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Preface to the 
Second Edition 

In the decade following the publication of the first edition of this 
text, numerous "reform" documents recommended major changes 
in the way mathematics should be taught. These included publica­
tions from the National Research Council (NRC), the Mathematical 
Association of America (MAA), the American Mathematical Asso­
ciation of 'TWo-Year Colleges (AMATYC), and the National Council 
of Teachers of Mathematics (NCTM). In response, the National Sci­
ence Foundation (NSF) funded several calculus reform and school 
curriculum projects. 

Some of the reform documents contain specific recommenda­
tions for changes in geometry education. For example, Standards 7 
and 8 in the 9-12 section of the NCTM Curriculum and Evaluation 
Standards for School Mathematics (1989) and the comparable focus 
areas for grades 9-12 in the updated 1998 version recommend both 
synthetic and analytic treatments of geometry with emphasis on the 
representation and use of geometric transformations and symmetry. 
As a result, the geometric content of several NSF school curriculum 
projects includes coverage of transformations and symmetry (for ex­
ample, Contemporary Mathematics in Context, Interactive Mathematics 
Program and Mathematics: Modeling Our World). These curricula are 
prodUCing students with new skills and ways of understanding that 
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VI Preface to the Second Edition 

university-level faculty must be equipped to teach. Furthermore, 
they require that university-level mathematics curricula include 
appropriate geometric education for future teachers of secondary 
mathematics. 

At the college/university level, the Consortium for Mathematics 
and its Applications (COMAP) sponsored a 1990 study conference 
aimed at revitalizing geometry with special attention to the survey 
geometry course. Their recommendations and samples of teaching 
materials are contained in the publication Geometry's Future. Among 
the wealth of suggestions and recommendations contained in this 
volume (pp. vi-vii) are the following: 

• Geometric objects and concepts should be studied more from an 
experimental and inductive point of view rather than from an ax­
iomatic point of view. (Results suggested by inductive approaches 
should be proved.) 

• Recent developments in geometry should be included. 
• A wide variety of computer environments should be explored ... 

both as exploratory tools and for concept development. 
• More use of diagrams and physical models as aids to conceptual 

development in geometry should be explored. 
• Group learning methods, writing assignments, and projects 

should become an integral part of the format in which geometry 
is taught. 

Another major factor affecting geometry has been the new 
widespread availability of high-speed computers. These computers 
enabled the development of dynamic geometryl software CDgS) 
now used to enhance the teaching of geometry. In addition, 
computer-produced high-speed computations and high-resolution 
graphics played a major role in the development of chaos theory 
and fractal geometry, disciplines brought to popular attention by 
James Gleick's 1987 book, Chaos: Making a New Science. 

I Here and throughout this volume, the term "dynamic geometry" is used in its 
broadest sense. Although Key Curriculum Press has trademarked the phrase, the 
author's use of the phrase does not refer to any particular computer software or 
published software support materials. 
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Preface to the Second Edition Vll 

Renewed interest in geometry by mathematicians and scientists 
led NSF to fund several other geometry-related projects. These in­
cluded the Geometry Center (a science and technology research 
center for the computation and visualization of geometric struc­
tures at the University of Minnesota), the Visual Geometry Project 
at Swarthmore College, and the Park City Regional Geometry Insti­
tute (now known as the lAS/Park City Math Institute) in Utah. Each 
of these placed major emphasis on school geometry. In addition, 
NSF-funded conferences at St. Olaf College in 1992 (Computers in 
Geometry Classrooms) and 1997 (Inquiry-Based Geometry Through­
out the Secondary Curriculum), where participants investigated the 
reform suggestions and the use of dynamic geometry software to 
enhance the teaching of geometry and to increase geometric visu­
alization throughout mathematics. Several ideas explored at these 
conferences are elaborated in the 1997 MAA publication, Geometry 
TUrned On! Dynamic Software in Learning, Teaching, and Research. 

Changes in the Second Edition 

In light of these developments and recommendations, this edition 
extends the first edition's emphasis on transformations. New sec­
tions guide hands-on experimentation with transformations and 
point to web-located suggestions for similar experimentation using 
dynamic geometry software. The transformation emphasis is further 
enhanced in a new chapter-length treatment of fractal geometry. 
These additions and changes are detailed below. 

1. New geometric explorations 

The explorations offer opportunities for collaborative construction 
of knowledge through activities that emphasize visualization. They 
are designed to lead to student discovery before formal presentation 
of concepts, or they can be used to enhance understanding follow­
ing concept introduction. The Chapter 3 explorations emphasize 
symmetry, a topic that has assumed major importance as mathe­
maticians rethink the nature of mathematics. These and the other 
explorations can be supplemented via the use of dynamic geometry 
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software with parallel activities written specifically for The Geome­
ter's Sketchpad2 and Cabri Geometry II.3 These software-dependent 
activities are located on the web (with text pointers to their loca­
tion) so that they can be updated as the software evolves. A list of 
the explorations is given in the table below. 

Geometric Explorations 
Tide Location 
Exploring Dynamic Geometry Software (DQS) Web 
Exploring the Hyperbolic Plane with VQS Web 
Exploring the Double Elliptic plane 2.9 
Exploring Line and Point Reflections 3.2* 
Exploring Rotations and Finite Symmetry Groups 3.3* 
Exploring Translations and Frieze 

Pattern Symmetries 3.4* 
Exploring Plane Tilings 3.11 * 
Exploring 3-D Isometries 3.14 

* Indicates web supplements using dynamic geometry software. 

2. New fractal geometry chapter 

Chaos theory and fractal geometry are Significant areas of mat he mat­
ical and scientific interest with many results recently discovered by 
living mathematicians and scientists. Also, since fractal geometry is 
now used in many video and movie scenes, its study has contem­
porary appeal, and can enhance understanding of the visual images 
bombarding us daily. Thus, unlike the other geometries covered in 
this text, fractal geometry is actually "modern./I In fact, it is so new 
that the term fractal is often not rigorously defined, and commonly 
accepted formal axiomatic treatments of this geometry do not yet 
exist. 

The text conveys the excitement and importance of this "evolving 
geometry" by incorporating descriptions from the wealth of expos­
itory fractal literature and by involving readers in activities that 
have recently led to major discoveries. The presentation stresses 
the property of self-similarity (i.e., scale-invariant symmetry) and 

2 A trademark of Key Curriculum Press. 
3 A trademark ofUniversite Joseph Fourier. 
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emphasizes the central role of transformations. Viewed from this 
perspective, fractal geometry is an extension of the geometry cov­
ered in Chapter 3. And its study provides an exciting current event 
setting in which to apply major concepts from that chapter. 

Fractal geometry also exhibits close connections to analysis and 
topology. However, since the presentation of fractal geometry is in­
tended to be introductory and descriptive with the goals of building 
intuition and applying geometric transformations, the chapter al­
ludes to, but does not require substantial background in, these topics. 
Thus, fractal terms arising from analysis and topology (e.g., bound­
ary, connected, etc.), are given descriptive explanations that should 
be adequate at this level. 

3. Other changes 

• Chapter 1: Parallel web-based explorations of Cabri Geometry II 
and Geometer'S Sketchpad review basic concepts of Euclidean ge­
ometry. Students with access to one or both of these programs 
are encouraged to become familiar with this dynamic geometry 
software in preparation for suggested explorations in Chapters 
2-5 which contain specific directions for using either of these 
programs. 

• Chapter 2: (1) Parallel web-based explorations of the Poincare 
model using Cabri Geometry II and Geometer's Sketchpad enable 
students to discover concepts of hyperbolic geometry before their 
formal presentation. (2) At the suggestion of several instruc­
tors, a new statement clarifies the "left versus right" distinction 
for sensed parallels. (3) The section on elliptic geometry now 
contains more guided directions for exploring double elliptic 
geometry via a spherical model. 

• Chapter 3: (1) An initial discussion introduces the concept of 
symmetry and new explorations emphasize constructive un­
derstanding of the Euclidean transformations. In particular, 
reflections, rotations, translations and glide reflections are ex­
plored before the analytic model is set up and used to confirm 
properties of these transformations. (2) The early introduction of 
these transformations necessitates revisions of several theorems 
and their proofs. And the theorem showing that all isometries are 
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products of reflections has been restated to spell out the exact 
products involved. (3) Vectors are now used in the definition 
of translations, glide reflections, and dilations. (4) The particu­
lar linear transformations used are now correctly referred to as 
"affine." 

• Chapter 4: Several exercise sets now include pointers to web-based 
instructions for carrying out specific exercises using dynamic 
geometry software. 

Appreciation 

For the additions to this second edition, I owe much to the people 
in our St. Olaf "geometry group," Martha Wallace and Richard Allen, 
faculty members ofthe St. Olaf mathematics department, and Dale 
Pearson, a secondary mathematics teacher in St. Paul, Minnesota. 
Their hard work and professional expertise were vital to the success 
of the St. Olaf geometry projects4 for which early versions of some 
of these materials were prepared. Their inspiration and suggestions 
have supported my continued development of these materials. 

In addition to the encouragement offered by these people, I 
am indebted to my students and to the participants in our geom­
etry workshops for their willingness to use early versions and their 
thoughtful suggestions for improvements. Also, I must once again 
acknowledge the wonderfully encouraging environment provided 
by my colleagues in the St. Olaf mathematics department and, most 
importantly, by my husband Jim. 

I am also very grateful for the support given me during two terms 
as a visitor in other departments: (1) the University of Washington 
mathematics department, during the 1991-92 academic year where 
James King encouraged my initial efforts at writing geometry lab 

4 These projects and their culminating national conferences were supported 
by the National Science Foundation through Thacher Enhancement Projects 
TPE8955118 and ESI9355671. 
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materials;5 and (2) the mathematics and statistics department at the 
University of Canterbury in Christchurch New Zealand during the 
1998-99 academic year where kind hospitality and wonderful fa­
cilities enabled me to accomplish most of the final work on this 
project. 

Several of the changes and corrections included in this edition 
have been made as a result of suggestions of others. In addition 
to those already thanked in the third printing (David Flesner, Ockle 
Johnson, and Myrtle Lewin), I must add my thanks to Steven Hetzler, 
Janelle Sharoni, and John Wolfskill. 

Note to Instructors 

I have found that incorporating geometric explorations and fractal 
geometry in the courses I teach makes them more rewarding for 
both my students and myself. I sincerely hope that materials in this 
text will be rewarding for you and your students as well. Toward this 
end, I offer these suggestions . 

• Use of Explorations: The explorations are intended to supplement 
and enhance student understanding (but a course based on the 
text can be taught without these sections). They can be used ei­
ther in scheduled classes/labs or as assignments to be completed 
outside offormal class meetings. The explorations are designed to 
be done by students without instructor guidance and are most ef­
fective when used by groups of two or three with group members 
alternating roles as instruction reader, implementer, etc. To allow 
scheduling flexibility in Chapter 3, definitions first introduced in 
an exploration are restated later as needed. 

• Chapter Sequencing: The new fractal geometry chapter (Chapter 
5) is designed as a sequel to Chapter 3. So a course can be based 
on Chapters 1-3 plus either Chapter 4 or 5. If only Chapter 4 
is used, Chapter 5 can be assigned to interested students as an 

5 The development of the original geometry labs was partially supported by the 
FIPSE funded project, Materials Development for Advanced Computing in the 
Undergraduate Mathematics Curriculum, P1l6BI0330. 
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independent study project. Ifboth Chapters 4 and 5 are used, the 
order of coverage of the chapters can be interchanged. 

• Supplementary References: 1b find more information about the 
recommendations and references noted previously, check the 
following sources. 

- COMAP (1990). Geometry's Future, Arlington MA: COMAP. 
- King, James and Schattschneider, Doris (1997). Geometry 

TUrned On! Dynamic Software in Learning, Teaching, and 
Research, MAA Notes 4l. 

- NRC. (1989). Everybody Counts, National Research Council. 
- Lehrer, Richard, and Chazan, Daniel (1998). Designing Learn-

ing Environments for Developing Understanding of Geometry and 
Space, Mahwah NJ: Lawrence Erlbaum Associates, Inc. 

- NCTM (1989). Curriculum and Evaluation Standards for School 
Mathematics, Reston VA: National Council of Teachers of 
Mathematics. 

- NCTM (1998). Principles and Standards for School Mathematics: 
Discussion Draft, Reston VA: National Council of Teachers of 
Mathematics. 

• New Secondary Mathematics Curricula: 

- COMAP (1998). Mathematics: Modeling Our World, Cincinnati 
OR: South-Western Educational Publishing. 

- Core-Plus Mathematics Project (1998). Contemporary Mathe­
matics in Context, Chicago: Everyday Learning Corporation. 

- Fendel, D., Resek, D., Alper L., and Fraser S. (1998). Interactive 
Mathematics Program, Berkeley: Key Curriculum Press. 

• Text Website: This site contains the dynamic software explorations 
and a list of other suggested resources: 
http://www.stolaf.edu/people/cederj/geotext/info.htm. 

Judith N. Cederberg 
cederj@stolaf.edu 
http://www.stolaf.edu/people/cederj/ 
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Preface to the 
First Edition 

The origins of geometry are lost in the mists of ancient history, 
but geometry was already the preeminent area of Greek mathemat­
ics over 20 centuries ago. As such, it became the primary subject 
of Euclid's Elements. The Elements was the first major example of 
a formal axiomatic system and became a model for mathematical 
reasoning. However, the eventual discoveries of non-Euclidean ge­
ometries profoundly affected both mathematical and philosophical 
understanding of the nature of mathematics. The relation between 
Euclidean and non-Euclidean geometries became apparent with the 
development of projective geometry-a geometry with origins in 
artists' questions about perspective. 

This interesting historical background and the major philosoph­
ical questions raised by developments in geometry are virtually 
unknown to current students, who often view geometry as a dead 
subject full of two-column proofs of patently clear results. It is no 
surprise that Mary Kantowski, in an article entitled "Impact of Com­
puting on Geometry," has called geometry "the most troubled and 
controversial topic in school mathematics today" (Fey, 1984, p. 31). 
However, this and many other recent articles provide evidence for 
an increasing realization that the concepts and methods of geome­
try are becoming more important than ever in this age of computer 
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graphics. The geometry of the artists, projective geometry, has be­
come the tool of computer scientists and engineers as they work on 
the frontiers of CAD/ CAM (computer-aided design/ computer-aided 
manufacturing) technology. 

The major emphasis of this text is on the geometries developed 
after Euclid's Elements (circa 300 B.C.). In addition to the primary 
goal of studying these "newer" geometries, this study provides an 
excellent opportunity to explore aspects of the history ofmathemat­
ics. Also, since algebraic techniques are frequently used, this study 
demonstrates the interaction of several areas of mathematics and 
serves to develop geometrical insights into mathematical results that 
previously appeared to be completely abstract in nature. 

Since Euclid's geometry is historically the first major example of 
an axiomatic system and since one of the major goals of teaching 
geometry in high school is to expose students to deductive reason­
ing, Chapter 1 begins with a general description of axiomatic (or 
deductive) systems. Following this general introduction, several fi­
nite geometries are presented as examples of specific systems. These 
finite geometries not only demonstrate some of the concepts that oc­
cur in the geometries of Chapters 2 through 4, but also indicate the 
breadth of geometrical study. 

In Chapter 2, Euclid's geometry is first covered in order to provide 
historical and mathematical preparation for the major topic of non­
Euclidean geometries. This brief exposure to Euclid's system serves 
both to recall familiar results of Euclidean geometry and to show how 
few substantial changes have occurred in Euclidean geometry since 
Euclid formulated it. The non-Euclidean geometries are then intro­
duced to demonstrate that these geometries, which appear similar 
to Euclidean geometry, have properties that are radically different 
from comparable Euclidean properties. 

The beginning of Chapter 3 serves as a transition from the 
synthetic approach of the previous chapters to the analytic treat­
ment contained in the remainder of this chapter and the next. 
There follows a presentation of Klein's definition of geometry, 
which emphasizes geometrical transformations. The subsequent 
study of the transformations of the Euclidean plane begins with 
isometries and similarities, and then progresses to the more general 
transformations called affinities. 
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By using an axiomatic approach and generalizing the transfor­
mations of the Euclidean plane, Chapter 4 offers an introduction to 
projective geometry and demonstrates that this geometry provides a 
general framework within which the geometries of Chapters 2 and 3 
can be placed. Mathematically, the next logical step in this process is 
the study of topology, which is usually covered in a separate course. 

This text is designed for college-level survey courses in geome­
try. Many of the students in these courses are planning to pursue 
secondary-school teaching. However, with the renewed interest in 
geometry, other students interested in further work in mathemat­
ics or computer science will find the background provided by these 
courses increasingly valuable. These survey courses can also serve 
as an excellent vehicle for demonstrating the relationships between 
mathematics and other liberal arts disciplines. In an attempt to en­
courage student reading that further explores these relationships, 
each chapter ends with a section that lists suggested bibliographic 
scmrces for relevant topics in art, history, applications, and so on. I 
have found that having groups of students research and report on 
these topics not only introduces them to the wealth of expository 
writing in mathematics, but also provides a way for them to share 
their acquired insights into the liberal arts nature of mathematics. 

The material contained in this text is most appropriate for junior 
or senior mathematics majors. The only geometric prerequisite is 
some familiarity with elementary secondary-school geometry. Since 
the text makes frequent use of matrix algebra and occasional refer­
ences to more general concepts of linear algebra, a background in 
elementary linear algebra is helpful. Because the text introduces the 
concept of a group and explores properties of geometric transforma­
tions, a course based on this text provides excellent preparation for 
the standard undergraduate course in abstract algebra. 

I am especially grateful for the patient support of my husband 
and the general encouragement of my colleagues in the St. Olaf 
Mathematics Department. In particular, I wish to thank our depart­
ment chair, Theodore Vessey, for his support and our secretary, 
Donna Brakke, for her assistance. I am indebted to the many St. Olaf 
alumni who studied from early drafts of the text and to Charles M. 
Lindsay for his encouragement after using preliminary versions of 
the text in his courses at Coe College in Cedar Rapids, Iowa. Others 
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who used a preliminary version of the text and made helpful sugges­
tions are Thomas Q Sibley of St. John's University in Collegeville, 
Minnesota, and Martha L. Wallace of St. Olaf College. I am also in­
debted to Joseph Malkevitch of York College of the City University 
of New York for serving as mathematical reader for the text, and to 
Christina Mikulak for her careful editorial work. 

Judith N. Cederberg 
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CHAPTER 

Axiomatic 
Systems and 
Finite 
Geometries 

1.1 Gaining Perspective* 

Finite geometries were developed in the late nineteenth century, 
in part to demonstrate and test the axiomatic properties of com­
pleteness, consistency, and independence. They are introduced in this 
chapter to fulfill this historical role and to develop both an appreci­
ation for and an understanding of the revolution in mathematical 
and philosophical thought brought about by the development of 
non-Euclidean geometry. In addition, finite geometries provide rel­
atively simple axiomatic systems in which we can begin to develop 
the skills and techniques of geometric reasoning. The finite geome­
tries introduced in Sections 1.3 and 1.5 also illustrate some of the 
fundamental properties of non-Euclidean and projective geometry. 

Even though finite geometries were developed as abstract sys­
tems, mathematicians have applied these abstract ideas in designing 
statistical experiments using Latin squares and in developing error­
correcting codes in computer science. Section 1.4 develops a simple 

• Supplementary dynamic geometry software activities are available at the 
websne:http://wvw.stolaf.edu/people/cederj/geotext/info.htm. 
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2 1. Axiomatic Systems and Finite Geometries 

error-correcting code and shows its connection with finite projective 
geometries. The application of finite affine geometries to the build­
ing of Latin squares is equally intriguing. Since Latin squares are 
clearly described in several readily accessible sources, the reader is 
encouraged to explore this topic by consulting the resources listed 
at the end of this chapter. 

In studying finite axiomatic systems, you are encouraged to 
take advantage of the visual nature of geometry by construct­
ing illustrations. These can be drawn using paper and pencil, 
or built with concrete objects such as yarn and game chips. 
While working through this first chapter, you are also encour­
aged to become familiar with dynamic geometry software (DGS). 
This new tool enables accurate renditions of traditional com­
pass and straightedge constructions that then can be dynamically 
rearranged by dragging initial objects. Introductions featuring activ­
ities that review basic ideas in Euclidean geometry are available 
for both Geometer's Sketchpad and Cabri Geometry at the web­
site: http://www.stolaf.edu/people/cederj/geotext/info.htm. 
You are encouraged to become familiar with one or both of these pro­
grams so that you can carry out explorations suggested in Chapters 2 

through 5. 

1.2 Axiomatic Systems 

The study of any mathematics requires an understanding of the na­
ture of deductive reasoning; frequently, geometry has been singled 
out for introducing this methodology to secondary school students. 
There are important historical reasons for chOOSing geometry to ful­
fill this role, but these reasons are seldom revealed to secondary 
school initiates. This section introduces the terminology essential 
for a discussion of deductive reasoning so that the extraordinary in­
fluence of the history of geometry on the modern understanding of 
deductive systems will become evident. 

Deductive reasoning takes place in the context of an organized 
logical structure called an axiomatic (or deductive) system. Such a 
system consists of the components listed below: 
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Components of an Axiomatic System 

1. Undefined terms. 
2. Defined terms. 
3. Axioms. 
4. A system oflogic. 
5. Theorems. 

Undefined terms are included since it is not possible to define all 
terms without resorting to circular definitions. In geometrical sys­
tems these undefined terms frequently, but not necessarily, include 
point, line, plane and on. Defined terms are not actually necessary, 
but in nearly every axiomatic system certain phrases involving un­
defined terms are used repeatedly. Thus, it is more efficient to 
substitute a new term, that is, a defined term, for each of these 
phrases whenever they occur. For example, in Euclidean geometry 
we substitute the term "parallel lines" for the phrase "lines that do 
not intersect:' Furthermore, it is impossible to prove all statements 
constructed from the defined and undefined terms of the system 
without circular reasoning, just as it is impossible to define all terms. 
So an initial set of statements is accepted without proof. The state­
ments that are accepted without proof are known as axioms. From 
the axioms, other statements can be deduced or proved using the 
rules of inference of a system of logic (usually Aristotelian). These 
latter statements are called theorems. 

As noted earlier, the axioms of a system must be statements con­
structed using the terms of the system. But they cannot be arbitrarily 
constructed since an axiom system must be consistent. 

Definition 1.1 . 
An axiomatic system is said to be consistent if there do not exist in 
the system any two axioms, any axiom and theorem, or any two 
theorems that contradict each other. 

It should be clear that it is essential that an axiomatic system be 
consistent, since a system in which both a statement and its nega­
tion can be proved is worthless. However, it soon becomes evident 
that it would be difficult to verify consistency directly from this def­
inition, since all possible theorems would have to be considered. 

1.2. Axiomatic Systems 3 

Components of an Axiomatic System 

1. Undefined terms. 
2. Defined terms. 
3. Axioms. 
4. A system oflogic. 
5. Theorems. 

Undefined terms are included since it is not possible to define all 
terms without resorting to circular definitions. In geometrical sys­
tems these undefined terms frequently, but not necessarily, include 
point, line, plane and on. Defined terms are not actually necessary, 
but in nearly every axiomatic system certain phrases involving un­
defined terms are used repeatedly. Thus, it is more efficient to 
substitute a new term, that is, a defined term, for each of these 
phrases whenever they occur. For example, in Euclidean geometry 
we substitute the term "parallel lines" for the phrase "lines that do 
not intersect:' Furthermore, it is impossible to prove all statements 
constructed from the defined and undefined terms of the system 
without circular reasoning, just as it is impossible to define all terms. 
So an initial set of statements is accepted without proof. The state­
ments that are accepted without proof are known as axioms. From 
the axioms, other statements can be deduced or proved using the 
rules of inference of a system of logic (usually Aristotelian). These 
latter statements are called theorems. 

As noted earlier, the axioms of a system must be statements con­
structed using the terms of the system. But they cannot be arbitrarily 
constructed since an axiom system must be consistent. 

Definition 1.1 . 
An axiomatic system is said to be consistent if there do not exist in 
the system any two axioms, any axiom and theorem, or any two 
theorems that contradict each other. 

It should be clear that it is essential that an axiomatic system be 
consistent, since a system in which both a statement and its nega­
tion can be proved is worthless. However, it soon becomes evident 
that it would be difficult to verify consistency directly from this def­
inition, since all possible theorems would have to be considered. 



4 1. Axiomatic Systems and Finite Geometries 

Instead, models are used for establishing consistency. A model of 
an axiomatic system is obtained by assigning interpretations to the 
undefined terms so as to convert the axioms into true statements 
in the interpretations. If the model is obtained by using interpre­
tations that are objects and relations adapted from the real world, 
we say we have established absolute consistency. In this case, state­
ments corresponding to any contradictory theorems would lead to 
contradictory statements in the model, but contradictions in the real 
world are supposedly impossible. On the other hand, if the interpre­
tations assigned are taken from another axiomatic system, we have 
only tested consistency relative to the consistency of the second ax­
iomatic system; that is, the system we are testing is consistent only 
if the system within which the interpretations are assigned is con­
sistent. In this second case, we say we have demonstrated relative 
consistency of the first axiomatic system. Because of the number of 
elements in many axiomatic systems, relative consistency is the best 
we are able to obtain. We illustrate the use of models to determine 
consistency of the axiomatic system for four-point geometry. 

Axioms for Four-Point Geometry 

Undefined Thrms. Point, line, on. 
Axiom 4P.l. There exist exactly four points. 
Axiom 4P.2. 'TWo distinct points are on exactly one line. 
Axiom 4P.3. Each line is on exactly two points. 

Before demonstrating the consistency of this system, it may be 
helpful to make some observations about these three statements 
which will also apply to other axioms in this text. Axiom 4P.l explic­
itly guarantees the existence of exactly four points. However, even 
though lines are mentioned in Axioms 4P.2 and 4P.3, we cannot as­
certain whether or not lines exist until theorems verifying this are 
proved, since there is no axiom that explicitly insures their existence. 
This is true even though in this system the proof of the existence of 
lines is almost immediate. Axioms 4P.2 and 4P.3, like many math­
ematical statements, are disguised "if. .. then" statements. Axiom 
4P.2 should be interpreted as follows: If two distinct points exist, 
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FIGURE 1.1 A four-point geometry model. 

then these two points are on exactly one line. Similarly, Axiom 4P.3 
should be interpreted: If there is a line, then it is on exactly two 
points. In other axiomatic systems, we will discover that the axioms 
actually lead to theorems telling us that there are many more points 
and/ or lines than those guaranteed to exist by the axioms. 

These observations suggest that the construction of any model 
for four-point geometry must begin with. the objects known to exist, 
that is, four points. In mode14P.l these points are interpreted as the 
letters A, B, C, D whereas in mode14P'2 (see Fig. l.1) these points 
are interpreted as dots. In continuing to build either model, we must 
interpret the remaining undefined terms so as to create a system in 
which Axioms 4P.2 and 4P.3 become true statements. 

Model4P.l 
Undefined Thnn 
Points 
Lines 
On 

A 
B 

Mode14P.2 
Undefined Thnn 
Points 
Lines 
On 

Interpretation 
Letters A, B, C, D 
Columns of letters given below 
Contains, or is contained in 

Lines 
A A B B C 
C D C D D 

Interpretation 
Dots denoted 1,2, 3, 4 
Segments illustrated in Fig. 1.1 
A dot is an endpoint of 

a segment or vice versa 
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There are several other important properties that an axiomatic 
system may possess. 

Definition 1.2 
An axiom in an axiomatic system is independent ifit cannot be proved 
from the other axioms. If each axiom of a system is independent, 
the system is said to be independent. 

Clearly an independent system is more elegant since no un­
necessary assumptions are made. However, the increased difficulty 
of working in an independent system becomes obvious when we 
merely note that accepting fewer statements without proof leaves 
more statements to be proved. For this reason the axiomatic systems 
used in secondary-school geometry are seldom independent. 

The verification that an axiomatic system is independent is also 
done via models. The independence of Axiom A in an axiomatic 
system S is established by finding a model of the system S' where S' 

is the system obtained from S by replacing Axiom A with a negation 
of A. Thus, to demonstrate that a system consisting of n axioms is 
independent, n models must be exhibited-one for each axiom. The 
independence of the axiomatic system for four-point geometry is 
demonstrated by the following three models, all of which interpret 
points as letters of the alphabet and lines as the columns of letters 
indicated. 

Models Demonstrating Independence of 
Axioms for Four-Point Geometry 

Mode14P 1.1 
A model in which a negation of Axiom 4P.l is true (i.e., there do not 
exist four points): 

Points Lines 
A,B A 

B 
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Since this model contains only two points, the negation of Axiom 
4P.l is clearly true and it is easy to show that Axioms 4P.2 and 4P.3 
are true statements in this interpretation. 

Mode14P 1.2 
A model in which a negation of Axiom 4P.2 is true (Le., there are 
two distinct points not on one line): 

Points Lines 
A,B, C,D A C 

B D 

Note that in this model there is no line on points A and C. What 
other pairs of points fail to be on a line? 

Mode14P 1.3 
A model in which a negation of Axiom 4P.3 is true (Le., there are 
lines not on exactly two points): 

Points Lines 
A, B, C, D A ABC 

B D D D 
C 

In this model one line is on three points, whereas the remaining 
lines are each on two points, so the negation of Axiom 4P.3 is true 
in this interpretation. 

Since we have demonstrated the independence of each of the axioms 
of four-point geometry, we have shown that this axiomatic system 
is independent. 

Another property that an axiomatic system may possess is 
completeness. 

Definition 1.3 
An axiomatic system is complete if every statement containing unde­
fined and defined terms of the system can be proved valid or invalid, 
or in other words, if it is not possible to add a new independent axiom 
to the system. 

In general, it is impossible to demonstrate directly that a system 
is complete. However, if a system is complete, there cannot exist two 
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essentially different models. This means all models of the system 
must be pairwise isomorphic. 

Definition 1.4 
Two models a and fJ of an axiomatic system are said to be isomorphic 
if there exists a one-to-one correspondence cp from the set of points 
and lines of a onto the set of points and lines of fJ that preserves all 
relations. In particular if the undefined terms of the system consist 
of the terms "point," "line," and "on," then cp must satisfy the following 
conditions: 
1. For each point P and line 1 in a, cp(P) and cp(l) are a point and line 

infJ· 
2. If P is on I, then cp(P) is on CP(l). 

If all models of a system are pairwise isomorphic, it is clear that 
each model has the same number of points and lines. Furthermore, if 
a new independent axiom could be added to the system, there would 
be two distinct models of the system: a model a in which the new 
axiom would be valid and a model f3 in which the new axiom would 
not be valid. The models a and f3 could not then be isomorphic. 
Hence, if all models of the system are necessarily isomorphic, it 
follows that the system is complete. 

In the example of the four-point geometry, it is clear that models 
4P.l and 4P.2 are isomorphic. The verification that all models of this 
system are isomorphic follows readily once the following theorem 
is verified (see Exercises 5 and 6). 

Theorem 4P.1 
There are exactly six lines in the four-point geometry. 

Finally, any discussion of the properties of axiomatic systems 
must include mention of the important result contained in G6del's 

. theorem. Greatly simplified, this result says that any consistent 
axiomatic system comprehensive enough to contain the results of 
elementary number theory is not complete. 
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Exercises 

For Exercises 1-4, consider the following axiomatic system: 

Axioms for Three-Point Geometry 

Undefined Terms. Point, line, on. 
Axiom 3P.l. There exist exactly three points. 
Axiom 3P.2. TWo distinct points are on exactly one line. 
Axiom 3P.3. Not all points are on the same line. 
Axiom 3P.4. TWo distinct lines are on at least one common point. 

1. ( a) Prove that this system is consistent. (b) Did the proof in part (a) 
demonstrate absolute consistency or relative consistency? Explain. 

2. Prove that this system is independent. 

3. Prove the following theorems in this system: (a) TWo distinct lines are 
on exactly one point. (b) Every line is on exactly two points. ( c) There 
are exactly three lines. 

4. Is this system complete? Why? 

5. Prove Theorem 4P.1. 

6. Prove that any two models of four-point geometry are isomorphic. 

Use the following definition in Exercises 7 and 8. 

Definition 
The dual of a statement p in four-point geometry is obtained by replacing 
each occurrence of the term "point" in p by the term "line" and each 
occurrence of the term "line" in p by the term "point!' 

7. Obtain an axiomatic system for four-line geometry by dualizing the 
axioms for four-pOint geometry. 

8. Verify that the dual of Theorem 4P.1 will be a theorem of four-line 
geometry. How would its proof differ from the proof of Theorem 4P.1 
in Exercise 5? 

1.3 Finite Projective Planes 

As indicated by the examples in the previous section, there are ge­
ometries consisting of only a finite number of points and lines. In 

1.3. Finite Projective Planes 9 

Exercises 

For Exercises 1-4, consider the following axiomatic system: 

Axioms for Three-Point Geometry 

Undefined Terms. Point, line, on. 
Axiom 3P.l. There exist exactly three points. 
Axiom 3P.2. TWo distinct points are on exactly one line. 
Axiom 3P.3. Not all points are on the same line. 
Axiom 3P.4. TWo distinct lines are on at least one common point. 

1. ( a) Prove that this system is consistent. (b) Did the proof in part (a) 
demonstrate absolute consistency or relative consistency? Explain. 

2. Prove that this system is independent. 

3. Prove the following theorems in this system: (a) TWo distinct lines are 
on exactly one point. (b) Every line is on exactly two points. ( c) There 
are exactly three lines. 

4. Is this system complete? Why? 

5. Prove Theorem 4P.1. 

6. Prove that any two models of four-point geometry are isomorphic. 

Use the following definition in Exercises 7 and 8. 

Definition 
The dual of a statement p in four-point geometry is obtained by replacing 
each occurrence of the term "point" in p by the term "line" and each 
occurrence of the term "line" in p by the term "point!' 

7. Obtain an axiomatic system for four-line geometry by dualizing the 
axioms for four-pOint geometry. 

8. Verify that the dual of Theorem 4P.1 will be a theorem of four-line 
geometry. How would its proof differ from the proof of Theorem 4P.1 
in Exercise 5? 

1.3 Finite Projective Planes 

As indicated by the examples in the previous section, there are ge­
ometries consisting of only a finite number of points and lines. In 



10 1. Axiomatic Systems and Finite Geometries 

this section we will consider an axiomatic system for an important 
collection of finite geometries known as finite projective planes. These 
geometries may, at first glance, look much like finite versions of 
plane Euclidean geometry. However, there is a very important dif­
ference. In a finite projective plane, each pair of lines intersects; 
that is, there are no parallel lines. This pairwise intersection oflines 
leads to several other differences between projective planes and Eu­
clidean planes. A few of these differences will become apparent in 
this section; others will not become evident until we study general 
plane projective geometry in Chapter 4. 

Some of the first results in the study of finite projective geome­
tries were obtained by von Staudt in 1856, but it wasn't until early 
in this century that finite geometries assumed a prominent role in 
mathematics. Since then, the study of these geometries has grown 
considerably and there are still a number of unsolved problems 
currently engaging researchers in this area. 

Axioms for Finite Projective Planes 

Undefined Thrms. Point, line, incident. . 
Defined Thrms. Points incident with the same line are said to be 
collinear. Lines incident with the same point are said to be concurrent. 
Axiom P.I. There exist at least four distinct points, no three of which 
are collinear. 
Axiom P.2. There exists at least one line with exactly n + 1 en > 1) 
distinct points incident with it. 
Axiom P.3. Given two distinct points, there is exactly one line 
incident with both of them. 
Axiom P.4. Given two distinct lines, there is at least one point 
incident with both of them. 

Any set of points and lines satisfying these axioms is called a 
projective plane of order n. Note that the word "incident" has been 
used in place of the undefined term "on" in this axiom system, 
since "incident" is commonly used in the study of general projective 
planes. 
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FIGURE 1.2 A finite projective plane model. 

The consistency of this axiomatic system is demonstrated by 
either of the following models which use the same interpretations 
as models 4P.I and 4P.2 in Section 1.2. 

Model P.I 
Points Lines 
A,B,C,D,E,F,G A A B A B C C 

B D D F E D E 
C E F G G G F 

Model P.2 
Points Lines 
Dots denoted I, 2, 3, 4, 5, 6, 7 Segments illustrated in Fig. 1.2 

Note that Models P.I and P.2 depict a projective plane of order 2 and 
both have exactly three points on each line, but there are projective 
planes with more than three points on a line as shown by the next 
model. 
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D G 1 M K L M M K L L M K 

1.3. Finite Projective Planes 11 

4 

2 3 

FIGURE 1.2 A finite projective plane model. 

The consistency of this axiomatic system is demonstrated by 
either of the following models which use the same interpretations 
as models 4P.I and 4P.2 in Section 1.2. 

Model P.I 
Points Lines 
A,B,C,D,E,F,G A A B A B C C 

B D D F E D E 
C E F G G G F 

Model P.2 
Points Lines 
Dots denoted I, 2, 3, 4, 5, 6, 7 Segments illustrated in Fig. 1.2 

Note that Models P.I and P.2 depict a projective plane of order 2 and 
both have exactly three points on each line, but there are projective 
planes with more than three points on a line as shown by the next 
model. 

Model P.3 
Points Lines 
A,B, C,D,E, A A A A B B B C C C D D D 
F, G, H, I, I, B E H K E F G E F G E F G 
K,L,M C F I L H I 1 I 1 H 1 H I 

D G 1 M K L M M K L L M K 



12 1. Axiomatic Systems and Finite Geometries 

Whereas models P.1 and P.2 have three points on each line, three 
lines on each point, and a total of seven points and seven lines, 
model P.3 has four points on each line, four lines on each point, and 
a total of thirteen points and thirteen lines. 1b determine if finite 
projective planes exist with more points and lines, it is clearly im­
practical to employ trial-and-error procedures. Instead we develop a 
series of theorems that lead to a general result regarding the number 
of points and lines in a finite projective plane of order n. 

The proofs of these theorems are simplified by noting that this 
axiom system satisfies the principle of duality, which Coxeter has 
described as "one of the most elegant properties of projective geom­
etry" (Coxeter, 1969, p. 231). As noted in the exercises in Section 1.2, 
the dual of a statement is obtained by replacing each occurrence of 
the word "point" by the word "line" and vice versa (consequently, 
the words "concurrent" and "collinear" must also be interchanged). 

Definition 1.5 
An axiomatic system in which the dual of any theorem is also a 
theorem is said to satisfy the principle of duality. 

Thus, in an axiomatic system that satisfies the principle of dual­
ity, the proof of any theorem can be "turned into" a proof of a dual 
theorem merely by dualizing the original proof. To show that an ax­
iom system has the property of duality it is necessary to prove that 
the duals of each axiom are theorems of the system. The theorems 
that are the dual statements of the four axioms of this system are 
listed here. The proofs of the duals of Axioms P.I, P.3, and PA are left 
to you. 

Theorem P.I (Dual of Axiom P.I) 
There exist at least four distinct lines, no three of which are concurrent. 

Theorem P.2 (Dual of Axiom P.3) 
Given two distinct lines, there is exactly one point incident with both of 
them. 
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Theorem P.3 (Dual of Axiom P.4) 
Given two distinct points, there is at least one line incident with both of 
them. 

Theorem P.4 (Dual of Axiom P.2) 
There exists at least one point with exactly n + 1 (n > 1) distinct lines 
incident with it. 

Proof 
By Axiom P.2 there is a line 1 with n + I points P1,PZ , •• ',Pn+l and 
by Axiom P.I there is a point P not incident with 1. Then by Ax­
iom P.3 there exist lines II, Iz, ... ,In+1 joining the point P to points 
PI, Pz, .. " Pn+1 , respectively (see Fig. 1.3). It is sufficient to show 
that these lines are all distinct and that there are no other lines 
through P. If Ii = Ii for i =1= j then the two points Pi and Pi would be 
incident with both 1 and Ii = Ii, and it would follow by Axiom P. 3 that 
1 = Ii = Ii. But P is on Ii and not on 1 so we have a contradiction. Thus, 
Ii =1= Ii for i =1= j. Now assume there is an additional line, In+z through 
P. This line must also intersect 1 at a point Q (Axiom P.4). Since 1 
has exactly n + I points, Q must be one of the points PI, ... , Pn+1 . 

Assume Q = PI, then, since Q = PI and P are two distinct points 
on both 11 and In+2, it follows that In+2 = 11. Therefore, the pointP is 
incident with exactly n + 1 lines. • 

P p P Q 
1 2 n+l 

FIGURE 1.3 Proof P.4. 
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The previous proof demonstrates several geometric conventions. 
First, to make the proofless awkward, the phrase "is incident with" 
is frequently replaced by a variety of other familiar terms such as 
"is on;' "contains;' and "through!' The meanings of these substitute 
terms should be obvious by their context. Second, uppercase let­
ters are used to designate points while lowercase letters are used 
for lines. Finally, since diagrams are extremely helpful both in con­
structing and following a proof, figures are included as part of the 
proofs whenever appropriate; but the narrative portions of the proofs 
are constructed so as to be completely independent of the figures. 

In models EI, E2, and E3, the number of points on each line and 
the number oflines on each point is the same for all lines and points 
in each model. That this must be true in general is verified by the 
following theorems. 

Theorem P.5 
In a projective plane of order n, each point is incident with exactly n + 1 

lines. 

Proof 
Let P be a point of the plane. Axiom E2 guarantees the existence 
of a line l containing n + I points, PI, Pz, ... , P n+ 1. Then there are 

P P p 
1 2 n+1 

FIGURE 1.4 Proof P.S, P not on l. 
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R m n+,-

R , 

• • • P=P, P Pn+, 2 

FIGURE 1.5 proof PS, P on 1. 

two cases to consider, depending on whether P is on l or not (see 
Figs. 1.4 and 1.5). 

Case 1 (P is not on l): If P is not on l there are at least n + 1 
lines through P, namely, the lines joining P to each of the points 
PI, Pz, ... , Pn+l . Just as in the proof of the previous theorem, it can 
be shown that these lines are distinct and there are no other lines 
through P. So in this case there are exactly n + 1 lines through P. 

Case 2 (P is on l): Assume P = Pl. Axiom PI guarantees the exis­
tence of a point Q not on l. It is also possible to verifY the existence 
ofa line m that contains neither P nor Q (see Exercise 7). By case 1, 
Q is on exactly n + 1 lines ml, mz, ... , mnH' But each of these lines 
intersects m in a point Ri for i = 1, ... , n + 1. It can easily be shown 
that these points are distinct and that these are the only points on 
line m. Thus, P is not on the line m, which contains exactly n + 1 
points, so as in case 1, P is incident with exactly n + 1 lines. • 

With this theorem in hand, the following theorem follows 
immediately by duality. 

Theorem P.6 
In a projective plane of order n, each line is incident with exactly n + 1 
points. 

Using these results, we can now determine the total number of 
points and lines in a projective plane of order n. 
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Theorem P.7 
A projective plane of order n contains exactly nZ + n + 1 points and 
nZ + n + 1 lines. 

Proof 
Let P be a point in a projective plane of order n. Then every other 
point is on exactly one line joining it with the point P. By Theorem P.5 
there are exactly n + 1 lines through P and by Theorem P.6 each of 
these lines contains exactly n+ 1 points, that is, n points in addition to 
P. Thus, the total number of points is (n + l)n + 1 = n2 + n + 1. A dual 
argument verifies that the total number oflines is also n2 +n + 1. • 

Thus, a finite projective plane of order two must have seven 
points and seven lines and a projective plane of order three must 
have thirteen points and thirteen lines. But one of the unresolved 
questions in the study of finite geometries is the determination of 
the orders for which finite projective planes exist. A partial answer 
to this question was given in 1906 when Veblen and Bussey proved 
that there exist finite projective planes of order n whenever n is a 
power of a prime. It has long been conjectured that' these are the 
only orders for which finite projective planes exist. In 1949 Bruck 
and Ryser proved that if n is congruent to 1 or 2 (modulo 4), and 
if n cannot be written as the sum of two squares, then there are 
no projective planes of order n. This proved the conjecture for an 
infinite number of cases including n = 6, 14, 21, and 22. However, 
it also left open an infinite number of cases including n = 10, 12, 
15, 18, and 20. In late 1988, a group of researchers in the computer 
science department at Concordia University in Montreal completed 
a case-by-case computer analysis requiring several thousand hours 
of computer time. By investigating the implications of the existence 
of an order 10 projective plane, they concluded that the conjecture 
is also correct for n = 10; that is, finite projective planes of order 10 
do not exist. This leaves n = 12 as the smallest number for which 
the conjecture is unproved (Cipra, 1988). 

The study of the infinite projective plane from both synthetic and 
analytic viewpoints yields a wealth of interesting geometric proper­
ties which are generalizations of both Euclidean and non-Euclidean 
properties. We pursue this study in Chapter 4, following an introduc-
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tion of non-Euclidean geometry (Chapter 2) and the development 
of an analytic model for Euclidean geometry (Chapter 3). However, 
as we shall see in the following section, even one of the simplest 
projective geometries, namely the finite projective plane of order 2, 
has an application that demonstrates the relevance of geometry to 
exciting new areas of mathematics. 

Exercises 
1. Which axioms for a finite projective plane are also valid in Euclidean 

geometry? Which are not? 

2. Prove that the axiomatic system for finite projective planes is 
incomplete. 

3. Verify that models P.l and P.2 are isomorphic. 

4. Prove Theorem P.I. 

5. Prove Theorem P.2. 

6. Prove Theorem P.3. 

7. Verify the existence of the line m used in case 2 of the proof of 
Theorem P.5. 

8. How many points and lines does a finite projective plane of order 7 
have? 

The axioms for a finite affine plane of order n are given below. The unde­
fined terms and definitions are identical to those for a finite projective 
plane. 

Axioms for Finite Affine planes 

Axiom A.I. There exist at least four distinct points, no three of which 
are collinear. 
Axiom A.2. There exists at least one line with exactly n en > 1) points 
on it. 
Axiom A.3. Given two distinct points, there is exactly one line incident 
with both of them. 
Axiom A.4. Given a line 1 and a point P not on I, there is exactly one line 
through P that does not intersect 1. 
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9. How do the axioms for a finite affine plane differ from those for a 
finite projective plane? 

10. Show that a finite affine plane does not satisfY the principle of duality. 

11. Find models of affine planes of orders 2 and 3. 

The following exercises ask you to prove a series of theorems about finite 
affine planes. You should prove these in the order indicated since some 
will require that you use a previous result. 

12. Prove: In an affine plane of order n, each point lies on exactly n + 1 
lines. [Hint: Consider two cases as in the proof of Theorem P.5.] 

13. Prove: In an affine plane of order n, each line contains exactly n 
points. 

14. Prove: In an affine plane of order n, each line I has exactly n - 1 lines 
that do not intersect 1. 

15. Prove: In an affine plane of order n, there are exactly n2 points and 
n2 + n lines. 

16. VerifY that if one line and its points are deleted from the finite projec­
tive plane of order 2 given in model P.1 or P.2, the remaining points 
and lines form a model of an affine plane. What is its order? 

