discriminate well? 
C statistic (AUCROC), 1: perfect discrimination, 0.5 : flipping a coin

TRAINING SET TEST SET 
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For given values of the model covariates, we can obtain the predicted probability:    

𝑃 𝑌 = 1 𝑋1, …𝑋𝑝 =
𝑜𝑑𝑑𝑠

1 + 𝑜𝑑𝑑𝑠
=

𝑒𝑥𝑝 𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑝𝑥𝑝

1 + 𝑒𝑥𝑝 𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑝𝑥𝑝

The model is said to be well calibrated if the observed risk matches the predicted risk 
(probability). 

That is, if we were to take a large group of observations which are assigned a value P(Y=1)=0.2 

the proportion of these observations with Y=1 ought to be close to 20%. 

If instead the observed proportion was 80%, we would probably agree that the model is not 

performing well - it is under-estimating risk for these observations. 

The comparison between predicted probabilities and observed proportions is the basis for the 

Hosmer-Lemeshow (HL) test.

Calibration (binary outcome/logistic regression) 



Block 3.3

Based on the estimated parameter values መ𝛽0, መ𝛽1, … መ𝛽𝑝 , for each observation in the sample the probability 

that Y=1 is calculated, depending on each observation's covariate values:

We divide the sample in groups up according to their predicted probabilities, or risks.

ො𝜋 =
𝑒𝑥𝑝 𝛽0 +𝛽1𝑥1 +⋯+ 𝛽𝑝𝑥𝑝

1 + 𝑒𝑥𝑝 𝛽0 +𝛽1𝑥1 +⋯+ 𝛽𝑝𝑥𝑝

The observations in the sample are then split into g groups according to their predicted 

probabilities. 

Suppose (as is commonly done) that g=10. 

Then the first group consists of the observations with the lowest 10% predicted probabilities. 

The second group consists of the 10% of the sample whose predicted probabilities are next 

smallest, etc etc…
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Suppose for the moment, artificially, that all of the observations in the first group had a predicted 

probability of 0.1. 

Then, if our model is correctly specified, we would expect the proportion of these observations who have 

Y=1 to be 10%. 

Of course, even if the model is correctly specified, the observed proportion will deviate to some extent 

from 10%, but not by too much (random variability…). 

If the proportion of observations with Y=1 in the group were instead 90%, this is suggestive that our model 

is not accurately predicting probability (risk), i.e. an indication that our model is not fitting the data well.

To calculate how many “Y=1” observations we would expect, the Hosmer-Lemeshow test takes the 

average of the predicted probabilities in the i-th group, and multiplies this by the number of 

observations in the group. 

This calculation is then stratified with respect to the observed relative frequency of the outcomes in the 

groups. 
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𝜒𝑔−2 = 

𝑘=0

1



𝑙=1

𝑔
𝑜𝑘𝑙 − 𝑒𝑘𝑙

2

𝑒𝑘𝑙

Provided p+1<g (p=#covariates) the test statistic 

approximately follows a chi-squared distribution with g-2 

degrees of freedom. Differences are computed for the 

“event” (k=1)and for the “non-event” (k=0). 

If the p-value is small, this is indicative of poor fit.

But….a large p-value does not mean the model fits well, 
since lack of evidence against a null hypothesis is not 

equivalent to evidence in favour of the alternative hypothesis…

For example: if our sample size is small, do not reject H0 may 

simply be a consequence of the test having lower power to 

detect misspecification, rather than being indicative of good fit.
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45-year-old male with recent onset of 

hypertension. 

The sum score was 11, the estimated probability 

or renal artery stenosis was 28% [95% confidence 

interval 17–43%].

H-L test, P > 0.2

Krijnen et al., A clinical prediction rule for renal artery 
stenosis.  Annals of Internal Medicine(1998)
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IDEAL MODEL:
• perfect calibration

• calibration slope = 1

Uncalibrated MODEL:
• predicted risks too extreme

• calibration slope < 1

• may lead to harm!Pred > Obs

Pred < Obs
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Calibration plot and its 95% confidence interval, 

from an external validation of a model to 

estimate five year recurrence risk after a primary 

breast cancer diagnosis.

Distribution of estimated risks for those with and with 

no recurrence by five years. 

If a new individual is estimated a risk of 0.8 by 

the model, we could say: 

In a group of 100 individuals with the same 

estimated risk as you, the model suggests that 

between 78 and 100 will have a recurrence by 

five years.

Pred < Obs
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Should we be content to use a model so long as it is well calibrated?  Unfortunately not. 

