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2¢ > d(p, Q) + dQ, q) = d(p, q) = 6,
which contradicts the definition of e. Q.E.D.

Putting together Props. 1,2, and 3, we obtain the following theorem,
which is the main goal of this section.

THEOREM. Let S < R3? be a regular compact orientable surface. Then
there exists a differentiable function g: V — R, defined in an open set V < R3,
with V o S (precisely a tubular neighborhood of S), which has zero as a regular
value and is such thar S = g~*(0). .

Remark 1. 1t is possible to prove the existence of a tubular neighborhood
of an orientable surface, even if the surface is not compact; the theorem is
true, therefore, without the restriction of compactness. The proof is, however,
more technical. In this general case, the €(p) > 0 is not constant as in the
compact case but may vary with p.

Remark 2. 1t is possible to prove that a regular compact surface in R? is
orientable; the hypothesis of orientability in the theorem (the compact case)
is therefore unnecessary. A proof of this fact can be found in H. Samelson,
“Orientability of Hypersurfaces in R*,” Proc. 4.M.S. 22 (1969), 301-302.

2-8. A Geometric Definition of Area’

In this section we shall present a geometric justification for the definition of
area given in Sec. 2-5. More precisely, we shall give a geometric definitior of
area and shall prove that in the case of a bounded region of a regular surface
such a definition leads to the formula given for the area in Sec. 2-5.

To define the area of a region R — S we shall start with a parsition ® of
R into a finite number of regions R,, that is, we write R = |_J, R,, where the
intersection of two such regions R, is either empty or made up of boundary
points of both regions (Fig. 2-33). The digmeter of R, is the supremum of-the
distances (in R?) of any two points in R;; the largest diameter of the R,’s of a
given partition @ is called the norm y of ®. If we now take a partition of each
R,, we obtain a second partition of R, which is said to refine ®.

Given a partition

R=JR,
of R, we choose arbitrarily points p, € R, and project R, onto the tangent

1This section may be omitted on a first reading.
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R;

Figure 2-33

plane at p, in the direction of the normal line at p,; this projection is denoted
by R, and its area by 4(R,). The sum ¥; A(R)) is an approximation of what
we understand intuitively by the area of R.

If, by choosing partitions ®;,...,®,, ... more and more refined and
such that the norm g, of @, converges to zero, there exists a limit of Y, A(R)
and this limit is independent of all choices, then we say that R has an area
A(R) defined by

A(R) = 1in% zi; A(R).
B

An instructive discussion of this definition can be found in R. Courant,
Differential and Integral Calculus, Vol. II, Wiley-Interscience, New York,
1936, p. 311. ‘

We shall show that a bounded region of a regular surface does have an
area. We shall restrict ourselves to bounded regions contained in a coordinate
neighborhood and shall obtain an expression for the area in terms of the
coefficients of the first fundamental form in the corresponding coordinate
System.

PROPOSITION. Ler x: U— S be a coordinate system in a regular
surface S and let R = x(Q) be a bounded region of S contained in X(U). Then
R has an area given by

AR) = “~ Ix, A x,|dudv.

Proof. Cons1der a partition, R = |_J, R,, of R. Since R is bounded and
closed- (hence, compact), we can assume that the partition is sufficiently
refined so that any two normal lines of R, are never orthogonal. In fact,
because the normal lines vary continuously in S, there exists for each p € R
a neighborhood of p in S where any two normals are never orthogonal;
these neighborhoods constitute a family of open sets covering R, and consid-
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ering a partition of R the norm of which is smaller than the Lebesgue number
of the covering (Sec. 2-7, Property 3 of compact sets), we shall satisfy the
required condition.

Fix a region R, of the partition and choose a point p, € R, = x(Q,). We
want to compute the area of the normal projection R, of R, onto the tangent
plane at p,. To do this, consider a new system of axes p;xyz in R3, obtained
from Oxyz by a translation Op,, followed by a rotation which takes the z
axis into the normal line at p, in such a way that both systems have the same
orientation (Fig. 2-34). In the new axes, the parametrization can be written

X(u, v) = (xX(u, v), Y(u, v), Z(u, v)),

where the explicit form of X(u, v) does not interest us; it is enough to know
that the vector X(u, v) is obtained from the vector x(u, ) by a translation
followed by an orthogonal linear map.

We observe that d(x, y)/d(u, v) # 0 in Q;; othch1se the z component of
some normal vector in R, is zero and there are two orthogonal normal lines
in R;, a contradiction of our assumptions.

Figure 2-34
The expression of A(R) is given by
AR) = j j L dEdy.

Since d(x, y)/d(u, v) =0, we can consider the change of coordinates X =
X(u, v), y = y(u, v) and transform the above expression into

AR) = f N ggx, f) g du dv.
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We remark now that, at p,, the vectors X, and X, belong to the xJ plane;
therefore,

’

0

Ny
N,y

a — ey .
a_ - a_ - 0 at Pis
hence,
I, )| _ | 9% , 0%
3, v)| /\ 3| At pe
It follows that
dE 7| |ax , 9%x| _
a(u’ ?)) -0_u' /\ 0'0 — El(u, v),. (u, ’Z)) e Ql.,

where €(u, v) is a continuous function in Q, with e,(x‘l(l;,)) = 0. Since the
length of a vector is preserved by translatxons and orthogonal linear maps, we
obtain

a(%, 7)

x| _ (3% , %] _ i 5)| _
A 3o |~ G, v)l €4x, ).

gu Nawl = |ou

Now let M, and m, be the maximum and the minimum of the continuous
function €,(u, v) in the compact region Q,; thus,

— 1 d(u, v)

ffg‘dudv<A(R)——ff

Doing the same for all R,, we obtain

du /\(91)

J

hence,

N\ dwdo <, [ [ au.

S mAQ) < T AR — [[ 1% A x| dudo <33 MAQ).

Now, refine more and more the given partition in such a way that the
norm g — 0. Then M, — m,. Therefore, there exists the limit of 3 A(R),

given by
)

which is clearly independent of the choice of the partitions and of the point
p; in each partition. Q.E.D.

du dv,
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du