1.4 An Application to Error-Correcting 
Codes 

The finite projective plane of order 2 illustrated in models P.1 and P.2 
of the previous section is known as a Fano plane. A concise way of 
representing this and other finite planes is a configuration known as 
an incidence table. The lines of the plane are represented by columns 
in Thble 1.1, while the points of the plane are represented by 
rows. Entries of 0 and 1 represent nonincidence and incidence, 
respectively. 

This table demonstrates that we can represent each point in a 
Fano plane uniquely by a vector consisting of the entries in the 
corresponding row of the incidence table. Thus, point A can be rep­
resented by the vector (I, 0, 0, 0, 0, I, 1). Similarly, every point in a 
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TABLE 1.1 Incidence Thble for a Fano Plane. 

II Iz I3 I4 Is I6 I7 
A 1 0 0 0 0 1 1 
B 0 1 0 0 1 0 1 
C 0 0 1 0 1 1 0 
D 1 0 0 1 1 0 0 
E 0 1 0 1 0 1 0 
F 0 0 1 1 0 0 1 
G 1 1 1 0 0 0 0 

Fano plane can be represented by a binary 7-tuple; that is, a vec­
tor with seven components, each of which is a 0 or 1. Note that 
the vector for any given point contains exactly three l's, so in the 
language of coding theory, we say that each vector has weight 3. Fol­
lowing a brief introduction to the area of coding theory, we shall see 
that these seven vectors play an important role in an elementary 
error-correcting code. 

Coding theory is devoted to the detection and correction of er­
rors that are introduced when messages are transmitted. Such codes 
have found application in transmission of pictures from space and 
in the development of the compact disk. The impetus for developing 
these codes arose from the frustrations that Richard W. Hamming en­
countered in 1947 when working with a mechanical relay computer, 
which dumped his program whenever it detected an error. Having 
a computer that could detect but not find and correct an error led to 
the development of error-correcting codes. 

Since then, coding theory has become an important research 
area, using results from projective geometry, group theory, the the­
ory of finite fields, and linear programming. Error-correcting coding 
has been described as "the art of adding redundancy efficiently so 
that most messages, if distorted, can be correctly decoded" (Pless, 
1982,p.2). 

One of the simplest error-correcting codes is a projective ge­
ometry code known as the Hamming (7,4) code. This code can be 
generated by the four rows of the matrix G below, known as the 
generator matrix for the code. In this matrix, the first row vector is 
the code word for 1000, the binary representation of the decimal 
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the code word for 1000, the binary representation of the decimal 
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number 8; the second row is the code word for 0100, the binary rep­
resentation ofthe decimal number 4; and so on. The first four digits 
of these code words occupy the so-called information positions, since 
they represent the actual number or message to be transmitted. The 
remaining three positions are called the redundancy positions. 

G=[~ ~ ~ ~ ~ ~ ~] 
0010110 
0001111 

Other code words are obtained by adding these rows where the 
addition is the usual componentwise vector addition modulo 2. Note 
that when we find all possible sums of these rows (see Thble 1.2), we 
obtain in the first four positions all 16 possible strings of O's and 
l's; that is, all binary representations of the decimal numbers 0 
through 15. 

The redundancy digits in the last three positions allow single 
error corrections; that is, if a transmitted message contains a single 
digit error these extra digits allow us to find and correct the error. 

TABLE 1.2 Possible Code Words. 

a a a a a a a Adding no words 

1 a a a a 1 1 Adding one word 
a 1 a 0 1 0 1 
0 a 1 0 1 1 0 
a 0 0 1 1 1 1 

1 1 0 0 1 1 0 Adding two words 
1 a 1 0 1 0 1 
1 0 0 1 1 a a 
a 1 1 0 0 1 1 
0 1 0 1 0 1 0 
0 0 1 1 0 0 1 

1 1 1 0 0 0 0 Adding three words 
1 1 0 1 0 a 1 
1 0 1 1 0 1 0 
0 1 1 1 1 a 0 

1 1 1 1 1 1 1 Adding four words 
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For example, the message x = 1010010 does not appear in Thble l.2 
as a possible code word. Assuming that a single error has occurred in 
the transmission of a code word we can locate the error and correct 
it using the parity check matrix H. This parity check matrix consists 
of seven column vectors, which give the binary representations of 
the decimal numbers 1 through 7. 

1 
0 

HX=U 
0 0 1 1 1 1 ] 1 

=U] 1 1 0 0 1 1 0 
0 1 0 1 0 1 0 

1 
0 

Since the result is (1,0,0), namely, the binary representation of 
the decimal number 4, the error occurs in the fourth position; hence 
the original code word was 1011010. Similarly, we can show that each 
of the 27 possible binary 7-tuples differs from a possible code word in 
at most one digit; and if there is a difference, the digit in which the 
"error" occurs can be located with the parity check matrix. However, 
when an actual code word is multiplied by this parity check matrix, 
the result is (0,0,0) (see Exercises 6 and 7). 

The parity check matrix H can be thought of as the defining 
matrix for this code. Note that the matrix H clearly has rank 3, and 
since H is a 3 x 7 matrix it represents a linear transformation from a 
vector space of dimension 7 to one of dimension 3. As we recall from 
linear algebra the kernel of this linear transformation is the set of 
solutions of Hx = 0 and the dimension of this kernel is 7 - 3 = 4. By 
demonstrating that Hx = 0 whenever x is a code word, we can show 
that the row vectors of the generator matrix G are basis vectors for 
this kernel. Thus, the code words of the Hamming (7, 4) code from a 
subspace of a vector space. Any code for which the code words form 
a subspace is said to be linear. 

The code words of the Hamming (7,4) code can be considered 
to be coordinates of points in a seven-dimensional space where the 
entire space consists of points corresponding to the 27 possible mes­
sages, that is, the possible binary 7-tuples. Distance in this space is 
defined in terms of a function known as the Hamming distance. 
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Definition 
The Hamming distance d(x, y) between two binary n-tuples x and y 
is the number of components by which the n-tuples differ. 

Thus, if x = 1001110 and y = 1011101, d(x, y) = 3. Clearly, the 
maximum distance between binary 7-tuples is 7, and, as you can 
easily verifY, the minimum distance between any pair of nonzero 
code words in the Hamming (7,4) code is 3. Since the minimum 
distance is 3 this is also known as the Hamming (7,4,3) code. Also 
note that the distance between 0000000 and any other binary 7-tuple 
x is just the number of ones in x, that is, the weight of x. Thus the 
minimum weight of this code is said to be 3. 

Th further illustrate the role of the Hamming distance in the 
Hamming (7,4,3) code, we first consider a more elementary code 
consisting of just the two code words 000 and 111. These two code 
words can be identified as opposite vertices in a three-dimensional 
cubewith vertices consisting of all ordered triples of 0 and 1 where 
edges join pairs of vertices whose Hamming distance is I, as shown 
in Fig. 1.6. Notice that the Hamming distance between two vertices 
in this cube counts the number of edges of the cube that must be 
traversed to go from one vertex to the other. 

Whereas the Hamming distance between the two code words 000 
and III is 3, the binary 3-tuples that could occur if exactly one error 
is made in transmitting the code word 000 would be those at distance 

001 

101~----~I~-----1-11~ 

:000 
,,:-"'"'''''''''''' """""", 0 1 0 

" , ......... 
" " 

" ................ 

....................... 

100 110 

FIGURE 1.6 Cube determined by binary triples. 
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001 110._._-____ 

• 000 111 • 

010 101 

FIGURE 1. 7 Spheres of binary 3-tuples. 

1 from ODD, namely, 001, 010, and 100. The set {OOl, OlD, 100} is said 
to form a I-sphere, centered at the code word 000. These same binary 
3-tuples are located at a distance 2 from the other code word, 111. The 
vertex 111 is the center of a second I-sphere consisting of all binary 
3-tuples that could occur if exactly one error is made in transmitting 
111 (Fig. 1.7). These two spheres partition the set of binary 3-tuples, 
so that every binary 3-tuple appears in one of these two spheres. 
Thus, if we assume that a given message contains one or fewer 
errors, we can decode it by locating the unique nearest code word. 

Similarly, we can view the code words in the Hamming (7,4,3) 
code as select vertices in a seven-dimensional cube where edges 
again join pairs of vertices located a Hamming distance of 1 unit 
apart. Here the minimum distance between code words is also 3 
and all binary 7-tuples lie in a set of nonoverlap ping I-spheres that 
exhaust the seven-dimensional cube (see Exercise 6). The decoding 
process we are using is that oflocating the nearest code word. Codes 
with the property that all possible messages lie within or on nonover­
lapping spheres of radius t, are called perfect t-error correcting codes. 
Thus, the Hamming (7, 4, 3) code, in addition to being linear, is a 
perfect 1-error-correcting code. 

A result from coding theory (Blake, 1975, p. 185) shows that a 
perfect linear code is spanned by its minimum weight vectors. This 
means that the vectors of weight 3 span the Hamming (7, 4, 3) code. 
As we can easily verifY, these are the vectors in the rows of the 
incidence table for the Fano plane. Furthermore, the rows of the 
generator matrix G form a basis for this set. 
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Exercises 
1. Show that the points and lines of the incidence table (Thble 1.1) satisfY 

the axioms for a projective plane. 

2. Demonstrate that the Fano plane given by the incidence table 
(Thble l.1) is isomorphic to that given in model P.1 of Section l.3. 

3. VerifY that any pair of coordinate vectors in the incidence table (Th­
ble l.1) differ in exactly four components, that is, their Hamming 
distance is 4. 

4. Write out the binary representations of the decimal numbers 1 
through 15. 

5. VerifY that there are exactly 27 -16 binary 7-tuples that are not code 
words in the Hamming (7, 4,3) code. 

6. (a) Show that there are exactly seven binary 7-tuples that differ from 
the code word 1000011 in exactly one digit. (b) Apply the parity check 
matrix H to one of these seven and verifY that it does locate the 
position in which the digit differs. 

7. Show that Hx = 0 for each row vector in the generator matrix G. 

8. Obtain all possible code words in the linear (5,3) binary code With 
generator matrix G'. 

G'= 01 001 [ 
1 001 1] 

00111 

9. Show that the Hamming distance is a metric, that is, that it satisfies 
each of the following conditions: 

(i) d(x,y) = 0 iffx = y. 

(ii) d(x, y) = dey, x). 

(iii) d(x, z) :s d(x, y) + dey, z). 

10. VerifY that the minimum distance between any pair of code words in 
the Hamming (7,4, 3) code is 3. 

11. Show that the set of code words in the Hamming (7,4,3) code can 
be obtained by adding the two 7-tuples 0000000 and 1111111 to the 
fourteen 7-tuples that occur either as rows of Thble l.1 or as rows 
of the incidence table obtained from Thble 1.1 by interchanging O's 
and l's. 
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1.5 Desargues' Configurations 

In this section we consider an axiomatic system for one more fi­
nite structure. We shall see that this structure not only satisfies the 
principle of duality but also exhibits an interesting relation between 
points and lines similar to the polarity relation of projective geome­
try. This relation involves points that do not lie on a line. Since the 
term "geometry" is usually reserved for structures in which each 
pair of points determines a unique line, we refer to the structures 
that satisfy our axioms as Desargues' configurations. Desargues' con­
figurations are so named because they illustrate a theorem in real 
projective geometry known as Desargues' theorem. This theorem is 
stated in terms of two particular properties of triangles, that is, sets 
of three noncollinear points. If two triangles ABC and DEF have the 

FIGURE 1.8 A Desargues' configuration. 
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property that lines joining corresponding vertices (i.e., AD, BE, CF) 
are concurrent, the triangles are said to be perspective from a point. 
Similarly, if the triangles possess the dual property that the inter­
sections of corresponding sides are collinear, they are said to be 
perspective from a line. With these definitions, Desargues' theorem 
can be stated succinctly. 

Desargues' Theorem 
If two triangles are perspective from a point, then they are perspective 
from a line. 

An example of a Desargues' configuration and its corresponding inci­
dence table is shown in Fig. 1.8 and Thble 1.3 (as in Section 1.4 entries 
of 0 and 1 represent nonincidence and incidence, respectively). As 
you can see, either from the configuration or the incidence table, 
ABC and DEF are triangles that are perspective from point G and 
line 15. 

Careful scrutiny of either the structure shown in Fig. 1.8 or the 
corresponding incidence table (Thble 1.3) will lead to the observation 
that for each point M in the structure there is a line m such that no 
lines join M with points on m. The point M and line m are referred to 
as pole and polar, respectively. This pole-polar relation is described 
in detail by the following definitions and axioms. 

TABLE 1.3 Incidence Thble for a Desargues' Configuration. 

II 12 13 14 Is 16 17 18 19 110 
A 1 0 0 1 0 0 0 1 0 0 
B 0 0 1 1 0 0 0 0 1 0 
C 0 1 0 0 0 0 0 1 1 0 
D 1 0 0 0 0 1 1 0 0 0 
E 0 0 1 0 0 1 0 0 0 1 
F 0 1 0 0 0 0 1 0 0 1 
G 1 1 1 0 0 0 0 0 0 0 
H 0 0 0 0 1 0 0 0 1 1 
I 0 0 0 0 1 0 1 1 0 0 

J 0 0 0 1 1 1 0 0 0 0 
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Axioms for Desargues' Configurations 

Undefined Thrms. Point, line, on. 
Defined Thrms. If there are no lines joining a point M with points 
on line m (M not on m), m is called a polar of M and M is called a 
pole ofm. 
Axiom DC.I. There exists at least one point. 
Axiom DC.2. Each point has at least one polar. 
Axiom DC.3. Each line has at most one pole. 
Axiom DC.4. Two distinct points are on at most one line. 
Axiom DC.5. There are exactly three distinct points on each line. 
Axiom DC.6. If line m does not contain point P, then there is a 
point on both m and any polar of P. 

It should be no surprise that the Desargues' configuration shown 
in Fig. 1.8 provides a model for this axiomatic system. Furthermore, 
as you can easily verify, this axiomatic system satisfies the principle 
of duality (see Exercise 3). 

Other properties of Desargues' configurations are given by the 
following theorems. The first of these theorems describes an im­
portant property of poles and polars. We encounter this property 
again when we study the polarity relation in projective geometry in 
Chapter 4. 

Theorem DC.l 
If P is on a polar of point Q, then Q is on each polar of P. 

Proof 
Let P be on q where q is a polar of Q (Fig. 1.9). Thus, since Q is 
not on q (why?), q must contain two more points, Rand 8, which 
are distinct from P and Q (Axiom DC-5). Let p be a polar of P and 
assume Q is not on p. Then by Axiom DC-6, p and q must intersect 
at a point, namely, P, R, or 8. But P is not on p by definition. And if 
R or 8 are on p, then q is a line joining P with a point on its polar, 
contradicting the definition. Thus, Q is on p. • 

The usefulness of the property described in Theorem DC.l is 
illustrated in the proofs of the following two theorems, which verify 
that the correspondence between poles and polars is one-to-one. 
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q 

FIGURE 1.9 ProofDC.l. 

Theorem DC.2 
Each point has exactly one polar. 

Proof 
LetPbe an arbitrary point. By Axiom DC.2, Phas at least one polarp. 
Assume P has a second polar p'. By Axioms DC.4 and DC.S there is a 
point T onp'butnot onp. Let tbe a polar ofT. Thenby Axiom DC.6, 
p and t intersect. But since T is on p', P is on t by the previous 
theorem, and so line t joins P to a point on p, contradicting the 
definition of polar. Thus P has exactly one polar. • 

Theorem DC.3 
Each line has exactly one pole. 

Proof 
By Axiom DC.3 each line has at most one pole. Hence, it suffices to 
show that an arbitrary line p has at least one pole. Let R, Sand T 
be the three points on p, and let rand s be the unique polars of R 
and S (Theorem DC.2). Clearly, S is not on r (why?). Therefore, by 
Axiom DC.6, there is a point P on rand s. But P is on the polars of 
Rand S; hence, by Theorem DC.I, Rand S are on the unique polar 
of P. So P is the polar of P or P is the pole of p. • 

These theorems and the following exercises illustrate that even 
though a finite structure may involve a limited number of points 
and lines, the structure may possess "strange' properties such as 
duality and polarity, which are not valid in Euclidean geometry. 
Another unexpected property illustrated by the exercises is that in 
Desargues' configurations, a line has exactly three lines parallel to 

28 1. Axiomatic Systems and Finite Geometries 

q 

FIGURE 1.9 ProofDC.l. 

Theorem DC.2 
Each point has exactly one polar. 

Proof 
LetPbe an arbitrary point. By Axiom DC.2, Phas at least one polarp. 
Assume P has a second polar p'. By Axioms DC.4 and DC.S there is a 
point T onp'butnot onp. Let tbe a polar ofT. Thenby Axiom DC.6, 
p and t intersect. But since T is on p', P is on t by the previous 
theorem, and so line t joins P to a point on p, contradicting the 
definition of polar. Thus P has exactly one polar. • 

Theorem DC.3 
Each line has exactly one pole. 

Proof 
By Axiom DC.3 each line has at most one pole. Hence, it suffices to 
show that an arbitrary line p has at least one pole. Let R, Sand T 
be the three points on p, and let rand s be the unique polars of R 
and S (Theorem DC.2). Clearly, S is not on r (why?). Therefore, by 
Axiom DC.6, there is a point P on rand s. But P is on the polars of 
Rand S; hence, by Theorem DC.I, Rand S are on the unique polar 
of P. So P is the polar of P or P is the pole of p. • 

These theorems and the following exercises illustrate that even 
though a finite structure may involve a limited number of points 
and lines, the structure may possess "strange' properties such as 
duality and polarity, which are not valid in Euclidean geometry. 
Another unexpected property illustrated by the exercises is that in 
Desargues' configurations, a line has exactly three lines parallel to 



1.5. Desargues' Configurations 29 

it through its pole; that is, there are points through which there 
are three lines parallel to a given line (see Exercise 6). Because of 
this latter property, Desargues' configurations can be classified as 
non-Euclidean. 

Exercises 
1. In the Desargues' configuration shown in Fig. 1.8 find the pole ofline 

AB and the polar of C. 

2. (a) Find two triangles in the Desargues' configuration in Fig.1.8 that 
are perspective from point C. From which line are these two triangles 
perspective? (b) Find two triangles in the Desargues' configuration in 
Fig. 1.8 that are perspective from line AB. From which point are these 
two triangles perspective? 

The following exercises ask you to verifY theorems in the axiom system 
for Desargues' configurations. This means you must justifY your proofs 
on the basis of the axioms- you cannot verifY your reasoning on the basis 
of the model or incidence table given in this section. 

3. VerifY the duals of Axioms DC.1 through DC.6. 

4. Prove: There is a line through two distinct points iff their polars 
intersect. 

5. Prove: Ifp and q are two lines both parallel to m (i.e., p and m have no 
common points, nor do q and m), then p and q intersect at the pole 
ofm. 

6. Prove: Through a point P there are exactly three lines parallel to p, 
the polar of P (i.e., the three lines have no points in common with 
line p). 

7. Prove: There are exactly 10 points and 10 lines in a Desargues' 
configuration. 

8. Prove Desargues' theorem. That is, show that if ABC and A'B'C' are 
two triangles perspective from a point P, then they are perspective 
from a line. (Assume that the points A, B, C, A', B', C' , and P are all 
distinct and that no three of the points A, B, C, A', B', C' are collinear.) 

The following exercises ask you to work in an axiomatic system for finite 
structures known as Pappus' configurations. These axioms are as follows: 
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Axioms for Pappus' Configurations 

Undefined Thrms. Point, line, on. 
Defined Thrms. 'TWo lines without a common point on them are parallel. 
'TWo points without a common line on them are parallel. 
Axiom PC.I. There exists at least one line. 
Axiom PC.2. There are exactly three distinct points on every line. 
Axiom PC.3. Not all points are on the same line. 
Axiom PCA. There is at most one line on any two distinct points. 
Axiom PC.5. If P is a point not on a line m, there is exactly one line on 
P parallel to m. 
Axiom PC.6. If m is a line not on a point P, there is exactly one point 
on m parallel to P. 

9. (a) Construct a model of a Pappus' configuration. (b) Construct an 
incidence table for this model. 

10. Verify that this axiomatic system satisfies the prinCiple of duality. 

11. Prove: If m is a line, there are exactly two lines parallel to m. 

12. Prove: There are exactly nine points and nine lines in a Pappus' 
configuration. 

13. Prove: If m and n are parallel lines with distinct points A, B, Can m 
and A', B', C' on n, then the three intersection points of AC' with CA', 
AB' with BA', and BC' with CB' are collinear. (This result, which is 
valid in some projective planes, is known as the Theorem of Pappus.) 

1.6 Suggestions for Further Reading 

Albert, A A, and Sandler, R. (1968). An Introduction to Finite Projective 
planes. New York: Holt, Rinehart and Winston. (Contains a thorough 
group theoretic treatment of finite projective planes.) 

Anderson, 1. (1974). A First Course in Combinatorial Mathematics. Oxford, 
England: Clarendon Press. (Chapter 6 discusses block designs and error­
correcting codes.) 

Beck, A, Bleicher, M. N., and Crowe, D. W. (1972). Excursions into Math­
ematics. New York: Worth. (Sections 4.9-4.15 give a very readable 
discussion of finite planes, including the development of analytic 
models.) 
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Benedicty, M., and Sledge, F. R (1987). Discrete Mathematical Struc­
tures. Orlando, FL: Harcourt Brace Jovanovich. (Chapter 13 gives an 
elementary presentation of coding theory.) 

Cipra, B. A. (1988). Computer search solves old math problem. Science 
242: 1507 -1508. (Reports on verification that there is no projective plane 
of order 10.) 

Gallian, J. (1996). Error detection methods. ACM Computing Surveys. Vol. 
28, No.3, pp. 504-517. 

Gensler, H. J. (1984). G6del's Theorem Simplified. Lanham, MD: University 
Press of America. 

Hofstadter, D. R. (1984). Analogies and metaphors to explain G6del's the­
orem. In Mathematics: People, Problems, Results. D. M. Campbell and J. 
C. Higgins (Eds.), Vol. 2, pp. 262-275. Belmont, CA: Wadsworth. 

Kolata, G. (1982). Does G6del's theorem matter to mathematics? Science 
218: 779-780. 

Lam, C. W H. (1991). The Search for a Projective plane of Order 10. The 
American Mathematical Monthly. Vol. 98, No.4, pp. 305-318. 

Lockwood, J. R, and Runion, G. E. (1978). Deductive Systems: Finite and 
Non-Euclidean Geometries. Reston,VA: NCTM (Chapter 1 contains an 
elementary discussion of axiomatic systems.) 

Nagel, E. and Newman, J. R (1956). G6del's proof. In The World of Math­
ematics. J. R Newman (Ed.), Vol. 3, pp. 1668-1695. New York: Simon 
and Schuster. 

Pless, V (1982). Introduction to the Theory of Error-Correcting Codes. New 
York: Wiley. (A well-written explanation of this new diSCipline and the 
mathematics involved.) 

Smart, J. R. (1998). Modem Geometries, 5th ed. Pacific Grove, CA: 
Brooks/Cole. (Chapter 1 contains an easily readable discussion of 
axiomatic systems and several finite geometries.) 

Thompson, T. M. (1983). From Error-Correcting Codes Through Sphere Pack­
ings to Simple Groups. The Cams Mathematical Monographs, No. 2l. 
Ithaca, NY: MAA (Incorporates numerous historical anecdotes while 
tracing 20th century mathematical developments involved in these 
topics.) 

Readings on Latin Squares 
Beck, A., Bleicher, M. N. and Crowe, D. W (1972). Excursions into 

Mathematics, pp. 262-279. New York: Worth. 
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CHAPTER 

Non-Euclidean 
Geometry 

2.1 Gaining Perspective 

Mathematics is not usually considered a source of surprises, but 
non-Euclidean geometry contains a number of easily obtainable 
theorems that seem almost "heretical" to anyone grounded in Eu­
clidean geometry. A brief encounter with these "strange" geometries 
frequently results in initial confusion. Eventually, however, this 
encounter should not only produce a deeper understanding of Eu­
clidean geometry, but it should also offer convincing support for the 
necessity of carefully reasoned proofs for results that may have once 
seemed obvious. These individual experiences mirror the difficul­
ties mathematicians encountered historically in the development 
of non-Euclidean geometry. An acquaintance with this history and 
an appreciation for the mathematical and intellectual importance 
of Euclidean geometry is essential for an understanding of the 
profound impact of this development on mathematical and philo­
sophical thought. Thus, the study of Euclidean and non-Euclidean 
geometry as mathematical systems can be greatly enhanced by par­
allel readings in the history of geometry. Since the mathematics of 
the ancient Greeks was primarily geometry, such readings provide 
an introduction to the history of mathematics in general. 
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34 2. Non-Euclidean Geometry 

The sources recommended at the end of this chapter are 
intended to provide insight into the following: 

1. The nature and uses of geometry in ancient civilizations like those 
of Babylon, China, and Egypt. 

2. The mystical qualities that were associated with mathematical 
and geometric relations by groups like the pythagoreans. 

3. The importance of compass and straight edge constructions and 
the dilemma posed by three particular construction problems. 

4. The emergence of deductive reasoning and the understanding of 
the nature of axioms in ancient Greece. 

5. The importance of Euclidean geometry in the philosophies of 
Plato and Kant. 

6. The reasons for the repeated attempts to prove Euclid's fifth 
postulate. 

7. The numerous "false starts" and the reasons for the delay in the 
development of non-Euclidean geometry. 

8. The influence of the development of non-Euclidean geometry on 
mathematical and philosophical thought. 

2.2 Euclid's Geometry 

Tb understand the significance of non-Euclidean geometry it is es­
sential to become familiar with the geometry developed by the 
ancient Greeks. This geometry reached its apogee in approximately 
300 B.C. with the appearance of the Elements of Euclid. In the 13 
books comprising this treatise, Euclid organized 465 propositions 
summarizing the currently known results not only in geometry but 
also in number theory and elementary (geometric) algebra. 

The Elements of Euclid is important for its significant mathe­
matical content, but it also has become a landmark in the history 
of mathematics because it is the earliest extensive example of the 
use of the axiomatic method. Euclid realized that not every math­
ematical statement can be proved, that certain statements must be 
accepted as basic assumptions. Euclid referred to these assumptions 
as postulates and common notions, but they are now known as axioms. 
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Euclid's work was immediately accorded the highest respect and 
recognized as a work of genius. As a result all previous work in 
geometry was quickly overshadowed so that now there exists lit­
tle information about earlier efforts. It is a further mark of the 
monumental importance of this work, that the Elements was used es­
sentially unmodified as a standard geometry text for centuries. (The 
geometry contained in the Elements became known as Euclidean 
geometry.) 

Euclid's definitions, postulates, common notions, and first 30 
propositions (theorems) as translated by Sir Thomas Heath are given 
in Appendix A. A careful consideration of these should make the 
following observations apparent: 

1. Even though Euclid realized the necessity of axioms, he appar­
ently did not realize the need for undefined terms. However, a 
consideration of the first seven definitions suggests that these 
seven terms are essentially undefined. 

2. In the listing of his axioms, Euclid makes a distinction between 
those he called postulates and those he called common notions. 
The former were supposedly geometric in nature, whereas the 
latter were supposedly common to all mathematics. 

3. The statement of the fifth postulate is much more involved than 
the other four. 

The third observation led geometers to suspect that the fifth pos­
tulate was not independent of the first four postulates, but that it 
could be proved on the basis of the common notions and the first 
four postulates. The fact that Euclid had proved his first 28 proposi­
tions without resorting to the use of this postulate added fuel to this 
speculation. The attempts to prove the fifth postulate began soon 
after the appearance of the Elements. In these attempts, geometers 
frequently made an assumption and used this assumption to prove 
the fifth postulate. However, each of these assumptions was eventu­
ally proved equivalent to the fifth postulate. A list of some of these 
equivalent formulations is both interesting and instructive. One of 
these statements involves the notion of equidistant lines. Recall that 
the distance from a point P to a line m is the length of the perpendic­
ular segment from P to m. If the distance from each point on a line 
l to line m is the same, then l is said to be equidistant from m. 
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Statements Equivalent to Euclid's 
Fifth Postulate 

1. PZayfair's Axiom: Through a given point not on a given line, exactly 
one parallel can be drawn to a given line. 

2. The sum of the angles of any triangle is equal to two right angles. 
3. There exists a pair of similar triangles. 
4. There exists a pair of straight lines everywhere equidistant from 

one another. 
5. Given any three noncollinear points, there exists a unique circle 

passing through them. 
6. If three angles of a quadrilateral are right angles, then the fourth 

angle is also a right angle. 

The proof of the equivalence of the fifth postulate and Playfair's 
axiom is presented later. This proof demonstrates the two steps 
required to prove that a statement is equivalent to Euclid's fifth 
postulate: (1) We must construct a proof of Playfair's axiom using 
Euclid's five postulates; and (2) we must construct a proof of Eu­
clid's fifth postulate using Euclid's first four postulates together with 
Playfair's axiom. Note that in both (1) and (2), Euclid's Propositions 1 
through 28 can be used. Proofs of the equivalence of the fifth pos­
tulate and statements 2 through 6 are contained in Introduction to 
Non-Euclidean Geometry by Harold E. Wolfe (1945). 

Proof of the Equivalence of Playfair's Axiom 
and Euclid's Fifth Postulate 

Proof of Playfair's axiom based on Euclid's postulates 
Let the given point be P and the line be Z (Fig. 2.1). Through P con­
struct a line perpendicular to Z at Q (Proposition 12). Then through 
P construct a second line PR perpendicular to PQ(ll). The lines PR 
and 1 are parallel (27). Now assume PS is a second line through P as 
shown. Then by common notion (C.N.) 5, LQPS is less than LQPR. 
Hence, LBQP and LQPS (where B is a point on 1 as shown) are to­
gether less than LBQP and LQPR (C.N. 1). But LBQP and LQJ?R are 
right angles; therefore, PS and 1 are not parallel by Postulate 5. • 
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Let the given point be P and the line be Z (Fig. 2.1). Through P con­
struct a line perpendicular to Z at Q (Proposition 12). Then through 
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FIGURE 2.1 Fifth postulate => Playfair's axiom. 

FIGURE 2.2 Playfair's axiom => fifth postulate (1). 

Proof of the fifth postulate based on postulates 1 through 4 
and Playfair's axiom 
Let AB and CD be lines cut by a transversal PQ so that L.DQP and 
L.QPB are together less than two right angles. At P, construct line 
PE so that LDQP and LQ?E are together equal to two right angles 
(Proposition 23). Then PE is parallel to QD (28). So by Playfair's 
axiom, AB is not parallel to CD, and thus AB and CD intersect 
(Fig. 2.2). Now assume AB and CD intersect in a point S on the other 
side of PQ (Fig. 2.3). Then LSPQ and LSQP are together greater than 
two right angles. But this contradicts Proposition 17. So AB and CD 
intersect on the appropriate side. • 

Returning to a consideration of Euclid's work, it is useful to in­
vestigate some of the proofs presented in the The Thirteen Books of 
Euclid's Elements as translated by Heath. In particular, we consider 
the proofs of Propositions 1, 16, 21, and 27, reprinted with the per­
mission of Cambridge University Press. These proofs demonstrate 
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FIGURE 2.3 Playfair's axiom =} fifth postulate (2). 

some of the geometric properties that Euclid took for granted, that is, 
properties he assumed without stating them explicitly as postulates 
or common notions. The essential role of these properties in Euclid's 
geometry became evident with the development of non-Euclidean 
geometries. 

Euclid's Proposition 1 
On a given finite straight line to construct an equilateral triangle. 

Let AB be the given finite straight line. 
Thus it is required to construct an equilateral triangle on the 

straight line AB. 
With centre A and distance AB let the circle BCD be described; 

[Post. 3] 
again, with centre B and distance BA let the circle ACE be described; 

[Post. 3] 
and from the point C, in which the circles cut one another, to the 
points A, B let the straight lines CA, CB be joined. [Post. 1] 

D E 

Now, since the point A is the centre of the circle CDB, 

AC is equal to AB. 

Again, since the point B is the centre of the circle CAE, 

BC is equal to EA. 

[Def. 15] 

[Def. 15] 
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But CA was also proved equal to AB; therefore each of the straight 
lines CA, CB is equal to AB. 

And things which are equal to the same thing are also equal to 
one another; [C.N. 1] 

therefore GA is also equal to GB. 

Therefore the three straight lines CA, AB, BG are equal to one 
another. 

Therefore the triangle ABC is equilateral; and it has been con­
structed on the given finite straight line AB. 

(Being) what it was required to do. 

In the proof of Proposition 1 Euclid assumed that the circles in his 
construction intersect at a point C; that is, he assumed the continuity 
of circles without previously proving this as a proposition or stating 
it as a postulate. Later axiom systems for Euclidean geometry in­
cluded explicit axioms of continuity, for example, Dedekind's axiom 
of continuity (see Appendix B). Note that Dedekind's axiom requires 
the concept of betweenness, which was also assumed by Euclid. 

Euclid's Proposition 16 
In any triangle, if one of the sides be produced, the exterior angle is greater 
than either of the interior and opposite angles. 

Let ABC be a triangle, and let one side of it BG be produced to Di 
I say that the exterior angle AGD is greater than either of the 

interior and opposite angles GBA, BAG. 

Let AG be bisected at E [l.10], 
and let BE be joined and produced in a straight line to F; 

let EF be made equal to BE 
let FC be joined 
and let AC be drawn through to G 

A 
F 

G 

[1.3], 
[Post. 1], 
[Post. 2]. 
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Then, since AE is equal to EC, and BE to EF, 

the two sidesAE, EB are equal to the two sides CE, EF respectively; 
and the angle AEB is equal to the angle FEC, for they are vertical 

angles. [l.15] 
Therefore the base AB is equal to the base FC, and the triangle 

ABE is equal to the triangle CFE, and the remaining angles are equal 
to the remaining angles respectively, namely those which the equal 
sides subtend; [1.4] 

therefore the angle BAE is equal to the angle ECF. 

But the angle ECD is greater than the angle ECF; [C.N.5] 
therefore the angle ACD is greater than the angle BAE. 

Similarly, also, if BC be bisected, the angle BCG, that is, the angle 
ACD [l.15], can be proved greater than the angle ABC as well. 

Therefore etc. Q.E.D. 

In the proof of Proposition 16 Euclid extended segment BE to 
a segment twice as long (BF). In doing so he implicitly assumed 
that a segment can be extended without coming back on itself so 
that F does not lie on segment BE. In more formal language, Euclid 
assumed that a line is infinite in extent, not merely boundless. As 
an example of a line that is boundless, but not of infinite extent, 
interpret the undefined term "line" as a great circle on a sphere. 

Euclid's Proposition 21 
If on one of the sides of a triangle, from its extremities, there be constructed 
two straight lines meeting within the triangle, the straight lines so con­
structed will be less than the remaining two sides of the triangle, but will 
contain a greater angle. 

On BC, one of the sides ofthe triangle ABC, from its extremities 
B, C, let the two straight lines BD, DC be constructed meeting within 
the triangle; 

I say that BD, DC are less than the remaining two sides of the 
triangle BA, AC, but contain an angle BDC greater than the angle 
BAC. 

For let BD be drawn through to E. 

Then, since in any triangle two sides are greater than the 
remaining one, [1.20] 

therefore, in the triangle ABE, the two sides AB, AE are greater 
than BE. 
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Let EC be added to each; 
therefore BA, AC are greater than BE, EC. 

A 

Again, since, in the triangle CED, 
the two sides CE, ED are greater than CD, 

let DB be added to each; 
therefore CE, EB are greater than CD, DB. 

But BA, AC were proved greater than BE, EC; 
therefore BA, AC are much greater than BD, DC. 

Again, since in any triangle the exterior angle is greater than the 
interior and opposite angle, [1.16] 
therefore, in the triangle CDE, 

the exterior angle BDC is greater than the angle CED. 
For the same reason, moreover, in the triangle ABE also, 
the exterior angle CEB is greater than the angle BAC. But the angle 

BDC was proved greater than the angle CEB; 
therefore the angle BDC is much greater than the angle BAC. 
Therefore etc. Q.E.D. 

In the proof of Proposition 21, Euclid assumed that a line that 
contains the vertex CB) of a triangle C MBG) and an interior point 
CD) must intersect the opposite side CAC) at a point CE). Either this 
assumption or its equivalent, which was formulated by Pasch in the 
19th century, is known as Pasch's axiom. The equivalent forms are 
as follows. 

Pasch's Axiom 1. A line containing a vertex of a triangle and a point 
interior to the triangle will intersect the opposite side of the triangle. 
Pasch's Axiom Z. Let A, B, G be three points not on the same line 
and let 1 be a line in the plane containing A, B, G that does not pass 
through A, B, or G. Then ifl passes through a point of the segment 
AB and contains a point interior to MBG, it will also pass through 
a point of segment AG or a point of segment BC. 
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Pasch's axiom can be shown to be equivalent to the separation 
properties of points and lines that Euclid also assumed; that is, he 
assumed that a point separates a segment into two distinct sets and 
that a line separates the plane into two distinct sets. 

Euclid's Proposition 27 
If a straight line falling on two straight lines makes the alternate angles 
equal to one another, the straight lines will be parallel to one another. 

For let the straight line EF falling on two straight lines AB, CD 
make the alternate angles, AEF, EFD equal to one another; 

I say that AB is parallel to CD. 

For, if not, AB, CD when produced will meet either in the direction 
of B, D or towards A, C. 

Let them be produced and meet, in the direction of B, D, at G. 
Then, in the triangle GEF, the exterior angle AEF is equal to the 

interior and opposite angle EFG: 

which is impossible. [1.16] 

A Ej B 

Therefore AB, CD when produced will not meet in the direction 
ofB,D. 

Similarly it can be proved that neither will they meet towards A, C. 
But straight lines which do not meet in either direction are 

parallel; [Def. 23] 
therefore AB is parallel to CD. 

Therefore etc. Q.E.D. 

The major point to be made in considering Proposition 27 is that 
the proof of this proposition, which guarantees the existence of par­
allellines, depends on the validity of Proposition 16, whose proof in 
turn requires that lines be of infinite extent. 

These "shortcomings" in Euclid's work did not become significant 
until the development of non-Euclidean geometry. But then they 
presented a very real dilemma and had to be resolved. As a result, a 
number of new axiom systems for Euclidean geometry were devel­
oped. Obviously these systems were necessarily much longer and 
more involved than Euclid's. Appendices B, C and D contain systems 
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developed by Hilbert, Birkhoff, and the School Mathematics Study 
Group (SMSG), respectively. Examine these to determine how each 
system eliminates the shortcomings encountered in Euclid. Note 
that Appendix F contains proofs of one theorem (the angle-side-angle 
theorem) in all three systems. 

Exercises 
1. Prove the following statements equivalent to Euclid's fifth postulate: 

(a) If a line intersects one of two parallel lines, it also intersects the 
other. (b) Straight lines that are parallel to the same straight line are 
parallel to one another. (This is Proposition 30.) 

2. Prove that the two versions of Pasch's axiom are eqUivalent. 

3. Work through each of the following examples using Euclid's postulates 
and propositions (see Appendix A) to determine which steps are valid. 
As you do so, you may want to use dynamic geometry software to 
recreate the constructions. Then find the "flaw" in each. [Examples a 
through c are reprinted from Dubnov (1963) with the permission of 
D. C. Heath and Company. Example d is reprinted from Maxwell (1961) 
with the permission of Cambridge University Press.] 

Example a. A right angle is congruent to an obtuse angle. 

Proof 
From the endpoints of segment AB construct two congruent line seg­
ments AC and BD lying on the same side of AB so that L.DBA is a right 
angle and L.CAB is an obtuse angle. We shall prove that L.DBA ::::: L.CAB. 
Construct CD. Clearly, AB and CD are not parallel. Construct the perpen­
dicular bisectors of segments AB and CD and let their point of intersection 
be N. Construct NA, NB, NC, and ND. 

Case 1: The point N lies on the same side of AB as do C and D 
(Fig. 2.4). Clearly, 

LNAC ::::: LNBD so L.NAC::::: L.NBD 

Furthermore, 

L.NAB ::::: L.NBA 

Thus, by adding (1) and (2), L.CAB ::::: L.DBA. 

(1) 

(2) 
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FIGURE 2.5 Example a, case 3. 

Case 2: The point N lies on AB; that is, N is the midpoint of segment 
AB. Then, as in case I, l::,.NAC ::::= l::,.NBD, and again L.NAC ::::= L.NBD. Thus, 
by substitution, L.BAC ::::= LABD. 

Case 3: The point N lies on the opposite side of AB from C and D 
(Fig. 2.5). Then as in case I, l::,.NAC::::= l::,.NBD and again 

L.NAC ::::= L.NBD 

Furthermore, 

L.NAB ::::= L.NBA 

Thus, by subtracting (2) from (1), L.CAB ::::= L.DBA. 

Example b. A rectangle inscribed in a square is also a square. 

Proof 

(1) 

(2) 

• 

Let rectangle MNPQ be inscribed in square ABCD as shown in Fig 2.6. 
Drop perpendiculars from P to AB and from Q to BC at Rand S, respec-
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tively. Clearly PR:::: QS. Furthermore, PM:::: ON. SO flPMR:::: flONS, and 
hence L.PMR :::: L.QNS. Consider quadrilateral MBNO where 0 is the point 
of intersection of QN and PM. Its exterior angle at the vertex N is congru­
ent to the interior angle at the vertex M, so that the two interior angles at 
the vertices Nand M are supplementary. Thus, the interior angles at the 
vertices Band 0 must also be supplementary. But LABC is a right angle, 
and hence, L.NOM must also be a right angle. Therefore the diagonals of 
rectangle MNPQ are perpendicular. Hence, MNPQ is a square. • 

Example c. 'TWo lines, exactly one of which is perpendicular to a third 
line, do not intersect. 

Proof 
At points Ao and Bo of the line 1, draw AoQ and BoP so that Q and Pare 
on the same side of AoBo and so that L.QAoBo is acute and L.PBoAo is a 
right angle (Fig. 2.7). We shall prove that the rays AoQ and BoP do not in­
tersect. Locate A} on AoQ andB} onBoP such that d(A} , Ao) = d(B} , Bo) = 

A , 
" A. A, Q 

t- " iF 

" !~ 

t:L ... .. ... 
8, 8. 8, P 

FIGURE 2.7 Example c. 
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Example c. 'TWo lines, exactly one of which is perpendicular to a third 
line, do not intersect. 

Proof 
At points Ao and Bo of the line 1, draw AoQ and BoP so that Q and Pare 
on the same side of AoBo and so that L.QAoBo is acute and L.PBoAo is a 
right angle (Fig. 2.7). We shall prove that the rays AoQ and BoP do not in­
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A , 
" A. A, Q 

t- " iF 

" !~ 

t:L ... .. ... 
8, 8. 8, P 

FIGURE 2.7 Example c. 
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~(d(Ao, Bo)). Then for i ::: 1 locate points Ai on AoQ such that Ai is be­
tween Ai-l and Ai+! and d(Ai+!' Ai) = ~(d(Ai' Bi)). Also locate points Bi 
on BoP such that Bi is between Bi- 1 and Bi+l and d(Bi+l' Bi) = ~(d(Ai' Bi)). 
Clearly, for any i, segments Ai+lAi and Bi+!Bi cannot have any points in 
common since if K were a common point, there would exist a triangle, 
f::,AiKBi in which the sum of two sides, AiK and BiK, is less than or equal 
to the length of the third side, AiBj • • 

Example d. Every point inside a circle, other than the center, lies on its 
circumference. 

Proof 
Consider an arbitrary circle with center 0 and radius r and an arbitrary 
point P =f. 0 inside it. Let Q be the point on OP such that P is between 0 
and Q and such that d(O, P) ·d(O, Q) = r2 (Fig. 2.8). Let the perpendicular 
bisector of segment PQ at R intersect the circle at points U and V. Then 

and 

So 

d(O, P) = d(O, R) - d(R, P) 

d(O, Q) = dCO, R) + d(R, Q) 

= d(O, R) + d(R, P). 

d(O, P) . d(O, Q) = [d(O, R) - d(R, P)]· [d(O, R) + d(R, P)] 

= d2(O, R) - d2(R, P) 

= [d2(O, U) - d2(R, U)]- [d2(P, U) - d2(R, U)] 

= d 2(O, U) - d 2(P, U) 

o 

FIGURE 2.8 Example d. 
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= d(O, P) . d(O, Q) - d 2(P, U). 

Therefore, d(P, U) = 0, so P = U. • 

2.3 Non-Euclidean Geometry* 

The struggle to prove Euclid's fifth postulate, which began shortly af­
ter the appearance of the Elements (ca. 300 B.C.) continued well into 
the 18th century, but eventually mathematicians realized that the 
fifth postulate is independent of the first fOUT. In other words, there 
can exist geometries in which the negation of the fifth postulate is an 
axiom. These geometries came to be known as non-Euclidean. To ini­
tiate our study of these non-Euclidean geometries, we will consider 
the equivalent version of Euclid's fifth postulate, known as Playfair's 
axiom. 

Postulate 5' CPlayfair's Axiom) 
Through a given point not on a given line can be drawn exactly one 
line not intersecting the given line. 

Thus, Euclid's geometry can be said to be based on Postulates 1 
through 4 and Playfair's axiom. Non-Euclidean geometry, on the 
other hand, is based on Euclid's Postulates 1 through 4 and a negation 
of Playfair's axiom. The two possible negations of Playfair's axiom 
given here lead to two vastly different non-Euclidean geometries­
hyperbolic and elliptic (for elliptic geometry, a modification of 
Postulate 2 must also be made). 

Hyperbolic Axiom 
Through a given point, not on a given line, at least two lines can be 
drawn that do not intersect the given line. 

Elliptic Axiom 
TWo lines always intersect. 

The presentation of hyperbolic geometry that begins in the next 
section reflects the manner in which the subject developed histor-
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ically. The proofs are based on Euclid's Postulates 1 through 4 and 
the hyperbolic axiom, with additional justification offered for the 
previously cited unstated assumptions of Euclid. This approach has 
the disadvantage that it lacks the rigorous nature of modern mathe­
matics; but it does expedite exploration of many of the unexpected 
results of this fascinating subject. Since the proofs of Euclid's Propo­
sitions 1 through 28 are based only on Postulates 1 through 4, we 
already have 28 theorems of hyperbolic geometry. With these theo­
rems in hand, we are able to jump into the heart of plane hyperbolic 
geometry and develop almost immediately several interesting and 
strange results in this subject. The development of these results is, 
for the most part, surprisingly easy; although a few of the theorems 
necessary in the development are more difficult to prove than com­
parable theorems in Euclidean geometry. (More rigorous proofs for 
each of our results can be developed using Hilbert's axiom system 
with the hyperbolic axiom in place of Playfair's axiom.) 