To see why, suppose we fit a logistic model for our outcome Y but without any covariates, i.e. the model:

This (null) model assigns every observation the same predicted probability : it does not use any 

covariates. 

Therefore  𝛽0 will be the observed overall log odds of a positive outcome, such that the predicted value 

of P(Y=1) will be identical to the proportion of Y=1 observations in the dataset.

𝑃 𝑌 = 1 =
𝑒𝛽0

1 + 𝑒𝛽0

This (rather useless) model assigns every observation the same predicted probability. It will have good 

calibration ! - in future samples the observed proportion will be close to our estimated probability. 

However, the model isn't really useful because it doesn't discriminate between those at high risk and those at low 
risk. The situation is analogous to a weather forecaster who, every day, says the chance of rain tomorrow is 10%. This 

prediction might be well calibrated (over a long period), but it doesn't tell people whether it is more or less likely to 

rain on a given day, and so isn't really a helpful forecast!

Discrimination of a regression model [binary outcome] : AUC of the ROC curve  
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As well as being well calibrated, we would therefore like our model to have high discrimination ability. 

In the binary outcome context, this means that observations with Y=1 ought to be predicted high 

probabilities, and those with Y=0 ought to be assigned low probabilities. 

Such a model allows us to discriminate between low and high risk observations.

Recall the important notions of sensitivity and specificity of a test or prediction rule (from block 1!): 

Sensitivity: probability of the model predicting an observation as 'positive' given that is true (Y=1).

In words, the sensitivity is the proportion of truly positive observations which is classified as such by the 

model or test.

Specificity: probability of the model predicting 'negative' given that the observation is 'negative' (Y=0).

Our model or prediction rule is perfect at classifying observations if it has 100% sensitivity and 100% 

specificity. In practice this is (usually) not attainable. 

So how can we summarize the discrimination ability of our logistic regression model?
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For each observation, our fitted model can be used to calculate the fitted probabilities 𝑃 𝑌 = 1 𝑋1, …𝑋𝑝

On their own, these don't tell us how to classify observations as positive or negative. 

One way to create such a classification rule is to choose a cut-point c, and classify those observations 

with a fitted probability > c as positive and those <= c as negative. 

For this specific cut-off, the sensitivity is the proportion of observations with Y=1 which have a predicted 

probability > c, and similarly the specificity is the proportion of Y=0 observations with a predicted 

probability <= c: 

Predicted

Probability

Outcome

Y=1 Y=0 Tot

cutoff > c a b a+b

<=c c d c+d

Tot a+c b+d n

Sensibility=a/a+c

Specificity=d/b+d



Block 3.3

If we increase the cut-point c, fewer observations will be predicted as positive. 

This will mean that fewer of the Y=1 observations will be predicted as positive (reduced sensitivity), but 

more of the Y=0 observations will be predicted as negative (increased specificity). 

In picking the cut-point, there is thus an intrinsic trade-off between sensitivity and specificity.

Now we come to the ROC curve: we plot all the values of sensitivity against (1-specificity), as the value 

of the cut-point c is increased from 0 through to 1:

A model with high discrimination ability will 

have high sensitivity and specificity 

simultaneously, leading to a ROC curve 

which goes close to the top left corner of the 

plot. 

A model with no discrimination ability will 

have an ROC curve which is the 45 degree 

diagonal line.
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Area under the ROC curve: 

To summarize the discrimination ability of a model we can report the area under the ROC curve (with 

corresponding 95% CI). 

A model with high discrimination ability has an ROC curve which goes closer to the top left hand corner 

of the plot, whereas a model with low discrimination ability has an ROC curve close to a 45 degree line. 

Thus AUC ranges from 1, corresponding to perfect discrimination, to 0.5, corresponding to a model with 

no discrimination ability. 

The area under the ROC curve is also sometimes referred to as the c-statistic (c for concordance).

The AUC has a somewhat appealing interpretation: 

The AUC is the probability that if you were to take a random pair of observations, one with Y=1 and one 

with Y=0, the observation with Y=1 has a higher predicted probability than the other. The AUC thus gives 

the probability that the model correctly ranks the risk of such pairs of observations.
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Validity Presentation/Clinical Implementation

On external dataset !!!

To summarize again… it is a quite long journey …!

Defining

problem
Coding/measuring

features/variables
Checking data 

quality

Model’s 

formula

Parameters/Hyperparameters 

estimation
Performance

INITIAL DATA ANALYSIS !!!

✓ Selection of variables

✓ Functional Forms 

✓ Interactions
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Last but not Least ! 

Sample Size

Model development phase:

• We should have a large enough sample size to develop a model that

provides accurate risk predictions in new individuals from target population

• Many (most?) models do not perform well in new data

Why?