Many of the theorems we will encounter were developed by 
the Italian mathematician Gerolamo Saccheri (1667-1733) in his at­
tempt to find a reductio ad absurdum proof of the fifth postulate. 
Influenced by the contemporary view that Euclidean geometry was 
the only possible geometry and faced with results radically differ­
ent from those in Euclidean geometry, Saccheri allowed himself to 
think he had obtained a contradiction to the hyperbolic hypothesis 
after producing a long list of hyperbolic theorems. (He also rejected 
a second alternative hypothesis after much briefer consideration.) 
He recorded his work in a book with the intriguing title Euc1ides ab 
Omni Naevo Vindicatus (Euclid Freed of Every Flaw). 

Credit for the discovery of hyperbolic geometry is generally 
given instead to the Russian mathematician Nicolai Ivanovich 
Lobachevsky (1793-1856) and the Hungarian mathematician Janos 
Bolyai (1802-1860), who published their independent work in 1829 
and 1832, respectively. The eminent mathematician Karl Friedrich 
Gauss (1777-1855) also worked extensively in hyperbolic geometry 
but left his results unpublished. The details of the discoveries of 
these three men and the resistance they encountered provide one 
of the most fascinating episodes in the history of mathematics. 

As the results of hyperbolic geometry unfold, the difficulty of 
visualizing these results within a world that most of us view as 
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FIGURE 2.9 Poincare model. 

Euclidean becomes increasingly difficult. There are two frequently 
used geometric models that can aid our visualization of hyperbolic 
plane geometry. These are known as the Poincare model and the 
Klein model (Figs. 2.9 and 2.10). Both of these models assign in­
terpretations to hyperbolic terms within the context of Euclidean 
geometry. 

Poincare Model 
Hyperbolic 'Term 
Point 

Line 

Plane 

Interpretation 
Point interior to a given 

Euclidean circle C 

Portion interior to C of 
a circle orthogonal to C 
or a diameter of C 

Interior of C 

FIGURE 2.10 Klein model. 
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Under these interpretations the axioms and theorems of hy­
perbolic geometry become statements in Euclidean geometry. The 
Poincare model is important historically since it was used to demon­
strate the consistency of hyperbolic geometry relative to Euclidean 
geometry. 

Within this model, the measure of an angle determined as 
in Euclidean geometry is the measure of the hyperbolic angle. 
However, the correspondence between the hyperbolic and Eu­
clidean distances is not nearly so straightforward. Essentially, 
Euclidean meter sticks must be viewed as getting longer as they 
are placed closer to the circumference of C. A description of 
the life of people inhabiting the Poincare model is given in 
TIudeau (1987, pp. 235-244). Th explore the world of these inhab­
itants, that is, the hyperbolic geometry depicted in the Poincare 
model, you can use dynamic geometry software. Information 
on obtaining the needed menus/scripts and specific directions 
for guided hyperbolic explorations are available at the website: 
http://www.stolaf.edu/people/cederj/geotext/info.htm. 

The Klein model uses a similar interpretation of the term "point" 
but uses a more easily visualized interpretation of the term "line!' 
However, in this model neither the distance nor the angle measures 
for hyperbolic geometry agree with their Euclidean counterparts. 

Klein Model 
Hyperbolic 'Thrm 
Point 

Line 

Plane 

Interpretation 
Point interior to a given 

Euclidean circle C 

Open chord of C 

Interior of C 

This model will play an important role in Chapter 4, when we 
use Klein's definition of geometry to develop hyperbolic geometry 
as a subgeometry of the more general projective geometry. 

The presentation of elliptic geometry, which ends this chap­
ter uses an intuitive approach via spherical models rather than 
resorting to a drawn out axiomatic development. The aim of both 
presentations is to merely familiarize the reader with properties of 
non-Euclidean geometry. 

50 2. Non-Euclidean Geometry 

Under these interpretations the axioms and theorems of hy­
perbolic geometry become statements in Euclidean geometry. The 
Poincare model is important historically since it was used to demon­
strate the consistency of hyperbolic geometry relative to Euclidean 
geometry. 

Within this model, the measure of an angle determined as 
in Euclidean geometry is the measure of the hyperbolic angle. 
However, the correspondence between the hyperbolic and Eu­
clidean distances is not nearly so straightforward. Essentially, 
Euclidean meter sticks must be viewed as getting longer as they 
are placed closer to the circumference of C. A description of 
the life of people inhabiting the Poincare model is given in 
TIudeau (1987, pp. 235-244). Th explore the world of these inhab­
itants, that is, the hyperbolic geometry depicted in the Poincare 
model, you can use dynamic geometry software. Information 
on obtaining the needed menus/scripts and specific directions 
for guided hyperbolic explorations are available at the website: 
http://www.stolaf.edu/people/cederj/geotext/info.htm. 

The Klein model uses a similar interpretation of the term "point" 
but uses a more easily visualized interpretation of the term "line!' 
However, in this model neither the distance nor the angle measures 
for hyperbolic geometry agree with their Euclidean counterparts. 

Klein Model 
Hyperbolic 'Thrm 
Point 

Line 

Plane 

Interpretation 
Point interior to a given 

Euclidean circle C 

Open chord of C 

Interior of C 

This model will play an important role in Chapter 4, when we 
use Klein's definition of geometry to develop hyperbolic geometry 
as a subgeometry of the more general projective geometry. 

The presentation of elliptic geometry, which ends this chap­
ter uses an intuitive approach via spherical models rather than 
resorting to a drawn out axiomatic development. The aim of both 
presentations is to merely familiarize the reader with properties of 
non-Euclidean geometry. 
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2.4 Hyperbolic Geometry-Sensed 
Parallels 

Since hyperbolic geometry results from the replacement of the fifth 
postulate by the hyperbolic axiom, we will begin our study of this 
geometry by determining the consequences of this new axiom. In 
doing so, we will immediately need to make use of one of the prop­
erties Euclid assumed without stating it, namely, the continuity of 
lines. In the development that follows, we will accept Dedekind's 
axiom as an explicit statement of this property. 

Dedekind's Axiom of Continuity 
For every partition of the points on a line into two nonempty sets 
such that no point of either lies between two points of the other, 
there is a point of one set that lies between every other point of that 
. set and every point of the other set. 

Let P be a point and I a line not containing P as described in the 
hypothesis of the hyperbolic axiom. From P, construct a perpendic­
ular to I at Q (Proposition 12). Also construct a line m through P 
perpendicular to PQ at P(ll). Let S be a second point on line m and 
construct QS (Fig. 2.11). Then the points of QS can be partitioned 
into sets A and B as described below: 

m 

FIGURE 2.11 Existence of sensed parallel. 
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i. Let A = {X : X is on QS and PX intersects I}. 
ii. Let B = {Y : Y is on QS and PY does not intersect I}. 

Clearly, Q is in set A and S is in set B (why?), so the sets are 
nonempty. And if X, X' are elements of A, and Y, Y' are elements 
of B, Y cannot be between X and X' and X cannot be between Y 
and Y' (see Exercise 1). Thus, by Dedekind's axiom there is some 
point T in either set A or set B such that T is between X and Y for 
all X in A and Y in B. It soon becomes apparent that T is in B (see 
Exercise 2). If a point R on QS moves along QS from Q to S then the 
line PR will rotate about the point P and mLQPR will take on values 
from 0 to 90°. (In Fig. 2.11 this rotation would be counterclockwise.) 
Clearly, when R coincides with the point T given by Dedekind's 
axiom, mLQPR = mLQTP < 90° and the line PT can be described 
as the first line in the rotation process that does not intersect 1. Note 
that a similar situation arises on the other side of PQ; that is, there is 
another first line that does not intersect I, say PT'. For convenience 
we refer to these as the first lines on the right and left of PQ that 
do not intersect 1. Furthermore, LQPT ~ LQPT'. For if not, assume 
that mLQPT is greater than mLQPT' (Fig. 2.12). Then construct 
PU so that L.Qj?U ::::: L.QPT' where U is on the right side of PQ. 
Then, since PT is the first line on the right of PQ that does not 
intersect I, PU must intersect I at some point V. Let V' be a point on 
I to the left of PQ such that segment v' Q is congruent to segment 
VQ. Construct PV'. Since PQ is perpendicular to l, LPQV' ~ LPQV. 
Thus, LQPV' ~ L.Qj?V (4), and therefore L.QPV' ::::: L.QPT'. So V' 

V' Q v 

FIGURE 2.12 Symmetry of sensed parallels. 
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is on PT' and PT' intersects l. But this is a contradiction; therefore 
LQPT :::::: LQPT'. 

Note that any of the lines lying within the angle L(PT, PT'), that 
is, the angle formed by lines PT and PT' that does not contain PQ, 
will not intersect I either. 

The previous discussion is summarized in the following defini­
tion and theorem. 

Definition 2.1 
The first line through P relative to the counterclockwise (clockwise) 
rotation from PQ that does not intersect I (Fig. 2.12) is said to be 
right-(left-)sensed parallel to 1 through P. Any other line through P 
that does not intersect I is said to be ultra parallel to I through P or 
nonintersecting with l. 

Theorem 29h 
Ifl is any line and P is any point not on I, then there are exactly two lines 
through P that do not intersect I and that make equal acute angles with 
the perpendicular from P to 1 and that are such that every line through P 
lying within the angle containing that perpendicular intersects I, while 
every other line through P does not. 

Corollary 
TWo lines with a common perpendicular are ultra parallel. 

Before using this relation of sensed parallelism, some impor­
tant properties of this relation must be established. Recall that in 
Euclidean geometry the parallelism relation satisfies the following 
properties: 

1. Ifline 1 is the parallel to line m through P, then 1 is also the parallel 
to m through any other point R on l. 

2. Ifline 1 is parallel to line m, then m is parallel to I (symmetry). 
3. Ifline 1 is parallel to line m and m is parallel to line n, then 1 is 

parallel to n (transitivity). 

The first of these merely states that the property of parallelism is 
independent of the point P. The second and third properties are 
the well-known properties of symmetry and transitivity, as labeled. 
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m 

Q 

FIGURE 2.13 Sensed parallel demonstration. 

Before verifying that the relation of sensed parallelism in hyperbolic 
geometry satisfies these same properties, we shall first outline the 
procedure involved in proving that line 1 is sensed parallel to line m. 
From Definition 2.1 it should be apparent that in addition to verifying 
that 1 and m do not intersect, we must also show that at any point P 
on m, m is the first line in the rotation from the perpendicular to 1 that 
does not intersect 1. In practice this second property is demonstrated 
by verifying in Figure 2.13 that any line PT that intersects line m at 
P and enters LQ?S must intersect 1. (Here, PQ is perpendicular to 1 
at Q, and S is a point on m in the direction of parallelism from P.) 
This procedure is used in the proofs of the next three theorems. Each 
of these proofs is written for right-sensed parallels. The proofs for 
left-sensed parallels can be obtained by substituting the term "left" 
for "right" throughout. 

Theorem 30h 
If a line 1 is the nght-(left-)sensed parallel through a pOint P to a line m, 
it is at each of its points the nght-(left-)sensed parallel to the line m. 

Proof 
Assume 1 is right-sensed parallel to m through P. Let R be any other 
point on 1. 

Case 1: R is on the right side of P. Let PQ and RS be the perpen­
diculars to m at Q and S (12). Let B be any point on 1 to the right of 
R. It is sufficient to show that every line RU lying within LBRS must 
intersect m (Fig. 2.14). Construct PU. Clearly, PU lies within LQJ?R, 
and hence must intersect m at a point M (definition of sensed paral­
lels). Construct QF... By Pasch's axiom for b.PQR, PU must intersect . 

54 2. Non-Euclidean Geometry 

m 

Q 

FIGURE 2.13 Sensed parallel demonstration. 

Before verifying that the relation of sensed parallelism in hyperbolic 
geometry satisfies these same properties, we shall first outline the 
procedure involved in proving that line 1 is sensed parallel to line m. 
From Definition 2.1 it should be apparent that in addition to verifying 
that 1 and m do not intersect, we must also show that at any point P 
on m, m is the first line in the rotation from the perpendicular to 1 that 
does not intersect 1. In practice this second property is demonstrated 
by verifying in Figure 2.13 that any line PT that intersects line m at 
P and enters LQ?S must intersect 1. (Here, PQ is perpendicular to 1 
at Q, and S is a point on m in the direction of parallelism from P.) 
This procedure is used in the proofs of the next three theorems. Each 
of these proofs is written for right-sensed parallels. The proofs for 
left-sensed parallels can be obtained by substituting the term "left" 
for "right" throughout. 

Theorem 30h 
If a line 1 is the nght-(left-)sensed parallel through a pOint P to a line m, 
it is at each of its points the nght-(left-)sensed parallel to the line m. 
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Assume 1 is right-sensed parallel to m through P. Let R be any other 
point on 1. 

Case 1: R is on the right side of P. Let PQ and RS be the perpen­
diculars to m at Q and S (12). Let B be any point on 1 to the right of 
R. It is sufficient to show that every line RU lying within LBRS must 
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and hence must intersect m at a point M (definition of sensed paral­
lels). Construct QF... By Pasch's axiom for b.PQR, PU must intersect . 
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segment QR in a point N. In .6.QNM, RU intersects segment NM. 
But it does not intersect segment QN. Therefore, by Pasch's axiom, 
it must intersect segment QM and hence m. 

Case 2: R is on the left side of P. (See Exercise 5). • 

It can now be said that l is sensed parallel to m without spec­
ifying through which point, just as the relation of parallelism in 
Euclidean geometry does not depend on particular points on the 
lines. The term parallel may also suggest that sensed parallel lines 
have other properties analogous to those of parallel lines in Eu­
clidean geometry. And Theorems 31h and 32h below demonstrate 
that the relation of right-(left-)sensed parallelism is both symmetric 
and transitive, making the relation an equivalence relation (assum­
ing that a line is sensed parallel to itself). However, the designation 
of right versus left used above and in the statements of Theorems 31h 
and 32h indicates that in hyperbolic geometry each line belongs to 
two equivalence classes of"first-parallel" lines, not just one, as in Eu­
clidean geometry. The right versus left designation is a classic way of 
identifying these two classes without resorting to the terminology of 
equivalence classes. 1 But this right versus left designation can easily 
be confusing, since, for example, if the entire configuration shown 

1 For example, in Wolfe's Introduction to Non-Euclidean Geometry, the following ap­
pears (p. 68): "On occasion it will be found possible and convenient to distinguish 
between the two parallels by describing one as the 'right-hand: the other as the 
'left-hand' parallel:' 
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in Figure 2.15 is rotated 1800 about P, it then appears to show left­
sensed parallels. 

One possible way to clarify the situation is to use the terminology 
of ideal points. If I and m are sensed parallel lines, they are said to 
intersect in an ideal point. Ideal points will be represented by Greek 
letters, for example, Q. Since there are right- and left-sensed parallels 
to every line, any line l will have exactly two ideal points and'these 
two ideals points can be used to identify the two equivalence classes 
of lines sensed parallel to l. In the Poincare and Klein models, the 
ideal points are represented by the points lying on the circumference 
of C. For convenience we will say that two sensed parallel lines I 
and m "intersect" at a point n, but we must be careful not to let 
this familiar terminology suggest that ideal points possess the same 
properties as ordinary hyperbolic points. 

Theorem 3Ih 
Ifline I is nght-(left-)sensed parallel to line m, then m is nght-(left-)sensed 
parallel to I. 

Proof 
Assume that I is right-sensed parallel to m. Let P be a point on I, PQ 
the perpendicular to m at Q, and QJ?. the perpendicular to I at R. We 
can show that R will be on the right side of PQ. (See Exercise 6.) 
Also, let D be a point on m to the right of PQ. It is sufficient to show 
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that every line QE lying within LRQD must intersect 1 (Fig. 2.15). 
Let PF be the perpendicular to QE at F. As before, the exterior angle 
theorem guarantees that F will lie to the right of PQ. Furthermore, 
segment PF is shorter than segment PQ (19). Thus, on segment PQ 
there is a point G such that segment PG is congruent to segment PF 
(3). Draw GH perpendiculartoPQ. LetBbe a point on 1 such thatBis 
to the right of R and construct LGPI ~ LFPB. Then PI will intersect 
m at I (definition of sensed parallel). Since GH intersects segment 
PQ in b.POJ and cannot intersect OJ, it must intersect segment PI 
at some point K. On line PB find a point L to the right of PQ such 
that segment PL is congruent to segment PK and construct FL. Now 
!:!'PGK ~ b.PFL( 4). So LPFL is a right angle. But LPFE is also a right 
angle. Hence, FE = FL. Therefore, QE intersects 1 at L. • 

Thus, the relation of sensed parallelism is symmetric. The veri­
fication that this relation is also transitive is simplified by using the 
following lemma. 

Lemma 
Ifm is right-sensed parallel to n, P and S are points on m (S to the right 
of P), and R is a point on n, then any line 1 entering LRPS will intersect 
n at a point T on the right side of R. 

Proof 
Let U be a point on line 1 below line m and let PQ be the 
perpendicular to n at Q. 

Case 1: Q coincides with or lies to the left of R (Fig. 2.16). Then 
clearly mLOf'U is less than mLQPS so PU intersects line n to the right 
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FIGURE 2.16 Lemma proof, case l. 
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of Q (definition of right-sensed parallel). Since PU cannot intersect 
segment QR (see Exercise 7), it must intersect n to the right of R. 

Case 2: Q lies to the right of R (Fig. 2.17). Then line 1 will either 
enter t:.PQR and intersect side RQ (Pasch's axiom), and therefore 
line n as desired, or mL.UPQ will be less than mL.SPQ, and thus 1 
will intersect n to the right of R by the definition of right-sensed 
parallels. • 

Theorem 32h 
If two lines are both right-(Zeft-)sensed parallel to a third line, then they 
are right-(Zeft-)sensed parallel to one another. 

Proof 
Assume that 1 is right-sensed parallel to n, and m is right-sensed 
parallel to n. We shall show that 1 is right-sensed parallel to m. 

Case 1: land m lie on opposite sides of n. Clearly, land m do not 
intersect since they lie on opposite sides of n. Let P and S be points 
on I, S to the right of P. Construct PQ, the perpendicular to m at Q. 

Then, since land m lie on opposite sides of n, PQ will intersect n 
at a point R. Let PU be a line entering L.QPS. It is sufficient to show 
that PU intersects m to the right of Q (Fig. 2.18). Since 1 is right­
sensed parallel to n, PU will intersect n at a point T by the preceding 
lemma. Construct line TQ and let W be a point on n to the right of 
T. Then line PU enters L.QTW at T. Since m is right-sensed parallel 
to n, n is right-sensed parallel to m by Theorem 31h, and the lemma 
can be used again to show that PT intersects m as desired. 
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FIGURE 2.19 Proof 32h, case 2. 

Case 2: m is between land n. Assume that l is not right-sensed 
parallel to m and let P be a point on l (Fig. 2.19). By Theorem 29h 
there is a line 0 through P that is the right-sensed parallel to m. 
Since m is right-sensed parallel to n, n is right-sensed parallel to m 
(Theorem 31h). Furthermore, 0 is right-sensed parallel to m, and 0 

and n lie on opposite sides of m. Therefore, by case I, 0 is right­
sensed parallel to n. This gives us two lines through P, both right­
sensed parallel to n, contradicting the uniqueness guaranteed by 
Theorem 29h. Thus, it follows that l is right-sensed parallel to n. • 

Hence, the relation of sensed parallelism is transitive. Note, how­
ever, that the hypothesis of this theorem requires that the direction 
of parallelism be the same in both cases. But if, for example, l is 
right-sensed parallel to n, and m is left-sensed parallel to n, land m 
may not be sensed parallel. This is demonstrated using Klein models 
(Fig. 2.20). 
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FIGURE 2.20 Sensed parallels in Klein models. 

Exercises 
1. Show that sets A and B described at the beginning of this section have 

the property that no point of either lies between two points of the 
other. 

2. Verify that the point T guaranteed by Dedekind's axiom cannot be in 
set A and therefore must be in set B (where sets A and B are the sets 
described at the beginning of this section). 

3. (a) Use a Klein model to show the right- and left-sensed parallels to a 
line I through a point P not on 1. (b) In the same model, show two lines 
through P that are ultraparallel to 1. 

4. (a) Use a Poincare model to show the right- and left-sensed parallels 
to a line I through a point P not on 1. (b) In the same model, show two 
lines through P that are ultraparallel to 1. 

5. Prove case 2 of Theorem 30h. [Hint: Choose U above 1.] 

6. Prove the claim in the proof of Theorem 31h, that R will be on the right 
side of PQ. 

7. In case 1 of the proof of the lemma used to prove Theorem 32h, prove 
that line PU cannot intersect segment Q. [Hint: You may need to refer 
to the separation of the plane by a line.] 

8. Explain why there are no more than two ideal points on a hyperbolic 
line. 
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2.5 Hyperbolic Geometry-Asymptotic 
Thiangles 

We will continue the study of sensed parallels by examining the fig­
ures formed by two sensed parallel lines and a transversal. Because 
these figures resemble triangles, they have come to be known as 
asymptotic mangles (Fig. 2.21). In order to make use of the usual 
convention of naming a triangle by its three vertices, we will use 
the ideal point determined by the two sensed parallel lines as the 
third point in the notation. Thus we will speak of asymptotic triangle 
.6AEQ, where the two lines are represented by AQ and EQ and the 
transversal is the segmentAE. Once again, it is important to note that 
although convenient notationally, Q does not represent an actual 
point in hyperbolic geometry. 

Definition 2.2 
The figure consisting of two sensed parallel lines and a transversal 
intersecting the lines at A and E is referred to as an asymptotic m­
angle. If Q is the ideal point determined by the sensed parallels, we 
refer to this asymptotic triangle as MEQ. 

It is important to note that asymptotic triangles, despite the 
name, are not triangles so we cannot apply previous theorems about 
triangles to asymptotic triangles. However, asymptotic triangles do 
have some properties in common with triangles. In particular, The­
orems 33h and 34h show that a modified Pasch's axiom holds for 
asymptotic triangles. Note that Theorem 33h is an extension of the 
lemma used in the proof of Theorem 32h, but here it is proved using 
the notation of asymptotic triangles. 

2.5. Hyperbolic Geometry-Asymptotic Triangles 61 

A 

~o 
B 

FIGURE 2.21 Asymptotic triangle, MBQ .. 

2.5 Hyperbolic Geometry-Asymptotic 
Thiangles 

We will continue the study of sensed parallels by examining the fig­
ures formed by two sensed parallel lines and a transversal. Because 
these figures resemble triangles, they have come to be known as 
asymptotic mangles (Fig. 2.21). In order to make use of the usual 
convention of naming a triangle by its three vertices, we will use 
the ideal point determined by the two sensed parallel lines as the 
third point in the notation. Thus we will speak of asymptotic triangle 
.6AEQ, where the two lines are represented by AQ and EQ and the 
transversal is the segmentAE. Once again, it is important to note that 
although convenient notationally, Q does not represent an actual 
point in hyperbolic geometry. 

Definition 2.2 
The figure consisting of two sensed parallel lines and a transversal 
intersecting the lines at A and E is referred to as an asymptotic m­
angle. If Q is the ideal point determined by the sensed parallels, we 
refer to this asymptotic triangle as MEQ. 

It is important to note that asymptotic triangles, despite the 
name, are not triangles so we cannot apply previous theorems about 
triangles to asymptotic triangles. However, asymptotic triangles do 
have some properties in common with triangles. In particular, The­
orems 33h and 34h show that a modified Pasch's axiom holds for 
asymptotic triangles. Note that Theorem 33h is an extension of the 
lemma used in the proof of Theorem 32h, but here it is proved using 
the notation of asymptotic triangles. 



62 2. Non-Euclidean Geometry 

A 

C B 

FIGURE 2.22 Proof 33h, Case l. 

Theorem 33h 
If a line passes within asymptotic triangle .6.AEQ through one of its 
vertices (including Q), it will intersect the opposite side. 

Proof 
Let AP be a line passing through A, and P a point interior to .6.AEQ. 
Let AC be the perpendicular to EQ through A. 

Case 1: AC coincides with AE or falls outside MBQ (Fig. 2.22). 
Then clearly LPAC is smaller than LTAC where T lies on side AQ. 
Hence, AP intersects side CQ (definition of sensed parallels). Since 
AP cannot intersect segment CE, it must intersect side EQ. 

Case 2: AC lies within .6.AEQ (Fig. 2.23). Then P may fall inside 
.6.AEC and hence AP intersects side EC (Pasch's axiom) and there­
fore side EQ; or P may fall inside .6.ACQ or on side AC. In this latter 
instance, as in case I, AP must intersect side CQ and hence side EQ. 

The proof for a line through E is the same; so assume the line 
passes through Q, that is, PQ is sensed parallel to AQ and EQ 
(Fig. 2.24). Construct AP. Then by the previous part of the proof, 
AP intersects side EQ at some point Q. But PQ intersects side AQ 
in .6.AEQ and therefore intersects side AE (Pasch's axiom). • 

A 

FIGURE 2.23 Proof 33h, case 2. 
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Theorem 34h 
If a straight line intersects one of the sides of asymptotic triangle .6.ABQ 
but does not pass through a vertex (including Q), it will intersect exactly 
one of the other two sides. 

Proof 
See Exercise 1. • 

The analog of the exterior angle theorem for ordinary triangles 
(Proposition 16) can also be verified for asymptotic triangles. Note, 
however, that in an ordinary triangle each exterior angle has two op­
posite interior angles; whereas each exterior angle of an asymptotic 
triangle has only one. 

Theorem 3sh 
The exterior angles of asymptotic triangles .6.ABQ at A and B made by 
extending AB are greater than their respective opposite interior angles. 

Proof 
LetABbe extended through B to C. It is sufficient to show that L.CBQ 
is greater than L.BAQ. To do this, assume that the opposite is true, 
that is, L.CBQ is less than or equal to L.BAQ. Through B construct 
BD such that D lies in the direction of parallelism from AB, and 
L.CBD c::: L.BAQ. 

Case 1: D lies inside .6.ABQ (Fig. 2.25). Then by Theorem 33h, 
BD intersects AQ at some point E. But then in .6.ABE, the exterior 
angle at B is congruent to the interior angle at A, which contradicts 
Proposition 16. 
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FIGURE 2.26 Proof 35h, case 2. 

Case 2: D lies on En (Fig. 2.26). Let M be the midpoint of seg­
ment AE (Proposition 10). Construct MN perpendicular to En at 
N. Clearly, N cannot coincide with E (why?). We shall assume that 
N falls to the right of E (if An and En are right-sensed parallel as 
shown in Fig. 2.26). The proof for the case when N falls to the left 
of E is similar (see Exercise 2). Extend An to L so the segment LA 
is congruent to segment EN. Construct ML. Then L.LAM c::::: L.NEM, 
since they are supplements of congruent angles. Hence, 6LAM c::::: 

6NEM, and L.EMN c::::: L.AML. Therefore, LM =MN. Furthermore, 
L.ALM c::::: L.ENM. So L.ALM is a right angle. Thus, An is ultraparallel 
to En. But this contradicts the hypothesis. Thus, both cases lead to 
a contradiction, and hence it follows that mLCEn is greater than 
mL.EAn. • 

Note that case 2 of this proof demonstrates the following 
theorem. 
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Theorem 3Gh 
ThJo lines cut by a transversal so as to make alternate angles congruent 
are ultraparallel. 

As a result of this theorem, Euclid's Propositions 27 and 28 refer to 
ultraparallellines. 

The familiar triangle congruence theorems of Euclidean geom­
etry also have analogs in hyperbolic geometry. Here, since two of 
the three sides of an asymptotic triangle are infinite, there are only 
two angles and one side to consider. In other words, two asymptotic 
triangles are said to be congruent whenever their finite sides and 
the two pairs of corresponding angles are congruent. 

Theorem 37h 
If segment AB is congruent to segment A'B' and LBAQ is congruent to 
LB'A'Q' in asymptotic triangles l:l.ABQ and M'B'Q', then LABQ is 
congruent to LA' B' Q'. 

Proof 
Assume LABQ 1:. LA'B'Q'; in particular assume that mLABQ 
is greater than mLA'B'Q'. Let C be a point in the direction of 
parallelism fromAB such that LABC :::: LA'B'Q' (Fig. 2.27). By Theo­
rem 33h, BC intersects side A Q at some point D. On A' Q' find D' such 
that segment AD is congruent to segment A'D'. Construct B'D'. Then 
MBD:::: M'B'D', so LA'B'D' :::: LABD. But LABD :::: LA'B'Q', and 
thus LA'B'D':::: LA'B'Q'. AndB'D' = B'Q'. But this is a contradiction 
so LABQ :::: LA' B' Q'. • 

Two other congruence theorems for asymptotic triangles are stated 
below (see Exercises 3 and 4). 

A A' 

B~Q~O 
B' 

FIGURE 2.27 Proof 37h. 
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Theorem 38h 
In asymptotic triangles l::.ABQ and l::.A'B'Q', if LBAQ ~ LB'A'Q' and 
LABQ::::: LA'B'Q', then segment AB is congruent to segment A'Bl 

Theorem 39h 
In asymptotic triangles l::.ABQ and £::.A'B'Q', if segment AB is congru­
ent to segment A'B', LABQ ~ LBAQ, and LA'B'Q' ~ LB'A'Q', then 
LABQ::::: LA'B'Q' ~ LBAQ ~ LB'A'Q'. 

These asymptotic triangle theorems lead to a unique concept in 
hyperbolic geometry, namely, the angle of parallelism. The definition 
of this concept uses a mapping on the set of positive real numbers. 

Let PQ be a segment of length h, that is, m(PQ) = h. Let QS be 
the line perpendicular to PQ at Q and PR the line sensed parallel to 
QS through P (Fig. 2.28). Then there is a mapping a such that a(h) = 
mLQPR where mLQPR denotes the measure of LQPR. 

Theorems 37h and 29h can be used to show that the mapping 
a(h) is well defined. As shown in Exercise 5, this mapping is also 
one-to-one and order reversing [i.e., if h < h', then a(h) > a(h')]. 
Furthermore, it can be shown that a(h) is a continuous mapping. 
These results are summarized in the following theorem. 

Theorem 40h 
The mapping a(h) just described is continuous, one-to-one, and order 
reversing. 

Definition 2.3 
An angle with measure a(h) is called an angle of parallelism of h. 

p 

Q s 

FIGURE 2.28 Angle of parallelism. 
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In A Survey of Geometry (pp. 414-416), Howard Eves (1972) 
demonstrates that 

a(h) = 2 arctan(e-h ) 

if the unit of length is chosen as the distance corresponding to the 
angle of parallelism a = 2 arctan ( e-1 ). 

This leads to another interesting property of hyperbolic ge­
ometry not possessed by Euclidean geometry. Note that in both 
Euclidean and hyperbolic geometry, angles possess a natural unit 
of measure that can be geometrically constructed since right angles 
can be constructed. Because of this, angles are said to be absolute in 
both geometries. In Euclidean geometry, lengths are not absolute; 
since there is no natural unit oflength structurally connected with 
the geometry. However, in hyperbolic geometry lengths are absolute 
because the mapping a(h) associates to any angle (e.g., 45°) a def­
inite distance h; and once an angle of measure 45° is constructed, 
the corresponding angle of parallelism can be constructed. [Note 
that this statement assumes that it is possible to construct a line per­
pendicular to one of two intersecting lines and sensed parallel to 
the other; that is, if lines land m intersect at point P as shown in 
Figure 2.28, it is possible to construct the line QS perpendicular to l 
at Q and sensed parallel to m. This construction is demonstrated in 
Wolfe (1945, pp. 97-99).] 

Exercises 
1. Prove Theorem 34h. 

2. Complete the verification of case 2 in the proof of Theorem 35h by 
considering the case where N falls to left of B. 

3. Prove Theorem 38h. 

4. Prove Theorem 39h. 

5. Prove using a synthetic proof: Ifh < h', then a(h) > a(h'). 

6. Prove that the sum of the measures of the two angles at the ordi­
nary vertices of an asymptotic triangle is less than 180°. [Hint: Use 
Theorem 35h.] 
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FIGURE 2.29 Saccheri quadrilateral. 

2.6 Hyperbolic Geometry-Saccheri 
Quadrilaterals 

A second figure of importance in hyperbolic geometry is the 
Saccheri quadrilateral (Fig. 2.29) in honor of the efforts of Gero­
lamo Saccheri, who, as noted previously, almost discovered non­
Euclidean geometry. 

Definition 2.4 
A Saccheri quadrilateral is a quadrilateral ABCD with two adjacent 
right angles at A and B and with sides AD c:::' BC. Side AB is called 
the base and side DC is called the summit. 

We shall soon see that one of the implications of the hyperbolic 
axiom is that the angles at C and D in this figure are not right angles 
as they are in Euclidean geometry. There are, however, properties of 
Saccheri quadrilaterals common to both Euclidean and hyperbolic 
geometry since their proofs require results based only on Euclid's 
first four postulates. TWo of these common properties are stated in 
Theorem 41h and conclusion (1) of Theorem 42h. 

Theorem 41h 
The line joining the midpoints of the base and summit of a Saccheri 
quadrilaternl is perpendicular to both of them. 

Proof 
See Exercise 1. • 
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Corollary 
The base and summit of a Saccheri quadrilateral are ultraparaZZel. 

Theorem 42h 
The summit angles of a Saccheri quadrilateral are (1) congruent and 
(2) acute. 

Proof 
See Exercise 3. • 

As indicated earlier, the proof of part (2) depends on the hy­
perbolic axiom. In Euclidean geometry this conclusion must be 
changed to "right," whereas in elliptic geometry this conclusion must 
be changed to "obtuse." In fact, Theorem 42h is equivalent to the 
hyperbolic axiom whereas the Euclidean version is equivalent to 
Euclid's parallel postulate. This theorem also leads to one of the dra­
matic results in hyperbolic geometry, namely, that the angle sum 
of every triangle is less than 1800 • As we shall see in the next sec­
tion, the angle sum is not even constant for all triangles, in hyperbolic 
geometry. 

Theorem 43h 
The sum of the angles of every triangle is less than two right angles. 

Proof 
Assume 6.ABC is an arbitrary triangle with base BC. Let D and E be 
the midpoints of sides AB and AC, respectively. And let BF, AG, and 
CH be the perpendiculars to DE from B, A, and C. Then, as shown 
in Exercise 5, there are three possible cases (Fig. 2.30). 

Case 1: Since L.BDF ~ L.ADG (IS), it follows that 6.BDF ~ 
6.ADG, and thus L.FBD ~ L.GAD, and segment BF is congruent 
to segment AG(26). Likewise, L.HCE ~ L.GAE and segment AG is 
congruent to segment CH. Hence, segment BF is congruent to seg­
ment CH, and quadrilateral BFHC is a Saccheri quadrilateral. Thus, 
by Theorem 42h, L.FBC ~ L.HCB and both are acute, so their sum is 
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FIGURE 2.30 Proof 43h. 

less than two right angles. But 

mL.FBC + mL.HCB = mL.FBD + mL.DBC + mL.HCE + mL.ECB 

= mL.GAB + mLABC + mL.GAE + mL.ACB 

= mLABG + mL.BAG + mLAGB. 

It follows that the angle sum of MBG is less than two right angles. 
Cases 2 and 3: See Exercise 6. • 

In the preceding proof, /::,.ABC is said to be equivalent to Saccheri 
quadrilateral BFHC. 

Several important results are immediate corollaries of this 
theorem. 

Corollary 1 
The sum of the angles of a quadrilateral is less than four right angles. 

Corollary 2 
TIuo lines cannot have more than one common perpendicular. 

Corollary 3 
There do not exist lines that are everywhere equidistant. 
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FIGURE 2.31 Proof 44h. 

As Corollary 3 states, lines are never equidistant. Instead the dis­
tance between sensed parallels varies from point to point as shown 
in the following theorem. 

Theorem 44h 
The perpendicular distance from a point on one of two sensed parallels to 
the other line decreases as the point moves in the direction of parallelism. 

Proof 
Let lines nand m be right-sensed parallel. Choose points P and R on 
n (Fig. 2.31). Construct PQ and RS perpendicular to m from P and 
R, respectively. (Assume R is to the right of PQ.) Then it suffices to 
show that m(RS) < m(PQ). Let T be to the right of R. Now mLPRS + 
mL.SRT = 180°, and mLQPR + mLPRS < 180° by Corollary 1 of 
Theorem 43h. Thus, mLQPR < mLSRT, so m(PQ) = a-1mLQPR > 
a-1mLSRT = m(RS). • 

Theorem 43h yields still another result that is vastly different 
from what happens in Euclidean geometry. 

Theorem 4sh 
If the three angles of one triangle are congruent respectively to the three 
angles of a second triangle, then the triangles are congruent. 

Proof 
Let !::::.ABC and !::::.A'B'C' be two triangles with corresponding angles 
congruent. Now if any pair of corresponding sides is congruent, 
then the triangles are congruent (Proposition 26). Hence, assume 
that none of the three pairs of corresponding sides is congruent. 
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FIGURE 2.32 Proof 45h. 

In particular, assume that AB 1:- A' B'; assume furthermore that 
m(AB) > m(A'B'). So find A" on AB such that A"B ~ A'B'; and 
on BC find C" such that BC" ~ B'C' (Fig. 2.32). Now M"BC" 
t::.A'B'C' by Proposition 4. So L.BA"C" ~ L.B'A'C' and L.BC"A" ~ 
L.B' C' A'. Thus, L.BA" c" ~ L.BAC and L.BC" A" ~ L.BCA. 

Case 1: C is between Band C". Then by Pasch's axiom, A" C" 
intersects AC at a point D. And in t::.DCC", L.CC"D ~ LBCD. But 
L.BCD is an exterior angle and this is a contradiction to the exterior 
angle theorem, 

Case 2: c" is between Band C. Then A"ACC" is a quadrilateral 
and 

mL.C"A"A + mLA"AC + mL.ACC" + mL.CC"A" 

= (180 - mL.BA"C") + mL.A"AC + mLACC" + (180 - mL.BC"A") 

= 180 - mLA"AC + mL.A"AC + mL.ACC" + 180 - mL.C"CA 

= 360. 

But this contradicts Corollary 1 of Theorem 43h. Therefore, 

t::.ABC ~ t::.A' B' C'. • 
Recall that in Euclidean geometry, two triangles are said to be 

similar if there is a one-to-one correspondence between the vertices 
of the two triangles such that corresponding angles are congruent 
and the lengths of corresponding sides are proportional. However, 
the preceding theorem indicates that in hyperbolic geometry any 
two triangles satisfying these properties are automatically congru-
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ent. Thus, we do not have any similar but noncongruent triangles 
in hyperbolic geometry. 

Exercises 
l. Prove Theorem 41h. 

2. Prove the corollary of Theorem 41h. 

3. Prove Theorem 42h. [Hint: 1b prove (2), construct right-sensed paral­
lels to AB at C and D and apply Theorem 35h to asymptotic triangle 
.6.CDQ.] 

4. Prove that Theorem 42h is equivalent to the hyperbolic axiom. 

5. Show that in MBC, where D and E are the midpoints of AB and AC, 
respectively, the perpendiculars to line DE from A and B must either 
coincide with or lie on opposite sides of AB. (Thus, there are only the 
three possible cases as shown in Fig. 2.30.) 

6. Prove cases 2 and 3 of Theorem 43h. 

7. Why can there be no squares or rectangles in hyperbolic geometry? 

8. Show that in Fig. 2.33, ifm(AD) > m(BC) , then mL.BCD > mLADC. 

o 
c 

~ r 
A B 

FIGURE 2.33 Exercise 8. 
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2.7 Hyperbolic Geometry-Area of 
Triangles 

In the previous section we discovered that in hyperbolic geometry 
the angle sum of every triangle is less than 1800 and that similar 
triangles do not exist. We now show that in this geometry the area of a 
triangle is determined by its angle sum. However, before proceeding 
with the necessary theorems it is prudent to recall the axioms that 
any area function must satisfy. 

Area Axioms 

Axiom Ar.1. The area of any set must be nonnegative. 
Axiom Ar.2. The area of congruent sets must be the same. 
Axiom Ar.3. The area of the union of disjoint sets must equal the 
sum of the areas of the sets. 

1b begin the sequence of theorems that will lead to the de­
sired results, we need to return to a consideration of Saccheri 
quadrilaterals. 

Theorem 46h 
TIuo Saccheri quadrilaterals with congruent summits and summit angles 
are congruent. 

Proof 
Let ABCD and EFGH be two Saccheri quadrilaterals with AB ~ EF, 
andLDAB ~ LHEF ~ LEFG ~ LABC. We must show that AD ~ EH 
(consequently BC ~ FG), and that DC ~ HG. 

Part 1: AD ~ EH. Assume that this is not true; in particular, 
assume that m(AD) < m(EH). Find H' on EH and G' on FG sO that 
EH' ~ AD and FG' ~ BC. Construct H'G' (Fig. 2.34). Let 0 and 
0' be the midpoints of AB and EF, respectively. Construct DO, CO, 
H'O' and G'O'. Clearly, l::"DAO ~ l::"H'EO' , and l::"OCB ~ l::"O'G'F'. 
Thus, DO ~ H' 0', OC ~ 0' G', and LDOC ~ LH' 0' G'. So l::"DOC ~ 
l::"H' 0' G'. Then LEH' G' ~ LADC and both are right angles. Likewise 
LFG'H' ~ LBCD and both are right angles. Therefore, LHH'G' and 
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A o B E 0' 

FIGURE 2.34 Proof 46h. 

LGG'H' are also right angles. Thus, quadrilateral HH'G'G has four 
right angles, contradicting Corollary 1 of Theorem 43h. So AD ':::::' EH. 

Part 2: DG ':::::' HG. (See Exercise 3.) • 

With this result, we can prove a specialized version of the general 
area theorem for triangles. 

Theorem 47h 
TIuo triangles with the same angle sum and one pair of congruent sides 
have the same area. 

Proof 
Let DABG and DDEF be two triangles with the same angle sum and 
assume AB ':::::' DE. Let G and H be the midpoints of AG and BG. 
Construct GH. Let AI, Gl, BK be perpendiculars to GH from A, G, 
and B, respectively. As in the proof of Theorem 43h, there are three 

F 

FIGURE 2.35 Proof 47h. 
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FIGURE 2.35 Proof 47h. 
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possible cases. In the case shown in Fig. 2.35, MIG::: !::.CJG, and 
!::.CJH ::: !::.BKH. So IA ::: KB, and AIKB is a Saccheri quadrilateral. 
Then clearly area( AIKB) = area( MBC) by the area axioms. 

Furthermore, mLIAB = mLCAB + mLGCJ and mLKBA = 
mLCBA + mLHCJ. Also, mLCAB + mLCBA + mLGCJ + mLHCJ = 
mLCAB + mLCBA + mLACB. Therefore, since AIKB is a Saccheri 
quadrilateral, 

1 
mL.IAB = mL.KBA = 2" [mL.CAB + mL.CBA + mLACB] . 

As shown by Exercise 4, similar proofs for the other two cases 
demonstrate that a triangle and its equivalent Saccheri quadrilat­
eral always have the same area, and furthermore the angle sum of 
the triangle equals the sum of the summit angles of the equivalent 
Saccheri quadrilateral. 

Completing the same construction on DEF creates the Saccheri 
quadrilateral I'DEK' with area(I'DEK') = area(!::.DEF) and with 
mL.I'DE = mL.DEK' = ! (mL.FDE + mLFED + mL.DFE). But since 
the summit angles of the two Saccheri quadrilaterals are congru­
ent from the preceding and the hypothesis, and since AB ::: DE, it 
follows by Theorem 46h that I'DEK' ::: IABK. So area(I'DEK') 
area(IABK) , and hence area(MBC) = area(!::.DEF). • 

In order to prove Theorem 48h, the generalized version of the 
previous theorem, we first demonstrate the following result. 

Lemma 
In MBC if FE is perpendicular to the perpendicular bisector of BC and 
intersects AC at its midpoint, it will also intersect AB at its midpoint. 

Proof 
As in the proof of Theorem 43h there again are three cases. For the 
first case Figure 2.36 can be used to complete the proof and similar 
arguments can be used in the other two cases. • 

Theorem 48h 
Any two triangles with the same angle sum have the same area. 
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FIGURE 2.37 proof 48h. 

Proof 
Let ~BC and ~' B' C' be two triangles with the same angle sum. 
Without loss of generality, assume that m(A'C') > m(AC). (Note 
that if any pair of sides is congruent, the result follows immediately 
from Theorem 47h.) As in the proof of Theorem 47h, construct the 
Saccheri quadrilateral on BC (Fig. 2.37). Then let E" be on FE so 
that m( CE") = i m( A' C'). E" will not coincide with E or N since 
i m(A'C') > i m(AC) > m(CN). Construct CE" and extend it to a 
point A" so that E" A" ~ CE". Construct A" B. Now let AF" be the 
perpendicular to MN at F". Since FE is perpendicular to the per­
pendicular bisector of BC by Theorem 41h and intersects A" C at its 
midpoint, it will also intersect A" B at its midpoint G by the previous 
lemma. Therefore, b.BMG ~ ~"F"G and ~"E"F" ~ b.CE"N. So 
area(~"BC) = area(MBCN). But as in the proof of Theorem 47h, 
area(~BC) = area(MBCN). And so area(~"BC) = area(b.ABC). 
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Furthermore, as in the proof of Theorem 47h, the angle sum of 
!::::.A"BC = m(L.MBC) + m(L.BCN) = angle sum of MBC. There­
fore, the angle sum of M" BC = angle sum of !::::. A' B' C', and A" C :::::::: 
A'C'. So by Theorem 47h, area(M"BC) = area(!::::.A'B'C'), and thus 
area(MBC) = area(M'B'C'). • 

Thus, unlike Euclidean geometry, where the area of a triangle 
is determined by the lengths of its base and altitude, the preced­
ing theorem demonstrates that the area of a triangle in hyperbolic 
geometry is completely determined by its angle sum. The relation 
between the area and the angle sum for triangles is stated in terms 
of the defect of a triangle. 

Definition 2.5 
The (angular) defect of a triangle is the numerical difference, 180-
the angle sum of the triangle; that is, the angular defect of !::::.ABC = 
180 - [mLABC + mL.BCA + mL.CAB]. 

Theorem 49h 
If a triangle is divided into two triangles by a line from a vertex to a point 
on the opposite side, the defect of the original triangle is equal to the sum 
of the defects of the two smaller triangles. 

Proof 
See Exercise 6. • 

Theorem 48h implies that the area of a triangle can be considered 
either as a function of the angle sum of the triangle or as a function of 
the angular defect of the triangle. From Theorem 49h and the axioms 
of area, it follows that the area function A must preserve addition of 
angular defects. Since this function A must be a continuous function, 
then a result of elementary calculus says that there is a constant k 
such that 

A(!::::.ABC) = k2(defect(!::::.ABC)). 

This result is summarized in the following theorem. One proof of 
this theorem is credited to Gauss (Coxeter, 1969, p. 296); another 
proof can be found in Moise (1974, p. 345). 
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Theorem 50h 
There is a constant k such that 

area(LABC) = k2{lSO - [mLABC + mL.BCA + mL.CAB]}. 

Exercises 
1. Using only Postulates 1 through 4 (and Propositions 1 through 28) prove 

the following: If the sum of the angles of a triangle is the same for all 
triangles, then that sum is 180°. [Hint: Consider a triangle partitioned 
by a line joining a vertex with a point on the opposite side.] What does 
this result say about triangles in hyperbolic geometry? 

2. The following "proof' of the existence of a triangle with angle sum 
equal to 180° is reprinted from Dubnov's Mistakes in Geometric Proofs 
(1963) with the permission ofD. C. Heath and Co. (a) Does this "proof' 
make use ofthe parallel postulate? (b) What is wrong with the proof? 

Claim. There exists a triangle with angle sum equal to 180°. 

Proof 
Since the angle sum of a triangle is less than or equal to 180°, let flABC 
(Fig. 2.38) be a triangle with the greatest angle sum; call this sum a. We 
shall prove that a = 180°. 
mLl + mL2 + mL6 :s a and mL3 + mL4 + mLS :::: a (Why?) So mL1 + 
mL2 + mL3 + mL4 + mLS + mL6 :::: 2a. But mLS + mL6 = 180°, and 
mL1 + mL2 + mL3 + mL4 = a. So a + 180° :::: 2a or a > 180°. Thus, 
a = 180°. • 

3. VerifY part 2 in the proof of Theorem 46h. 

A B 

FIGURE 2.38 Exercise 2. 
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4. Prove that a triangle and its equivalent Saccheri quadrilateral have the 
same area, and that the angle sum of the triangle equals the sum of the 
summit angles of the equivalent Saccheri quadrilateral. 

5. Prove the lemma used in the proof of Theorem 48h. 

6. Prove Theorem 49h. 

7. Prove that the angle sum of a convex polygon of n sides is less than 
en - 2)180°. 

2.8 Hyperbolic 
Geometry - Ultraparallels 

In this final section on hyperbolic geometry, we will briefly con­
sider the second type of parallel lines, namely, ultraparallels. Recall 
that if 1 is a line and P a point not on l, then a line m through P is 
said to be ultraparallel to I if land m do not intersect and are not 
sensed parallel. As in the case of sensed parallels, the definition of 
ultraparallelism is independent of the point P and the relation is 
symmetric. These properties are formalized in the following the­
orems, which can be verified by indirect proofs (see Exercises 2 
and 3). 

Theorem 51h 
If a line is ultra parallel through a given point to a given line, it is at each 
of its points uItraparalleZ to the given line. 

Theorem 52h 
If one line is uItraparallel to a second, then the second is uItraparalleZ to 
the first. 

However, unlike sensed parallelism, ultraparallelism is not tran­
sitive. In terms ofline 1 and point P, any line lying within the vertical 
angles formed by the sensed parallels to I through P is ultraparallel 
to 1. In particular, any two of these lines, say m and n, are both ultra­
parallel to I, but m and n are not ultraparallel, since they intersect 
at P (Fig. 2.39). 
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FIGURE 2.39 m and n within angles formed by sensed parallels to l. 

TWo familiar properties in Euclidean geometry are: (1) two par­
allellines have an infinite number of common perpendiculars; and 
(2) the (perpendicular) distance between two parallel lines is con­
stant (Le., parallel lines are everywhere equidistant). In hyperbolic 
geometry, we have already observed that sensed parallel lines do 
not have common perpendiculars and that the perpendicular dis­
tance between sensed parallel lines decreases in the direction of 
parallelism (Theorem 44h). Furthermore, one of the corollaries of 
Theorem 43h demonstrates that two ultraparallellines do not have 
more than one common perpendicular. That a common perpen­
dicular between two ultraparallellines does exist is verified by the 
following theorem. Since the proof of this theorem is somewhat in­
volved you may find it enlightening to sketch the specific pOints and 
lines one by one as you encounter them in your reading. 

Theorem 53h 
TIuo ultra parallel lines have a common perpendicular. 

Proof 
Let nand m be ultraparallel. Let A and E be any two points on n 
and construct A C and ED perpendicular to m at C and D. Now if seg­
ments AC and ED are congruent, AECD is a Sac cheri quadrilateral 
(Fig. 2.40) and the common perpendicular is the line connecting the 
midpoints of AE and CD. If AC and ED are not congruent, assume 
that m(AC) > m(ED). Find Eon AC such that CE::::::: ED. At E draw 
EF on the side of AC determined by ED such that L.CEF ::::::: L.EDG 
where G is a point on n such that B is between A and G. 
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FIGURE 2.40 Proof 53h. 

It will be shown that EF intersects n. Let CQ and DQ be sensed 
parallel to n in the direction from A to B. Let H be a point on m 

such that D is between C and H. Then CQ contains points in the 
interior of L.ACH, and DQ likewise contains points in the interior of 
L.BDH since m is ultraparallel to n. Now mL.HDQ > mL.HCQ by the 
exterior angle theorem for asymptotic triangles. Construct CJ such 
that L.1CH ::::: L.QDH. Then CJ will intersect n at a point O. Now since 
EC ::::: BD, L.FEC ::::: L.GBD, and L.ECJ ::::: L.BDQ, EF is sensed parallel 
to Cl and hence cannot intersect segment co. Therefore, EF must 
intersect segment AO in a point K. Construct KL perpendicular to 
m. On nand m on the side of BD opposite A, find M and N such that 
BM ::::: EK, and DN ::::: CL. Construct MN. Then L.ECL ::::: L.BDN and 
consequently L.EKL ::::: L.BMN, and thus KL ::::: MN. Furthermore, 
mL.DNM = mL.DNB + mL.BNM = mL.CLE + mL.ELK = 90°. So 
KMNL is a Saccheri quadrilateral and the line joining the midpoints 
of segments KM and LN is perpendicular to both nand m. • 

Corollary 
TIvo ultra parallel lines have exactly one common perpendicular. 

Note that the proof of the previous theorem demonstrates that 
the common perpendicular exists but the actual construction cannot 
be accomplished without the ability to construct sensed parallels. 
This construction can be done and is demonstrated in Wolfe (1945). . 

The question of the distance between ultraparallellines can now 
be answered in terms of the unique common perpendicular. The 
proof of this theorem is left for the exercises. 
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FIGURE 2.41 Theorem S4h. 

Theorem 54h 
If X is an arbitrary point on m, a line ultra parallel to n, then the 
perpendicular distance from X to n is a minimum along the common 
perpendicular to m and n (Fig. 2.41). 

With this theorem, we conclude our introduction to hyperbolic 
geometry. The approach we have taken is similar to the historic 
development of the subject; that is, we started with Euclid's five 
postulates and replaced the fifth postulate (in the form of Playfair's 
axiom) by a negation in the form of the hyperbolic axiom. With this 
one change, we have obtained a new geometry with several strange 
properties that make it radically different from Euclidean geometry. 
In the next section, we will explore the geometry that results when 
we replace Euclid's fifth postulate by a second possible negation. 

Exercises 
1. Sketch each of the following in a Klein model. (Draw one model for 

each. ) (a) TWo intersecting lines that are both sensed parallel to a third 
line. (b) TWo intersecting lines that are both ultraparallel to a third line. 
(c) TWo sensed parallel lines that both intersect a third line. (d) TWo 
sensed parallel lines that are both sensed parallel to a third line. (e) TWo 
sensed parallel lines that are both ultraparallel to a third line. (f) TWo 
ultraparallellines that both intersect a third line. (g) TWo ultraparallel 
lines that are both ultra parallel to a third line. 

2. Prove Theorem SIh. 

3. Prove Theorem S2h. 
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FIGURE 2.42 Lambert quadrilateral. 

4. Without using Theorem 54h, prove that in Figure 2.42, m(DC) > 
m(AB). (Any such quadrilateral with three right angles is known as 
a Lambert quadrilateral.) 

5. Using the result of Exercise 4, prove that the summit of a Saccheri 
quadrilateral is greater than the base. 

6. Using the result of Exercise 4, prove Theorem s4h. 

2.9 Elliptic Geometry 

The consequences of the hyperbolic axiom had been thoroughly 
explored before the systematic study of elliptic geometry began. The 
initiation of the study of this second non-Euclidean geometry can 
be traced to 1854 when G.B.F. Riemann gave an inaugural lecture 
at the University of G6ttingen entitled "On the Hypotheses Which 
Underlie the Foundations of Geometry!' 

As with hyperbolic geometry, an axiomatic system for elliptic 
geometry is obtained from Euclid's geometry by replacing the fifth 
postulate (in the form of Playfair's axiom) with a negation. In this 
case the negation is known as the elliptic axiom. 

Elliptic Axiom 
'TWo lines always intersect. 

Unfortunately, it soon becomes evident that the axiomatic sys­
tem consisting of this axiom and Euclid's first four postulates is 
not consistent, since the first four postulates imply the validity of 
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Proposition 27, which asserts the existence of parallel (Le., noninter­
secting) lines. In order to obtain a consistent system that contains 
the elliptic axiom and maintains as many of the properties of Eu­
clidean geometry as possible, Euclid's proof of Proposition 27 must 
be invalidated. An examination of this proof (see Section 2.2) shows 
that it makes use of Proposition 16, but in the proof of this latter 
proposition, Euclid ~nferred from Postulate 2 the infinite extent of a 
line. If Postulate 2 is interpreted as saying only that a line is bound­
less but not necessarily of infinite extent, the proof of Proposition 16 
and therefore the proof of Proposition 27 becomes invalid. 

Thus, to obtain a consistent non-Euclidean geometry containing 
the elliptic axiom, Euclid's second postulate must be modified as 
follows: 

Postulate 2' 
A finite line (Le., segment) can be produced continuously in a line. 
The line obtained is boundless but not necessarily of infinite extent. 

Even with this modification, the axiomatic system consisting of 
Euclid's first four postulates and the elliptic axiom remains incon­
sistent, since it still yields the following proof of the existence of 
parallel lines. 

Another proof of the existence of parallel lines 
Let A and B be two points on a line 1. Let m and n be lines perpen­
dicular to I at A and B, respectively (Proposition 11). Assume that m 
and n are not parallel. Let Cbe their point of intersection. Then find 
C' on m on the side of I opposite C such that the segments AC and 
AC' are congruent (3). Construct C' B (Fig. 2.43). Then since MBC ~ 
D.ABC', and L.C'BA ~ L.CBA (4); it follows that L.C'BA is also a right 
angle. Thus, by Proposition 14, C', B, and C are collinear, and hence 
m and n intersect in two distinct points C and C', which yields a 
contradiction. Thus, m and n are parallel lines. • 

So to obtain a consistent axiom system, including the elliptic 
axiom, the preceding proof must also be invalidated. After some 
consideration, it should become apparent that the following unstated 
assumptions were used in the proof: 
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FIGURE 2.43 Existence of parallels. 

1. A line separates the plane. 
2. Two distinct points lie on a unique line. 

Thus, this proof would be invalidated if either of these two as­
sumptions were negated. It is the need to negate one of these two 
assumptions that leads to two types of elliptic geometry. If the first 
assumption is maintained and the second assumption is negated, 
that is, if it is assumed that two distinct points do not necessarily lie 
on a unique line, the geometry known as double elliptic geometry 
is obtained. If, on the other hand, the second assumption is main­
tained and the first assumption is negated, that is, if it is assumed 
that a line does not separate the plane, the geometry known as sin­
gle elliptic geometry is obtained. Either choice, together with the 
modification of Postulate 2, results in a system radically different 
from Euclid's. Hence, it is nearly impossible to salvage any of Eu­
clid's work, and it becomes essential to develop an entirely new set 
of axioms for both single and double elliptic geometry. Axioms for 
these geometries can be found in Chapters 7 and 8 of An Introduc­
tion to Non-Euclidean Geometry by David Gans (1973). Since models 
of both double and single elliptic geometry are easily accessible, we 
can achieve considerable familiarity with these geometries by ex­
ploring properties in these models. Thus, we can sample the flavor 
of elliptic geometries without considering a series of detailed proofs. 

86 2. Non-Euclidean Geometry 

A 

B 

FIGURE 2.43 Existence of parallels. 

1. A line separates the plane. 
2. Two distinct points lie on a unique line. 

Thus, this proof would be invalidated if either of these two as­
sumptions were negated. It is the need to negate one of these two 
assumptions that leads to two types of elliptic geometry. If the first 
assumption is maintained and the second assumption is negated, 
that is, if it is assumed that two distinct points do not necessarily lie 
on a unique line, the geometry known as double elliptic geometry 
is obtained. If, on the other hand, the second assumption is main­
tained and the first assumption is negated, that is, if it is assumed 
that a line does not separate the plane, the geometry known as sin­
gle elliptic geometry is obtained. Either choice, together with the 
modification of Postulate 2, results in a system radically different 
from Euclid's. Hence, it is nearly impossible to salvage any of Eu­
clid's work, and it becomes essential to develop an entirely new set 
of axioms for both single and double elliptic geometry. Axioms for 
these geometries can be found in Chapters 7 and 8 of An Introduc­
tion to Non-Euclidean Geometry by David Gans (1973). Since models 
of both double and single elliptic geometry are easily accessible, we 
can achieve considerable familiarity with these geometries by ex­
ploring properties in these models. Thus, we can sample the flavor 
of elliptic geometries without considering a series of detailed proofs. 



2.9. Elliptic Geometry 87 

Models of Double and Single Elliptic Geometry 
Interpretation for Interpretation for 

Thrm Double Elliptic Single Elliptic 
Point Point on the Point on the surface 

surface of a of a Euclidean 
Euclidean sphere hemisphere if the 

Line Great circle 

Length Euclidean length 

Angle Euclidean angle 
measure measure 

point is not on the edge; 
points on the edge are 
identified with their 
diametric opposite 

Semigreat circle 

Euclidean length with 
the modification 
implied by the preceding 

Euclidean angle 
measure 

Exploring Double Elliptic Geometry 

Equipment Requirements 

• A spherical surface2 and water-based markers that will write on 
the surface of the sphere . 

• ThaIs for measuring distances, measuring angles, and drawing cir­
cles on the sphere; these could be a length of string (long enough 
to reach around the sphere), rubber bands that will reach around 
the sphere, and a flexible protractor. 

Activities 

The following activities ask you to use this equipment and the model of 
double elliptic geometry described above to "discover" fundamental prop­
erties of double elliptic geometry. Describe your findings in paragraph 
summaries that include answers to the summary questions and a com-

ZUse a moderate-size ball or a Lenart Sphere (TM Key Curriculum Press). 
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parison of the properties observed with those in Euclidean and hyperbolic 
geometries. 

1. Points and Lines 

a. Construct and label several pairs of points on the surface of 
your sphere. 

b. Find the lines determined by some of the pairs of points you 
located. 

c. Summary questions: 

i. Do two points always lie on a line? Is the line determined 
by two points unique? 

ii. Can the distance between two points be made arbitrarily 
large? Why or why not? (The elliptic distance between 
points is the Euclidean distance along the shortest arc of 
the great circle between them.) 

iii. How long is a line? Are all lines the same length? 
iv. Ifl and m are two lines, do I and m necessarily intersect? 

If so, how often? 
v. Does this geometry satisfy P1ayfair's axiom? If not, can 

Playfair's axiom be modified so that it becomes a true 
statement in this model? If so, how? 

2. Perpendiculars 

a. Construct a line I and a point P not on I on your sphere. Now 
find a line m through P that is perpendicular to l. Label a point 
of intersection of these two lines Q. (Note: The elliptic angle 
measure is the Euclidean angle measure between tangents to 
the two great circles.) 

b. Find a line n perpendicular to m at P. 
c. Repeat the previous two constructions with varying distances 

between P and l. 
d. Summary questions: 

i. Can a perpendicular to a line 1 always be drawn through 
a pointP ifP lies off the line I? Ifso, is the perpendicular 
to I through P unique? 
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ii. Can a perpendicular to a line 1 always be drawn through 
a point P if P is on the line l? If so, is the perpendicular 
to 1 through P unique? 

iii. Can two lines have a common perpendicular? Can two 
lines have more than one common perpendicular? 

iv. Can two lines be equidistant? 

3. Circles 

a. Construct several circles by constructing two points, one to 
serve as the center and one as a point on the circle. Be sure to 
vary the distance d between the two points, including exam­
ples with d < rrr/2, rrri2 < d < rrr, and d = rrr (r represents 
the radius of the sphere). 

b. Recall that in Euclidean geometry, it is also possible to con­
struct a unique circle through any 3 given noncollinear 
points. Determine how the center of such a circle is con­
structed in Euclidean geometry. Why does this construction 
always work in Euclidean geometry? 

c. Construct 3 non collinear points on your spherical model. 1ty 
using the usual Euclidean construction for locating the center 
of a circle that would pass through these three points. 

d. Summary questions: 

i. What happens to the size of the circle as the radius 
increases? Why? 

ii. Is it possible to specify the same circle with different 
center and radii pairs? 

iii. will there always be a unique circle passing through 3 
noncollinear points in this geometry? Why? 

4. lliangles, Saccheri Quadrilaterals, and 2-gons 

a. Construct several triangles including one with exactly one 
right angle and one with exactly two right angles. Measure 
the nonright angles and the sides of each. 

b. Construct two triangles that have two pairs of congruent 
angles and a pair of congruent sides opposite one of the 
pair of congruent angles. 1ty making the two triangles 
noncongruent. 
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c. Construct a triangle with three right angles. Measure the sides 
and angles of this triangle. Compute the fraction of the surface 
area of the sphere covered by your triangle. 

d. Construct a 2-gon, i.e., a two-sided figure, with two right 
angles. 

e. Construct a Saccheri quadrilateral. Measure its summit 
angles, its base length, and its summit length. 

f. Summary questions: 

i. Do three points determine a unique triangle? Why? 
ii. In a right triangle, i.e., a triangle with exactly one right 

angle, what is the maximum length of a side opposite 
an acute angle? What is the minimum length of a side 
opposite an obtuse angle? 

iii. What is true about the angle sum of triangles? Is there 
an upper bound for such angle sums? A lower bound? 
Why? 

iv. What appears to be the relation between the angle sum 
of a triangle and its area? 

v. What appears to be true about the summit angles of a 
Saccheri quadrilateral in this geometry? How is this re­
lated to the angle sum of triangles in this geometry? How 
does the length of the summit compare to the length of 
the base? 

The activities above should give insight into the special properties 
of double elliptic geometry. Lists of some of the major properties for 
this geometry and for single elliptic geometry follow. Hopefully, the 
items in the first list agree with your observations. As a real test of 
your visualization skills, try explaining the differences between the 
properties in the first list for double elliptic geometry (Fig. 2.44) and 
those in the second list for single elliptic geometry (Fig. 2.45). 

Properties of Double Elliptic Geometry 

1. A line separates the plane. 
2. There is at least one line through each pair of points. 
3. Each pair of lines meets in exactly two points. 
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A B 

FIGURE 2.44 Model of double elliptic plane. 

A A 

FIGURE 2.45 Model of single elliptic plane. 

4. There is a positive constant k such that the distance between two 
points never exceeds rrk. Two points at the maximum distance 
are called opposite points. 

5. All lines have the same length, Zrrk. 
6. Corresponding to each point there is a unique opposite point. 
7. Two points lie on a unique line if and only if the points are not 

opposite. 
8. All the lines through a given point also pass through the point 

opposite the given point. 
9. All the lines perpendicular to any given line meet in the same 

pair of opposite points. The distance from each of these points 
to any point of the given line is rrkl2. These two opposite points 
are called poles of the given line and the line is called the polar 
of the two points. 

10. All the lines through a point are perpendicular to the polar of 
that point. 
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11. There exists a unique perpendicular to a given line through a 
given point if and only if the point is not the pole of the line. 

12. The summit angles of a Saccheri quadrilateral are congruent and 
obtuse. 

13. The angle sum of every triangle exceeds 180°. 
14. The area of a triangle is given by 

area(MBC) = k2(mLABC + mLBCA + mLCAB - 180°). 

Properties of Single Elliptic Geometry 

1. A line does not separate the plane. 
2. There is at least one line through each pair of pOints. 
3. Each pair oflines meets in exactly one point. 
4. There is a positive constant k such that the distance between 

two points never exceeds 7l'kl2. 'TWo points that divide a line 
into equal segments are called opposite points. 

5. On a given line, corresponding to each point there is an opposite 
point on the line. 

6. All lines have the same length 7l'k. 
7. All lines perpendicular to any given line go through the same 

point. The distance from this point to any point of the given line 
is 7l'kl2. The point is called the pole of the given line and the line 
is called the polar of the point. 

8. All the lines through a point are perpendicular to the polar of 
that point. 

9. There exists a unique perpendicular to a given line through a 
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2.10 Significance of the Discovery of 
Non-Euclidean Geometries 

The development of non-Euclidean geometry began historically 
with the attempt to prove Euclid's fifth postulate from his first four 
postulates. By the early 19th century, mathematicians began to ac­
cept the possibility that the fifth postulate might be independent. 
That this postulate is indeed independent was demonstrated when in 
1868 the Italian mathematician Eugenio Beltrami (1835-1900) exhib­
ited the first in a series of geometric models of hyperbolic geometry. 
The best known of these geometric models is the Poincare model 
introduced in Section 2.3. Under the interpretations of these models, 
the axioms of hyperbolic geometry become theorems in Euclidean 
geometry. Thus hyperbolic geometry was shown to be relatively 
consistent, and in particular, the models demonstrated that hyper­
bolic geometry is consistent if Euclidean geometry is consistent. The 
question ofthe independence of the fifth postulate had finally been 
settled. 

That the development of non-Euclidean geometry had profound 
mathematical and philosophical consequences has already been 
mentioned at the beginning of this chapter. The abstract considera­
tions of these geometries also had important implications in other 
areas. Riemann's lecture of 1854 used a method that created an 
infinite number of geometries, and Einstein adopted one of these 
Riemannian geometries in his study of relativity. A description of 
this geometry and Einstein's use of it is contained in an essay by Pen­
rose (1978). Furthermore, research since World War II indicates that 
binocular visual space is hyperbolic. Descriptions of this research 
are recorded in 1tudeau (1987) and in articles by Ogle (1962) and 
Zage (1980). 

2.11 Suggestions for Further Reading 

Aleksandrov, A. D. (1969). Non-Euclidean Geometry. In Mathematics: Its 
Content, Methods and Meaning, A. D. Aleksandrov, A. N. Kolmogorov, 
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and M. A. Lavrent'ev (Eds.), Vol. 3, pp. 97-189. Cambridge, MA: M.LT. 
Press. (This is an expository presentation of non-Euclidean geometry.) 
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ton: Princeton University Press. (Written for the liberal arts students, 
Chapters 1 and 2 provide a substantial introduction to early Greek 
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tary introduction that can be used as supplementary material at the 
secondary-school level.) 

Ogle, K. N. (1962). The visual space sense. Science 135: 763-77l. 
Penrose, R. (1978). The geometry of the universe. In Mathematics Thday: 
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Springer-Verlag. 

Ryan, P. J. (1986). Euclidean and Non-Euclidean Geometry: An Analytic 
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Sommerville, D. (1970). Bibliography of Non-Euclidean Geometry, 2d ed. 
New York: Chelsea. 

'lludeau, R. J. (1987). The Non-Euclidean Revolution. Boston: Birkhauser. 
(This presentation ofboth Euclid's original work and non-Euclidean ge­
ometry is interwoven with a nontechnical description ofthe revolution 
in mathematics that resulted from the development of non-Euclidean 
geometry.) 

Wolfe, H. E. (1945). Introduction to Non-Euclidean Geometry. New York: 
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Suggestions for Viewing 
A Non-Euclidean Universe (1978; 25 min). Depicts the Poincare model 

of the hyperbolic plane. Produced by the Open University Production 
Centre, Walton Hall, Milton Keynes MK7 6BH, UK. 
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CHAPTER 

Geometric 
Transformations 
of the Euclidean 
Plane 

3.1 Gaining Perspective 

The presentation of non-Euclidean geometry in Chapter 2 was syn­
thetic, that is, figures were studied directly and without use of their 
algebraic representations. This reflects the manner in which both 
Euclidean and non-Euclidean geometries were originally developed. 
However, in the 17th century, French mathematicians Pierre de 
Fermat (1601-1665) and Rene Descartes (1596-1650) began using 
algebraic representations of figures. They realized that by assigning 
to each point in the plane an ordered pair of real numbers, algebraic 
techniques could be employed in the study of Euclidean geometry. 
This study of figures in terms of their algebraic representations by 
equations is known as analytic geometry. 

The use of algebraic techniques eventually led to the application 
of group theory to the study of geometry. This approach led Felix 
Klein (1849-1925) to give the following definition of geometry in his 
Erlanger Program of 1872. 
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100 3. Geometric Transformations of the Euclidean Plane 

Definition 3.1 
A geometry is the study of those properties of a set ex that remain 
invariant (unchanged) when the elements of ex are subjected to the 
transformations of some transformation group. 

Using this definition, Klein was able to give a classification of 
geometries in terms of subgroups oflinear transformations. The Eu­
clidean transformations are the motions required to carry out the 
superposition of figures. This technique of moving one figure on top 
of another to verify congruence is based historically on Euclid's Com­
mon Notion 4 and was employed in his proofs of Propositions 4 and 
8 (commonly known as the SAS and SSS theorems, respectively). In 
recent times, these transformations and their matrix representations 
have become basic tools in computer graphics. 

In this chapter we use a dual transformation approach to study 
Euclidean, similarity, and affine geometries. After a brief introduc­
tion to the concept of symmetry in this section, we conduct hands-on 
explorations of specific transformations of the Euclidean plane and 
investigate symmetries defined by these transformations. Each ex­
ploration begins with a list of equipment and materials needed, and 
in some cases a note indicating that the exploration can be supple­
mented by using dynamic geometry software (for specific directions, 
see http://www.stolaf.edu/people/cederj/geotext/info.htm). 
The explorations assume some basic familiarity with transforma­
tions (functions) and standard concepts of Euclidean geometry such 
as distance, angle, and vector. 

In Section 3.5, we set up an analytic model in which geometric 
terms are carefully interpreted via formal definitions. Within this 
context, we find matrix representations of all the isometries of the 
Euclidean plane. Using these matrices we analytiqally verify that any 
isometry must be one of the four previously identified and examine 
properties of each. In another exploration section (Section 3.11) we 
explore plane tHings with polygons and determine which isometries 
are in their symmetry groups. 

Generalizing the isometries, we then obtain the transformations 
of similarity geometry and those of affine geometry. With a slight 
change in the set of points, the next step in this generalization yields 
the transformations of projective geometry. Before considering pro-
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jective geometry in Chapter 4, we conclude Chapter 3 by exploring 
symmetries of Euclidean 3-space in Section 3.14. 

An Introduction to Symmetry 

For most people the meaning of the term "symmetry" is somewhat 
vague, even though the term is used frequently in everyday con­
servation and nontechnical writing. This was true even in the early 
1950s when Herman Weyl gave a series of four lectures (later pub­
lished in the small volume titled Symmetry). At the beginning of his 
first lecture, he interpreted the meanings then commonly ascribed 
to the term, indicated the variety of nonmathematical subjects to 
which it is applied, and related these to one of its mathematical , 
uses. 

If I Am Not Mistaken the word symmetry is used in our everyday 
language in two meanings. In the one sense symmetry means some­
thing like well-proportioned, well-balanced, and symmetry denotes 
that sort of concordance of several parts by which they integrate into 
a whole. Beauty is bound up with symmetry. Thus Polykleitos, who 
wrote a book on proportion and whom the ancients praised for the 
harmonious perfection of his sculptures, uses the word, and Durer 
follows him in setting down a canon or proportions for the human 
figure. In this sense the idea is by no means restricted to spatial ob­
jects; the synonym "harmony" points more toward its acoustical and 
musical than its geometric applications. Ebenmass is a good German 
equivalent for the Greek symmetry; for like this it carries also the 
connotation of "middle measure," the mean toward which the virtu­
ous should strive in their actions according to Aristotle's Nicomachean 
Ethics, and which Galen in De temperamentis describes as that state 
of mind which is equally removed from both extremes .... 

The image of the balance provides a natural link to the second 
sense in which the word symmetry is used in modern times: [one 
example is] bilateral symmetry, the symmetry ofleft and right, which 
is so conspicuous in the structure of the higher animals, especially 
the human body. Now this bilateral symmetry is strictly geometric 
and, in contrast to the vague notion of symmetry discussed before, an 
absolutely precise concept. [Weyl, pp. 3-4] 
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More recently Ian Stewart and Martin Golubitsky also com­
mented on the lengthy germination of this mathematical concept 
in their delightful text Fearful Symmetry: Is God a Geometer? 

It took humanity roughly two and a half thousand years to attain 
a precise formulation of the concept of symmetry, counting from the 
time when the Greek geometers made the first serious mathemati­
cal discoveries about that concept, notably the proof that there exist 
exactly five regular solids. Only after that lengthy period of gestation 
was the concept of symmetry something that scientists and mathe­
maticians could use rather than just admire. [Stewart and Golubitsky, 
pp.27-28J 

Building on this long period of formulation, we can now state the 
commonly accepted mathematical definition below. This definition 
describes the two uses of the term symmetry. First, the term refers 
to a transformation that preserves the structure of a point set; and 
second, it describes a property of the point set whose structure is 
preserved. Notice that according to this definition a symmetry need 
not be an isometry. However, if the symmetry of a point set a is a 
nonidentity isometry, the symmetric set can be said to be congruent 
to itself under the symmetry. 

Definition 3.2 
A transformation S is said to be a symmetry of the set of points a 
if S keeps a invariant, that is, Sea) = a. If S is not the identity 
transformation (S i= I), we say that a is symmetric or that a has 
symmetry. 

For many, the concept of symmetry has become a major theme in 
geometry. And, as the following quotations indicate, the transfor­
mation approach, fundamental to symmetry, has assumed major 
importance throughout mathematics. 

Mapping [i.e., transformationJ is a major theme of contempo­
rary mathematics because it provides a useful and illuminating way 
to organize relations among shapes and patterns. [Senechal, On the 
Shoulders of Giants, (1999), p. 168.J 

It was only within the last twenty years or so that a defini­
tion of mathematics emerged on which most mathematicians now 
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agree: mathematics is the science ofpattems. What the mathematician 
does is examine abstract "patterns"-numerical patterns, patterns of 
shape, patterns of motion, patterns of behavior, and so on. [Devlin, 
Mathematics: The Science ofPattems, (1994), p. 3] 

3.2 Exploring Line and Point 
Reflections 

3.2.1 Equipment and Materials Needed 

• Three small mirrors, several pieces of colored paper, a straight 
edge, and devices/methods for constructing images under line 
and point refiections. 1 

• Many of these activities can also be carried out using dynamic 
geometry software. Specific instructions for Cabri Geometry II and 
Geometer's Sketchpad can be found at 
http://www.stolaf.edu/people/cederj/geotext/info.htm. 

Introduction 

This is the first of several exploration sections contained in this 
chapter. The goal of these explorations is to introduce the con­
cept of symmetry and develop intuitive understanding of isometries 
by viewing them as symmetry transformations. Each exploration 
contains a series of activities designed to guide you through hands­
on investigations. During your investigations you will be asked to 
make conjectures, that is, to describe what appears to be happen­
ing. In later sections we will find matrix representations for these 
same transformations and use analytic methods for determining 

ITb find images under line reflections, you can use a semitransparent mirror 
(Image Reflectors™ work well and are available from Dale Seymour Publications) 
or you can fold semitransparent paper and trace. 
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specific properties of these transformations. In many cases, this an­
alytic approach will verify properties you discovered earlier in the 
explorations. 

3.2.2 Line Reflections 

We begin our explorations with what is probably the most readily 
identifiable symmetry, that known as bilateral or line symmetry. 1b 
give a precise mathematical definition ofline symmetry, we need to 
formalize the idea of a reflection. Intuitively, a reflection is a trans­
formation that is created by a mirror and leaves every point on the 
mirror line invariant; that is, the mirror line is pointwise invariant. In 
practical terms, a semitransparent mirror, paper folding, or dynamic 
geometry software can be used to carry out a reflection and hence 
generate a figure with line symmetry. 

Definition 3.3 
A (line) reflection with axis m, denoted Rm , is a transformation that 
maps each point on m to itself, and maps each point P not on m to 
a point p' such that m is the perpendicular bisector of segment PP'. 
If a point set a (a =1= m) is invariant under Rm , we say that a has line 
symmetry and that m is a line of symmetry for a. 

Activities 

Carefully label your drawings to indicate the properties they illustrate. 

1. Draw a simple nonsymmetric figure Fa and a line 1. Label both 
your figure and your line. Then draw all of the following as part 
of the same illustration. To keep track of things, label each line 
and figure as indicated. 

a. Draw F l , the image of Fa under a reflection in the line l. 
b. Describe how Fl is related to the original figure Fa. In partic­

ular, where is Fl located relative to Fa and the line I? Do Fa 
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and Fl have the same orientation, z that is, if you trace a coun­
terclockwise circuit around Fa, will the corresponding circuit 
around Fl also go in the counterclockwise direction? Do either 
the location or orientation of Fl relative to Fa appear to depend 
on the positions of Fa and the line 1? If so, how? 

c. Draw Fz, the image of Fl under a second reflection in 1. 
d. Describe how the position and orientation of Fz are related to 

those of the original figure Fa. Do either the location or orien­
tation of Fz relative to Fa appear to depend on the positions of 
Fa and the line 1? Explain. 

e. What types of symmetry does your illustration demonstrate? 

2. Draw another simple nonsymmetric figure Fa and two distinct 
lines 11 and 1z. Draw all of the following as part of the same 
illustration, labeling each figure and line as indicated. 

a. Draw Fl , the image of Fa under a reflection in line 11 . 

b. Draw Fz, where Fz is the image of Fl under a reflection in line 
1z. 

c. Describe how Fz is related to the original figure Fa. Where 
is it located relative to the original? Does it have the same 
orientation as the original? Does the relation appear to depend 
on the relative positions of the lines 11 and 1z? If so, how? 

d. What would happen if you applied to Fa a sequence of 
reflections in 3 different lines? 

3. Determine if each of the following is possible for n = 2, 3,4. If so 
create such a figure; if not, explain why not. 

a. Create a figure that has exactly n lines of symmetry where the 
symmetry lines all intersect at the same point. 

b. Create a figure that has exactly n lines of symmetry where the 
symmetry lines are all parallel. 

4. Stand two mirrors vertically on a piece of colored paper so that 
they form an open 'V' with reflecting sides facing each other. 

a. Describe what you see in the mirrors. 

2This informal description will be superseded by a formal definition of orientation 

in Section 3.7. 
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b. Change the position of the paper and/or of the mirrors so as 
to make it appear that you have formed a regular polygon3 . 

How many sides does your regular polygon have? Which other 
regular polygons can you form? 

c. For each regular polygon, determine the shape and size of the 
smallest piece of colored paper necessary to generate the regu­
lar polygon using mirrors. Then draw your original shape, the 
placement of the mirror lines, and the resulting polygon. 

d. Describe the shape of the smallest piece of paper and the angle 
between the mirrors needed to generate a regular n-gon. 

5. Again using mirrors, can you make it appear that you have an 
infinitely long strip of color? If so, how? 

6. Can you make it appear that you have an entire plane of color? 
Ifso, how? 

7. Does a polygon with at least two distinct line symmetries have to 
be a regular polygon? Explain. 

S. Explain why a figure of finite width and length cannot have two 
parallel lines of symmetry. 

3.2.3 Point Reflections 

As typical in mathematics, it is not sufficient to understand only 
what a single reflection does, but it is also important to understand 
what happens when se~eral reflections are applied sequentially, that 
is, when a composition of reflections is applied. In the previous ac­
tivities, your composition of two or more line reflections may have 
resulted in a symmetry with only one invariant point. One such 
symmetry is known as a point reflection. 

3 A polygon is said to be regular if all its sides are congruent and all its interior 
angles are congruent. 
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Definition 3.4 
A point reflection with center C, denoted4 R!2, is a transformation that 
maps point C to itself and maps every other point P to pI where Cis 
the midpoint of segment Ppl. If the point set a is invariant under R!2' 
we say that a has point symmetry and that C is a point of symmetry 
for a. 

Activities 

Carefully label your drawings to indicate the properties they illustrate. 

9. Draw a simple nonsymmetric figure Fo and a point C. Then draw 
the following, labeling each figure and point as indicated. 

a. Draw F I , the image of Fo under a point reflection with center 
C. 

b. Draw F2 , the image of FI under a second point reflection with 
center C. 

c. How is F2 related to the original figure? 
d. What types of symmetry are demonstrated by your illustra­

tion? 

10. Draw another simple nonsymmetric figure Fo and two distinct 
points, CI and Cz. Label your figure and your points. 

a. Draw and label F I , the image of Fo under a point reflection 
with center Cl. 

b. Draw and label F2, where F2 is the image of FI under a point 
reflection with center C2 . 

c. Describe how F2 is related to the original figure. In particular, 
where is it located relative to the original? Does it have the 
same orientation as the original? Does the relation appear to 
depend on the relative positions of the points Cl and C2? If 
so, how? 

d. What would happen if you applied to Fo a sequence of point 
reflections in 3 different points? 

4Th prevent confusion between a point C and a line c, you may want to underline 
the center designated in the notation. 
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11. Can a figure with finite width and length have two distinct points 
of symmetry? Explain. 

12. Another term used to describe a point reflection is the term 
half-tum. Explain why this term is appropriate. 

l3. Is it possible to have a figure with point symmetry but without 
line symmetry? with line symmetry but without point symme­
try? Ifit is possible, draw an example; if it isn't possible, explain 
why it isn't. 

14. Explain why the result of applying a sequence, that is, the com­
position, of two symmetries to a given point set a, is equivalent 
to applying a single symmetry to a. 

3.3 Exploring Rotations and Finite 
Symmetry Groups* 

Equipm.ent and Materials Needed 

• A protractor, a scissors, two copies each of an equilateral triangle 
and a square, and several sheets of semitransparent paper suitable 
for tracing (or several transparencies with appropriate pens) . 

• Many of these activities can also be carried out using dynamic 
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Definition 3.5 
A rotation with center C and angle (measure) e, denoted RC,e is a trans­
formation that maps the point C to itself and maps any other point 
P to p' where d(P, C) = d(P', C) and mLPCP' = e.5 If the point set 
ex is invariant under RC,e, where RC,e =J. I, we say that ex has rotation 
symmetry (about C). If e = 360° In for a positive integer n, ex is also 
said to have n-fold rotation symmetry (about C). 

The following activities ask you to explore individual rotation 
symmetries and relate them to point and line reflections. 

Activities 

Be sure to label your drawings to indicate the properties they illustrate. 

1. Construct a simple flag and a point C (not on the flag) on one sheet 
of paper. Then trace your flag and point onto a second sheet of 
paper. Place one sheet on top of the other so that the flags and 
points match up exactly. Label the top flag Fo. Keep the papers 
"pinned" together at point C. 

a. First rotate the bottom (underneath) flag by 120° around the 
point C. 

b. Then trace the bottom rotated flag onto the top sheet. Label 
this second flag Fl = Rc,12o(Fo). 

c. Continue rotating the bottom flag by 120° around C, tracing 
and labeling until the bottom flag once again lies under the 
original top flag. 

2. Which symmetries (line, point, rotational) are exhibited by your 
"multiflag" figure? For each, name the specific points and lines of 
symmetry. 

3. Why can your multiflag figure be said to have 3-fold rotation 
symmetry? 

4. In an illustration that contains C and the single flag Fo, construct 
and label lines land m so that both lines pass through point C 

SNote: If mLPCP' = 0, then the rotation is the identity transformation. 
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and so that mL(l, m) = 60°. (Suggestion: It may work best to put 
one line on either side of the flag.) Then carry out the reflections 
described below. 

a. Reflect Fa in line 1 to obtain the image flag. Draw this new flag 
and label it Fa = R/(Fa). 

b. Then draw and label Fb = Rm(Fa) and Fe =R/(Fb). 
c. Continue this reflection process, first reflecting in line 1 and 

then in line m, drawing and labeling, until the flag once again 
coincides with the original flag, Fa. 

5. Which symmetries are exhibited by your multiflag figure? 
6. How is the multiflag figure generated by these reflections related 

to the figure generated previously by your rotations? 
7. How would your results change if you kept the location of your 

flag Fa and point C unchanged but changed the location of 
lines 1 and m by simultaneously rotating them about C while 
maintaining the same angle between the lines? 

3.3.2 Finite Symmetry Groups 

The set of all reflection and rotation symmetries for a given figure 
can be shown to form a group, that is, a set that not only contains 
the inverse of each of its elements, but also the composition of any 
pair of its elements. 

Definition 3.6 
A nonempty set G of transformations is said to form a group under 
the operation of composition if it satisfies both the following condi­
tions: (1) If T E G, then T-1 E G; and (2) if Tl E G and Tz E G, 
then TZTl E G. (Note: The order in a composition requires that the 
transformation on the right be applied first; so in the composition 
TzTl' Tl is applied first.) 

Although groups can contain an infinite number of elements, the 
symmetry groups explored in this section have only a finite number 
n and are thus referred to as finite groups of order n. 
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Activities 
Be sure to label your drawings to indicate the properties they illustrate. 

8. Draw in all lines of symmetry on both an equilateral triangle 
and a square. Labeling suggestion: Label the vertices of both the 
triangle and square alphabetically in counterclockwise order, 
using the letters A, B, etc. Then label the line of symmetry 
through vertex A as 1. Continue labeling the symmetry lines 
counterclockwise around 0 their point of intersection, using the 
letters m, n, etc. Notice that vertex B will be located on line n 
in both cases. Keep these labeled figures unchanged to serve as 
references. 

9. Explain why both the equilateral triangle and the square have 
rotation symmetry. For which values of n does the triangle have 
n-fold symmetry? For which values of n does the square have 
n-fold symmetry? 

10. Does either the equilateral triangle or the square have point sym­
metry? How is point symmetry related to rotation symmetry? 

11. Using the notation Rm for a reflection with axis m, and RO,e for 
rotations with center 0 and angle e (where counterclockwise is 
considered as positive), indicate the effect of each transforma­
tion as a permutation of the vertices A, B, C, etc. For example, to 
indicate the effect of R O,120 on the triangle labeled as indicated 
earlier, we can write: R0,120 : A, B, C -+ B, C, A. 

a. Suggestion: It may be helpful to cut out one copy of each 
shape and label it on both sides in the same way as your 
original. You can then use these second shapes to represent 
the figures after a transformation is applied. 

b. Report your findings in Thble 3.1 below, listing rotations first 
in order of increasing angle size. Then list your reflections 
alphabetically by axis. 

12. Use your entries in Thble 3.1 to find the products of all possi­
ble pairs of symmetries for the equilateral triangle. Enter your 
results in the cells of Thble 3.2 using the convention that the 
symmetry used to label the corresponding column is applied 
first and the symmetry used to label the corresponding row is 
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TABLE 3.1 Symmetries of Regular n-gons as Permutations of Vertices. 

Thangle Square 

I = Ra,D : A, B, C -+ A, B, C I = Ra,D : A, B, C, D -+ 

Rz :A, B, C-+ 

TABLE 3.2 Symmetry Group of an Equilateral Triangle. 

I RO,120 R O,240 Rz Rm Rn 

I 

R a,12D 

R a,24D 

Rz 

Rm 

Rn 

applied last, e.g., RO,120 should be entered in the cell in column 
"Ri" and row "Rm" since RmRI = R0 ,120. 

13. Using information from Table 3.2, describe the resulting sym­
metry that appears to be produced by each of the following. 
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TABLE 3.3 Symmetry Group of a Square. 

I R O,90 RO,180 R O,270 Rz Rm Rn Ro 

I 

R O,90 

RO,180 

RO,270 

Rz 

Rm 

Rn 

Ro 

a. 'TWo rotations with the same center. 
b. 'TWo reflections with intersecting axes. 
c. A reflection followed by a rotation (where the center of 

rotation lies on the axis of the reflection). 
d. A rotation followed by a reflection (where the center of 

rotation lies on the axis of the reflection). 

14. In the previous activity you generalized the patterns you ob­
served for compositions of symmetries of an equilateral triangle. 
Apply these same patterns to compositions of symmetries of a 
square to fill in the cells in Thble 3.3. 

15. Rotations from reflections. 

a. Among the symmetries of your equilateral triangle, which 
pair(s) of reflections can be composed to produce the rotation 
R O,120? RO,240? 

b. What is the relation between the axes of the reflections and 
the center and angle of the resultant rotation? 

c. Use your observation for the equilateral triangle to check the 
compositions of reflection symmetries recorded in Thble 3.3. 
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16. In Thble 3.3, for each entry corresponding to a product of a ro­
tation Ro,e and a reflection Rp or vice versa, rewrite the rotation 
as the product of two reflections RbRa where one of the axes a 
and b equals the axis p. (You will need to decide whether you 
should have a = p or b = p.) Then use this technique to check 
appropriate entries in Thble 3.3, thus showing that each such 
product equals a single reflection. 

17. Answer each of the following. You may find it helpful to refer to 
Thbles 3.2 and 3.3. 

a. If Ra and Rb are reflections in intersecting lines, what is the 
product RbRa if b = a? If b i a? 

b. If Ra and Rb are line reflections, does RaRb = RbRa? Explain. 
c. If Re,e and Re,t/J are rotations with the same center C, what is 

the product Re,t/JRe,e? 
d. If Re,e and Re,t/J are rotations with the same center C, does 

Re,eRe,t/J = Re,t/JRe,e? Explain. 

18. Explain why Thbles 3.2 and 3.3 are named appropriately, that is, 
explain why these tables demonstrate that the symmetries of an 
equilateral triangle and those of a square each form a group. 

19. Explain why there are exactly n rotation symmetries and n line 
symmetries for a regular n-gon. 

20. For each of Thbles 3.2 and 3.3, show that the subset of rotation 
symmetries forms a group, that is, a subgroup of the complete 
group of symmetries. 

21. Show that for both the equilateral triangle and the square, the 
subgroup of rotation symmetries is generated by a single rotation 
r; that is, there is a specific rotation such that every rotation is 
equal to an integer power rn.6 Be sure to name the "generator" 
symmetry r and comment on whether or not r is unique. Note: 
Such groups are known as cycZic groups. 

6For positive integers n, this denotes the composition of., with itself n times. For 
negative integers n, it denotes the composition of .-1 with itself n times. n = 0 
denotes the identity. 
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Definition 3.7 
A transformation group G is said to be generated by transformations 
ii (G = (iI, i2, ... , i)) if each element T EGis a product of powers 
of the ii. If the group is generated by a single transformation i, it is 
called cyclic. 

22. For each of Thbles 3.2 and 3.3, show that the symmetry group is 
generated by two symmetries, that is, show that each symmetry 
of a triangle (square) can be written as a product of powers of 
two specified symmetries. 7 Are the two generating symmetries 
for a triangle (square) unique? Explain. 

23. Explain why the complete group of symmetries of a regular n­
gon can always be generated by two symmetries. Note: Such 
groups are known as dihedral groups. 

Definition 3.8 
For a positive integer n, the group of all symmetries of a regular 
n-gon is known as the dihedral group of order n and denoted Dn. 