Often: 

- small sample sizes (large imprecision)

- overfitting (poor generalization)
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The well-known concept of degrees of freedom

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖

What is the minimum number of observations required to estimate this simple linear regression model? 

X

Y Independently from where the second point is, we will always

fit a prefect regression line with two points (𝑅2 = 1)…

Only when a third point is included the 

model gain some freedom to assess the 

best fitting line…(df=1)
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𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝜀𝑖

What is the minimum number of observations required to estimate this multivariable linear regression model? 

Any 3 points in a 3-

dimensional space can 

identify a perfect plane

We need at least 4 points to 

gain 1 degree of freedom !

𝑑𝑓 = 𝑛 − 𝑘 − 1

Given k parameters (regression coeff) to be estimated:  
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Rule-of-thumb: a fitted regression model is likely to be

reliable when the number of predictors p is less than

m/10 or m/20, where m is the limiting sample size

Type of Outcome Limiting sample Size m

Continuous n (total sample size)

Binary min(n1, n2) 

Time-to-event Number of failures

Linear regression
For 3 predictors we need > 3*10 = 

30 individuals 

Logistic regression
Assuming that cases is the rarer 

category,

for 3 predictors we need more than

3*10=30 cases 

Survival model 
For 3 predictors we need more than 3*10=30 

failure events (eg. deaths) 
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Sample size for model 

development 

Sample size for model 

validation 

Recent guidelines have been proposed:

2018

2018

2020

2021

2020

Calculate sample size that is needed to: 

• minimise potential overfitting

• estimate overall risk precisely

Requires calculations for multiple criterion



Block 3.3

Example: sample size for binary [& time-to-event] outcomes

Stata module by Ensor et al: PMSAMPSIZE

pmsampsize

Closed-form formulae for each criterion:

You should pre-specify: 

• # predictors parameters

• desired S (calibration)

• Overall «risk» in the target population

• Model’s anticipated R2 / AUC 

Example of criteria to meet:

• S ≥ 0.9 (calibration slope)

[< 10% overfitting]

• R2 apparent – R2 adjusted < 0.05

• AUC ≥ 0.80 
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AUC values

Prevalence/Incidence

Sample Size 

# parameters

Sample Size

Sample 

Size

[similar to larger

effects size in 

hypothesis tests]

Binary outcome
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We can estimate minimum sample size for continuous, binary, and survival 

outcomes [standard regression approaches]

For ML algorithms, work is in progress in developing simulation-based approaches
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Basic idea : estimation of the shape of the learning curve for increasing sample size, to reach a pre-

determined performance (with real or simulated data): 

✓ Flexible and applicable to any model and 

data format

Require pre-hoc model specification

(hyperparameters/# of layers..)

Require available [or syntethic?] data
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Supplementary materials
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Last but not least (II) …clinical usefulness !

1. Success in academia is not the same

as success in the clinic

2. Successful models use data that are 

available in routine practice

3. Successful models are linked to actions

How might different 

treatments for early 

invasive breast 

cancer improve 

survival rates after 

surgery ?

https://breast.predict.cam/

https://github.com/WintonCentre/predict-v21-main

https://breast.predict.cam/
https://github.com/WintonCentre/predict-v21-main
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Clinical Usefulness: the Net Benefit   

Ƹ𝑝

𝑝𝑡

predicted probability from the model

threshold probability

Ƹ𝑝 ≥ 𝑝𝑡

𝑁𝐵 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑛
−
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑛

𝑝𝑡
1 − 𝑝𝑡

clinical «action» 

https://mskcc-epi-bio.github.io/decisioncurveanalysis/index.html

The true- and false-positives when 

considering all patients as negative 

are both 0, and NB is 0.

TP and FP fixed but

the relative harm is

increasing over 𝑝𝑡

https://mskcc-epi-bio.github.io/decisioncurveanalysis/index.html
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Treat all
(I do not care about FP!) 

Treat none
(I do not care about FN!) 

1. Chose a value for 𝑝𝑡. 

2. Calculate TP  and FP using 𝑝𝑡 as the cut-point. 

3. Calculate NB of the prediction model. 

4. Vary 𝑝𝑡 over an appropriate range and repeat 

steps 2 – 3. 

5. Plot NB on the y axis against 𝑝𝑡 on the x axis. 

6. Repeat steps 1 – 5 for each model under 

consideration. 

7. Repeat steps 1 – 5 for the strategy of assuming all 

patients are positive (TP and FP fixed). 

8. Draw a straight line at y=0 : NB assuming that all 

patients are negative
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