24. Use the terminology given in Definitions 3.7 and 3.8 to answer 
the following: 

a. Which, ifany, of your multiflag figures from activities in 3.3.1 
has only a cyclic symmetry group of order n (and what is n)? 

b. Which, if any, of your multiflag figures resulting from ac­
tivities in 3.3.1 has the symmetry group Dn (and what 
is n)? 

c. For a given positive integer n 2': 3, which symmetry types and 
how many of each type do you expect to be in the dihedral 
group Dn? Explain. 

d. For a given positive integer n 2': 3, what appears to be the rela­
tion between the dihedral group Dn and any cyclic subgroups? 
Explain. 

e. Draw a figure whose only symmetry group is cyclic of order 4. 
f. Cyclic and dihedral groups of finite orders are often referred 

to as point groups. Explain why this term is appropriate. 

7Note that in some cases, you will use the zero power. 
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25. Mathematicians frequently refer to the symmetry group of an 
equilateral triangle. Why is it appropriate to think of the sym­
metry groups of all equilateral triangles as the same? Include in 
your answer a comment on Johnston and Richman's claim that 
symmetry groups "are scale invariant:' [Numbers and Symmetry: 
An Introduction to Algebra, (1997) p. 150] 

26. In a previous activity you were asked to explain why the sym­
metries of an equilateral triangle form a group and why the 
symmetries of a square form a group. Will this be true for other 
figures; that is, if a is a point set, will the set of all symmetries 
of a form a group under composition? Explain. 

3.4 Exploring Translations and Frieze 
Pattern Symmetries* 

Equipment and Materials Needed 
• A straightedge and several sheets oflightweight paper suitable for 

tracing (or several transparencies with appropriate pens). 
• Many of these activities can also be carried out using dynamic 

geometry software. Specific instructions for Cabri Geometry II and 
Geometer's Sketchpad can be found at 
http://www.stolaf.edu/people/cederj/geotext/info.htm. 

3.4.1 Thanslations 

The symmetries explored in Sections 3.2 and 3.3, namely, rotations 
and line and point reflections, all have invariant points. However, 
there are also symmetries known as translations with no invariant 
points. A translation can be described intuitively as a "slide," since it 
slides each point in a given direction through a given distance where 
the direction and distance are specific to the translation. Because 
both direction and distance are involved, it is most convenient to 
designate translations with vectors. So if, for example, the translation 
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T maps point P to point Q, it will also map any other point X to 

point Y where xY = PQ. Thus, we can use the notation T Pc! to 

unambiguously represent the exact effect of the translation and we 
refer to this translation as a "translation along line PQ" with "length" 
equal to the distance d(P, Q). 

Definition 3.9 
A translation with vector PO., denoted T Pc! , is a transformation that 

maps any point X to point Y where xY = po'.8 If a point set 
a is invariant under a nonidentity translation T Pc! , we say that a 

has translation symmetry and that line PQ is an axis of translation 
symmetry for a. 

3.4.2 Frieze Patterns 

If a point set a has translation symmetry under a translation T = 
T Pc! and X is a point in a, then a must also include Xl = T(X) , 

Xz = T(XI ), ... , that is, all points resulting from sliding X in the di­

rection of PO. and through distances that are multiples of the length 

of PQ. Thus, there can be no "last" point in a in the direction of pO. , 
and a necessarily extends infinitely far in this direction. Similarly, 
since we will consider only point sets invariant under a group of 
transformations, the point set must also be invariant under T-I , the 
inverse of the translation T. Thus, a must also extend infinitely in 

the opposite direction, that is, in the direction of oF. As a result a 

must consist of an infinite number of copies of a basic unit repeated 
at regular intervals along the line PQ. A point set that satisfies these 
conditions for one specific translation T is called a frieze pattern, 9 

since such patterns often occur as motifs around the frieze of build­
ings. A portion of a frieze pattern reprinted from Audsley's Designs 
and patterns from Historic Ornament (1968) is shown in Figure 3.1. 

BNote: The identity transformation is a translation by definition. 
9Frieze patterns are also known as one-dimensional or strip patterns. 
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FIGURE 3.1 A frieze pattern. 

Since a frieze pattern is necessarily invariant under all integer 
powers of a particular translation T, and Tm f. Tn for unequal inte­
gers m and n, any group of symmetries of a given frieze pattern 
necessarily contains an infinite number of translations. Further­
more, the symmetries of a particular frieze pattern may include 
symmetries other than translations. In fact, frieze patterns are 
classified based on the types of nontranslation symmetries they 
have. 

Definition 3.10 
A group of transformations that keep a given line c invariant and 
whose translations form an infinite cyclic subgroup is known as a 
frieze group with axis c. A point set that remains invariant under 
a frieze group with axis c is called a frieze pattern with axis c and 
denoted Fe. (Note: A frieze group is the symmetry group of the 
associated frieze pattern.) 

3.4.3 Glide Reflections 

Some frieze groups contain the reflection Rc as well as translations 
along the line c. Thus, the frieze group must also contain all products 
of the reflection with each translation. Since this type of product is 
a commonly occurring transformation, it has been honored with a 
name. 

Definition 3.11 
--+ 

A glide reflection with vector PQ, denoted G Pet' is the product of a 

reflection with axis PQ and the nonidentity translation T Pet. If a 
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point set Ci is invariant under a glide reflection G-+ I we say that the 
PQ 

line PQ is an axis of glide symmetry for Ci. 

Activities 

When drawing portions of frieze patterns, include at least two replications 
-+ 

of the basic unit. Also label two points P and Q to indicate the vector PQ 
defining the generating translation T -+. As always, label each drawing 

PQ 
to indicate the properties it illustrates. 

1. Draw a portion of a frieze pattern Fe that has no nontranslation 
symmetries. Suggestion: Start with a very simple nonsymmetric 
figure and translate it at least once. 

2. Examine the frieze pattern partially depicted in Figure 3.l. 

a. Identify and label an axis c. Also label points P and Q in the 
pattern so that the translation T -+ generates the defining 

PQ 
cyclic subgroup of translations. 

b. Will there be other point pairs that could be used in place of 
P and Q to determine a generating translation for this same 
pattern? Explain. 

c. Draw an illustration that extends the depicted portion in both 
directions along its axis. 

3. Frieze patterns with point symmetry: 

a. Which points C can be a point of symmetry for a frieze pattern 
Fe? Be sure to describe the location of the points relative to 
line c. 

b. If C is a point of symmetry and T is a translational symmetry 
of Fe, explain why T(C) must be another point of symmetry 
for Fe. 

c. Draw a portion of a frieze pattern Fe with a point of symmetry 
C. Be sure to label C. 

4. Explain why a frieze pattern Fe cannot have rotation symmetry 
under a rotation RC,(J for e other than 0° and 180° (mod 360). 

5. Frieze patterns with reflection symmetry: 
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a. Explain why c can be a line of reflection symmetry for Fe. 
b. Which lines other than c can be axes of reflection symmetry 

for a frieze pattern Fe? How are these lines related to c? 
c. If p =1= c is an axis of reflection symmetry of Fe, and T 

is a translation symmetry of Fe, explain why T(P) must be 
another axis of reflection symmetry for Fe. 

d. Draw a portion of a frieze pattern Fe with reflection 
symmetry only in line c. 

e. Draw a portion of a frieze pattern Fe with reflection sym­
metry in line p =1= c but not in line c. Be sure to label 
p. 

6. Draw and label a simple nonsymmetric figure Fo and a line 1. 
Locate and label points P and Q on 1. 

a. Draw and label F l , the image of Fo under the glide reflection 

GPc!. 
b. Draw Fz, the image of Fl under the same glide reflection. 
c. Describe how Fl and Fz are related to the original figure Fo. 

In particular, where is each located relative to the original? 
Do they have the same orientation? Do the relations appear 
to depend on the relative positions of Fo and the line l? If so, 
how? 

7. Our definition of a glide reflection indicates that the reflec­
tion is applied after the translation. If the order of application 
is reversed, is the resultant symmetry the same? Explain and 
illustrate your answer. 

8. Demonstrate how a translation T Pc! can result from a compo-

sition of two glide reflections. Include a specific description of 
the defining vectors for the glide reflections. Is there more than 
one way to do this? 

9. Frieze patterns with glide symmetry: 

a. Explain why your illustration for Activity 6 can be viewed as 
part of a frieze pattern Fe. Which line corresponds to c? 

b. Does the frieze pattern Fe partially depicted in this illustra­
tion have any other symmetries? Explain. 
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10. Explain why the vector designating a translation is not unique. 
What implications, if any, does this have for possible axes of 
figures with translation symmetry? 

11. Show that the set of all translations that keep line c invariant is 
necessarily a group. 

12. If T is a translation along c that generates a cyclic group Gc, 

how does the length of T compare to the length of the other 
translations in Gc? 

l3. Explain why a cyclic group oftranslations along c cannot contain 
all translations along line c. 

3.5 An Analytic Model of the Euclidean 
Plane 

Before actually describing the analytic model we use, it may be 
helpful to give some indication of the motivation for choosing this 
particular model. This discussion will also serve to introduce the 
terminology and notation that we will use. 

The analytic study of Euclidean geometry is based on the 
premise that each point in the plane can be assigned an ordered 
pair of real numbers. The usual manner in which this is done is 
via a Cartesian coordinate system where two perpendicular lines 
are used as axes. The point of intersection of these axes is assigned 
the ordered pair (0,0) and other points are assigned ordered pairs as 
shown in Fig. 3.2. Rather than denote pOints by ordered pairs (x, y) 
as is customary in calculus, we will use ordered pairs (Xl, XZ). This 
choice is motivated by the "symmetrical form" our results will take 
in this notation. 

With this representation of points, lines of the Euclidean plane 
can be represented by linear equations of the form alxl +azxz +a3 = 
o where the ai are constant real number coefficients. Thus, each 
ordered triple [aI, az, a3] where al and az are not both zero, deter­
mines the equation of a line. Notice that square brackets are used 
for coordinates of lines so as to distinguish them from coordinates 
for points. Unlike points, the coordinates of a line do not uniquely 
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(0, b) .--.------.--------.------.. ------.------.--... --.... - .. ~( a, b) 

! , 

i , 
l 

(0,0) (a,O) 

FIGURE 3.2 Assigning point coordinates. 

represent a line, since the equations alxl + azxz + a3 = 0 and 
kalXI + kazxz + ka3 = 0 represent the same line for every nonzero 
real number k. There is, however, a one-to-one correspondence be­
tween the set of lines and the set of equivalence classes of ordered 
triples of real numbers defined by the following relation: 

[bl , bz, b3] r...- [aI, az, a3] if bi = kai, i = 1,2,3, where 

k is a nonzero real number 

Using Definition 3.12 we can show that this relation is an equiva­
lence relation (see Exercise 8). 

Definition 3.12 
A relation "r...-" is an equivalence relation if it satisfies each of the 
following: 

a. a "-' a 
b. If a r...- b, then b r...- a. 
c. If a r...- band b r...- c, then a r...- C. 

Definition 3.13 
A set of elements all of which are pairwise related by an equivalence 
relation is called an equivalence class. Any element of an equivalence 
class is called a representative of the equivalence class. 

Since there is a one-to-one correspondence between the lines of the 
Euclidean plane and these equivalence classes, we can interpret 
lines in terms of these equivalence classes (Thble 3.4). The ordered 
triples [UI' Uz, U3] belonging to a particular equivalence class will be 
called homogeneous coordinates of the line. Ifwe consider one ofthese 
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ordered triples to be a row matrix u = [UI' U2, U3], then the matrix 
equation of the corresponding line is uX = 0 where X = (Xl, X2, 1) is a 
column matrix with 1 in its third entry. In particular ifu = [2, -3, 5], 
then uX = 0 is the equation 2XI - 3X2 + 5 = O. This observation, 
together with the desire to use similar interpretations for points 
and lines, suggests that we interpret points in terms of equivalence 
classes of ordered triples of real numbers (Xl, X2, X3), where X3 # 0 
under the same relation. Again we will refer to elements of these 
equivalence classes as homogeneous coordinates of the point. In the 
case of points, however, since X3 is always nonzero, every ordered 
triple (Xl, X2, X3) '" (XI/X3, X2/X3, 1), so each equivalence class will 
have a unique representative of the form (Xl, X2, 1). In other words, 
each point in the plane that we are accustomed to denoting with an 
ordered pair of the form (Xl, X2) can now be denoted by the corre­
sponding ordered triple (Xl, Xz, 1). For example, instead of referring 
to a point with coordinates (I, -3) we will now refer to it as a point 
with coordinates (1, -3, 1). 

As indicated before, lines will always be represented by row ma­
trices and points by column matrices. But unlike the conventional 
algebra usage of uppercase letters for all matrices, here matrices of 
line coordinates will be represented by lowercase letters. 

TABLE 3.4 Analytic Model for the Euclidean Plane. 

Undefined Term Interpretation 
Points Equivalence classes of ordered triples 

(Xl, Xz, X3) where X3 f. 0 (anyone of the 
representatives of an equivalence class 
will be called coordinates of the point) 

Lines Equivalence classes of ordered triples 
[UI' Uz, U3] where UI and Uz are not both 
o (anyone of the representatives of 
the equivalence class will be called 
coordinates of the line) 

Incident A pointX(xl' xz, X3) is incident with a line 
U[UI' uz, U3] iff[uI' uz, U3] . (Xl, xz, X3) = 0, 
or, in matrix notation, uX = 0 
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Within the context of this analytic model, the operations of 
matrix algebra take on geometric significance as indicated by the 
following theorems. In each case the coordinates chosen to repre­
sent points will be those in which X3 = 1. The first of these theorems 
gives a convenient way to determine when three points are collinear, 
that is, on the same line. 

Theorem 3.1 
Three distinct points X(xI,xz,l), Y(YI,Yz,l), and Z(zl,zz,l) are 
collinear if and only if the determinant 

Proof 

Xl YI Zl 
Xz Yz Zz = 0 
1 1 1 

X, Y, Z are collinear if and only if there is a line U[UI, Uz, U3] such 
that 

or 

UIXI + UZXz + U3 = 0 

UIYl + uzYz + U3 = 0 

UIZI + UzZz + U3 = 0 

But from linear algebra this equation has a nontrivial solution 
[UI, Uz, U3] if and only if 

Xl YI Zl 
Xz Yz Zz = 0 
1 1 1 

Since this nontrivial solution cannot have both Ul = 0 and U2 = 0 
(see Exercise 7), U[Ul, U2, U3] is a line containing all three points. • 
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Corollary 
If A and B are distinct points, then the equation of the Zine AB where 
A( aI, az, 1) and B(bl , bz, 1) can be written 

Xl al bl 

Xz az bz = 0 
1 1 1 

In the proof of Theorem 3.1 we used the familiar notion that 
the equation UIXI + UZXz + U3 = 0 determines which points lie on 
the line with coordinates [UI' Uz, U3], and we refer to this equation as 
the equation of the line u. We often think of the values of the Ui as 
constants. For example, the equation 3XI - 4xz + 10 = 0 determines 
which points lie on the line with coordinates [3, -4, 10]. However, it is 
equally useful to regard UIXI +UZXZ+U3 = 0 as the equation Qfthe point 
X and use it to determine which lines pass through the point with 
coordinates (Xl, xz, 1). In particular, we can determine which lines 
pass through the point with coordinates (-2,5, 1) by finding ordered 
triples [UI' Uz, U3] that satisfy the equation -2UI + 5uz + U3 = o. 

With the previous discussion in mind, we can use line coordi­
nates to determine when three lines are concurrent, that is, when all 
three lines intersect at a common point. The proof of this theorem 
is similar to that of the previous theorem except here special con­
sideration needs to be given to the case where the only nontrivial 
solutions are those for which X3 = 0 (see Exercise 12). 

Theorem 3.2 
Three distinct Zines u, v, ware all concurrent or all parallel if and only 
if the determinant 

UI Uz U3 

VI Vz V3 = 0 

WI Wz W3 
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Theorem 3.2 
Three distinct Zines u, v, ware all concurrent or all parallel if and only 
if the determinant 

UI Uz U3 

VI Vz V3 = 0 

WI Wz W3 
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Corollary 
The equation of the point of intersection of concurrent lines p and q, 
denoted p . q, can be written 

Ul U2 U3 

PI P2 P3 = 0 
ql q2 q3 

In these theorems, it is again important to note that the coordinates 
of points appear in columns whereas the coordinates oflines appear 
in rows. This convention is used throughout the remainder of the 
text. 

Just as point coordinates are used to define distance between 
points, line coordinates can be used to determine the angle between 
lines. Definition 3.14 includes a definition for both distance and an­
gle measure in terms of the ordered triple coordinates we are using. 
For angles, this definition makes use of a formula from trigonome­
try that gives the tangent of the angle between two lines in terms of 
slopes of the lines (see Exercise 17). 

Definition 3.14 
Distance and angle measure: 

a. If X(Xl,X2' 1) and Y(Yl,Y2, 1) are two points, then the distance 
between X and Y, denoted d(X, Y), is defined to be 

d(X, Y) = J (Yl - Xl? + (Y2 - X2)2 

b. Ifu[Ul, U2, U3] and V[Vl' V2, V3] are two lines, then the measure of 
the angle between U and V, denoted mL.(u, v), is defined to be 

/( ) t -1 (UlV2 - U2Vl) mL U,V = an 
UlVl + U2V2 

where -90° < mL.(u, v) < 90°, 
mL.(u, v) = 90°, 

ifulVl + U2V2 =j:. a 
ifulVl + U2V2 = a 

Note that the definition of the measure of the angle between lines 
is independent of the particular set of homogeneous coordinates 
used for the lines and that only the first two coordinates of each line 
are used. This corresponds to defining the angle between lines u and 
v in terms of the angle between lines u' and v' where the latter are 
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lines through the point (0,0,1) and u' is parallel to U and v' is parallel 
to v (see Exercise l3). In particular, this definition assigns the angle 
between parallel lines measure O. 

Vectors in the Analytic Model 

In addition to working with analytic interpretations for points and 
lines, we will also make use of an analytic interpretation for vec­
tors. Since we are using point coordinates that are ordered triples, 
our vectors will have ordered triples as components. Thus, for the 
points X(XI' xz, 1) and Y(YI, Yz, 1), the vector with initial point X and 

terminal point Y is xY = (YI - Xl, Yz - Xz, 0).10 Wben working with 
vectors, recall that for vectors u = (UI' uz, U3) and v = (VI, Vz, V3) and 
scalar s, 

1. u = v if and only if their components are equal (i.e., Ui = Vi for 
i = I, 2, 3). 

2. su = (SUI, sUz, SU3); and 
3. Ivl = J(VI)Z + (vz)Z + (V3)Z is the length of vector v. 

Exercises 

1. Let u be the line with homogeneous coordinates [-2,5,7]. (a) Find 
three other sets of coordinates for u. (b) Find an equation for line u. 
(c) Find coordinates for two distinct points on u. 

2. Let P be the point with ordered pair coordinates (4, -7). ( a) Find three 
sets of homogeneous coordinates for P. (b) Find an equation for the 
point P. (c) Find coordinates for two lines through P. 

3. Find homogeneous coordinates for each of the following: (a) the XI­

axis; (b) the xz-axis; and (c) the line Xl = xz. 

4. Find the general form of the coordinates for lines through the point 
(0,0,1). 

IONote: Since we will be using point coordinates in which the third coordinate is 
always I, the third component of our vectors will always be O. 
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5. Use the corollary to Theorem 3.1 to find the line containing the points 
(10,2) and (-7,3). 

6. Use the corollary to Theorem 3.2 to find the point of intersection of 
the lines 3x + 4y + 7 = 0 and 2x - y + 8 = O. 

7. Show that the nontrivial solution obtained in the proof of Theorem 3.1 
cannot have both UI = 0 and Uz = O. 

8. Show that the following is an equivalence relation: [UI' Uz, U3] '" 
[VI, VZ, V3] if Ui = kVi for some nonzero k. 

9. Prove the corollary to Theorem 3.l. 

10. Show algebraically that two distinct lines U[UI' Uz, U3] and V[VI, Vz, V3] 
are parallel (do not intersect) if and only if UI = kvl , Uz = kvz, but 
U3 =1= kV3 for some nonzero real number k. [Hint: Show that the system 
of equations UIXI + UZXz + U3 = 0 and VIXI + VZXz + V3 = 0 does not 
have a solution if and only if these conditions are true.] 

11. Use the result of Exercise 10 to verify that Playfair's axiom is true in 
this analytic model of the Euclidean plane. 

12. Use the result of Exercise 7 to prove Theorem 3.2. (Be sure to see the 
comment preceding the theorem.) 

13. Use the result of Exercise 10 to show that the line parallel to 
U[UI' Uz, U3], which passes through the point (0, 0, I), has coordinates 
[UI' Uz, OJ. 

14. Using Definition 3.14 find the angles between the following lines: (a) 
the lines [-2, I, 7] and [3,4,17]; (b) the XI- and xz-axes; and (c) the 
lines Xl = Xz and the Xl -axis. 

IS. Use the result of Exercise 10 to find the angle between two parallel 
lines. 

16. Let the line U be the Xl -axis and the line V be the line with coordinates 
[VI, vz, V3]. Use Definition 3.14 to show that tan(L(u, v)) = -(vI)/(vz). 
[Note: Recall that the slope ofthe line [VI, Vz, V3] is given by -(VI)l(VZ).] 

17. The following trigonometry formula gives the tangent of the angle 
between lines U and V in terms oftheir slopes mu and mv. Use the defi­
nition of slope from Exercise 16 to show that this formula is equivalent 
to the formula used in Definition 3.14: 

mv-mu 
tan(L(u, v)) = --­

I +mumv 
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18. Prove: If P is a point and 1 is a line, there is a unique line through P 

perpendicular to l. 

19. Use Definition 3.14 to verifY the following for vectors u = au and 

v = oV where 0(0,0,1); U(Ul, uz, 1) and V(Vl, vz, 1). 

a. lui = d(O, U), i.e., the length of vector u is the distance between 
its initial and terminal points. 

b. u· v = 0 if and only if L(OU, OV) = 900 , i.e., the dot product of 
the vectors u and v is 0 if and only if the angle between the lines 
OU and OV is 900 . 

20. Will the results shown in Exercise 19 be the same ifthe vectors u and 
v have a common initial point other than O? If they have different 
initial points? Explain. 

3.6 Thansformations of the Euclidean 
Plane 

The transformation approach to the study of Euclidean geometry 
involves identification of appropriate groups of transformations of 
the Euclidean plane and the investigation of the features preserved 
by these groups. In this section we introduce the definitions and 
theorems from linear algebra needed to pursue this approach. Since 
the analytic model of the Euclidean plane interprets points and lines 
in terms of equivalence classes of the vector space R3 , we use a 
special set of transformations, that is, functions whose domain and 
range are both R3. 

Definition 3.15 
Let V be a vector space over R. If T : V ~ V is a transformation, 
then T is called a linear transformation of V if it satisfies both the 
following conditions: (1) T(u + v) = T(u) + T(v) for all vectors u 
and v in V; and (2) T(ku) = kT(u) for all vectors u in V and scalars 
in R. A linear transformation T is one-to-one if whenever u i= v, 
T(u) i= T(v). 
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From these definitions it should be clear that the equivalence 
classes of R3 defined by the relation U '"'-' v if and only if u = kv are 
preserved by linear transformations. In other words, if u '"'-' v, then 
T(u) '"'-' T(v). So a one-to-one linear transformation of R3 induces 
a one-to-one mapping on the set of points of the model for the Eu­
clidean plane. Each of these mappings has a matrix representation as 
indicated by the following summary of results from linear algebra. 

Theorem 3.3 
T is a one-to-one linear transformation ofR3 = {X(XI' xz, X3) : Xi E R} if 
and only ifT(X) = AX where A = [aij]3x3, IAI i= 0, and aij E R. 

Because we make use of homogeneous coordinates of the form 
(Xl, xz, 1) for points, it is important to note the restriction this places 
on linear transformations and the consequent form of their matrix 
representation given in the corollary. 

Definition 3.16 
A one-to-one linear transformation T of R3 is said to be an affine 
transformation (of the Euclidean plane) if T maps points in the set 
V* = {X(XI' xz, I)} to points in this same set, that is, iffor all X E V*, 
T(X) = X' E V*. 

Corollary 
T is an affine transformation of the Euclidean plane if and only ifT( X) = 
AX where 

IAI i= 0 and aij E R. 

Proof 
See Exercise 6. • 

As indicated previously, we need to verify that the set of affine 
transformations of the Euclidean plane form a group under com­
position. If Tl and Tz are transformations of a vector space V, the 
composite (or product) TzT1 is the mapping defined by (TzT1)(u) = 
Tz(T1(u)) for all vectors u in V. Because the composition offunctions 
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is associative, that is T3(TzTl) = (T3Tz)T1 , we can use the following 
simplified definition introduced in Section 3.3 and restated below. 

Definition 3.6 
A nonempty set G of transformations is said to form a grOUp under 
the operation of composition if it satisfies both the following condi­
tions: (1) If T E G then T-1 E G; and (2) if Tl E G and Tz E G, then 
TzT1 E G. 

Note that the definition guarantees that any group G contains a 
transformation T, and therefore by property I, T-1 is in G. Property 
2 then tells us that TT-1 = I is also in G where I is the identity 
transformation defined by leu) = u for any u in V. Also note that 
the order in a composition requires that the transformation on the 
right be applied first. 

An application of results of matrix algebra to the matrix represen­
tations given by the corollary to Theorem 3.3 can be used to prove 
the following theorem (see Exercise 9). 

Theorem 3.4 
The set of affine transformations of the Euclidean plane is a group. 

Even though each of the transformations of this group can be 
represented by a 3 x 3 matrix with real number entries and the 
images of individual points can be computed algebraically, it is im­
portant to visualize the geometric action of each transformation as 
a mapping or moving of all of the points of the Euclidean plane to 
other points of the plane. Determining the general way in which a 
transformation moves points, and, in particular, determining which 
points and lines it leaves unaffected, are essential to understanding 
this geometric action. 

Example 3.1 
Let T be the affine transformation with matrix A shown. If X is a 
point on the line 1[1, -I, 0], show that T(X) is also a point on I and 
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show that T(P) = P where P is the point P (-~, -~, 1). 

A=[~ ~ ~] 
001 

Solution 
Th find the images of points on l, we note that X(XI, x2, 1) is on 1 if 
and only if Xl - X2 = 0, that is, if X2 = Xl. Thus we can find the images 
of any point X on I as follows: 

Since x~ = 4XI + 2 = x~, it is clear that T(X) = X'(x~, x~, 1) is 
also a point on 1. Furthermore, since P is a point on l, we can set 
Xl = X2 = -~ in the preceding computation to find T(P). With this 
value of Xl, we get X~ = X~ = 4( -~) + 2 = -~. So T(P) = P. 0 

Since the image of P is itself under the transformation T in this 
example we say that P is an invariant point of the transformation. 
Furthermore, since the images of all points on I are again on I, we 
say that 1 is an invariant line of T. Note, however, that the points on 
I other than P are not invariant, so I is not pointwise invariant. 

Definition 3.17 
A property that is unchanged under a transformation is called an 
invariant of the transformation. A property that is invariant under 
each transformation ofa group of transformations is called an invari­
ant of the group. An invariant property of a transformation is said 
to be preserved by the transformation. 

Essential to the study of any mathematical system is a determi­
nation of the transformations that preserve certain features of the 
system. The following result shows that the affine transformations 
of the Euclidean plane preserve collinearity; that is, collinearity is 
one of the invariant properties of this group. Thus these transforma­
tions of the points of the Euclidean plane also map lines to lines. We 
say they induce mappings between lines of the Euclidean plane. 
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Theorem 3.5 
An affine transformation of the Euclidean plane preserves collinearity 
(i. e., the images of collinear points are collinear). 

Proof 
LetX'Cx~, x;, I), Y'Cy~,y;,l), andZ'(z~,z;,l) be images of the points 
X, Y, and Z under a given affine transformation with matrixA. Then 
combining all our efforts into one matrix equation, we get 

[ 
x~ y~ Z~] [Xl Yl Zl] 
X; Y; z; = A Xz Yz Zz 

1 1 1 1 1 1 

and taking determinants of both sides yields 

X' y' Z' 1 1 1 

X; y; z; 
III 

Xl Yl Zl 
= IAI Xz Yz Zz 

III 

Therefore, the result follows by Theorem 3.1. • 
Note that this theorem also implies that affine transformations 

preserve incidence. In other words, if the point X is on line u, then 
X', the image of X, is on u', the image of u. 

Just as the image of a point under an affine transformation can 
be determined by a matrix equation, a matrix equation can be used 
to determine the image of a line under the same transformation. 
This second equation is related to but not identical to the first. 

Theorem 3.6 
If the image of a point under an affine transformation of the Euclidean 
plane is given by the matrix equation X' = AX then the image of a 
line under this same transformation is given by the matrix equation 
ku' = uA -1 for some nonzero scalar k. 

Proof 
Consider the line U[U1' Uz, U3] with equation U1X1 + UzXz + U3X3 = 0; 
that is, uX = o. Under the affine transformation, u maps to u', X 
maps to X', and uX = 0 if and only if u'x' = O. But X' = AX. So 
substituting u'AX = 0 if and only if uX = o. Since this must hold for 
all points X, u = ku'A for a nonzero scalar k, or ku' = uA -1. • 
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The transformation with matrix A is said to have point equation 
X' = AX and line equation ku' = uA -1. While the use of the point 
equation is straightforward, the scalar k in the line equation (re­
quired because there is no unique set of homogeneous coordinates 
for a given line) makes the use of the line equation slightly more 
difficult. It is more important to note that k is not constant for a 
given matrix A. This becomes especially significant when a given 
line needs to be mapped to a particular line, as in the following 
example. 

Example 3.2 
Find the matrix of an affine transformation of the Euclidean plane 
that maps [I, -3, 2] to u'[I, 0, -4], v[2, I, -5] to v'[lO, -7, 7], and 
w[I, -2,0] to w'[O, 1 - 6]. 

Solution 
Since we are told the images of three lines, we will begin with the 
general form of the line equation of transformation of an affine trans­
formation ku' = uA -1. Each line and its image will give a matrix 
equation, as shown. In these equations we let B = A-I and use 
three distinct values of k: 

[ bn hz 
b13 

] kI[I, 0, -4] = [I, -3, 2] b~I b2Z bZ3 
0 1 

[ bn 
bI2 

bE ] 
k2[10, -7, 7] = [2, I, -5] b~I b22 b23 

0 1 

[ bn 
bl2 

b" ] k3[O, I, -6] = [I, -2, 0] b~I bZ2 b23 
0 1 

The resulting system of nine equations in nine unknown yields 
the following solutions for the values of k : kI = -2, k2 = I, and 
k3 = -1. The matrix 

A -1 = U =r n and A = [=! ! n 
o 
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Exercises 
I. Let T be the affine transformation with matrix 

A~ [~ [ n 
(a) Using the technique of Example 3.1, find the images of points on 
the line 1[1, -2,3]. (b) Does T keep any points on 1 invariant? If so, 
which one(s)? (c) Use the coordinates of the images of two points on 
1 to find the coordinates of l' = T(I). (d) Sketch both 1 and l' in the 
Euclidean plane and describe the geometric action of T. 

2. VerifY by calculation that the transformation with the matrix in 
Example 3.2 does indeed map the three lines as desired. 

3. Let 

A~ [H n 
be the matrix of a transformation, T. (a) Find pi = T(P) and Q' = 
T(Q) for the points P(I,2, 1) and Q(6,4,1). (b) Find coordinates of 
the lines PQ and pi Q'. ( c) Find the matrix of A -1 to be used in the 
line equation of the transformation T. (d) Use this line equation to 
find the image ofthe line PQ under T. (Your answer should be the 
line p'Q'.) 

4. Find the matrix of an affine transformation that maps P(O, 0, 1) 
to pi (1,5, 1), Q(l, 3, 1) to Q' (3, -7, 1), and R(l, 0, 1) to R' (3,6, 1). 

5. Find the matrix of an affine transformation that maps u[2, -3, 1] to 
u' [2, 5, 0], v[1, -2, 0] to v' [I, I, -6], and w[I, 0, 0] to w' [3, 2, -1]. 

6. Prove the corollary of Theorem 3.3. 

7. Prove: If A is a matrix of the form given by the corollary of Theo­
rem 3.3, then A-I is also of this form. [Hint: Since these are 3 x 3 
matrices with a third row of the form (0,0, 1) the adjoint method 
provides an easy way of computing A-I.] 

8. Prove: If A and B are matrices of the form described by the corollary 
to Theorem 3.3, then the matrix product AB is also of this form. 

9. Using results of Exercises 7 and 8, prove Theorem 3.4. 
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10. Find examples of matrices of affine transformations such that 
AB =I BA. (This example shows that this group does not have the 
commutative property.) 

3.7 Isometries 

'Ib begin our transformation approach to the study of Euclidean ge­
ometry we will single out the subset of affine transformations of the 
Euclidean plane that preserve distance. 

Definition 3.18 
An affine transformation of the Euclidean plane is an isometry if it 
preserves distance (i.e., if d(X, Y) = d(T(X), T(Y)) for all pairs of 
points X, Y). 

As affine transformations of the Euclidean plane, isometries can 
be represented by matrices of the form given in the corollary to Theo­
rem 3.3. However, the distance preserving property further restricts 
the form of their matrix representation. 

Theorem 3.7 
An isometry has one of the following matrix representations: 

(Direct) (Indirect) 

[ all alZ al3 ] [ au 
alZ al3 ] -al2 all aZ3 or alZ -all aZ3 

0 0 1 0 0 1 

where (ani + (alzi = l. 

Proof 
LetXf(x~, x~, 1) and yf(y~, y~, 1) be the images of the pointsX(xl' xz, 1) 
and Y(Yl,yz,l) under an isometry. Then by the corollary to 
Theorem 3.3, 
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and likewise 

Because this mapping is an isometry, d(X', Y') = d(X, Y). From 
the definition of distance this equality yields 

[(Xl - Yli + (X2 - Y2if2 = [(x~ - Y~i + (x~ - Y~i]ll2 
= [( allxl + a12x2 - allYl - al2Y2i 

+(a21xl + a22x2 - a21Yl - a22Y2i]1I2 

= [Carl + a~l)(Xl - Yli 

+2(alla12 + a21 a22)(Xl - Yl)(X2 - Y2) 

+( ar2 + a~2)( X2 - Y2if2 

Since this equality must hold for all points X and Y, and therefore 
for all ordered pairs of real numbers (Xl, X2) and (Yl, Y2), we can 
square the first and last of these expressions and then equate the 
coefficients of like terms. This gives the following equations: 

( a) afl + a~l = 1 
(b) af2 + a~2 = 1 
(c) alla12 + a21a22 = 0 
(d) ana12 = -a21a22 
1b solve these equations, we consider two cases. 

Case 1: an i= O. Equation (d) implies a12 -(a21a22)/an. 
Substituting this into (b) gives 

a2 a2 
_21 22 + a2 = 1 ( 2 + 2) 2 2 or all a 21 a22 = all' a2 22 

11 

But by (a) this becomes a22 = ±all. If a22 = all, then Equation (d) 
implies a21 = -a12. If a22 = -all, then Equation (d) implies a21 = 
al2. These results yield the two forms of the matrix given earlier. 

Case 2: all = O. Again in this case the equations yield the same 
two forms of the matrix (see Exercise 3). • 

The determinant of the first isometry matrix is (alIi + (al2)2 = I, 
while the determinant of the second matrix is -(an)2 - (al2i = 
-1. This observation gives a convenient way to distinguish the two 

3.7. Isometries 137 

and likewise 

Because this mapping is an isometry, d(X', Y') = d(X, Y). From 
the definition of distance this equality yields 

[(Xl - Yli + (X2 - Y2if2 = [(x~ - Y~i + (x~ - Y~i]ll2 
= [( allxl + a12x2 - allYl - al2Y2i 

+(a21xl + a22x2 - a21Yl - a22Y2i]1I2 

= [Carl + a~l)(Xl - Yli 

+2(alla12 + a21 a22)(Xl - Yl)(X2 - Y2) 

+( ar2 + a~2)( X2 - Y2if2 

Since this equality must hold for all points X and Y, and therefore 
for all ordered pairs of real numbers (Xl, X2) and (Yl, Y2), we can 
square the first and last of these expressions and then equate the 
coefficients of like terms. This gives the following equations: 

( a) afl + a~l = 1 
(b) af2 + a~2 = 1 
(c) alla12 + a21a22 = 0 
(d) ana12 = -a21a22 
1b solve these equations, we consider two cases. 

Case 1: an i= O. Equation (d) implies a12 -(a21a22)/an. 
Substituting this into (b) gives 

a2 a2 
_21 22 + a2 = 1 ( 2 + 2) 2 2 or all a 21 a22 = all' a2 22 

11 

But by (a) this becomes a22 = ±all. If a22 = all, then Equation (d) 
implies a21 = -a12. If a22 = -all, then Equation (d) implies a21 = 
al2. These results yield the two forms of the matrix given earlier. 

Case 2: all = O. Again in this case the equations yield the same 
two forms of the matrix (see Exercise 3). • 

The determinant of the first isometry matrix is (alIi + (al2)2 = I, 
while the determinant of the second matrix is -(an)2 - (al2i = 
-1. This observation gives a convenient way to distinguish the two 



138 3. Geometric Transformations of the Euclidean Plane 

types of isometries and justifies the labels given in the statement of 
Theorem 3.7. 

Definition 3.19 
If the determinant of the matrix of an isometry is + 1, the isometry 
is said to be a direct isometry. If the determinant is -1, the isometry 
is said to be an indirect isometry. 

A relatively straightforward argument demonstrates that the 
isometries form a group. However, since there are direct and indirect 
isometries, it is necessary to verify that the inverse of each type is an 
isometry. It is also necessary to demonstrate that the composite Tz Tl 
is an isometry where Tl and Tz are both direct, both indirect, direct 
and indirect, and finally indirect and direct isometries, respectively. 
The result of these computations are summarized in the following 
theorem and corollary. 

Theorem 3.8 
The set of isometries forms a group, of which the set of direct isometries 
is a subgroup. 

Corollary 
The product of two direct or two indirect isometries is a direct isometry. 
The product of a direct and an indirect isometry in either order is an 
indirect isometry. 

Having identified the set of isometries as a group of transfor­
mations, we can study Euclidean geometry by determining which 
properties of sets of points in the Euclidean plane are preserved 
by this group. The following definition formalizes Euclid's use of 
"superposition. " 

Definition 3.20 
TWo sets of points ex and f3 are congruent, denoted ex '::::' f3, if f3 is the 
image of a under an isometry. 

TWo specific sets of points whose congruence is invariably 
studied in any presentation of Euclidean geometry are those fig-
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ures known as segments and triangles. Before considering these 
particular figures, it is necessary to accept the following definitions. 

Definition 3.21 
P is between Q and R if P, Q, and R are three distinct collinear 
points and d(Q, P) + d(P, R) = d(Q, R). The set of points consisting 
of Q and R together with all points P between Q and R is called the 
segment with endpoints Q and R and is denoted QR. The measure of 
QR, denoted by m(QR), is d(Q, R). 

Definition 3.22 
If P, Q, and R are three noncollinear points, the triangle PQJ?., de­
noted by !:"PQR, is the set of segments PQ, QR, and RP. These 
segments are called the sides of the triangle. L.PQJ?., L.QRP, and L.RPQ 
are called the angles of the triangle. 

Using Definition 3.21 and the definition of an isometry it is rela­
tively easy to verify that congruent segments have the same measure 
(see Exercise 5). 

Theorem 3.9 
If PQ ~ PIQI, then m(PQ) = m(PIQ'). 

In the case of congruent triangles, we are interested in know­
ing not only if the corresponding sides of the triangles have the 
same measure but also how the measures of corresponding angles 
compare. As the following theorem indicates, the angle measure is 
unchanged under a direct isometry, but under an indirect isometry 
the sign of the angle measure is changed. For this reason, we say 
that indirect isometries reverse orientation. 

Theorem 3.10 
Let u' and Vi be the images of lines u and v under an isometry. If the 
isometry is direct then mL.(u' , Vi) = mL.(u, v). If the isometry is indirect 
then mL.(u' , Vi) = -mL.(u, v). 

Proof 
Let U[Ul, uz, U3] and V[Vl, Vz, V3] be two lines and U'[U~, u;, u~] and 
VI[V~, v;, v~] their images. The theorem will be proved by showing 
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that tan(L(u', v')) = ±tan(L(u, v)). Using the line equation of an 
isometry we have kIu' = uA-I , kzv' = vA-I where kI and kz are 
nonzero scalars and A is the matrix of an isometry. Ifwe letB = A -I, 
then B is also the matrix of an isometry since the isometries form a 
group. Thus matrixB has one ofthe two forms given in Theorem 3.7. 
In both cases the coordinates of u' and v' can be determined by di­
rect calculation and substituted into the expression for tan( L( u', v')). 
Simplification of the resulting expressions yields the results given in 
the theorem (see Exercise 7). • 

The previous two theorems lead to the following result. 

Theorem 3.11 
If !::"PQJ<.. :::::: !::"P'Q'R' then m(PQ) = m(P'Q'), m(QR) = m(Q'R'), 
m(RP) = m(R'P'), mLPQJ<.. = ±mLP'Q'R', m(QRP) = ±mLQ'R'P', 
and mLRPQ = ±mLR'P' Q'. 

Definition 3.23 
Triangles !::"PQR and !::"P'Q'R have the same (opposite) orientation if 
the measures of corresponding pairs of angles all have the same 
(opposite) sign. 

To show that the converse of Theorem 3.11 is also valid, it is 
most convenient to first investigate and classify the isometries. 
This will be done in the next two sections where we will also 
show that the isometries are the transformations investigated in 
Section 3.2 through 3.4. For convenience, the definitions of these 
transformations are repeated below. 11 

Definition 3.3 
A (line) reflection with axis m, denoted Rm , is a transformation that 
maps each point on m to itself and maps each point P not on m to 
a point p' such that m is the perpendicular bisector of segment PP' 
(Fig. 3.3). If a point set a (a i= m) is invariant under Rm , we say that 
a has line symmetry and that m is a line of symmetry for a. 

llNote: The numbers assigned to these definitions are those used earlier. 
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Definition 3.3 
A (line) reflection with axis m, denoted Rm , is a transformation that 
maps each point on m to itself and maps each point P not on m to 
a point p' such that m is the perpendicular bisector of segment PP' 
(Fig. 3.3). If a point set a (a i= m) is invariant under Rm , we say that 
a has line symmetry and that m is a line of symmetry for a. 

llNote: The numbers assigned to these definitions are those used earlier. 
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9 P 

m 

o P' 

FIGURE 3.3 Line reflection with axis m. 

P' 

FIGURE 3.4 Point reflection with center C. 

Definition 3.4 
A point reflection with center C, denoted 12 R52, is a transformation that 
maps the maps the point C to itself and maps every other point P to 
p' where C is the midpoint of segment PP' (Fig. 3.4). If the point set 
a is invariant under Rc , we say that a has point symmetry and that C 
is a point of symmetry for a. 

Definition 3.5 
A rotation with center C and angle (measure) e, denoted Rc,tJ, is a trans­
formation that maps the point C to itself and maps any other point 
P to p' where dep, C) = dep', C) and mLPCP' = e (Fig 3.5).13 If the 
point set a is invariant under Rc,tJ, where RC,tJ =J I, we say that a has 
rotation symmetry (about C). If e = 3600 In for a positive integer n, a 
is also said to have n-fold rotation symmetry (about C). 

12Th prevent confusion between a point C and a line c, you may want to underline 
the center designated in the notation. 
13Note: IfmLPCP' = 0, the rotation is the identity transformation 1. 
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c 

FIGURE 3.5 Rotation with center C and angle e. 

y 

Q 

x 

p 

-+ 
FIGURE 3.6 Translation with vector PQ. 

Definition 3.9 
A translation with vector pQ, denoted T ~, is a transformation that 

PQ 
-+ -+ 

maps any point X to point Y where XY = PQ (Fig. 3.6).14 If a point 
set ex is invariant under a nonidentity translation T ~, we say that 

PQ 
ex has translation symmetry and that line PQ is an axis of translation 
symmetry for ex. 

Definition 3.11 
-+ 

A glide reflection with vector PQ, denoted G ~, is the product of a re­
PQ 

flection with axis PQ and the nonidentity translation T pQ (Fig. 3.7). 

14Note: The identity transformation is a translation by definition. 
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. 0 
X' 

---+ 
FIGURE 3.7 Glide reflection with vector PQ. 

If a point set a is invariant under a glide reflection G-+, we say that 
PQ 

the line PQ is an axis of glide symmetry for a. 

Exercises 
1. Find both a direct isometry and an indirect isometry that map X(O, 0, 1) 

and Y(2, 0, 1) to X'(l, I, 1) and Y'(3, I, 1). Wbat happens to the point 
Z(I, -1, 1) under each of these isometries? 

2. Prove that the distance function given in Definition 3.14 satisfies prop­
erties (a)-(c) in the following definition. (It is also possible to verify-that 
the distance function satisfies property (d) and is therefore a metric 
on v*.) 

Definition of metric 
A function d(P, Q) on a set S is a metric if for all points P, Q and R in S: 
(a) d(P, Q) is a real number; (b) d(P, Q) = d(Q, P); (c) d(P, Q) ::: ° and 
d(P, Q) = ° if and only if P = Q; (d) d(P, R) s d(P, Q) + d(Q, R). 

3. Prove case 2 of Theorem 3.7. 

4. Prove Theorem 3.8 and its corollary. (Note: G' eGis a subgroup of G 
if G' is also a group.) 

5. Prove Theorem 3.9. 

6. Show that the congruence relation as given in Definition 3.20 is an 
equivalence relation (see Definition 3.12). 

7. Carry out the algebraic computations needed to complete the proof of 
Theorem 3.10 for both direct and indirect isometries. 
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8. Prove: Ifa:::::: f3 and T(a) = a', T(f3) = f3' where T is an isometry, then 
a' :::::: f3'. 

3.8 Direct Isometries 

In Section 3.7, we described isometries as being either direct or in­
direct. In this section we will investigate and further classify the 
direct isometries based on the number of points that remain in­
variant under the isometry. Knowing which points and lines are 
invariant is important in understanding the geometric action of any 
transformation. 

Theorem 3.12 
A nonidentity direct isometry with matrix A = [ai,j] has 
a. exactly one invariant point if all oF 1; and 
h. no invariant points if all = 1. 

Proof 
The point X(XI , 1"z, 1) is an invariant point of the isometry if and only 
if AX = X; that is, 

or 

and 

- alZxI + (all - l)xz + aZ3 = 0 

Case 1: all oF l. In this case, Equation 3.1 yields 

-aIZXZ - al3 
Xl = 

all -1 

and Equation 3.2 yields 

[ -al2Xz - al3] 
-al2 + (all - l)xz + aZ3 = 0, 

all -1 

(3.1) 

(3.2) 
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or, solving for X2, 

giving a unique solution. 
Case 2: au = 1. Then al2 = 0, since a~l + a~2 = + 1. So 

Thus, there are no invariant points unless al3 = aZ3 = 0, in which 
case A = I. • 

Using the categorization of Theorem 3.12, we will show that the 
direct isometries are either C a) rotations or (b) translations, that is, 
the familiar transformations that you have encountered in pr\evious 
mathematics classes and/or in Sections 3.2 through 3.4. We begin 
the process by showing that nonidentity translations have 3 x 3 ma­
trix representations placing them in category (b) and then note that 
any direct isometry in this category is necessarily a translation. Us­
ing a similar process, we will then show that the transformations 
in category Ca) are rotations. In both cases, the process will lead 
to either a specific matrix representation for the transformation or 
a relationship that will yield the matrix representation. Our use of 
3 x 3 matrices is unlike the 2 x 2 matrix representations for rotations 
frequently used elsewhere. But the increased matrix size makes pos­
sible the representation within a single matrix of translations and of 
rotations centered at points other than the origin o. 

Theorem 3.13 
I. A translation is a direct isometry. II. Conversely, any direct isometry 
with no invariant points is a translation. 

---+ * A translation T pQ with PQ = Ca, h, 0) has matrix representation 

urn 
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Corollary 
A non identity translation has no invariant points. 

The verification of this theorem and its corollary, as well as the next 
two theorems, involves calculations using vectors and matrices (see 
Exercises 9 through 11). 

Theorem 3.14 
The set of translations forms a group. 

Theorem 3.15 
Given a point X and a point Y, there is a unique translation mapping X 

to Y. 

Using the matrix representation, several characteristic properties 
of translations can be identified. These properties should confirm 
the frequently used description of a translation as sliding points along 
fixed lines. 

Theorem 3.16 
If a translation maps a line u to a line v, then u and v are either identical 
or parallel. 

Proof 
If A is the matrix of the translation, then kv = uA -I, since v is the 
image of u. So 

o -a] 
1 -b 
o 1 

(3.3) 

(3.4) 

Since kVI = UI and kvz = Uz the conclusion follows (see Exercise 10 
in Section 3.5). • 

The proof of the following theorem demonstrates the inter­
play between synthetic and analytic methods and offers a nice 
application of many of the analytic techniques we have developed. 
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Theorem 3.17 
If a translation maps P to P'(P i= P'), then the line pp' as well as all 
lines parallel to pp' are invariant. No other lines are invariant. 

Proof 
Let P be a point with coordinates (PI, P2, 1). Since T is a translation 
with a matrix of the form given in Theorem 3.13, p' = T(P) has 
coordinates (PI + a,P2 + b, 1), so the equation ofline pp' is given by 

Xl PI PI + a 
X2 P2 P2 + b = 0 
1 1 1 

Evaluating this equation yields [-b, a,Plb - P2a] as the line coor­
dinates for PP'. So the lines parallel to PP', as well as pp', all have 
coordinates of the form [-b, a, c]. Applying the line equation of this 
translation gives 

[-b,a,c] [ ~ o -a] 
1 -b 
o 1 

= [-b, a, c] 

so these lines are indeed invariant under this translation. 
To verifY the second statement of the theorem, we will use an 

indirect proof. Assume a line 1 not parallel to PP' is also invariant 
under the translation. Then land pp' intersect at a pOint, Q. SO Q 

is on two invariant lines, land PP'. Since isometries preserve in­
cidence, Q' = T(Q) must also be on both land pp' implying that 
Q = Q'. This would mean that Q is an invariant point of the trans­
lation. However, since this translation is not the identity (P i= P'), 

we have a contradiction. It follows that no lines in addition to those 
parallel to pp' are invariant. • 

Theorem 3.18 
Ifu and v are parallel lines, then there is a translation mapping uta v. 

Proof 
Let X be a point on u, X' a point on v. Then by Theorem 3.15 there 
is a translation mapping X to X'. But this translation also maps line 
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x 

FIGURE 3.8 Ttanslating u to the paraUelline v. 

u to a line u' through X' (Fig. 3.8). Since u' is parallel to u 
(Theorem 3.16), it follows that u' = v. • 

Using the preceding properties of translations it is possible to 
determine synthetically the image of any other point under a trans­
lation T that maps P to P'. If Q is any other point, its image Q' can 
be found as follows. 

Case 1: Q is not on pp' (Fig. 3.9a). Q' will be the point at which 
the line through p' parallel to PQ and the line through Q parallel to 
pp' intersect. 

Case 2: Q is on pp' (Fig. 3.9b). First find R' for some R not on pp' 
and then use Rand R' in place of P and p' in case 1. 

Rotations also have matrix representations which we will use to 
analyze their effects. However, for rotations, it is most convenient to 
first find and use the matrix representation for a rotation with center 
0= 0(0,0,1). We can then find matrix representations for rotations 
with other centers by using a translation and its inverse as indicated 
in Theorem 3.19. 

Theorem 3.19 
I. A rotation is a direct isometry. II. Conversely, any direct isometry with 
an invariant point is a rotation. 
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(a) (b) 

FIGURE 3.9 Finding Q' = T ~ (Q). 
pp' 

a. A rotation Ro,e centered at 0(0, 0, 1) has matrix representation 

[ ~~~: - ~~~: ~] 
o 0 1 

b. The matrix representation of a rotation centered at C i= 0, can be 
obtained from the relation below where T = T ~ : 

oe 

Re,e = TRo,e T - 1 

Proof 
Part I: Since our points have coordinates (Xl, XZ, 1) the matrix of a 
rotation is necessarily 3 x 3 with third row (00 1). If the rotation is 
the identity transformation, that is, if e = O(mod 360), its matrix is 
the identity and therefore the rotation is clearly a direct isometry 
(Theorem 3.7). Ife i= 0, we first consider the case where the center 
C = 0(0,0,1). Since 0 is invariant, the matrix is of the form 

[
an al2 0] 

A = aZI aZZ 0 
o 0 1 

Th find the entries aij we note that the rotation RO,e maps points 
X(I,O,I) and Y(O,I,I) to X'(cose, sine, 1) and Y'(-sine,cose,I), 
respectively. But AX = X' where X'(au, aZl, I), and AY = Y' where 
Y'(a12,aZZ, 1). It follows that all = cose, aZl = sine, alZ = -sine, 
and aZZ = cos e. To show that this matrix actually represents the 
rotation RO,e, we first note that by Theorem 3.7, the transformation 
with matrix A is necessarily an isometry, so it follows that the image 
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P' = AP of any point P =J. 0 satisfies the distance relation d(O, P) = 
d(O', P') = d(O, P'). Thus, it remains to show that LPOP' = e for each 
point P and image P'. Using P(PI,PZ, 1), P' = AP has coordinates 
P' (PI cos e - pz sin e, PI sin e + pz cos e, 1). It follows that lines U = 

OP and v = OP' have coordinates: u[-PZ,PI,O] and V[-PI sine -
pz cos e, PI cos e - pz sin e, 0]. Substituting these into the expression 
for tan(L(u, v)) in Definition 3.14, we get 

UIVZ-VIUZ 
tan(L(u, v))=---­

UIVI + UzVz 
-P2(P1 cos e - pz sin e) - PI (-PI sin e - pz cos e) 

PZPI sin e + p~ cos e + PI cos e - PIPZ sin e 
sin e(pi + p~) sin e 

=tanB 
- cos e(pr + p§) cos e 

So it follows that mLPOP' = e for any point P=J.O. Thus, Ro,e does 
have matrix representation A and is therefore a direct isometry. 

1b verify that Rc,e is a direct isometry when C=J.O, we first note 
that this rotation can be written as a product involving three direct 
isometries, namely the translations T = T ---* and T- I and Ro e: 

oc ' 

RC,e = TRo,e T - 1 

That this product yields the desired rotation follows from noting 
that: (1) Rc,e(C) = TRo,eT-I(C) = TRo,e(O)=T(O)=C; (2) since 
all three transformations are isometries, their product necessarily 
preserves distances; and (3) since translations map lines to parallel 
lines, the angle change carried out by RO,e is unchanged by the trans­
lations. Thus, since the rotation Rc,e is a product of direct isometries, 
it is also a direct isometry (Theorem 3.8). 

Part II: Now assume that T is a direct isometry with an invariant 
point C. As before, we will first assume that c=o. Using Theo­
rem 3.7 and noting that 0 must remain invariant yields the following 
matrix representation of T: 

A= [ 
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isometries, namely the translations T = T ---* and T- I and Ro e: 

oc ' 

RC,e = TRo,e T - 1 

That this product yields the desired rotation follows from noting 
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matrix representation of T: 

A= [ 
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Since we are working with an isometry, a~l + a~2 = 1. So we let e be 
the angle where an = cose anda12 = -sine. Substituting these into 
the matrix A gives the matrix for RO,fI, that is, the direct isometry is a 
rotation. In the case where the direct isometry's invariant point C f:-
0, we note that as in Part I, its matrix representation can be obtained 
using the matrix product involving AO,fI' the matrix obtained when 
C = 0, and AT, a matrix of a translation; namely, A = ATAO,flA:yl. 
The resultant matrix is that of a rotation with center C. • 

Corollary 
A non identity rotation has exactly one invariant point. 

Using the matrix representation for a rotation centered at 0 and the 
relation in part (b) of Theorem 3.19, we can verify that for each point 
C, the rotations with center C form a group and, furthermore, show 
that there is a rotation mapping any line to any other intersecting 
line. 

Theorem 3.20 
The set of all rotations with a given center C forms a group. 

Theorem 3.21 
Iflines u and v intersect at a point C with mL(u, v) = e then Rc,fI will 
map u to v. 

We conclude our consideration of direct isometries with two 
important results. The first of these notes that on the basis of The­
orems 3.12, 3.13, and 3.19, translations and rotations are the only 
direct isometries. Furthermore, these two types ofisometries are all 
that is needed to prove the converse of Theorem 3.11 for triangles 
that have the same orientation. 

Theorem 3.22 
A direct isometry is either a translation or a rotation. 

Theorem 3.23 
If D.PQR and D.P'Q'R' are two triangles with m(PQ) = m(P'Q'), 
m(QR) = m(Q'R'), m(RP) = m(R'P'), mLPQR = mLP'Q'R', 
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FIGURE 3.10 Mapping 6PQF.. to 6P'Q'R'. 

mL.QFR = mL.Q'R'P' and mL.RPQ = mL.R'P'Q', then there is a direct 
isometry mapping !::::.PQft to !::::.P' Q'R' so !::::.PQR ::::: !::::.P' Q'R'. 

Proof 
Tb show the congruence of the two triangles, it is sufficient to 
show that there is an isometry mapping !::::.PQft to !::::.P'Q'R' (Defi­
nition 3.20). In the following paragraph we will outline a procedure 
for obtaining such an isometry. 

Let T be a translation mapping P to P'. T will also map points Q 

and R to points Cb and Rl as indicated in Figure 3.10. Let () = 
mL.CbP'Q'. Then the rotation with center P' and angle () will map 
the points P' and Cb to P' and Q', respectively, since d(P', Cb) = 
d(P, Q) = d(P', Q'). Furthermore, since mL.CbP'R1 = mL.QPR = 
mL.Q'P'R' and d(P', RI) = d(P, R) = d(P', R'), this rotation will 
also map point Rl to R'. Therefore, the isometry consisting of the 
composite Rp',eT will map !::::.PQft to !::::.P'Q'R'. • 

Exercises 
l. Let Tbe the translation mappingX(l, -2,1) tOX'(3, 4,1). (a) Find the 

matrix of T and the image oEline u[2, 3, -1] under T. (b) Verify that 
lines u and T(u) are parallel. . 
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2. Find the matrix of a translation that maps u[l, -2, 5] to v[2, -4,7]. 

3. Find the invariant lines of the translation with matrix 

[ ~ ~ -~ 1 
o 0 1 

4. Prove: If 1 is a line, the set of all translations that keep 1 invariant 
forms a group. 

5. a. Verify that the following matrix is a matrix of a rotation: 

b. What is the angle of this rotation? 

c. What is the center ofthis rotation? 

6. Verify that TRo,eT-1 is a rotation with center C and angle (j where 0 
is the point with coordinates (0,0, 1) and T is a translation mapping 
Oto C. 

7. (a) Find the point of intersection of lines u[2, 0, 3] and v[l, 1,5]. (b) 
Find mL(u, v). (c) Find a rotation that maps line u to line v. (Be sure 
the check your answer.) 

8. (a) Describe synthetically how to find the center and angle of a rota­
tion that maps a given point P to a given point p'. (Note that there is 
an infinite number of possible rotations.) (b) Use the answer to part 
(a) to find the matrix of a rotation that maps P(2, 0, 1) to pI(l, -3,1). 
Verify that the rotation works. 

9. Prove Theorem 3.13 and its corollary. 

10. Prove Theorem 3.14. 

11. Prove Theorem 3.15. 

12. Give an analytic proof of the second statement in Theorem 3.17. (No 
other lines are invariant.) 

13. (a) Demonstrate by diagramming an example that the product of two 
rotations with different centers can be a translation. (b) Show how 
one particular triangle is mapped under the two rotations you used 
in part (a). 

14. Use the relation in part (b) of Theorem 3.19 to find the matrix 
representation of Rc,e with C( CI, C2, 1). 
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15. Show that Rc,fJRc,</> = RC,fJ+</>. [Hint: You may want to explain why it 
is sufficient to show this for the case where C = 0 and then use 
matrices to do so.] 

16. Prove that any direct isometry can be expressed as the product of a 
rotation with center 0(0, 0, 1) and a translation (the wording indicates 
that the rotation is to be used first and the translation second). 

17. (a) Find a direct isometry that maps P(I, 0, 1) and Q(5, 3, 1) to 
P'(3, -2, 1) and Q'(O, 2, 1), respectively. (b) Is the isometry you found 
a rotation or a translation? Why? 

18. (a) Use the procedure outlined in the proof of Theorem 3.23 to ver­
ifY that !::'PQR and !::'P'Q'R' are congruent where P, Q, R, P', Q', 
andR' have the following coordinates; P(2, 8, 1), Q(4, 4,1), R(lO, 7, 1), 
P'(7, -2, 1), Q'(ll, -4, 1), andR'(14, 2, 1). (b) VerifY that the isometry 
you found in part ( a) is a rotation. What is its center? 

19. Prove: If C i D and Rc,fJ and RD,,,, are two nonidentity rotations, then 
the product RD,</>Rc,fJ is (a) a rotation with angle e + ¢ if e + ¢ i 0 
(mod 360) and (b) a translation if e + ¢ = 0 (mod 360). 

20. Prove: If T is a direct isometry such that T2 = I, where I is the 
identity, then T = I or T is a rotation with an angle of 1800 . 

21. Prove: (a) If a line is invariant under a nonidentity rotation with cen­
ter C, then the line is incident with C. [Hint: Assume C = 0(0,0,1).] 
(b) If a nonidentity rotation with center C has an invariant line, then 
the angle of the rotation is 1800 • 

3.9 Indirect Isometries 

We will show in this section that, as in the case of direct isometries, 
there are two types of indirect isometries: those that have invariant 
points (reflections) and those that do not (glide reflections). But un­
like a direct isometry with an invariant point, an indirect isometry 
with an invariant point actually keeps every point on some line in­
variant. Such a line is said to be pointwise invariant. The adjective 
"pointwise" is important, since a line can be invariant without any 
points on it being invariant. For example, under the translation T Pct 
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(P =I=- Q) the line PQ is invariant but none of the points on PQ are 
invariant. 

Theorem 3.24 
1. A (line) reflection is an indirect isometry. II. Conversely, any indirect 
isometry with a pointwise invariant line is a (line) reflection. 
a. A reflection with axis x[O, I, 0] has matrix representation 

U -~ n 
b. The matrix representation of a reflection with axis m =I=- x can be 

obtained from the relation below where S is a direct isometry that 
maps line x to line m (S(x) = m). 

Rm = SRx S-l 

Proof 
Part 1: As in the proof of Part I of Theorem 3.19, the matrix of a 
reflection is necessarily 3 x 3 with third row (001). We will first 
assume that the axis of the reflection is the line x[O, I, 0], that is, the 
x- or Xl -axis in the usual Cartesian coordinate system. In this case all 
points on x have coordinates of the form X(XI' 0, 1). Then since the 
reflection keeps each such point invariant, we must have A X = X 
for all Xl E R, that is, 

[:~: :~ :t:][ ~ ] = [ n 
So anXI + al3 = Xl and aZlxl + aZ3 = o. Since this must hold for all 
Xl E R, it follows that all = 1 and al3 = aZI = aZ3 = o. Th find the 
entries al2 and aZZ, we note that the reflection Rx must map point 
Y(O, 1, 1) to Y'(O, -I, 1). ButAY = Y' where Y'(aIZ, azz, 1). It follows 
that al2 = 0, aZZ = -l. Th show that this matrix actually represents 
Rx , letP(pI,PZ, 1) be a point not on x; thus,pz =I=- O. ThenP' = AP has 
coordinates P' (PI, -Pz, 1) and straightforward calculations show that 
segment PP' is perpendicular to X and that its midpoint M(PI, 0, 1) is 
on x. Thus, A is indeed the matrix representation of Rx and so Rx is 
an indirect isometry as claimed. 
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1b verify that Rm is an indirect isometry when m i= x we claim 
that this reflection can be written as the following product involving 
the indirect isometry Rx and direct isometries Sand S-1 where S 
maps x to m (see Theorems 3.18 and 3.21): 

Rm = SRx S-1 

1b show that this product yields the desired reflection, we note 
that if M is a point on m, then S-1(M) = X is a point on x. So 
SRx S-I(M) = SRx(X) = SeX) = M. So each such point M on m 
is invariant. In addition, since all isometries preserve distance, their 
product necessarily does so; and since the direct isometry preserves 
angles and their orientation, the angle change carried out by Rx is 
unchanged by S. Thus, S Rx S-1 is the reflection Rm , and Rm is an 
indirect isometry (see Corollary to Theorem 3.8). 

Part II: Now assume that T is an indirect isometry with a point­
wise invariant line m. As before we will first assume that m = x. 
Using Theorem 3.7 and noting that the point 0(0,0, 1) must remain 
invariant yields the following matrix representation for T: 

[
all al2 0] 

A = a12 -all 0 
001 

Imposing the condition that all points X(Xl' 0, 1) must also remain 
invariant leads, as it did in Part I, to the conclusion that all = 1 and 
al2 = O. Thus, A = Ax is the matrix for Rx and hence T is necessarily 
a reflection. For an indirect isometry T with pointwise invariant line 
m i= x, we note that its matrix representation A can be found using 
A = As Ax Asl where Ax is the matrix for Rx and As is a matrix of 
a direct isometry S where Sex) = m. The resultant matrix A is the 
matrix of a reflection with axis m. • 

Using results from this theorem, we can demonstrate a prop­
erty which we will use extensively in future proofs; namely that a 
reflection is its own inverse. 

Corollary 
For a reflection Rml Rm = R;;;l. 
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According to the definition, a reflection with axis m keeps all 
points on m invariant and thus line m invariant. But does Rm have 
any other invariant points? Any other invariant lines? The answers 
to these questions are given by the next two theorems. The proofs 
of these and the remaining theorems about reflections will be given 
for the case where the axis m = x[O, I, 0]. As outlined in the proof of 
Theorem 3.25, these results can then be extended to reflections with 
other axes by using the relation Rm = S Rx S-l where S is a direct 
isometry mapping x to m. 

Theorem 3.25 
The only invariant points under the reflection Rm are those on m. 

Proof 
Let P be a point with coordinates (P1,PZ, 1). Then p' = Rx(P) has 
coordinates (PI, -Pz, 1) so the invariant points of Rx are precisely 
those forwhichpz = -pz orpz = O. These are the points onx[O, I, 0]. 
Using this result for the reflection Rx , it is then possible to verify that 
the only invariant points of Rm = S Rx S-l are those on line m (see 
Exercise 1). • 

Theorem 3.26 
Every line perpendicular to m is invariant under Rml and conversely any 
line invariant under Rm is either m or a line perpendicular to m. 

Proof 
As noted earlier, we will assume that m = x. Let u be a line per­
pendicular to x. Since x has coordinates [0, 1,0] it follows from 
Definition 3.14 that u has coordinates [U1' 0, U3]. If u' is the image 
of u under the reflection, then ku' = U(Rx)-1 = uRx or, in matrix 
notation, 

So u' = u is invariant. 
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Now assume U[Ul' Uz, U3] is an invariant line under Rx. Then 

So kUl = Ul, kuz = -Uz, and kU3 = U3. If Ul or U3 i=- 0, it follows 
that k = 1 and hence Uz = O. Thus, U has coordinates [Ul' 0, U3] 

and so is perpendicular to x. If Ul = U3 = 0, then Uz i=- 0, and so 
U = x[O, I, 0]. • 

Using reflections along with direct isometries it is now possible 
to verifY the converse of Theorem 3.11 for triangles with opposite 
orientation (see Exercise 4). 

Theorem 3.27 
If 6PQF and 6P'Q'R' are two triangles with 

m(PQ) = m(p'Q'), m(QR) = m(Q'R'), m(RP) = m(R'P'), 

and also 

mLPQR = -mLp'Q'R', mLQRP = -mLQ'R'p', 

and mLRPQ = - mLR' P' Q', then there is an indirect isometry mapping 
6PQR to ~p' Q' R' so 6PQR ~ 6P' Q' R'. 

The previously described properties of reflections also lead to 
the remarkable fact that the direct isometries used in the proof of 
the preceding theorem are themselves products of two reflections 
with appropriately chosen axes. 

Theorem 3.28 
An isometry T is a product of two reflections if and only if it is a 
translation or a rotation. The exact relationships are spelled out below. 
I. T is a product of two reflections. 

Case A: T = RnRm where m and n are parallel lines intersecting a 
common perpendicular at M and N, respectively. 

Then T = T -----t where p;, = 2MN. 
pp' 

Case B: T = RnRm where lines m and n intersect at a point C. 

Then T = Rc,e where e = 2 L(m, n). 
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II. T is a translation or a rotation. 
Case A: T is the translation T-+. 

pp' 

Then T = RnRm where m and n are two lines intersecting a common 

perpendicular at M and N respectively, with MN = ! pPi. 
Case B: T is the rotation Re ,</>. 

Then T = RnRm where m and n are two lines through C with 
L(m, n) = ! cp. 

Proof 
Case I-A: We shall assume that m = x. Then m is the line with 
coordinates [0, I, 0] and the matrix representation of Rm is that given 
for Rx by Theorem 3.24. The parallel line n must have coordinates 
of the form [0, I, n3]. Using p[I, 0, 0] as the common perpendicular 
gives points of intersection M(O, 0,1) and N(O, -n3, 1), respectively. 
1b find the matrix representation of Rn, we will use the translation 
T = T.....,-t. The matrix of Tis 

MN 

T= [H -~3l 
So Rn = TRm T- 1 has matrix representation 

Thus, RnRm has matrix representation 

which is a translation matrix. Using this matrix to find T(P) = pi: 

Therefore, pPi = (0, -2n3, 0) = 2(0, -n3, 0) = 2MN. Thus, T is the 
translation T -+. 

pp' 
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Case I-B: The proof is similar to that for I-A except in this case it 
is necessary to use a rotation to map m to n (see Exercise 6). 

Case II-A: The proof is similar to that given below for II-B (see 
Exercise 7). 

Case II-B: We shall assume that ¢ = 20 and that C = 0(0,0,1). 
Then Rc,t/J = RC,2B has matrix representation 

[ 
cos(20) - sin(20) 0] 

RC,2B = sin(20) cos(20) 0 
o 0 1 

We will use m = x[O, 1,0] as one of the two lines through C. According 
to Theorem 3.21, to find n such that L(m, n) = 0, we can find the 
image ofm under the rotation RC,B by using the product mRc,1: 

[
cosO sinO 0] 

n = [0, 1,0] - sinO cosO 0 = [- sinO, cosO, 0] 
o 0 1 

Note that the point C = 0(0, 0, 1) is on n. To find the matrix represen­
tations for Rm and Rn, note that Rm = R;" and that Rn = RC,BRmRc,-B, 
thus Rn has matrix representation 

[ ~~:: - ~~~: ~] [~ - ~ ~] [ 
o 0 1 0 0 1 

[ 
cos2 0 - sin2 0 2(sinO)(cosO) 

= 2( sin 0)( cos 0) sin 2 0 - cos2 0 

o 0 

[ 
cos(20) sin(20) 0] 

= sin(20) - cos(20) 0 
o 0 1 

cosO sinO 
- sinO cosO 

o 0 

And finally, using matrix representations, we see that RnRm = RC,2B: 

[
COS(20) 

sin(20) 
o 

sin(20) 
- cos(20) 

o 
0] [1 0 0] [COS(20) o 0 -1 0 = sin(20) 
1 0 0 1 0 

- sin(20) O~] 
cos(20) 

o 
• 
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Corollary 1 
A direct isometry is the product of two reflections. 

Corollary 2 
RnRm = Rn'Rm' ifandonlyifm, n, m', andn' are all parallel (intersecting 

a common perpendicular at M, N, M', and N', respectively) and MN = 
-----+ 
M'N' or are all concurrent and mL.(m, n) = mL.(m', n'J 

Corollary 3 
A glide reflection is an indirect isometry. 

Corollary 1 not only summarizes Theorem 3.28 but also suggests 
the following question: Are all indirect isometries also products of 
reflections? By Theorem 3.24 reflections are indirect isometries, and 
Corollary 3 to Theorem 3.28 assures us that glide reflections are 
indirect isometries. So to answer this question, we need to determine 
if there are additional indirect isometries. The following theorem 
provides the key for doing so. 

Theorem 3.29 
An indirect isometry is the product of one or three reflections. 

Proof 
The proof follows easily after noting that any indirect isometry 
can be expressed as a product of a direct isometry and Rx (see 
Exercise 9). • 

The next theorem demonstrates that the indirect isometries are 
either reflections or glide reflections. The proof of this result makes 
extensive use of Corollary 2 to Theorem 3.28. 

Theorem 3.30 
An indirect isometry is either a reflection or a glide reflection. 

Proof 
By Theorem 3.29 we need only consider indirect isometries that can 
be written as the product RcRbRa. We will examine this product for 
each of several cases. 
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FIGURE 3.11 Proof 3.30, case 1. 

FIGURE 3.12 Proof 3.30, case 2. 

Case 1: a, band c are all parallel, intersecting a common 
perpendicular at A, Band C, respectively (Fig. 3.11). Let C' = 

--+ ~ 
T ~(A) and c' be the line through C' parallel to a. Then AC' = BC 

Be 
and hence, by Corollary 2 of Theorem 3.28, ReRb = RefRa. So 
ReRbRa = Ref RaRa = Rc'. 

Case 2: a, b, c are concurrent (Fig. 3.12) The proof is similar 
to that in case 1 except here the line c' must be chosen so that c' 
is a line through the intersection of a and b (denoted a . b) and 
mL.(a, c') = mL.(b, c). 

Case 3: Each pair of the lines a, b, c intersects in distinct ordinary 
points (Fig. 3.13). Let b' be incident with b . c and perpendicular to 
a at point B. Let c' be a line incident with b· c such that mL.(b', c') = 
mL.(b, c). Then RcRbRa = Rc'Rb'Ra where b' is perpendicular to a. 
Let a' be a line incident with B = a . b' and perpendicular to c' at 
pOint C and let bl! be a line incident with a· b' such that mL.(a, b') = 
mL.(a', bl!). Then Rc'Rb'Ra = Rc'Rb'fRaf where a' is perpendicular to 
c'. Since b' is perpendicular to a, it follows that bl! is perpendicular 
to a'. So bl! and c' are parallel and both perpendicular to a' at points 
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FIGURE 3.13 proof 3.30, case 3. 

. -+ -+ 
E and C, respectIvely. Therefore, Rc'Rb" = TED where ED = 2EC. 

Thus, the product Rc,Rb',Ral is a glide reflection with axis at. 
Case 4: Exactly two of the lines are parallel. The proof for this 

case is analogous to the preceding ones. • 

We have now shown that there are exactly two types of indirect 
isometries, namely reflections and glide reflections. However, un­
like rotations and translations, the two indirect isometries are not 
easily distinguished based on the form of their matrix representa­
tions. But by multiplying an indirect isometry matrix by itself, we 
can immediately determine whether or not the product yields the 
identity. If so, the isometry is a reflection (see Corollary to Theo­
rem 3.24); if not, the isometry is a glide reflection (see Exercise 3). 
Another distinction between the two types of indirect isometries in­
volves the existence of invariant points. That reflections keep a line 
pointwise invariant has already been noted. Glide reflections, on 
the other hand, have an invariant line but no invariant points (see 
Exercise 16). 

Theorem 3.31 
A glide reflection has one invariant line but no invariant points. 

With the results of this section we can now completely categorize 
the isometries and show that the isometry mapping a triangle to a 
congruent triangle is unique (see Exercises 17-19). 
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Theorem 3.32 
Every isometry is either a rotation, a translation, a reflection, or a glide 
reflection; and therefore every isometry can be written as the product of 
at most three reflections. 

Corollary 
An isometry with three noncollinear invariant points is the identity. 

Theorem 3.33 
If .6.PQF ~ .6.p' Q'R', then there is a unique isometry mapping .6.PQF 
onto .6.P'Q'R' where P maps to p', Q to Q', and R to R'. 

Exercises 
1. If S is a direct isometry mapping line x to line m, show that the only 

invariant points of Rm = SR"S-l are the points on m. 

2 . (a) Find the matrix of Rm where m is the line X2 = (J3/ 3)Xl' (b) 
Use this matrix to find P', the image ofthe point P(3, 7, 1) under this 
reflection. (c) VerifY that m is the perpendicular bisector of PP'. 

3. Show that the product of a glide reflection with itself is a nonidentity 
translation. 

4. Outline a proof of Theorem 3.27 similar to the outline given for the 
proof of Theorem 3.23 in Section 3.8. 

5. Find a product of a translation, a rotation, and a reflection that maps 
6.PQR to 6.P'Q'R' were P( -2,5,1) Q( -2,7, I), R( -5,5, I), P'(4,3, I), 
Q'(6, 3, I), and R'(4, 0, 1). 

6. Prove part I-B of Theorem 3.28. 

7. Prove part II-A of Theorem 3.28. 

8. Let Ra and Rb be reflections with axes a and b where a =1= b. Prove: 
RaRb = RbRa if and only if a and b are perpendicular. [Hint: Use 
Theorem 3.28.] 

9. Prove Theorem 3.29. 

10. Show by diagramming an example, that the product of two distinct 
glide reflections can be a translation. (Be sure to indicate how a 
triangle is mapped under the glide reflections.) 
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11. Identify the following matrices as matrices of reflections or glide 
reflections. In each case find the axis. 

(a) [ ~ 
1 

-; 1 [ r 
1 n 0 (b) 0 

0 0 

[ -7 
-24 -64] 

(c) ~ -24 7 -48 
25 0 0 25 

12. Show that ifl and m are two parallel lines and n is the image ofline 1 
under a glide reflection with axis m, then land n are also parallel. 

13. Let p' be the image of P under a glide reflection with axis m. Show 
that m bisects the segment PP'. 

14. (a) Find the matrix ofa glide reflection which maps PQ to P'Q' where 
P( 4, - 2, 1), Q(7, 2, 1), p' ( -3, -4, 1), and Q' (0,0, 1). [Hint: Use the re­
sult of Exercise l3.] (b) Is this glide reflection unique? Why? (c) Is 
there a unique glide reflection mapping P to P'? Why? 

15. Prove: Ifline a intersects parallel lines band c, then RcRbRa is a glide 
reflection. (This is part of case 4 in the proof of Theorem 3.30.) 

16. Prove Theorem 3.3l. 

17. Prove Theorem 3.32. 

18. Prove the corollary to Theorem 3.32. 

19. Prove Theorem 3.33. [Hint: Assume there are two different isometries 
and use the corollary to Theorem 3.32 to obtain a contradiction.] 

3.10 Frieze and Wallpaper Patterns 

With our classification of isometries and the ability to express any 
isometry as a product of reflections, we now have the tools necessary 
to identifY and compare frieze patterns. As indicated in Section 3.4, 
frieze patterns are "border" patterns made up of a single motif re­
peated over and over. The frieze pattern shown in that section and 
in Figure 3.14 is reprinted from Audsley's (1968) Design and Patterns 
from Historic Ornament. In practice, such patterns obviously are of 
finite length or cycle and are bounded. However, the mathematical 
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FIGURE 3.14 A frieze pattern. 

versions extend infinitely far in both directions and are characterized 
as being invariant under some "shortest" translation. In fact, each 
frieze pattern is invariant under a group of symmetries known as a 
frieze group. The precise definition of frieze group and frieze pattern 
is repeated below: 

Definition 3.10 
A group of transformations that keep a given line c invariant and 
whose translations form an infinite cyclic subgrouplS is a frieze group 
with axis c and denoted ge. A point set that remains invariant un­
der a frieze group with axis c is called a frieze pattern with axis c 
and denoted Fe. (Note: A frieze group is the symmetry group of the 
associated frieze pattern.) 

3.10.1 Classifying Frieze Patterns 

We will assume that all frieze patterns have the same axis c. Then 
our task is the identification and classification of all possible frieze 
patterns F. As often the case in mathematics, frieze patterns are dis­
tinguished on the basis of their structure. This means we disregard 
the motif used in the frieze pattern and concentrate instead on com­
paring the associated frieze groups; that is, we will consider frieze 
patterns to be equivalent if their symmetry groups are isomorphic. 
In effect, we are disregarding design and scale and concentrating 
instead on the underlying construction. 

15That is, a group of an infinite number of distinct translations where each trans­
lation T = rn for some integer n and translation r. r is said to "generate the 
group." 
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As we will see, every frieze group is generated by a small finite 
set of transformations. So to compare frieze groups, it is sufficient to 
compare their generating transformations. Since each frieze group 
contains a "shortest" translation T that "generates" all the other trans­
lations in the frieze group, we will assume that each frieze group F 
has the same generating translation T. However, frieze groups can 
also contain symmetries other than translations. And it is on the 
basis of these other symmetries that frieze groups are classified. 

Because the structure of an individual frieze pattern is dependent 
on the length of T, it follows that all symmetries in the associated 
frieze group must preserve distance and are therefore isometries. 
So we begin looking for frieze groups by identifying finitely gener­
ated groups of isometries that keep a line c invariant and include 
a single generating translation T. Once we have determined all per­
missible non-translational isometries, we consider groups generated 
by combinations of these with T. By determining which point and 
line reflections belong to each frieze group, we can find the points 
and lines of symmetry of the associated frieze pattern. Th avoid 
confusion between point and line reflections, we will use the term 
"half-turn" and the symbol Hp to designate the point reflection with 
center P. The choice of P and other points relevant to the investi­
gation of a specific frieze group 9 will be based on the algorithm in 
Table 3.5. 

The exercises below and the following commentary justify the 
classification of frieze groups with axis c given in Thble 3.6. This clas­
sification makes use of the reference points described in Thble 3.5 

TABLE 3.5 Reference Points in Frieze Patterns Fe with Frieze Group g. 

{
the center of a half-turn 

P = the intersection of p and c 

a chosen point on c 
Pn = rn(p) 

Mo = the midpoint of POPl 

Mn = rn(M) 

if 9 contains half-turns, otherwise 
if 9 contains a reflection in p, 

p..L c, otherwise 

Note Po =P 

Note: Mn is the midpoint of PnPn+l 

(Fig. 3.15) 
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FIGURE 3.15 Location of reference points. 

TABLE 3.6 Classification of Frieze Groups. 

A. Containing only direct isometries 
91 = {T} 
92 = {T,Hp} 

B. Containing reflections but no half-turns 
93 = {T,Re} 
94 = {T,Rp} 

C. Others containing indirect isometries 
95 = {T, H p , Rc} 
96 = {T, H p , Rq}, line q =1= p, q 1.. C 

97 = {a}, a is a glide reflection, 0'2 = T. 

and notation such as G = (TI, r2, Re) to indicate which symmetries 
generate the group. In this particular case, there are three gener­
ators, namely, two translations and a line reflection, that is, each 
element T EGis a product of powers ofrI, "2, andRe. 

Exercises 

In these exercises you are to assume that (1) k and n are always integers, (2) 
the groups 9j are the groups defined in Thble 3.6, and (3) T is the 'shortest' 
generating translation 0[9j. 

1. Prove that the only nontranslation symmetries in a frieze group with 
axis c are half-turns with centers on c, the reflection Re, reflections 
in lines perpendicular to c, and glide reflections with axis c. 

2. Explain why the group 91 (see Thble 3.6) contains only translations. 

3. Explain why the frieze pattern F1 associated with 91 has no points or 
lines of symmetry nor any axes of glide symmetry. 

4. Show that if A, B are points on c, then HBHA is a translation along c. 

5. Explain why 92 contains only symmetries of the form Tn and Tn Hp. 
[Hint: Explain why HpT = THp.] 
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6. Prove that rnHp is a half-turn. 

7. Verify that the center of the half-turn r2kHp is Pic, while the center of 
r 2k+1 Hp is Mk. 

8. Explain why the frieze pattern :F2 associated with 92 has no lines 
of symmetry or axes of glide symmetry, but does have points of 
symmetry. Where are these points of symmetry? 

9. Show that if the half-turn He (where C =I- P) is a symmetry in a frieze 
group with axis c then either C = Pk, or C = Mk for some k. [Hint: 
Explain why HeHp(P) = Pn for some n and apply He to both sides of 
this equation.] 

10. Use the previous results to explain why 91 and 92 are the only frieze 
groups containing no indirect isometries. 

11. Explain why a frieze group that contains no half-turns cannot contain 
both reflections Rc and Rp. 

12. Prove: If T is a translation along c, then ReT = TRc. 

13. Explain why 93 contains only symmetries of the form rn and rn Re. 

14. Explain why the frieze pattern:F3 associated with 93 has c as a line 
of symmetry but no points of symmetry. 

15. Prove: If T is a translation along c and p is a line perpendicular to c, 
thenRpT = T-1Rp. 

16. Explain why 94 contains only symmetries of the form.n and.n Rp. 

17. Prove that .n Rp is a reflection in a line perpendicular to c. 

18. Verify that the axis of .2k Rp is perpendicular to c at Pk and the axis of 
r 2k+1 Rp is perpendicular to c at Mk. 

19. Explain why the frieze pattern :F4 associated with 94 has a line 
perpendicular to c as a line of symmetry but no point of symmetry. 

20. Prove: If Rq is an element of a frieze group 9 with axis c where q =I- p 
is a line perpendicular to c at point Q, then Q is either Pk or Mk for 
some k. [Hint: Show that RqRp = .n and so RqRp(P) = Pn for some n, 
and apply Rq to both sides of the second equation.] 

21. Explain why 93 and 94 are the only frieze groups containing 
reflections but no half-turns. [Hint: Use the results of previous 
exercises. ] 

22. Name the frieze groups for each of the frieze patterns in Figure 3.16. 
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FIGURE 3.16 Examples of frieze patterns. 

The exercises above investigated four of the seven possible frieze 
groups-those consisting of only direct isometries and those con­
taining reflections, but no half-turns. The procedure for obtaining 
the three remaining frieze groups (two generated by both half-turns 
and reflections and one generated by only a glide reflection) is simi­
lar to that used above. We will settle for a brief description of each of 
these three frieze groups and their associated frieze patterns. A more 
comprehensive description is given in Martin [1982b, Chapter 10]. 

95 = (r, Hp, Rc): Since HpRc = RpRcRc = Rp, the reflection Rp is 
in 95. 95 also includes elements of the form rnRc, which are glide 
reflections mapping P to Pn . Other elements are r2kRp and r 2k+1Rp , 

reflections in lines perpendicular to c at Pk and Mk, respectively. The 
associated frieze pattern Fs has a point of symmetry. It also has the 
axis c and a line perpendicular to c as lines of symmetry. 
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TABLE 3.7 Frieze Patterns and Their Symmetries. 

TJjpe of Symmetry 
Center Perpendicular Glide 

Frieze Patterns Point Line Line Reflection 
:Fi LLLLLLL 
:Fz NNNNNNN x 
:F3 DDDDDDD x x 
:F4 VVVVVVV X 

:Fs HHHHHHH x x x X 

:F6 AVAVAVA x x x 
:F7 LrLrLrL x 

Q6 = (r,Hp,Rq): 1b obtain a frieze group different from Qs, Rq 

must be a reflection in a line perpendicular to c at a point Q distinct 
from the points Pk and Mk. As Martin shows, the point Q must be 
the midpoint of PMk for some k. The associated frieze pattern has a 
point of symmetry where the line of symmetry is perpendicular to 
the center. 

Q7 = (0-): Q7 is generated by the glide reflection 0- where 0-2 = r. 
Since Q7 contains no reflections or half-turns, the associated frieze 
pattern, F7 has no point of symmetry and no line of symmetry. 
Unlike Q1 it does remain invariant under a glide reflection. 

The frieze patterns associated with all seven frieze groups along 
with their types symmetry are displayed in Thble 3.7. An example 
of each is shown in Figure 3.16 (reprinted from Martin, p. 84). 

3.10.2 An Introduction to Wallpaper Patterns 

Just as frieze patterns remain invariant under a group generated by 
one translation, there are wallpaper patterns that remain invariant 
under a group generated by two independent translations, that is, 
translations along nonparallel lines. The symmetry group defining 
a particular wallpaper pattern must also contain a finite subgroup of 
isometries known as a point group .16 A consideration of the possible 

16That is, there is a specific point P invariant under each isometry in the group. 
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FIGURE 3.17 Examples of wallpaper patterns. 

rotations in these point subgroups demonstrates that n-fold rotation 
symmetries are restricted to n = 2, 3, 4, 6 (see Exercise 23). Since 
the classification of wallpaper patterns according to their symmetry 
groups is a two-dimensional version of the procedure used by crys­
tallographers to classify crystals, this limitation on n has become 
known as the crystallographic restriction. This restriction leads to the 
conclusion that there are exactly 17 possible wallpaper patterns as 
depicted by samples in Fig. 3.17 where these can be categorized ac­
cording to the largest n for which they have n-fold rotation symmetry 
as listed in Table 3.8. More detailed information on these patterns 
and their classification is available in Martin [1982b, Chapter 11 ] and 
in Schattschneider [1978]. 

TABLE 3.8 Wallpaper Patterns. 

Number of 
Patterns 

5 
3 
3 
2 
4 

Largest n for 
n-Fold Symmetry 

n=2 
n=3 
n=4 
n=6 
None 
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Exercises 
23. Derivation of the crystallographic restriction: 

a. Use the following procedure to explain why a pattern cannot have 
n-fold symmetry for n > 6. 

Assume there is such a pattern with n-fold symmetry and let 
() = 3600 In. LetPbe a center ofn-fold symmetry in such a pattern 
and let Q = r( P) where r is the generating translation of shortest 
length. (1) Explain why Q' = Rp,II(Q) is also a center of n-fold 
symmetry; (2) compare the distance between Q and Q' with that 
between P and Q; and (3) show that T ~ is yet another symmetry 

QQ' 

of the pattern. 

b. Use the following similar procedure to explain why a pattern 
cannot have 5-fold symmetry. 

Assume there is such a pattern with 5-fold symmetry and let 
() = 3600 15 = 720 . Let P be a center of 5-fold symmetry in such a 
pattern and let Q = rep) where r is the generating translation of 
shortest length. (1) Explain why Q' = Rp,II(Q) and p' = RQ_II(P) 
are also centers of 5-fold symmetry; (2) compare the distance 
between P' and Q' with that between P and Q; and (3) show that 
T -+ is yet another symmetry of the pattern. 

P'Q' 

24. For each pattern shown in Figure 3.17 determine the largest n for 
which the pattern has n-fold symmetry. Note that there are 4 patterns 
without n-fold symmetry for any n. 

3.11 Exploring plane Tilings* 

Equipment and Materials Needed 

• Patterns for an equilateral triangle, a square, a regular pentagon, 
and a regular hexagon (all with the same edge length) . 

• Many of these activities can also be carried out using dynamic 
geometry software. Specific instructions for Cabri Geometry II and 
Geometer'S Sketchpad can be found at 
http://www.stolaf.edu!people!cederj!geotext!info.htm. 
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Introduction 

Whereas the examination of frieze and wallpaper patterns often be­
gins with a consideration of possible symmetry groups and then 
investigates "designs" induced by the groups from a given motif, 
the usual procedure for tilings begins with a determination of the 
tile shapes that can be used to cover the plane and then consid­
ers the symmetries of the resultant tiling. Since the study of tilings 
begins with "concrete" tiles, the initial study of tiling is best done 
with hands-on exploration and provides another way to illustrate 
isometries and symmetry groups. 

Definition 3.24 
A tiling, or tessellation, of the plane is a covering of the plane with 
congruent copies of one or more prototiles so there are no gaps or 
overlaps (except at edges). Copies of the prototiles are called tiles 
and a point at which three or more tiles meet is called a vertex of the 
tiling. 

Definition 3.25 
If all the tiles in a tiling are copies of one prototile, the tiling is 
monohedral; if the tiles in a tiling are copies of exactly two different 
prototiles, the tiling is dihedral. If a monohedral tiling has a regular 
polygon as its prototile, the tiling is called regular. If a tiling has two 
or more distinct regular polygons as its prototiles, and if at each 
vertex in the tiling a circuit can be made that will encounter the 
same sequence of polygon types, the tiling is called semiregular. 

Tilings or Patterns? 
As indicated by the definitions, the prototiles for tilings are of­
ten polygons and the least complicated tilings use a single regular 
polygon as a prototile. However, with increasing complexity of the 
prototiles, the distinction between tilings and patterns becomes less 
clear. Although the term tiling has a commonly accepted definition 
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a single instance in the [mathematical] literature of a meaningful 
definition of 'pattern' that is, in any sense, usefu1." (pp. 4-5) Instead 
they use the informal description of patterns as "designs repeating 
some motif in a more or less systematic manner:' (p. 1) 

The beginning of a mathematical theory of tilings and patterns 
is generally considered to be the enumeration of the crystallo­
graphic groups in the late 19th century (p. 261). But without the 
crystallographic restrictions leading to wallpaper patterns, there are 
numerous other possible plane patterns. And as of 1987, Gninbaum 
and Shephard indicate that there is no known characterization of the 
possible symmetry groups of patterns (p. 218). 

3.11.1 Regular Tilings of the Euclidean Plane 

We will begin the study of tilings of the Euclidean plane by investi­
gating those that are regular, that is, consist of congruent copies of 
a single regular polygon. 

Activities 

1. Show that the measures of each interior angle in a regular ni-gon, 
that is, a regular polygon with ni sides, is given by 

For regular ni-gons: A = 180 (1 - :J (A) 

2. For a regular n-gon to serve as a prototile for a regular tiling of 
the plane, it is necessary that there be some positive integer k 
such that exactly k copies of the n-gon fit around a point in the 
plane without gaps or overlaps. Use the formula found above to 
determine all possible values of n for which this is true. For each 
value ofn you find, name the corresponding value ofk. 

3. For each value of n for which there is a possible regular tiling, 
carry out the following activities. Label each construction using 
a title that indicates the value of n. 

a. Use a regular n-gon as a prototile together with isometries of 
the Euclidean plane to create a two-dimensional tiling "patch," 
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that is, a region covered with several adjacent strips of tiles 
where each strip contains at least three tiles. Color your tiling 
with as few colors (or shadings) as possible so that adjacent 
tiles have different colors. 

b. List a minimal set ofisometries that could be used (with repe­
tition) to create a complete regular tiling of the plane with this 
n-gon. For each isometry you list, give an exact description, in­
dicating a defining vector for translations, a center and angle 
for rotations, etc. Be sure to include labels on your construc­
tion for any points, lines, etc. used in the description of your 
isometries. 

c. Choose and label a point P in the center of one of your tiles in 
the tiling. List all the symmetries that keep P invariant. Give 
specific descriptions of each and show that the set of all these 
symmetries constitutes a finite group. 

d. Show that your tiling also has point symmetry groups where 
the symmetry point is not in the center of a tile. Describe the 
location of such possible symmetry points, and compare these 
groups with the group you found in the previous activity. 

4. The following probleml7 relates the frieze groups of Section 3.10 
to symmetry groups of tilings: 

a. For each of the seven frieze groups, find a monohedral tiling 
with this group as its symmetry group. 

b. Determine for which frieze groups it is possible to require 
that the prototile in a monohedral tiling have as its symme­
try group: (i) a cyclic group of order 2; (ii) a dihedral group of 
order 2; (iii) a dihedral group of order 4; (iv) a cyclic group of 
order 3. 

17This problem is based on a problem in Griinbaum and Shephard (p. 45). 
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3.11.2 Semiregular Tilings of the Euclidean 
Plane 

A semiregular tiling uses two or more distinct regular polygons as pro­
totiles with the same arrangement of polygon shapes at each vertex. 
Th represent semiregular tilings, it is customary to use ordered tu­
ple notation to list the values of n for each n-gon surrounding a 
vertex; so, for example, the label (3, 4, 6, 4) represents a semiregular 
tiling where each vertex is surrounded by a triangle, two squares, 
and a hexagon. It also indicates that a circuit around any vertex in 
this tiling can be found that begins with a triangle and continues 
by encountering, in order, a square, a hexagon, and a square. As 
you may have already realized, there are several possible ordered 
tuples that can be used to represent the same semiregular tiling de­
pending on the n-gon with which the circuit begins. Th eliminate 
some of this ambiguity, it is customary to begin the ordered tuple 
with the smallest value of n; furthermore, we will avoid concerns 
about orientation, that is, we will not distinguish between circuits 
made in clockwise or counterclockwise directions. The activities be­
low lead to a determination of ordered tuples that represent actual 
semiregular tilings. 

Activities 

5. Use Equation (A) from Activity 1 to show that the requirement 
that k regular ni-gons (i = I, ... , k) fit together around a vertex 
without gaps or overlaps leads to 

For k regular ni-gons 
to surround a vertex: 

(k - 2) 1 1 1 -'-----'- = - + - + ... + - (B) 
2 nl nz nk 

6. Verify that the ordered 4-tuple (3,4,6,4) satisfies Equation (B) 
and construct a tiling "patch" containing at least 3 vertices 
surrounded by the indicated regular polygons. 

7. In a semiregular tiling, show that the smallest possible value of 
k in Equation (B) is 3 while the largest possible value is 5. 

8. Ifk = 3 explain why 3 :::: nl :::: 5 (recall that nl is the smallest of 
the nd. 
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9. What must be true about the values of nl for k = 4? k = 5? 
10. For each value of k (k = 3, 4, 5), find as many k-tuples as you 

can containing values of ni that satisfy Equation (B). Note: For 
each value of k, you must list values for ni i = 1, 2, ... , k where 
at least two values of ni must differ. 

11. One of the k = 4 solutions you found for Equation (B) should 
consist of two "3's" and two "6's". How many different semiregu­
lar tilings appear to be possible for this solution and what ordered 
4-tuples represent these solutions? Explain. 

12. Which other solutions found above actually represent more than 
one possible semiregular tiling? 

13. Make a complete list of all ordered k-tuple solutions to Equation 
(B) that represent distinct possible semiregular tilings. (Note: 
There should be three 5-tuples, six 4-tuples and nine 3-tuples.) 

14. Draw an equilateral triangle; and by considering the tiling 
around each of its vertices, demonstrate that a semiregular tiling 
represented by (3, x, y) is impossible unless x = y. Which ordered 
3-tuples does this eliminate from the list you just created? 

15. Using reasoning similar to that in Activity 14, determine 
which ordered 3-tuples of the type (x, 5, y) represent impossible 
semiregular tilings. 

16. Now explain why semiregular tilings represented by the ordered 
tuples (3,3,4,12), (3,4,3,12), (3,3,6,6), and (3,4,4,6) are also im­
possible. [Hint: Draw an equilateral triangle, 6ABC, and consider 
how the n-gons represented by the last 3 entries in these ordered 
tuples could be placed around each of its 3 vertices.] 

17. List the eight remaining ordered k-tuples and illustrate tile 
"patches" for at least three of these eight. (Note: Each ofthe re­
maining eight ordered tuples represents a possible semiregular 
tiling.) 

3.11.3 Regular Tilings of the Hyperbolic 
Plane 

The determination of all possible regular andsemiregular tiling of 
the Euclidean plane is based on one of the most important theorems 
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of Euclidean geometry, namely that the angle sum of any triangle is 
1800 . As you have seen, this theorem is not true in the non-Euclidean 
geometries and numerous significant differences of these geome­
tries from Euclidean geometry can be traced directly to the variance 
in triangle angle sums. The activities below show how tiling the hy­
perbolic plane reflects this difference. Those interested in further 
exploration of tiling in the Poincare model of the hyperbolic plane 
or in the spherical model of the elliptic plane should consult Singer, 
Geometry: Plane and Fancy (1997). 

Activities 

18. Modify Equation (A) from Activity 1 to determine an upper 
bound for the measure of individual angles in a regular n-gon 
in the hyperbolic plane. 

19. In the hyperbolic plane, what is the smallest number of congru­
ent equilateral triangles, that is, regular 3-gons, that can be used 
to surround a point without gaps or overlaps? Is there a largest 
possible number? Explain. 

20. What do your conclusions in the previous two items tell you 
about the number of different possible tilings of the hyperbolic 
plane with equilateral triangles? 

21. What is the smallest number of regular 4-gons that can be used 
to surround a point in the hyperbolic plane? 

22. Earlier you found that the only regular n-gons that can be used 
to generate a regular tiling of the Euclidean plane are those for 
n = 3, 4, 6. Does this same restriction hold in the hyperbolic 
plane? Explain. 

3.11.4 Periodic versus Aperiodic Tilings 
The previous activities are only a brief introduction to the vast topic 
of tilings. Tilings can involve prototiles that vary vastly from con­
vex polygons, demonstrating that there can be a wide variation in 
proto tile shapes. Moreover, it is not necessary that tilings exhibit the 
"periodicity" found in those examined so far. A tiling is said to be 
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periodic if one of its symmetries is a translation. Since translations 
are used to create tilings from each of the patches generated in the 
previous activities in this section, translations are among the sym­
metries of these tilings. Strange as it seems, there are also tilings for 
which there are no translation symmetries. 

Definition 3.26 
A tiling is periodic if there is at least one nonidentity translation that 
keeps the tiling invariant. A tiling that is not periodic is said to be 
aperiodic. 

An aperiodic tiling of great current interest among mathematicians 
and scientists is that known as a Penrose tiling. In the 1970s while 
trying to tile the Euclidean plane with regular pentagons, Roger 
Penrose discovered that by using tiles that were copies of two differ­
ent rhombus-shaped prototiles and by specifying a set of rules for 
matching marks placed on these tiles, he could generate an aperiodic 
tiling. Remarkably these tilings exhibit 5-fold symmetry, a symme­
try thought not to be possible in a plane tiling, and they appear to 
be related to the puzzling arrangement of atoms in materials known 
as quasi-crystals. Further introductory information on Penrose tiling 
is available in Gardner'S Penrose TIles to 'Itapdoor Ciphers, (1989). A 
comprehensive treatment of tilings of all types is contained in the 
definitive work in this area, Griinbaum and Shephard, TIlings and 
Patterns (1987). 

3.11.5 Escher-type Tilings (Optional) 

The Dutch graphic artist M.e. Escher produced a large number 
of fanciful tilings. "Escher-type" tilings can be created by start­
ing with regular tilings of the plane and altering the basic shapes 
using isometries. Although there are several very nice software pro­
grams designed specifically to create these patterns, the patterns 
can also be created with paper and pencil or with dynamic geome-
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try software.18 Below you will find directions for creating prototiles 
for these tilings from regular polygons.19 Both the paper and pencil 
and dynamic software techniques provide wonderful examples of 
the use of isometries. 

Activities 
If you are using paper and pencil to carry out the following activities you 
may find it helpful to (1) trace replacement paths onto a second set of 
paper; (2) place the second sheet under the first and apply to this second 
sheet the required slide, tum, or flip; and (3) trace the resulting path back 
onto the original paper. "HideR objects as required by erasing them. 

23. Creating a prototile from a square using translations 

a. Construct a square20 with side length measuring appI.oxi­
mately 2 inches. Label your square ABCD in counterclock­
wise order. 

b. Create a new path from A to B that consists of a curve or at 
least two noncollinear segments. Then hide segment AB (Do 
not hide points A and B.). 

c. Use the translation T ~ to translate your new path to create 
AD 

a congruent new path from D to C. Then hide segment CD 
(but not points C and D). 

d. Before continuing, make a second copy of the current 
construction for use in Activity 25. 

e. If desired, you can similarly replace segment AD and 
translate it to create a "parallel" path replacing segment BC. 

f. Once you have a prototile shape you like, color it and hide 
the point labels. 

g. Use your prototile to generate a tiling patch. 

18 A list of tiling software and directions for dynamic geometry software can be 
found at http://www. stolaf. edu/people/cederj/geotext/info.htm. 
19More detailed directions are available in Ranucci, E.R., and Theters, J.E. Creating 
Escher-1YPe Drawings, Mathematics 'Thacher, April '74, Vol. 64 No.4. 
2°This procedure can also be used on tilings of parallelograms or hexagons. 
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h. Find a minimal set of isometries that could be used to 
generate a complete tiling with your prototile. 

24. Creating a prototile from an equilateral triangle using rotations 

a. In a new sketch, construct equilateral triangle MEC with 
approximately 2 inch sides. Again, label your triangle in 
counterclockwise order. 

b. Construct a path from A to E that consists of a curve or at 
least two noncollinear segments. 

c. Before continuing, make a copy of your triangle for use in 
Activity 26. 

d. Hide segment AE and rotate your path about point A to create 
an image path joining A with C. Hide segment AC. 

e. Now construct M, the midpoint of segment EC. 
f. Construct a path from E to M that consists of a curve or at 

least two noncollinear segments and rotate this about point 
M to create a path from M to C. 
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i. Find a minimal set of isometries that could be used to 

generate a complete tiling with your prototile. 

25. Creating a prototile from a square using reflections 
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21This procedure can also be used on rhombi. 
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a. Begin with the single modified equilateral triangle22 saved in 
Activity 24. 

b. Construct D, the midpoint of side AB and E, the midpoint of 
side AC. 

c. Apply the glide reflection G Dt to the path joining A and B to 

create a path joining A and C. 
d. Hide segments AB and AC as well as unneeded intermediate 

constructions 
e. If desired, modify side BC as follows: Construct F, the mid­

point of segment Be, and connect C and F with a new path. 
Rotate this new path around F to create a path from F to B. 

Then hide segment BC and the point labels and color your 
prototile. 

f. Use your prototile to generate a tiling patch. 
g. Find a minimal set of isometries that could be used to 

generate a complete tiling with your prototile. 

3.12 Similarity Thansformations 

In previous sections of Chapter 3, we studied Euclidean geome­
try by exploring the invariant properties of the Euclidean plane 
under the group of distance preserving transformations known as 
isometries. In this section we will determine which properties of 
the Euclidean plane remain invariant under affine transformations 
that preserve ratios of distance. The geometry determined by these 
transformations is called similarity geometry. 

Definition 3.27 
A similarity with ratio r is an affine transformation T of the Euclidean 
plane such that for each pair of points P and Q, d(T(P), T(Q)) = 
rd(P, Q) for some nonzero real number r > O. 

22This procedure can also be used on isosceles triangles. 
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Clearly, every isometry is a similarity with ratio ±1, and thus 
isometries have all the properties of similarities, The converse is 
not true. However, since similarities are affine transformations of 
V* they also have 3 x 3 matrix representations with corresponding 
point and line equations X' = AX and ku' = uA -I, respectively (see 
Section 3.6). The matrix form of a similarity can be obtained by a 
method analogous to that used in the proof of Theorem 3.7. As in 
the case of isometries, there are direct and indirect similarities and 
the set of all similarities forms a group. 

Theorem 3.34 
A similarity with ratio r has one of the following matrix representations: 

(Direct) (Indirect) 

[ an 
al2 aI3 ] [ an 

aI2 aI3 ] -~I2 an aZ3 or al2 -an aZ3 
0 1 0 0 1 

where ail + aiz = rZ. 

Theorem 3.35 
The set of similarities forms a group of which the set of isometries is a 
subgroup. 

Figures that correspond to each other under a similarity are 
said to be similar. The verification that similar triangles do indeed 
have angles of the same measure and sides of proportional mea­
sure is nearly a replication of the proofs of comparable theorems for 
congruent triangles (see Section 3.7). 

Definition 3.28 
TWo sets of points Ci and f3 are similar, denoted Ci '" f3, if f3 is the 
image of Ci under a similarity. 

Theorem 3.36 
Let u' and v' be the images of lines u and v under a similarity. If the 
similarity is direct then mL(u'v') = mL(u, v). If the similarity is indirect 
then mL(u', v') = -mL(u, v). 
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Theorem 3.37 
If 6.PQ]?. '" 6.P'Q'R', then there exists an r > 0 such that m(P'Q') = 
r(m(PQ)), m(Q'R') = r(m(Q]?.)), m(R'P') = r(m(RP)), mLP'Q'R' = 
±m(LPQ]?.), mLQ'R'P' = ±mLQRP, and mLR'P'Q' = ±mLRPQ. 

1b verifY the converse of this last theorem, it is necessary to 
determine more about the behavior of similarities. Fortunately, we 
need only consider one particular type of similarity. 

Definition 3.29 
A dilation with center C and ratio r, denoted Dc,r is a direct similarity 
with invariant point C that maps any point P to a point P' such that 
cPr = reP (see Fig. 3.18) for some nonzero real number r. Dilations 
are also called dilatations or central similarities. 

Notice that unlike the definition of a similarity, the definition of a 
dilation includes the case where r < o. If r < 0, the direction of 
--+ -* 
CP' is opposite that of CP, but it is always the case that d(C, P') = 
Irl d(C, P). Thus, the dilation Dc,r is a similarity with ratio Irl. Using 
this definition, the invariant points and lines of a dilation can be 
determined (see Exercise 9) and the matrix representation can be 
found. 

Theorem 3.38 
Under a dilation DC,r, the point C and each line incident with Care 
invariant. 

FIGURE 3.18 Dilation with center C mapping P to P'. 
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Theorem 3.39 
A dilation with vector 0(0, 0, 1) and ratio r has matrix representation 

A dilation with center C(CI, C2, 1) has matrix representation 

[ 
r 0 CI (1 - r) 1 
o r c2(1 - r) 
o 0 1 

Proof 
(Outline) For the first case, the requirement that a direct similarity 
with matrix A = [aij] keep 0(0,0, 1) invariant implies that aI3 = 
a23 = O. The requirement that oX' = roX implies that any point 
X(x, 0, 1) on the line [0, I, 0] must map to a point X'(rx, 0, 1). This 
yields al2 = 0 and all = r. 

The second case can be verified after noting that DC,r = TDo,r T- I 

where T is the translation mapping 0 to C. • 

Using this matrix representation we can now determine the ef­
fect of a dilation on lines that are not incident with the dilation's 
center. 

Theorem 3.40 
If DC,r is a dilation with r i=- 1 and m is a line not incident with C, then 
Dc,r(m) = m' is a distinct line parallel to m. 

Proof 
The line equation of this dilation requires the matrix of (Dc,r r 1 . 

Since this transformation is also a dilation with center C and ra­
tio r' = Ijr (see Exercise 11), its matrix representation is given by 
Theorem 3.39. 
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Using this matrix in the line equation of the dilation, we can find 
m', the image of the line m[ml' mz, m3], as follows: 

where m; = mlcl(l - r') + mzcz(l - r') + m3. 
Clearly, m' is equal to m if and only if m; = r'm3, that is, if and 

only if 

or 

or 

mlCl + mzcz + m3 = 0 since r' i= 1; 

but this is exactly the condition that makes m incident with C. Thus, 
if mis not incident with C, m' is necessarily a distinct line parallel 
tom. • 

Given the center C, points P and P' (P' on line CP), it is now 
possible to construct the image of any other point under a dilation 
Dc,r that maps P to P'. This construction demonstrates that a dilation 
is uniquely determined by its center together with a point and its 
image. 

Case 1: Q is not on CP (Fig. 3.19). Q' will be the point of 
intersection ofline CQ and the line through P' parallel to PQ. 

c 

p' 

FIGURE 3.19 Finding Q', the image of Q, case 1. 
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c 

FIGURE 3.20 Finding Q', the image of Q, case 2. 

Case 2: Q is on CP (Fig. 3.20). We can find the image of a point 
R not on CP as before and then use Rand R' in place of P and p' in 
case 1. 

The matrix representation of dilations can be used to characterize 
the similarities in terms of dilations and isometries (see Exercise 13). 

Theorem 3.41 
Every similarity can be expressed as the product of a dilation and an 
isometry. 

With this characterization, it is possible to outline a proof of 
the converse of Theorem 3.37 similar to the outline given for 
Theorem 3.23 (see Exercise 15). 

Theorem 3.42 
If 6PQF,. and 6P'Q'R' are two triangles with m(P'Q') = r(m(PQ)), 
m(Q'R') = r(m(QR)), m(R'P') = r(m(RP)), and also mL.P'Q'R' = 
±mL.PQR, mL.Q'R'P' = ±mL.QRP, and mL.R'P'Q' = ±mL.RPQ, then 
there is a similarity mapping 6PQR to 6P'Q'R'. 

Another major result that follows directly from the proof of The­
orem 3.41 has to with the increased freedom allowed by similarities. 
Whereas an isometry can always be found to map a point P to an 
arbitrary image point p', it is not possible to use an isometry to map 
a pair of points P and Q to a second arbitrary pair of points p' and Q' 

(why not?). Such a mapping can be accomplished with a similarity 
(see Exercise 17). 

Theorem 3.43 
There exist two similarities, one direct and one indirect, that map a pair 
of distinct points P and Q to a pair of corresponding points p' and Q'. 
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Exercises 
l. Show that similarities preserve betweenness (see Definition 3.21). 

2. Prove: If a similarity maps PQ and RS to P'Q' and R'S', respectively, 
and d(P, Q) = sedeR, S)), then d(P'Q') = sedeR', S')). (This proves that 
similarities preserve ratios of distance.) 

3. Prove Theorem 3.34. 

4. Prove Theorem 3.35. 

5. Prove Theorem 3.36. 

6. Prove Theorem 3.37. 

7. Let C, P, and p' be points with coordinates, C(3, -2, 1), P(I, 0, 1), and 
P'(7, -6, 1). (a) Show that these three points are collinear. (b) Find 
the matrix of a dilation with center C that maps P to P'. (c) Find the 
image of lines m[l, 1, -1] and n[l, 1, 1] under this dilation. 

8. Show that a rotation with angle 1800 is a dilation. 

9. Prove Theorem 3.38. 

10. Complete the proof of Theorem 3.39 outlined in the text. 

11. Show (Dc,rr1 = DC,l/r 

12. Prove that the only invariant point under a nonidentity dilation with 
center C is C itself, and the only invariant lines under such a dilation 
are lines through C. 

l3. Prove Theorem 3.41 

14. Using the product of a translation, rotation, and dilation find a trans­
formation that maps 6PQR to 6P'Q'R' where P(3, 6, 1), Q( -2,5,1), 
R( -3, -1, 1), p'CO, 0, 1), Q'C2, -10, 1), R'(14, -12, 1). [Hint: translate 
P to p' first.] 

15. Outline a proof of Theorem 3.42. 

16. Find matrices of two different similarities both of which map P(I, 2, 1) 
and Q(O, 0, 1) to p' (2,4, 1) and Q' (-4,2, 1), respectively. What is the 
image of ReI, 1, 1) under each? 

17. Prove Theorem 3.43. 
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3.13 Affine Transformations 

In Section 3.12, similarities were shown to be generalizations of 
isometries. In this section we will continue this process of gen­
eralizing the isometries by considering the unrestricted set of 
affine transformations of the Euclidean plane. For convenience, 
we will restate the definition of affine transformations (see Defi­
nition 3.16 for earlier version.). The geometry determined by these 
transformations is called affine geometry. 

Definition 3.30 
A one-to-one linear transformation T of R3 is said to be an affine 
transformation (of the Euclidean plane), or more concisely an affinity, 
if T maps points in the set V* = {X(X1' xz, 1)} to points in this same 
set, that is, if for all X E V*, T(X) = X' E V*. 

In other words, the affinities are the transformations described in 
Section 3.6. There we discovered that affinities map points according 
to the matrix equation X' = AX where 

and IAI =I O. 

We also noted that affinities preserve collinearity and map lines ac­
cording to the matrix equations ku' = uA -1. Theorem 3.4 can be 
reworded to state that the set of affinities form a group and Theo­
rem 3.35 in Section 3.12 implies that the set of similarities forms a 
subgroup of the group of affinities. 

Since similarities and isometries are specific types of affinities, 
any properties invariant under affinities are also invariant under 
similarities and isometries. One of the most important of these 
invariant properties is parallelism. 

Theorem 3.44 
IfT is an affinity and m and n are parallel lines, then T(m) is parallel 
to T(n). 
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Proof 
Assume m[ml' m2, m3] and n[nl' nz, n3] are parallel lines. Then there 
is a nonzero real number t such that nl = tml and nz = tmz. We can 
find T(m), the image of line m under the affinity T with matrix A, 
using the line equation kIm' = mE where E = A-I. Specifically, 

or 

, , , 1 
[ml' m z, m3] = kl [m1bn + mZb21 , m1b12 + mzbzz , m1b13 + mZb23 + m3] 

Similarly, 

, " 1 [nl' n z, n3] = kz [n1bn + n2bZl, n1b1Z + n2bZZ, n1b13 + nZbZ3 + n3] 

Then, substituting nl = tml and nz = tmz yields 

, 1 
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ni = kz (m1b li + mZbZi) = k;mi for i = 1,2. 

Thus, m' and n' are parallel. • 
Clearly, general affinities do not preserve distance as do isome­

tries, nor do they preserve ratios of distances as do similarities. 
However, they do preserve a more general ratio of distances known 
as a segment division ratio. This is verified by the proof of the next 
theorem (see Exercise 1). 

Theorem 3.45 
IfT is an affinity and P, Q, and R are three distinct collinear points such 
that 

d(Q,P) =k 
d(Q, R) , 
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then 

d(T(Q), T(P)) = k. 
d(T(Q), T(R)) 

We can use this theorem along with Definition 3.21 to show 
that affinities preserve betweenness of points. It then follows that 
affinities also preserve segments and their midpoints. 

Theorem 3.46 
If T is an affinity and P, Q, and R are three collinear points with P 
between Q and R, then T(P) is between T(Q) and T(R). 

Proof 
Since P is between Q and R, d(Q P) + d(P, R) = d(Q R). Dividing 
each term of this equation by d(Q R) and letting d(Q P)/ d(Q R) = k, 
givesd(P,R)/d(QR) = 1-k. By Theorem 3.45, d(Q',P')ld(Q',R') = 
k and d(P',R')/d(Q',R') = 1 - k where P' = T(P), and so on. Sub­
stitution then yields d(P',R')/d(Q',R') = 1 - d(Q',P')/d(Q',R') or 
d(Q', P') + d(P', R') = d(Q', R'), so P' is between Q' and R'. • 

Corollary 
If T is an affinity and M is the midpoint of the segment with endpOints 
Q and R, then T(M) is the midpoint of the segment with endpoints T( Q) 
and T(R). 

Proof 
Merely let k = ! in the proof of Theorem 3.46. • 

We can gain an intuitive understanding of the effect of affinities 
by considering two specific types known by the suggestive names 
of shears and strains. 

Definition 3.31 
A shear with axis m, denoted Sm, is an affinity that keeps m pointwise 
invariant and maps every other point P to a point P' so that the line 
PP' is parallel to m (Fig. 3.21). 
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FIGURE 3.21 A shear with axis x[O, I, 0]. 

Theorem 3.47 
The matrix representation of a shear with axis x[O, I, 0] is 

u~n 
In general the matrix representation of a shear Sm can be found using 
Sm = SSxS-1 where S is a direct isometry mapping x to m, that is, 
Sex) = m. 

Proof 
Since Sx keeps each point on the line x[O, I, 0] invariant, the following 
equation must be true for all real numbers Xl: 

[
au alZ a13] [ Xl ] _ [ Xl ] 
aZI aZZ aZ3 0 - 0 
o 0 1 1 1 

Therefore, aUXI + al3 = Xl and aZlxl + aZ3 = 0, yielding au = I, 
al3 = 0, aZI = 0, and aZ3 = O. If P(PI,PZ, 1) is a point not on line 
x[O, 1,0] (so pz i= 0), P must map to a point pIon the line through 
p parallel to line x. This line has coordinates u[O, I, -Pz], so p' must 
have coordinates pl(P~,pZ' 1) leading to the following equation 

so azzpz = Pz. Since pz i= 0, this implies that aZZ = 1. Therefore, the 
matrix does have the form given in the statement of the theorem. 

The verification of the second part of the theorem is analogous 
to that used to prove similar results in previous theorems. • 
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(a) 

fb) 

FIGURE 3.22 A strain with axis y[l, 0, 0]. 

Strains are also defined in terms of a pointwise invariant line 
and the procedure used to determine their matrix representation is 
similar to that just used to find the matrix of a shear (see Exercise 4). 

Definition 3.32 
A strain with axis m, denoted T m, keeps m pointwise invariant 
and maps every other point P to a point p' so that the line PP' is 
perpendicular to m (Fig. 3.22). 

Theorem 3.48 
The matrix representation of a strain with axis x[O, I, 0] is 

u~n 
In general, the matrix representation of strain T m can be found using 
T m = STxS-1 where S is a direct isometry mapping x to m, that is, 
Sex) = m. 

Using shears and strains along with similarities, it is possible to 
obtain any affinity. In particular, we can obtain any affinity as a 
product of a shear Sx, a strain Tx, and a direct similarity. 

Theorem 3.49 
Any affinity can be written as the product of a shear; a strain, and a 
direct similarity. 
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Proof 
We can verify this theorem by merely demonstrating that the fol­
lowing product does indeed yield the matrix of a general affinity as 
indicated: 

[ all al2 al3] [all -aZl 
al3 ] [ 1 

0 nu j n aZl azz a;3 = a~l an aZ3 0 k 1 
0 0 0 1 0 0 0 

where 

j= 
(anal2 + aZlaZZ) 

and k= 
(al1aZZ - al2aZl) 

(arl + a~l) (arl + a~l) • 
As indicated in the previous section, the more general the 

transformations become, the more freedom they allow. Whereas 
isometries exist that map a point P to a point p/, and similarities exist 
that map a pair of points P and Q to a pair of points P and Q/, the 
next theorem shows that affinities exist that map three noncollinear 
points P, Q, R to three noncollinear points P/, Q/, R'. 

Theorem 3.50 
Given two triangles, bPQR and bP'Q'R', there is an affinity mapping 
bPQR to bP'Q'R'. 

Proof 
We can show that there is an affinity mapping P, Q, and R to p/, 
Q/, and R', respectively, by finding a matrix A such that p/ = AP, 
Q/ = AQ, andR' = AR. This involves six equations in six unknowns. 
However, in actual practice we can simplify the determination of 
the matrix A as follows: First find the matrix of the affinity S that 
maps 0(0,0, I), X(1, 0, I), and U(I, I, 1) to P, Q, andR, respectively. 
Then find the matrix of the affinity T, which maps 0, X, and U to 
p/, Q/, and R'. The affinity TS- l will map P, Q, and R to p/, Q/, 
and R'. Since affinities preserve betweenness, TS- l also maps the 
segments PQ, QF.., and RP to P/Q/, Q'R', and R'P', and therefore 
bPQR to bP' Q/ R'. • 

In addition to segments and triangles, affinities also preserve 
other geometric figures. Since isometries preserve distance and each 

3.13. Affine'Ii:'ansformations 195 

Proof 
We can verify this theorem by merely demonstrating that the fol­
lowing product does indeed yield the matrix of a general affinity as 
indicated: 

[ all al2 al3] [all -aZl 
al3 ] [ 1 

0 nu j n aZl azz a;3 = a~l an aZ3 0 k 1 
0 0 0 1 0 0 0 

where 

j= 
(anal2 + aZlaZZ) 

and k= 
(al1aZZ - al2aZl) 

(arl + a~l) (arl + a~l) • 
As indicated in the previous section, the more general the 

transformations become, the more freedom they allow. Whereas 
isometries exist that map a point P to a point p/, and similarities exist 
that map a pair of points P and Q to a pair of points P and Q/, the 
next theorem shows that affinities exist that map three noncollinear 
points P, Q, R to three noncollinear points P/, Q/, R'. 

Theorem 3.50 
Given two triangles, bPQR and bP'Q'R', there is an affinity mapping 
bPQR to bP'Q'R'. 

Proof 
We can show that there is an affinity mapping P, Q, and R to p/, 
Q/, and R', respectively, by finding a matrix A such that p/ = AP, 
Q/ = AQ, andR' = AR. This involves six equations in six unknowns. 
However, in actual practice we can simplify the determination of 
the matrix A as follows: First find the matrix of the affinity S that 
maps 0(0,0, I), X(1, 0, I), and U(I, I, 1) to P, Q, andR, respectively. 
Then find the matrix of the affinity T, which maps 0, X, and U to 
p/, Q/, and R'. The affinity TS- l will map P, Q, and R to p/, Q/, 
and R'. Since affinities preserve betweenness, TS- l also maps the 
segments PQ, QF.., and RP to P/Q/, Q'R', and R'P', and therefore 
bPQR to bP' Q/ R'. • 

In addition to segments and triangles, affinities also preserve 
other geometric figures. Since isometries preserve distance and each 



196 3. Geometric 'Iransformations of the Euclidean Plane 

of the conic sections (circles, ellipses, parabolas, and hyberbolas) can 
be characterized in terms of distances, it is obvious that isometries 
preserve each of the conic sections, for example, the image of a 
circle under an isometry is a circle. Th explore the invariance of conic 
sections under more general linear transformations, it is convenient 
to note that all conic sections can be written via matrix equations 
(see Exercise 10). 

Theorem 3.51 
Any conic section can be written algebraically as 

cnxi + C22X~ + 2C13Xl + 2C23X2 + 2C12XlX2 + C33 = 0 

or; in matrix notation, as 

C13] [Xl] C23 X2 = 0 or xt CX = o. 
C33 1 

The symmetric matrix C = [Cij] is called the matrix of the conic 
section. The conic section is nondegenerate (i.e., it is not a line, pair 
of lines, point, or the empty set if and only if Ici =1= 0). Furthermore, a 
conic section is an ellipse, hyperbola, or parabola if(c12i-CnC22 < 0, 
(C12)2 - Cn C2Z > 0, or (cl2i - Cn CZ2 = 0 (but Cn and C22 are not 
both zero), respectively. Thus, there are three distinct types of conic 
sections where circles (Cll = CZ2) are considered to be special cases 
of ellipses. 

Using matrix notation, it is relatively easy to determine the ma­
trix of the image of a conic section under an affinity. The entries 
in this second matrix show that affinities preserve types of conic 
sections. 

Theorem 3.52 
The image of a conic section under an affinity is a conic section of the 
same type. Furthermore, if A is the matrix of an affinity, then the matrix 
of the image conic section is C' = (A -1 Y CA -1. 

proof 
Under the affinity, X is mapped to X' = AX. Solving for X gives 
X = A-IX'. Substituting this into the matrix equation XtCX = 0 
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yields (A-1X'YC(A-1X') = 0 or Xtt((A-IYCA-I)X' = o. This latter 
equation is the equation of a conic section with symmetric matrix 
C' = (A -IYCA -I, where IC'I = 0 if and only if ICI = o. 1b show that 
the type of conic section is preserved requires a straightforward but 
somewhat tedious calculation. • 

Exercises 
1. Prove Theorem 3.45 for the case where P, Q, and R have coordinates 

P(x, 0, I), Q(O, 0, I), R(y, 0, 1). 

2. Find the matrix of a shear with axis Xl = X2. 

3. Find the matrix of a strain with axis Xl = 5. 

4. Prove Theorem 3.48. [Hint: See the proof of Theorem 3.47.] 

5. Show that a dilation with center 0 is the product of strains with axes 
x[O, 1,0] and y[l, 0, 0] 

6. Find the matrix of an affinity mapping P(l, -1, I), Q(2, I, 1), and 
R(3, 0,1) to PI(O, I, 1), Q'(I, 2, I), and R'(O,3, I), respectively. [Hint: 
Use the method described in the proof of Theorem 3.50.] 

7. Show that the only affinity with three noncollinear invariant points 
is the identity. [Hint: First assume the invariant points are 0(0,0,1) 
XCI, 0,1), and U(1, 1, 1).] 

8. Use Exercise 7 to show that there is a unique affinity mapping any 
three noncollinear points to any three noncollinear points. [Hint: 
Assume Sand T are two such affinities and consider the affinity 
ST- I .] 

9. Show that affinities preserve parallelograms. 

10. Verify that the standard equation for a conic section given in 
Theorem 3.51 is equivalent to the given matrix equation. 

11. Let A = [; =~ -~]. Find the image of the parabola y = 6x2 

o 0 1 
under the affinity with matrix A. Verify that the image is also a 
parabola. 

12. Show that the image of a circle under a similarity is again a circle. 
(Note: In general, affinities can map circles to noncircular ellipses.) 
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Exercises 13 and 14 require the use of the following linear algebra 
formula for the area ofa triangle with verticesP(pl,PZ, 1 )Q(ql, qz, I), 
and R(rl' rz, 1) where abs denotes absolute value. 

areae M1R) ~ ~ abs [det [~: ~ ~{ ]] 

13. Prove: If T is an affinity with matrix A, and T maps 6.PQR to 
6.p' Q'R', then 

area( 6.P' Q'R') = k( area( 6.PQR)) 

where k = abs(det(A)). (Note: When k = I, the affinity is called 
an equiareal transformation.) 

14. Using Exercise 13 show that the area of a triangle is preserved 
under isometries and shears. 

3.14 Exploring 3-D Isometries 

Equipment and Materials Needed 

• A polygon set (containing at least 20 triangles, 6 squares, 12 pen­
tagons, and 3 hexagons where all the polygons have the same edge 
length) and a means of attaching the polygons to each other. Pa­
per polygons and tape will work, or you can use a commercially 
prepared set.23 

• 1Wo patterns for creating tetrahedra and several skewers.z4 

• (Optional) Play dough for creating 3-D objects. 

Introduction 
This section generalizes the explorations of Sections 3.2 and 3.3 
to isometries of R3 and finds matrix representations for some of 

23 Polydrons™ work well and are available from Dale Seymour Publications. 
24Bamboo kebob skewers work well and are available in many food stores. 

198 3. Geometric 'Ihmsformations of the Euclidean Plane 

Exercises 13 and 14 require the use of the following linear algebra 
formula for the area ofa triangle with verticesP(pl,PZ, 1 )Q(ql, qz, I), 
and R(rl' rz, 1) where abs denotes absolute value. 

areae M1R) ~ ~ abs [det [~: ~ ~{ ]] 

13. Prove: If T is an affinity with matrix A, and T maps 6.PQR to 
6.p' Q'R', then 

area( 6.P' Q'R') = k( area( 6.PQR)) 

where k = abs(det(A)). (Note: When k = I, the affinity is called 
an equiareal transformation.) 

14. Using Exercise 13 show that the area of a triangle is preserved 
under isometries and shears. 

3.14 Exploring 3-D Isometries 

Equipment and Materials Needed 

• A polygon set (containing at least 20 triangles, 6 squares, 12 pen­
tagons, and 3 hexagons where all the polygons have the same edge 
length) and a means of attaching the polygons to each other. Pa­
per polygons and tape will work, or you can use a commercially 
prepared set.23 

• 1Wo patterns for creating tetrahedra and several skewers.z4 

• (Optional) Play dough for creating 3-D objects. 

Introduction 
This section generalizes the explorations of Sections 3.2 and 3.3 
to isometries of R3 and finds matrix representations for some of 

23 Polydrons™ work well and are available from Dale Seymour Publications. 
24Bamboo kebob skewers work well and are available in many food stores. 



3.14. Exploring 3-D Isometrics 199 

these isometries. The transition from considering transformations 
of 2-space to considering transformations of 3-space increases the 
difficulty of the analysis substantially.25 Th ease into this 2-D to 3-D 
transition, we will start by exploring the 3-D analogues of polygons 
known as regular polyhedra or Platonic solids. Then, just as we studied 
finite symmetry groups of R2 by considering symmetries of equilat­
eral triangles and squares (see Section 3.3), we will study symmetry 
groups of R3 by considering symmetries of a regular tetrahedron. Ex­
cellent sources for more information on these concepts are Chapters 
16 and 17 in George E. Martin, Transfonnation Geometry: An Introduc­
tion to Symmetry (1982) and Chapter 6 in Clayton Dodge, Euclidean 
Geometry and Transfonnations (1972). 

3.14.1 Regular Polyhedra 
Th begin our study, we first need a precise definition of regular 
polyhedron. 

Definition 3.33 
A polyhedron (plural polyhedra) is a solid with plane faces and straight 
edges where every edge joins two vertices and is adjacent to two 
faces. A polyhedron is said to be convex if, when any face is extended 
to form a plane, the remainder ofthe polyhedron lies entirely on one 
side of the plane. 

Definition 3.34 
A regular polyhedron is a convex polyhedron, all of whose faces are 
made of congruent regular polygons with n sides (n-gons) for a fixed 
n and all of whose vertices are surrounded by the same number of 
these n-gons. 

As you will discover, there are exactly five regular polyhedra. These 
five solids have fascinated mathematicians and others throughout 

25For a summary of some of the studies on people's perception of, and diffi­
CUlty with, various types of symmetry, see Section l.4 in Washburn and Crowe, 
Symmetries of Culture (1988). 
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the ages and have played a role in the history of subjects ranging 
from philosophy to astronomy.· Plato associated four of them with the 
elements fire, air, water, and earth, and the fifth with the universe; 
Kepler even proposed a model of planetary motion based on the five 
polyhedra.26 

The determination of the number and types of possible regular 
polyhedra can be carried out in a manner analogous to that used 
to determine all possible regular tilings of the plane. The following 
activities guide you through (1) a determination of possible regular 
polyhedra; (2) an exploration of isometries of R3 and their effects on 
a regular tetrahedron; and (3) the derivation of matrices for some of 
these isometries. 

Much of this exploration will be based on generalizations ofideas 
encountered in our investigations ofisometries of R2. Here, however, 
each isometry is a transformation of R3 , so it is appropriate to restate 
the definition of isometry with specific reference to R3. In doing so, 
we will include the preservation of angle measures as part of the 
definition. 

Definition 3.35 
An affine transformation of Euclidean space (i.e., of the point set 
{ (Xl, X2, x3, I)}, is an isometry of R3 if it preserves distance and the 
absolute value of angle measure. 

Activities 
1. Place a point P on a sheet of paper as a reference. Then begin 

drawing adjacent, non-overlapping congruent regular n-gons, 
each with a vertex at P so as to "nearly" surround P leaving a 
gap between the "last" one and the "first" one. Then cut out (or 
fold under) the unfilled gap and tape the first and last edges of 
your n-gons together to form a "3-D corner," or "cone" that could 
hold something. 

26 An easy-to-read introduction to Kepler's ideas is contained in Section 1.3 of 
Davies, while Senechal and Fleck contains a comprehensive exploration of 
polyhedra. 

200 3. Geometric Transformations of the Euclidean Plane 

the ages and have played a role in the history of subjects ranging 
from philosophy to astronomy.· Plato associated four of them with the 
elements fire, air, water, and earth, and the fifth with the universe; 
Kepler even proposed a model of planetary motion based on the five 
polyhedra.26 

The determination of the number and types of possible regular 
polyhedra can be carried out in a manner analogous to that used 
to determine all possible regular tilings of the plane. The following 
activities guide you through (1) a determination of possible regular 
polyhedra; (2) an exploration of isometries of R3 and their effects on 
a regular tetrahedron; and (3) the derivation of matrices for some of 
these isometries. 

Much of this exploration will be based on generalizations ofideas 
encountered in our investigations ofisometries of R2. Here, however, 
each isometry is a transformation of R3 , so it is appropriate to restate 
the definition of isometry with specific reference to R3. In doing so, 
we will include the preservation of angle measures as part of the 
definition. 

Definition 3.35 
An affine transformation of Euclidean space (i.e., of the point set 
{ (Xl, X2, x3, I)}, is an isometry of R3 if it preserves distance and the 
absolute value of angle measure. 

Activities 
1. Place a point P on a sheet of paper as a reference. Then begin 

drawing adjacent, non-overlapping congruent regular n-gons, 
each with a vertex at P so as to "nearly" surround P leaving a 
gap between the "last" one and the "first" one. Then cut out (or 
fold under) the unfilled gap and tape the first and last edges of 
your n-gons together to form a "3-D corner," or "cone" that could 
hold something. 

26 An easy-to-read introduction to Kepler's ideas is contained in Section 1.3 of 
Davies, while Senechal and Fleck contains a comprehensive exploration of 
polyhedra. 



3.14. Exploring 3-D Isometries 201 

a. Why do you need more than 2 regular polygons to form such 
a 3-D corner? 

b. What must be true about the sum of the vertex angles of 
the regular polygons placed around the point to create a 3-D 
corner? 

c. What is the largest possible value of n for which congruent 
regular n-gons can be used to create a 3-D corner? Explain. 

d. For each value of n greater than 2 and less than or equal to 
the value found in part c, determine the maximum number 
of regular n-gons that can be used to create a 3-D corner. 

2. Use the results of Activity 1 to explain why there are only 5 
possible regular polyhedra. 

3. Construct each of the 5 possible regular polyhedra, thus demon­
strating their existence. Then fill in Table 3.9 giving the face 
shape, the number of faces around each vertex (k), the total 
number of faces (f), the total number of edges (e), and the total 
number of vertices (v). 

4. Verify that each of your regular polyhedron satisfy Euler's 
formula for convex polyhedron, namely, f - e + v = 2. 

5. The pyramid-shaped regular polyhedron with faces consisting 
of 4 equilateral triangles is known as a (regular) tetrahedron. 

TABLE 3.9 The Regular Polyhedra. 

Number of Thtal Total Thtal 
Faces at a Number of Number of Number of 

Face Shape Vertex (k) Faces (f) Edges (e) Vertices (v) 
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a. Label the vertices of a regular tetrahedron with the letters 
A-D. If you are making a tetrahedron from a flat pattern, it 
is easiest to label it before putting it together. (Suggestion: 
Place the same letter in the corner of each of the triangles 
surrounding a vertex so that you will be able to see the vertex 
label from any direction.) 

b. Explain why a tetrahedron can be said to have two different 
orientations. These are described as right-hand and left-hand 
orientations and can be detected by applying the so-called 
"right-hand rule;' Which is yours? 

c. Now label a second regular tetrahedron so it has the same ori­
entation as your first one. (Note: In some of the explorations 
that follow, you will want to keep one of your tetrahedra 
"fixed" to serve as a "before" version and observe the effects 
of the isometries on the second one.) 

3.14.2 Isometries of Space 

In two dimensions, figures have a point of symmetry C if they are in­
variant under a point reflection with center C, and they have a line of 
symmetry l ifthey are invariant under a reflection with axis l. These 
isometries of R2 are known as point reflections and line reflections, re­
spectively, and the following activities explore transformations of R3 

analogous to these and other transformations of R2 . 

6. Rrr , a plane reflection with axis Jr, is an isometry of R3 that leaves 
each point of the plane Jr invariant and maps any other point P 
to a point p' so that Jr is perpendicular to PP', intersecting the 
segment at its midpoint. If a point set a (a =j:. Jr) is invariant 
under Rrr , we say that a has plane symmetry and that Jr is a plane 
of symmetry for a. 

a. Explain why plane reflections of R3 can be considered as 
generalizations ofline reflections of R2. 

b. Assume that l' = Rrr(l) for a line l. Describe the location of 
line l' relative to land Jr if l is parallel to Jr. If l intersects Jr. 

202 3. Geometric Thansformations of the Euclidean Plane 

a. Label the vertices of a regular tetrahedron with the letters 
A-D. If you are making a tetrahedron from a flat pattern, it 
is easiest to label it before putting it together. (Suggestion: 
Place the same letter in the corner of each of the triangles 
surrounding a vertex so that you will be able to see the vertex 
label from any direction.) 

b. Explain why a tetrahedron can be said to have two different 
orientations. These are described as right-hand and left-hand 
orientations and can be detected by applying the so-called 
"right-hand rule;' Which is yours? 

c. Now label a second regular tetrahedron so it has the same ori­
entation as your first one. (Note: In some of the explorations 
that follow, you will want to keep one of your tetrahedra 
"fixed" to serve as a "before" version and observe the effects 
of the isometries on the second one.) 

3.14.2 Isometries of Space 

In two dimensions, figures have a point of symmetry C if they are in­
variant under a point reflection with center C, and they have a line of 
symmetry l ifthey are invariant under a reflection with axis l. These 
isometries of R2 are known as point reflections and line reflections, re­
spectively, and the following activities explore transformations of R3 

analogous to these and other transformations of R2 . 

6. Rrr , a plane reflection with axis Jr, is an isometry of R3 that leaves 
each point of the plane Jr invariant and maps any other point P 
to a point p' so that Jr is perpendicular to PP', intersecting the 
segment at its midpoint. If a point set a (a =j:. Jr) is invariant 
under Rrr , we say that a has plane symmetry and that Jr is a plane 
of symmetry for a. 

a. Explain why plane reflections of R3 can be considered as 
generalizations ofline reflections of R2. 

b. Assume that l' = Rrr(l) for a line l. Describe the location of 
line l' relative to land Jr if l is parallel to Jr. If l intersects Jr. 



3.14. Exploring 3-D Isometries 203 

c. Does the regular tetrahedron have any planes of symmetry? 
If so, give the number of these symmetry planes and describe 
their locations; if not, explain why not. 

7. Rc, a line reflection with center c, is an isometry of R3 that leaves 
each point of the line c invariant and maps any other point P 
to a point p' so that c is perpendicular to PP', intersecting the 
segment at its midpoint. If a point set a (a #- c) is invariant 
under Rc, we say that a has line symmetry and that c is a line of 
symmetry for a. 

a. Explain why line reflections of R3 can be considered as 
generalizations of point reflections of R2 . 

b. Assume that l' = Rc(l) is the image of a line 1. Describe the 
location ofl' relative to both c and l. Be sure to consider cases 
where c and 1 intersect, where they are parallel, and where 
they are skew. 

c. Does the regular tetrahedron have any lines of symmetry? 
If so, give the number of these symmetry lines and describe 
their location; if not, explain why not. 

8. Rc, a point reflection with center C, also known as a central inver­
sion, is an isometry of R3 that leaves the point C invariant and 
maps any other point P to a point p' so that C is the midpoint of 
segment PP'. If a point set a (a =f C) is invariant under Re, we 
say that a has point symmetry and that C is a point of symmetry 
for a. 

a. How does the effect of this mapping compare to that of a point 
reflection in R2? 

b. Assume that l' = Rc(l) is the image of a line 1. Describe the 
location ofl' relative to both C and 1. Be sure to consider cases 
where C lies on 1 and where it doesn't. 

c. Does the regular tetrahedron have any points of symmetry? If 
so, describe the number of symmetry points and the location 
of each; if not, explain why not. 

9. (Optional) Use play dough to construct each of the following: 

a. An object with plane, but not line or point, symmetry. 
b. An object with line, but not plane or point, symmetry. 
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c. An object with point, but not line or plane, symmetry. 

10. Rc,e, a rotation with center c and directed angle e, is an isometry 
of R3 that leaves each pOint on line c invariant and maps any 
other point P to point pI, where pI is in the plane through p 
perpendicular to line c at C and mLPCpl = e. If a point set a is 
invariant under a rotation RC,e where e = 3~O for some integer 
k, the center line is said to be an axis ofk-fold symmetry for a. 

a. Explain why a line reflection can also be considered a rotation 
about a line. Be sure to describe both the center and angle of 
the rotation. 

b. Wby can a line of symmetry also be called an axis of k-fold 
symmetry? Wbat is the value of k in this case? 

c. (Optional) Use play dough to construct an object with exactly 
one axis of 3-fold symmetry. 

11. Wbat are the axes of k-fold symmetry of a regular tetrahedron? 
For each, be sure to specify both the axis and the value of k. 

12. Each isometry of R2 can be generated using a product, that is, 
a succession, of three or fewer line reflections. Similarly, each 
isometry of R3 can be generated using a product of plane reflec­
tions. For each of the four isometries described above, determine 
how the isometry could be generated using a product of plane 
reflections. Include in your answer the number of plane reflec­
tions needed and a description of the relative location of the 
planes. 

13. Four other isometries of R3 are described below. Observe the 
effect of an isometry of each type on your tetrahedron. For each 
type, determine whether the isometry changes orientation of 
the tetrahedron and how the isometry can be expressed as a 
product of reflections in planes. 

-+ 
a. A translation with vector PQ where p and Q are points in 

3-space. 
b. A glide reflection (the product of a reflection in a plane TC 

followed by a translation with vector in the plane TC). 

c. A screw displacement (a rotation with center c followed by a 
translation with vector on line c). 
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d. A rotatory reflection (a reflection in a plane rr followed by a 
rotation with center c, where c is about a line perpendicular 
to the plane rr). 

3.14.3 Symmetries of Regular Thtrahedra 

In R2 a symmetry of an equilateral triangle is completely deter­
mined by its effect on the vertices of the triangle; and in particular, 
a symmetry can be identified as a specific permutation of the trian­
gle vertices. Similarly, symmetries of a regular tetrahedron can be 
identified as permutations of the vertices of the tetrahedron. 

Activities 

14. Use the idea above to predict the number of symmetries of a 
regular tetrahedron. 

15. Which of the above isometries of R3 can be symmetries of a 
regular tetrahedron? 

16. Of the symmetries of a regular tetrahedron, how many of each 
type are there? [Hint: Determine the planes of symmetry, the 
lines of k-fold symmetry, etc., and note that there are axes of 
k-fold symmetry for at least two different values of k.] 

17. Now try making a complete list of all of the symmetries of a reg­
ular tetrahedron by indicating the permutation each performs 
on the 4 vertices of the tetrahedron. A standard way to do this 
is to indicate the results of the permutation with an ordered 4-
tuple, for example, (BACD) where this listing indicates that B 
maps to A, A maps to C, C maps to D and D maps to B. 

18. (Optional) Create a group table for the symmetries of a regular 
tetrahedron similar to Table 3.2 for an equilateral triangle. 

3.14.4 Matrix Format of Isometries of R3 

By generalizing the format and properties of matrices of affine 
transformations of R2, we can find matrix representations of affine 
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transformations of R3. The following activities are intended to guide 
you through a determination of some of these matrices. Note that 
whereas points in R2 have been represented with ordered triples 
(Xl, X2, 1), points in R3 are represented by ordered 4-tuples of the 
form (Xl,X2,X3, 1). 

Activities 

19. Assume that an affine transformation T of R3 keeps 0(0, 0, 0,1) 
invariant. 

a. Which entries in the 4 x 4 matrix representation of Tare 
then automatically determined and what are their numerical 
values? 

b. If you are given all the entries in the matrix representation 
of T, how can you determine the coordinates for the images 
of X(I, 0, 0, I)? of YeO, 1,0, I)? of Z(O, 0, 1, I)? 

c. If you know the coordinates of the images ofX(l, 0, 0, 1) and 
YeO, 1,0,1) and Z(O, 0, 1, 1) under the transformation T, how 
can you find a matrix representation for T? 

Matrices of UPoint Symmetries" of R3 

Using information found in the previous activity it is possible to find 
matrices for the following "point symmetries," that is, symmetries 
that keep one point (in this case 0(0,0,0,1)) invariant. 

20. Find 4 x 4 matrices for each of the following: 

a. plane reflections in each of the three "coordinate planes," that 
is, the x, y-plane (X3 = 0), the y, z-plane (Xl = 0) and the 
X, z-plane (X2 = 0). 

b. Line reflections in the x-axis, the y-axis, and the z-axis. 
c. The point reflection with center at the origin, that is, 

0(0,0,0,1). 
d. The rotation about the x-axis with angle measure 45°. 
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21. Using the distance formula, it is possible to show that the tetra­
hedron with vertices A(l, I, I, 1), B( -I, I, -I, 1), ce1, -I, -I, 1), 
and D( -1 - I, I, 1) is a regular tetrahedron. 

a. Use your matrices from the previous activity to check to see 
if any of the coordinate planes is a plane of symmetry of this 
tetrahedron. 

b. Use your matrices from the previous activity to check to see 
if any of the coordinate axes is an axis of symmetry for this 
tetrahedron. 

c. Similarly determine if the origin 0(0,0,0, 1) is a point of 
symmetry for this tetrahedron. 

Matrices of IISpace Symmetries" of R3 

By finding matrices of translations and using these in combination 
with matrices of "point symmetries" like those found in Activity 20, 
it is possible to find the matrix of any symmetry of R3. 

22. Find 4 x 4 matrices for each of the following: 

a. The translation with vector oS where 0(0,0,0,1) and S(l,2,3,l). 
b. The plane reflection with axis X3 = 1. 
c. The point reflection with center ce1, 2, 3, 1). 

3.15 Suggestions for Further Reading 

The following list contains a wealth of resources both for the topics 
formally covered in Chapter 3 as well as for those encountered in the 
chapter's geometric explorations. 

Caldwell, J. H. (1966). Chapter 11: The plane symmetry groups. In Thpics 
in Recreational Mathematics. Cambridge, U.K.: Cambridge University 
Press. 

Coxford, A. F, and Usiskin, Z. P. (197l). Geometry: A Transformation Ap­
proach. River Forest, IL: Laidlow Brothers. (Uses transformations in 
presentation ofthe standard topics of elementary Euclidean geometry.) 

Cromwell, P. R. (1997). Polyhedra. Cambridge, U.K.: Cambridge University 
Press. 
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21. Using the distance formula, it is possible to show that the tetra­
hedron with vertices A(l, I, I, 1), B( -I, I, -I, 1), ce1, -I, -I, 1), 
and D( -1 - I, I, 1) is a regular tetrahedron. 
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if any of the coordinate planes is a plane of symmetry of this 
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b. Use your matrices from the previous activity to check to see 
if any of the coordinate axes is an axis of symmetry for this 
tetrahedron. 

c. Similarly determine if the origin 0(0,0,0, 1) is a point of 
symmetry for this tetrahedron. 
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Crowe, D. (1986). HiMAP Module 4: Symmetry, Rigid Motions, and Patterns. 
Arlington, MA: COMAP. 

Davis, D. M. (1993). The Nature and Power of Mathematics. Princeton, NJ: 
Princeton University Press. 

Devlin, K. (1994). Mathematics: The Science of Patterns. New York: 
Scientific American Library. 

Dodge, C. W. (1972). Euclidean Geometry and 7ransformations. Read­
ing, MA: Addison-Wesley. (Chapters 2 and 3 contain an elementary 
presentation of isometries and similarities and include applications.) 

Eccles, F. M. (1971). An Introduction to 7ransformational Geometry. Menlo 
Park, CA. Addison-Wesley. (Intended to introduce secondary-school 
students to transformations following a traditional geometry course.) 

Farmer, D. W. (1996). Groups and Symmetry, Vo1. 5, Mathematical World. 
AMS. (A beginning undergraduate guide to discovery of groups and 
symmetry.) 

Faulkner, J. E. (1975). Paper folding as a technique in visualizing a certain 
class of transformations. Mathematics 'Thacher 68: 376-377. 

Gans, D. (1969). 7ransformations and Geometries. New York: Appleton­
Century-Crofts. (A detailed presentation of the transformations intro­
duced in this chapter followed by a presentation of the more general 
projective and topological transformations.) 

Gardner, M. (1975). On tessellating the plane with convex polygon tiles. 
Scientific American 233(1):112-117. 

Gardner, M. (1978). The art ofM. C. Escher. In Mathematical Carnival, pp. 
89-102. New York: Alfred A. Knopf. 

Gardner, M. (1989). Penrose Tiles to 7rapdoor Ciphers. New York: W. H. 
Freeman & Co. 

Grunbaum, B., and Shepard, G. C. (1987). Tilings and Patterns. New York: 
W. H. Freeman. (The authoritative source on the subject of tilings and 
polyhedra.) 

Haak, S. (1976). Transformation geometry and the artwork ofM. C. Escher. 
Mathematics 'Thacher 69:647-652. 

Iaglom, 1. M. (1962). Geometric 7ransformations, Vols. I, 2, 3. New 
York: Random House. (Numerous problems of elementary Euclidean 
geometry are solved through transformations.) 

Jeger, M. (1969). 7ransformation Geometry. London: Allen and Un­
win. (Numerous diagrams are included in this easy-to-understand 
presentation of isometries, similarities, and affinities. 

Johnson, D. A. (1973). Paper Folding for the Mathematics Class. Reston, VA: 
NCTM. 
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Johnston, B. L., and Richman, F. (1997). Numbers and Symmetry: An In­
troduction to Algebra. New York: CRC Press. (Nice introductory chapter 
on symmetries and another on wallpaper patterns.) 

Jones, O. (1986). The Grammar of Ornament. Ware England: Omega 
Books. (Wonderful collection of ornamental patterns and designs from 
different civilizations.) 

King, J., and Schattschneider, D. (1997). Geometry TUrned On! Dynamic 
Software in Learning, 'Thaching and Research, MAA Notes 4l. MAA. (A 
collection of articles by people at the forefront of dynamic geometry.) 

Lockwood, E. H., and Macmillan, R. H. (1978). Geometric Symmetry. Cam­
bridge: Cambridge University Press. (Great source ofinformation about 
frieze, wallpaper, and space patterns.) 

MacGillavry, C. H. (1976). Symmetry Aspects of M.e. Escher's Periodic 
Drawings, 2d ed. Utrecht: Bohn, Scheltema & Holkema. 

Martin, G. E. (1982b). 7ransformation Geometry: An Introduction to Sym­
metry. New York: Springer-Verlag. (Introduces isometries and applies 
them to ornamental groups and tessellations.) 

Maxwell, E. A. (1975). Geometry by 7ransformations. Cambridge: Cam­
bridge University Press. (A secondary-school-Ievel introduction of 
isometries and similarities including their matrix representations.) 

O'Daffer, P. G., and Clemens, S. R. (1976). Geometry: An Investigative 
Approach. Menlo Park, CA: Addison-Wesley. 

Olson, A. T. (1975). Mathematics Through Paper Folding. Reston, VA: 
NCTM. 

Radin, C. (1995). Symmetry and Tilings. Notices of the AMS, 42(1). pp. 
26-31. 

Ranucci, E. R. (1974). Master oftessellations: M. C. Escher, 1898-1972. 
Mathematics 'Thacher 67:299-306. 

Ranucci, E. R., and Theters, J. E. (1977). Creating Escher-Type Drawings. 
Palo Alto, CA: Creative Publications (Straightforward, easy to follow 
directions. ) 

Robertson, J. (1986). Geometric constructions using hinged mirrors. 
Mathematics 'Thacher 79: 380-386. 

Rosen, J. (1975). Symmetry Discovered: Concepts and Application in Nature 
and Science. Cambridge: Cambridge University Press. 

Schattschneider, D. (1978). The plane symmetry groups: Their recogni­
tion and notation. The American Mathematical Monthly, 85:439-450. 

Schattschneider, D. (1990). M. e. Escher: Visions of Symmetry. New York: W 
H. Freeman and Company. (Contains all of Escher's notebook patterns 
with extensive commentary by the Escher expert.) 

Senechal, M., and Fleck, G. (eds.) (1988). Shaping Space: A Polyhedral 
Approach. Cambridge MA: Birkhauser Boston. 
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Singer, D. (1997). Geometry: Plane and Fancy. New York: Springer-Verlag 
(Contains information about tessellations in non-Euclidean geometry.) 

Steen, L.A. (Ed.) (1990). On the Shoulders of Giants: New Approaches to 
Numeracy. Washington DC: National Academy Press. 

Stewart, I., and Golubitsky, M. (1993). Fearful Symmetry: Is God A Geome­
ter? London: Penguin Books. (Analyzes the role of "symmetry breaking" 
in a wide range of natural patterns.) 

Teeters, J. C. (1974). How to draw tessellations of the Escher type. 
Mathematics Thacher 67: 307-310. 

Washburn, D., and Crowe, D. (1988). Symmetries of Culture; Theory and 
Practice of plane Patterns Analysis. Seattle: University of Washington 
Press. (Careful and nontechnical presentation of pattern analysis with 
examples from numerous cultures.) 

Watson, A. (1990). The mathematics of symmetry. New Scientist 17, Octo­
ber 1990: 45-50. (Survey article describing the group concept, its history 
and its application in mathematics, chemistry, and physics.) 

Weyl, H. (1989). Symmetry. Princeton: Princeton University Press. (Origi­
nal copyright in 1952. This classic explores symmetry as a geometrical 
concept and as an underlying principle in art and nature.) 

Suggestions for Viewing 
Adventures in Perception (1973, 22 min). An especially effective presen­

tation of the work of M. C. Escher. Produced by Hans Van Gelder, 
Film Producktie, N. v., The Netherlands. Available from Phoenix/B.F.A. 
Films, 468 Park Ave. S., New York, NY 100i6 (800) 221-1274. 

Dihedral Kaleidoscopes (197l; 13 min). Uses pair ofintersecting mirrors (di­
hedral kaleidoscopes) to demonstrate several regular figures and their 
stellations and tilings of the plane. Produced by the College Geometry 
Project at the University of Minnesota. Available from International 
Film Bureau, 332 South Michigan Ave., Chicago, IL 60604. 

Isometries (1971; 26 min). Demonstrates that every plane isometry is a 
translation, rotation, reflection, or glide reflection and that each is the 
product of at most three reflections. Produced by the College Geometry 
Project at the University of Minnesota. Available from International 
Film Bureau, 332 South Michigan Ave., Chicago, IL 60604. 

Similarity (1990; 25 min). A Project Mathematics video, produced by 
and available from California Institute of Technology, Caltech 1-70, 
Pasadena, CA 91125. 

Symmetries of the Cube (197l; 13.5 min). Uses mirrors to exhibit the sym­
metries of a square as a prelude to the analogous generation ofthe cube 
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by reflections. Produced by the College Geometry Project at the Uni­
versity of Minnesota, Available from International Film Bureau, 332 
South Michigan Ave., Chicago, IL 60604. 

Three-Dimensional Symmetry (1995; 17 min). Shows how transformations 
create symmetries in two and three dimensions. Computer anima­
tion is used to show the relationships found in symmetrical objects. 
Available from Key Curriculum Press, Berkeley, CA. 

The Fantastic World ofM. C. Escher (1994; 50 min). Explores the man, his 
inspirations, and the mathematical principles found in so much of his 
art through first-person accounts by Escher's friends and mathemati­
cians, computer animated recreations of his work, and a look at his 
sources of inspiration. Published by Film 7 International, Rome, Italy. 
Available from Atlas Video. 

Suggested Software 
The Geometry Center (http://www . geom. umn. edu/) is a great source 
of downloadable geometry software. In particular, you may want the 
following: 
Geomview-A 3D object viewer. 
Kali-A 2D symmetry pattern editor. 
Kaleido Tile-Creates tilings of the sphere, plane, or hyperbolic space. 
KaleidoMania' - A tool for dynamically creating symmetric designs and 

exploring the mathematics of symmetry. Available from Key Curricu­
lum Press (http;llwww.keypress.com/). 
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CHAPTER 

Projective 
Geometry 

4.1 Gaining Perspective 

From the analytic viewpoint of Klein's definition of geometry, pro­
jective geometry is the logical generalization of the affine geometry 
introduced in Chapter 3. Just as we were able to generalize the 
isometries of the Euclidean plane to similarities, and these in turn to 
affinities, we will now be able to generalize affinities to collineations, 
the transformations that define projective geometry. There is, how­
ever, one new ingredient required in this last generalization. The 
set of points contained in the Euclidean plane must be enlarged to 
include points on one additional line, a line often referred to as the 
ideal line. Rather than complicating the geometry, these new ideal 
points simplifY projective geometry and give it the highly desirable 
property of duality. 

The historical development of projective geometry, however, 
was synthetic, rather than analytic, in nature. The origins of this 
geometry can be traced to the attempts of Renaissance painters 
to achieve realistic representations of three-dimensional objects on 
two-dimensional canvas. These painters, influenced by Plato's thesis 
that nature is mathematically designed, sought and found mathe­
matical relations that could be used to achieve perspective. This 

213 

CHAPTER 

Projective 
Geometry 

4.1 Gaining Perspective 

From the analytic viewpoint of Klein's definition of geometry, pro­
jective geometry is the logical generalization of the affine geometry 
introduced in Chapter 3. Just as we were able to generalize the 
isometries of the Euclidean plane to similarities, and these in turn to 
affinities, we will now be able to generalize affinities to collineations, 
the transformations that define projective geometry. There is, how­
ever, one new ingredient required in this last generalization. The 
set of points contained in the Euclidean plane must be enlarged to 
include points on one additional line, a line often referred to as the 
ideal line. Rather than complicating the geometry, these new ideal 
points simplifY projective geometry and give it the highly desirable 
property of duality. 

The historical development of projective geometry, however, 
was synthetic, rather than analytic, in nature. The origins of this 
geometry can be traced to the attempts of Renaissance painters 
to achieve realistic representations of three-dimensional objects on 
two-dimensional canvas. These painters, influenced by Plato's thesis 
that nature is mathematically designed, sought and found mathe­
matical relations that could be used to achieve perspective. This 

213 J. N. Cederberg, A Course in Modern Geometries
© Springer Science+Business Media New York 2001



214 4. Projective Geometry 

interplay of mathematics and art, the importance of Plato's thesis, 
and the influence of the church make the origins ofprojective geom­
etry a fascinating episode in the history of mathematics. This history 
is detailed in the sources given at the end of this chapter. These read­
ings should explain the connection between the ideal points referred 
to at the beginning of this section and the vanishing points used in 
paintings. 

The relevance of projective geometry to achieving realistic pla­
nar representations of three-dimensional objects is currently making 
the study of projective geometry a prerequisite to the study of 
computer graphics. The value of this prerequisite is enhanced, 
since computer graphics uses the analytic representations of points 
and lines by homogeneous coordinates and the representation of 
transformations by matrices developed in projective geometry. 

On the other hand, computer-based dynamic geometry soft­
ware can enhance the presentation and understanding of con­
cepts of plane projective geometry covered in this chapter. Such 
software facilitates efficient and accurate constructions of the 
point and line configurations involved in definitions, theorems 
and proofs. And using computer tools to "paint" lines with dif­
ferent colors and to "drag" initial objects so that intersection 
points are within view can change an apparent tangle of lines 
into an enlightening visual aid. (For specific instructions for us­
ing the dynamic geometry software programs Cabri Geometry 
II and Geometer's Sketchpad to carry out selected exercises, see 
http://www.stolaf.edu/people/cederj/geotext/info.htm.) 

4.2 The Axiomatic System and Duality 

Before introducing an analytic model for plane projective geometry, 
it is necessary to develop an axiomatic system for this geometry. The 
axiom system we will consider contains six axioms; however, we will 
call any system satisfYing the first four of these axioms a projective 
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plane.1 It is these first four axioms we will consider as we begin 
our synthetic treatment of plane projective geometry. Just as in the 
axiom systems of Chapter 1, the undefined terms for this system are 
"point," "line," and "incident"; points are said to be collinear ifthey are 
incident with the same line. The term "complete quadrangle" used 
in Axiom 4.4 will be explained in Definition 4.2. 

Axioms for a Projective Plane 

Axiom 4.1 
Any two distinct points are incident with exactly one line. 

Axiom 4.2 
Any two distinct lines are incident with at least one point. 

Axiom 4.3 
There exist at least four points, no three of which are collinear. 

Axiom 4.4 
The three diagonal points of a complete quadrangle are never 
collinear. 

Note that although the first axiom is characteristic of Euclidean ge­
ometry, the second axiom, guaranteeing that pairs of lines intersect, 
is not; that is, there do not exist parallel lines in this geometry. Also 
notice that Axioms 4.1 and 4.2 are nearly dual statements. (Recall 
that the dual of a statement is obtained by replacing each occur­
rence of the word "point" by the word "line" and vice versa.) The 
dual of Axiom 4.1 would read: "Any two distinct lines are incident 
with exactly one point:' A proof of this statement follows trivially 
from Axioms 4.1 and 4.2 (see Exercise 1), and thus the duals of both 
axioms are theorems of this axiomatic system. 

lIn general, a projective plane is a system that satisfies Axioms 4.1-4.3 and an 
axiom that guarantees that every line contains at least three points. 
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lIn general, a projective plane is a system that satisfies Axioms 4.1-4.3 and an 
axiom that guarantees that every line contains at least three points. 
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FIGURE 4.1 A triangle. 

A careful reading will show that Axioms 4.1 and 4.2 do not assert 
the existence of either points or lines. However, Axiom 4.3 and its 
dual assure us that points and lines do exist in the projective plane. 

Theorem 4.1 (Dual of Axiom 4.3) 
There exist at least four lines, no three of which are concurrent. 

Proof 
Let A, B, C, D be four points, no three collinear, as guaranteed by 
Axiom 4.3. Then by Axiom 4.1, there exist four lines AB, AC, CD, 
and BD. If any three of these were concurrent, the dual of Axiom 4.1 
would be contradicted. • 

As in the preceding proof, points of this geometry are denoted 
by uppercase letters, A, B, C, and so on, while lines are denoted by 
lowercase letters a, b, c, and so on. The pair of letters AB refers to 
the unique line determined by points A and B. Since a pair of lines 
a and b also determines a unique point, we denote this point by a·b. 
In addition, we use the notation Ala or alA to indicate that point A 

and line a are incident. 
Since Axiom 4.3 guarantees the existence of three noncollinear 

points, figures resembling Euclidean triangles exist. However, since 
there is no concept of betweenness in this geometry, the sides of a 
triangle are lines, not segments. This latter change makes the fol­
lowing definition self-dual so that the definition is unchanged when 
the terms "line" and "point" are interchanged. 

Definition 4.1 
A triangle is a set of three noncollinear points and the three lines 
determined by these points. The points are called vertices and the 
lines are called sides of the triangle (Fig. 4.1). 
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Figs. consisting of four points and the lines they determine also 
exist. Unlike triangles, these figures have no comparable analogues 
in Euclidean geometry. 

Definition 4.2 
A (complete) quadrangle is a set off our points, no three collinear, and 
the six lines determined by these four points. The points are called 
vertices and the lines are called sides of the quadrangle. If A, B, C, 
D are the four points of a quadrangle, then AB and CD, AC and BD, 
and AD and BC are said to be pairs of opposite sides. The points at 
which pairs of opposite sides intersect are called diagonal points of 
the quadrangle (Fig. 4.2). 

As asserted in Axiom 4.4, the diagonal points of a complete 
quadrangle form a triangle known as the diagonal triangle of the 
quadrangle. The existence of this diagonal triangle can be used to 
show that each line in the projective plane contains at least four 
points (see Exercise 2). 

1b determine whether the dual of Axiom 4.4 is a theorem, it is 
necessary to consider the dual of Definition 4.2 . Unlike the definition 
of a triangle, Definition 4.2 is not self-dual. Therefore the dual of a 
quadrangle is another figure of this geometry. 

Definition 4.3 
A (complete) quadrilateral is a set of four lines, no three concurrent, 
and the six points determined by these lines. The points are called 
vertices and the lines are called sides of the quadrilateral. If a, b, c, d 
are the four lines of the quadrilateral, a·b and c·d, a·c and b·d, and 
a·d and b·c are said to be pairs of opposite vertices. The lines joining 

FIGURE 4.2 A complete quadrangle. 
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FIGURE 4.3 A complete quadrilateral. 

pairs of opposite vertices are called diagonal lines of the quadrilateral 
(Fig. 4.3). 

Theorem 4.2 (Dual of Axiom 4.4) 
The three diagonal lines of a complete quadrilateral are never concurrent. 

Proof 
Let abcdbe an arbitrary complete quadrilateral. LetE = a·b, F = b·c, 
G = c·d, H = a·d, I = a·c, and J = b·d. Then the diagonal lines are 
EG, FH, and If. Assume these three lines are concurrent; that is, 
EG, FH, and If intersect at a point. But EFGH forms a complete 
quadrangle with diagonal points EF·GH = b·d = f, EG·FH, and 
EH·FG = a·c = I, but since EG, FH, and If are concurrent, this 
implies that the diagonal points of the complete quadrangle EFGH 
are collinear, contradicting Axiom 4.4. Thus, the diagonal lines of 
complete quadrilateral abcd are not concurrent. • 

Hence, the diagonal lines of a complete quadrilateral also deter­
mine a triangle known as the diagonal triangle of the quadrilateral. 

With the proof of Theorem 4.2 we have completed the pro­
cess of showing that the axiomatic system consisting of Axioms 4.1 
through 4.4 satisfies the principle of duality (see Section 1.3). Even­
tually we shall add two more axioms to this system and verifY that 
this larger system also satisfies the principle of duality. 

Even though our objective in this chapter is the study of the real 
projective plane, it is interesting to note that Axioms 4.1 through 4.3 
are essentially the same as three of the four axioms for finite pro­
jective planes given in Section 1.3. The remaining axiom for finite 
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projective planes (Axiom P.2) refers to the number of points on a 
line. As indicated previously in this section, Axiom 4.4 guarantees 
that there are at least four points on each line. Thus, any finite model 
of our current axiomatic system is of order n ::: 3 and so contains 
at least 13 points. In fact, the 13-point model (Model P.3) given in 
Section l.3 is also a model for Axioms 4.1 through 4.4. The verifica­
tion that this model actually satisfies Axiom 4.4 consists of a tedious 
case-by-case check of all possible quadrangles (see Exercise 6). 

An infinite model of this axiomatic system can be obtained by 
slightly extending a Euclidean plane as follows. 

An Infinite Model for the Projective 
Plane 

Let Tr be a plane parallel to, but not equal to the x, y-plane in Euclidean 
3-space, and let 0 denote the origin of the Cartesian coordinate 
system. Note that each point Pin Tr, together with the point 0, deter­
mines a unique line p, so P can be said to correspond to a unique line 
through 0, namely, the line p. Similarly, each line I in Tr, together 
with the point 0, determines a unique plane A, so I can be said to 
correspond to a plane through 0, namely, A (Fig. 4.4). This corre­
spondence is clearly a one-to-one mapping of the set of points and 
lines in Tr into the set oflines and planes through O. However, there 

z 

o 

FIGURE 4.4 Creating a projective plane model. 
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is one plane, namely, the x, y-plane, and a subset of lines, namely, 
the set of al11ines through 0 in the x, y-plane, that are "missed" by 
this mapping. 

A model, rr', ofthe projective plane is obtained by adding an ideal 
line and ideal points to rr to make this correspondence not only one­
to-one but also onto. The ideal line, which is added to rr, corresponds 
to x, y-plane and the ideal points added to rr correspond to those lines 
through 0 that lie in the x, y-plane. Once added, this ideal line and 
these ideal points are considered to be indistinguishable from the 
other lines and points in rr'. 

In addition to describing the points and lines of rr' it is necessary 
to describe the interpretation of the term "incident!' A point and 
line in rr' are said to be incident if and only if the corresponding line 
through 0 lies in the corresponding plane through o. Thus, the ideal 
points are incident with the ideal line. Under this interpretation, rr' 
can be shown to be a model of the projective plane (see Exercise 5). 

Exercises 
1. Write out the proof of the dual of Axiom 4.l. 

2. (a) Prove that there exist at least three points on every line of a projec­
tive plane. (Note: You cannot assume the existence of any points on a 
line.) (b) Extend your proof in part (a) to show that there exist at least 
four points on every line of a projective plane. 

3. Find a model for the axiom system consisting of Axioms 4.1-4.3 that 
has exactly three points on every line. What is the total number of 
points in this model? The total number of lines? Does your model 
satisfy Axiom 4.4? 

4. Show that Axiom4.4 is independent of Axioms 4.1-4.3. (Note: Ax­
iom 4.4 is known as Fano's axiom.) 

5. Verify that rr' satisfies Axioms 4.1-4.3. Which points in rr' are points of 
intersection oflines that are parallel in the Euclidean plane rr? 

6. (a) List all possible quadrangles in Model P.3 of Section 1.3 that contain 
the points A and B as two of the four vertices, (b) Verify Axiom 4.4 for 
the four quadrangles in this model in which three of the vertices are 
A, B, andE. 
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4.3 Perspective Thiangles* 

Although Axioms 4.1 through 4.4 describe the basic properties of 
our projective plane, we will require two more important proper­
ties, which are formalized in Axioms 4.5 and 4.6. The first of these 
properties concerns two relations between pairs of triangles. As 
the following definition indicates, one of these relations requires 
a correspondence between vertices and the other requires a cor­
respondence between sides. As in the familiar case of congruent 
triangles in Euclidean geometry, the order in which the vertices of 
the triangles are named is used to indicate the correspondence. 

Definition 4.4 
Triangles f:::.ABC and f:::.A'B'C' are said to be perspective from a point 
if the three lines joining corresponding vertices, AA', BB', and CC', 
are concurrent. The triangles are said to be perspective from a line 
if the three points of intersection of corresponding sides, AB·A'B', 
AC·A'C', and BC·B'C', are collinear (Fig. 4.5). 

Axiom 4.5 (Desargues'Theorem) 
If two triangles are perspective from a point, they are perspective 
from a line. 

FIGURE 4.5 L.ABC and L.A'B'C' perspective from P and 1. 

* Dynamic geometry software can be used to carry out exercises in this and 
other sections marked with an asterisk. For an introduction to this software, see 
http://www.stolaf.edu/people/cederj/geotext/info.htm. 
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This statement can be easily proved in projective geometry 
of 3-space (see Coxeter, 1987, Projective Geometry), and hence is 
frequently referred to as Desargues' theorem, thus honoring the 
French mathematician who anticipated the development of projec­
tive geometry. However, in plane projective geometry, either this 
statement or an equivalent statement must be assumed as an ax­
iom, since in some geometries that satisfy Axioms 4.1 through 4.4 
this statement does not hold. 

Th ensure that our axiom system still satisfies the principle of 
duality, we must prove the dual of Axiom 4.5. In this case the dual 
is just the converse of the axiom. 

Theorem 4.3 (Dual of Axiom 4.5) 
If two triangles are perspective from a line, they are perspective from a 
point. 

Proof 
Assume L.ABC and L.A' B' C' are perspective from a line, that is, 
AB·A'B' = P, B'C'·BC = Q, and AC·A'C' = R are collinear (see 
Fig. 4.6). It is sufficient to show thatAA', BB', and cC' are concurrent. 
Let 0 = AA'·BB', and consider .6.RAA' and L.QBB'. Then P is on 
RQ since P, Q, and R are collinear and P is on AB and on A'B' by 
definition of P. Thus, L.RAA' and L.QBB' are perspective from P, so 
by Axiom 4.5 they are perspective from a line; that is, RA·QB = C, 
RA'·QB' = C', andAA'·BB' = 0 are collinear. Thus AA', BB', and CC' 
are concurrent. • 

R 

FIGURE 4.6 6ABC and 6A' B' C' perspective from a line. 
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The importance of Axiom 4.5 and its implications cannot be over­
stated. It provides a means of proving that three points are collinear 
and the preceding proof offers a typical example of this use. It will 
also be used to show that the fourth point of a set known as a 
harmonic set is unique. 

Exercises 

Dynamic geometry software can be used to carry out Exercises I, 2, and 
4.Seehttp://www.stolaf.edu/people/cederj/geotext/info.htm. 

1. Construct two triangles that are perspective from a point. From which 
line are they perspective? 

2. Construct two triangles that are perspective from a line. From which 
point are they perspective? 

3. (a) Will a Desargues' configuration (see Section l.5) be a projective 
plane? Why? (b) Show that in the configuration illustrated in Fig. l.8 
that L.BEH and L.ADI are perspective from a point and from a line. 

4. If the vertices of L.PQF..lie, respectively, on the sides of !:"ABC so that 
AP, BQ, and CR are concurrent, and if AB·PQ = U, AC·PR = V, and 
BC·QF.. = W, show that U, V and Ware collinear. 

4.4 Harmonic Sets* 

This section introduces special sets offour collinear points (and dual 
sets of four concurrent lines) that are defined entirely in terms of a 
construction involving points and lines. In Section 4.5, we shall see 
that point and line constructions can be used to define correspon­
dences between two sets of collinear points, two sets of concurrent 
lines, and between a set of collinear points and a set of concurrent 
lines; in Section 4.6, point and line constructions are used to define 
conics. 
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Definition 4.5 
Four collinear points, A, B, C, D are said to form harmonic set 
H(AB, CD) if there is a complete quadrangle in which two oppo­
site sides pass through A, two other opposite sides pass through B, 
while the remaining two sides pass through C and D, respectively. C 
is called the harmonic conjugate of D (or D is the harmonic conjugate 
of C) with respect to A and B. 

Note that A and B are diagonal points of the quadrangle and are 
named first. Also note that the points ofthe first pair in the harmonic 
set are distinguished from the points of the second pair but there is 
no distinction made between points of the first pair or points of the 
second pair: that is, 

H(AB, CD) {:} H(BA, CD) {:} H(AB, DC) {:} H(BA, DC). 

Using this definition, given any three distinct collinear points, A, 
B, C, a fourth point D, the harmonic conjugate of C with respect to 
A and B, can be constructed as follows. 

Construction of the Fourth Point of a 
Harmonic Set 

Let E be an arbitrary point not on AB and m be a line through B that 
is distinct fromAB and not incident withE (Fig. 4.7). Let m·AE = F, 
m·CE = G, and AG·EB = H. As you can verify, the points E, F, G, 

A c 

FIGURE 4.7 Harmonic set H(AB, CD). 
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no distinction made between points of the first pair or points of the 
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Using this definition, given any three distinct collinear points, A, 
B, C, a fourth point D, the harmonic conjugate of C with respect to 
A and B, can be constructed as follows. 

Construction of the Fourth Point of a 
Harmonic Set 

Let E be an arbitrary point not on AB and m be a line through B that 
is distinct fromAB and not incident withE (Fig. 4.7). Let m·AE = F, 
m·CE = G, and AG·EB = H. As you can verify, the points E, F, G, 
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FIGURE 4.7 Harmonic set H(AB, CD). 



4.4. Hannonic Sets 225 

and H form a complete quadrangle with two opposite sides through 
A, two opposite sides through B, and one of the remaining sides 
through C . Therefore, D = FH·AB. 

Using Axiom 4.4, we can verify that D is distinct from A, B, and 
C (see Exercise 4), thus demonstrating again that each line of our 
projective plane contains at least four points. 

Both the definition and the preceding construction for finding 
D, the harmonic conjugate of C with respect to the points A and 
B, may make the point D appear somewhat arbitrary. However, the 
following theorem shows that if we begin with three given points A, 

B, and C, any construction that satisfies Definition 4.5 will give the 
same point D; that is, D is uniquely determined. 

Theorem 4.4 
If A, B, and C are three distinct, collinear points, then D, the harmonic 
conjugate of C with respect to A and B, is unique. 

Proof 
Let EFGH be a quadrangle used to find the point D. Assume a sec­
ond quadrangle E'F'G'H' is also constructed so that E'H'·F'G' = B, 
E'F'·G'H' = A, and E'G'·AB = C, and let D* = F'H'·AB (Fig. 4.8). It 
suffices to show that D* = D. Th do this, Axiom 4.5 and its dual are 
employed. 

Note that f::::.EFG and f::::.E'F'G' are perspective from line AB. So by 
Theorem 4.3, they are perspective from a point; that is, EE', FF', and 
GG' are concurrent. Similarly f::::.EGH and f::::.E'G'H' are perspective 
from AB, and hence EE', GG', and HH' are concurrent. Thus, the 

F' 
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FIGURE 4.8 Uniqueness of Din H(AB, CD). 
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four lines EE', FF', GG', and HH' are all concurrent. So L.FHG and 
L.F'H'G' are perspective from a point, and by Axiom 4.5 it follows 
that they are perspective from a line. So FH·F'H', FG·F'G' = B, and 
HG·H'G' = A are collinear. But FH·AB = D, F'H'·AB = D*. Thus, 
D=D*. • 

In addition to the possible order changes within the first and last 
pairs of points of a harmonic set, the following theorem indicates 
that the pairs themselves may be interchanged. 

Theorem 4.5 
H(AB, CD) #- H(CD, AB). 

proof 
We assume H(AB, CD) and show H(CD, AB). A similar proof can be 
used to verifY the second half of the equivalence. 

Since H(AB, CD), there is a quadrangle EFGH such that A = 
EF-GH, B = EH·FG, C = EG·n, and D = FH'n where n = AB. 
Now let S = DG·FC and T = GE-FH, and consider quadrangle TGSF 
(Fig. 4.9). Note the two lines SF = FC and TG = GE are both incident 
with C. Also GS = DG and TF = FH are both incident with D. 
Furthermore, line GF is incident with B. Thus, it suffices to show 
that TS is incident with A. Note that A = EF-GH. So consider 6. THE 
and 6.SGF. If these triangles can be shown to be perspective from a 
point, it immediately follows that A is incident with TS, and therefore 
that H(CD, AB). 

Since the intersections of corresponding sides of these triangles 
are TE-SF = GE-FC = C, TH·SG = FH·DG = D, and HE·GF = B, 

A c 

FIGURE 4.9 H(AB, CD) =* H(CD, AB). 
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these triangles are perspective from line n and therefore they are 
perspective from a point. • 

Corollary 
H(AB, CD) <? H(AB, DC) <? H(BA, CD) <? H(BA, DC) <? 

H(CD,AB) <? H(CD,BA) <? H(DC,AB) <? H(DC,BA). 

As in previous sections, the dual of this definition of a harmonic 
set of points can be formulated. 

Definition 4.6 
Four concurrent lines, a, b, c, d, are said to form the hannonic set 
H( ab, cd) if there is a complete quadrilateral in which two opposite 
vertices lie on a, two other opposite vertices lie on b, while the 
remaining two vertices lie on c and d, respectively (see Fig. 4.10 
where lines e, f, g, and h form a quadrilateral yielding H(ab, cd)). 

The construction of the fourth line of a harmonic set and the 
following theorems follow automatically by dualizing the previous 
results. 

Theorem 4.6 
If lines a, b, and c are concurrent, then d, the hannonic conjugate of c 
with respect to a and b, is unique. 

Theorem 4.7 
H(ab, ad) <? H(cd, ab). 

FIGURE 4.10 Harmonic set He ab, cd). 
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A B c 

FIGURE 4.11 Exercise 1a. 

B C A 

FIGURE 4.12 Exercise lb. 

FIGURE 4.13 Exercise 2a. 

Eventually, we shall see that the harmonic property is an invari­
ant under the transformations of projective geometry. In addition, 
the harmonic property can be used to coordinatize the projective 
plane, that is, using constructions involving only lines and points 
and without any notion of distance, a coordinate system can be con­
structed that assigns to each point in the projective plane an ordered 
pair of numbers. (For a detailed presentation of this process see 
Thller, 1967, Modem Introduction to Geometries.) 

Exercises 

Dynamic geometry software can be used to carry out Exercises I, 2, 5, 
and 6. See http://www.stolaf.edu/people/cederj/geotext/info.htm. 

l. Let points A, B, C be located as shown in Figures 4.11 and 4.12. Con­
struct the harmonic conjugate of C with respect to A and B: (a) in 
Figure 4.11; and (b) in Figure 4.12. 

2. Let lines a, b, c be located as shown in Figure 4.13 and 4.14. Construct 
the harmonic conjugate of c with respect to a and b: (a) in Figure 4.13; 
and (b) in Figure 4.14. 
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FIGURE 4.14 Exercise 2b. 

3. In Figure 4.7,letI = EG·FH. Show that I is an element of two nonequiv­
alent harmonic sets in this figure. Be sure to specifY the quadrangle 
involved in each. 

4. Prove that the fourth point of a harmonic set is distinct from the three 
other points ofthe harmonic set; that is, if H(AB, CD), prove that Dis 
distinct from A, B, and C. 

5. Suppose in the Euclidean plane that B is the midpoint of segment AC. 
Thy to construct the harmonic conjugate of B with respect to A and C. 
What happens? 

The following exercise is reprinted with permission from Coxeter (1987, 
Projective Geometry, p. 23). 

6. Working in the Euclidean plane, draw a line segment GC, take G two­
thirds of the way along it, and E two-fifths of the way from G to C. 
(For instance, make the distances in centimeters GG = 10, GE = 2, 
EC = 3.) If the segment GC represents a stretched string tuned to the 
note C, the same string stopped at E or G will play the other notes of 
the major triad. By drawing a suitable quadrangle, verifY experimen­
tally that H(GE, CG). (This phenomenon explains our use of the word 
harmonic.) 

4.5 Perspectivities and Projectivities* 

1tansformations of the projective plane. known as collineations, are 
Introduced analytically in Section 4.10. In that section we will see 
that, as the name suggests, these transformations preserve coZlinear­
ity; that is, the images of collinear points are also collinear. Thus, if 
we restrict our view to points on a particular line, we will be able to 
say that a collineation induces a mapping from this set of collinear 
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points to another set of collinear points. As you may expect, we shall 
see that collineations preserve concurrence as well; that is, the im­
ages of concurrent lines will be concurrent lines. So collineations 
will also induce mappings from a set of concurrent lines to another 
set of concurrent lines. Other transformations, known as a correla­
tions, will induce mappings from collinear points to concurrent lines 
and vice versa. 

In this section, we learn how to use point and line constructions 
to synthetically obtain correspondences, which we later show are 
exactly the correspondences given analytically by the induced map­
pings described above. Many of the terms and properties involved in 
these constructions reflect the artistic origins ofprojective geometry. 

In order to facilitate our description of these constructions we 
will begin by adopting the following dual definitions. 

Definition 4.7 
The set of all lines through a point P is called a pencil of lines with 
center P (Fig. 4.15); the set of all points on a line p is called a pencil 
of points with axis p (Fig. 4.16). 

With these definitions, the mappings mentioned previously can 
be formally defined in terms of mappings between pencils. The most 
elementary of these mappings are known as perspectivities. 

FIGURE 4.15 Pencil oflines with center P. 

p 
• • • • 

FIGURE 4.16 Pencil of points with axis p. 
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FIGURE 4.17 Perspectivity between pencils of points. 

Definition 4.8a 
A one-to-one mapping between two pencils of points with axes p and 
p' is called a perspectivity if each line joining the point X on p with 
the corresponding point X' on p' is incident with a fixed point O. 0 is 
called the center of the perspectivity. Such a perspectivity is denoted 
X~X' (Fig. 4.17). 

Definition 4.8b 
A one-to-one mapping between two pencils of lines with centers P 
and pI is called a perspectivity, if each point of intersection of the 
corresponding lines x on P and x' on p' lies on a fixed line o. 0 is 
called the axis of the perspectivity. Such a perspectivity is denoted 
x*x' (Fig. 4.18). 

Definition 4.8c 
A one-to-one mapping between a pencil of points with axis p and a 
pencil oflines with center P is called a perspectivity if each point X on 
p is incident with the corresponding line x on P. Such a perspectivity 
is denoted X"Ax or x"AX (Fig. 4.19). 

FIGURE 4.18 Perspectivity between pencils of lines. 
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~p--------~--~~p 
X 

FIGURE 4.19 Perspectivity between a pencil of points and a pencil of 
lines. 

Note that Definition 4.8c includes two types of perspectivities. 
In one the first pencil is a pencil of points, and the second is a 
pencil of lines; in the other the first pencil is a pencil of lines, and 
the second is a pencil of points. Furthermore, the representation of 
this perspectivity uses the symbol" 1\ /I without any letter above the 
symbol. 

In each of the three definitions, the pencils are said to be per­
spectively related. If the perspectively related pencils are of the same 
kind, we can show (see Exercise 1) that the perspectivity is uniquely 
determined by two pairs of corresponding elements (provided no el­
ement of the two pairs is on both pencils). In other words, once two 
pairs of corresponding elements are specified, the image of any third 
element of the first pencil is uniquely determined. 

Since perspectivities are one-to-one mappings, their inverses ex­
ist and are clearly again perspectivities. Also a finite product of 
perspectivities, that is, a finite number of perspectivities used in 
succession, produces another mapping known as a projectivity. It is 
to these mappings that our final axiom refers. 

Definition 4.9 
A one-to-one mapping between the elements of two pencils is called 
a projectivity if it consists of a finite product of perspectivities. 

Figures 4.20 through 4.22 show projectivities between pencils of 
points, pencils of lines, and a pencil of lines and a pencil of points, 
respectively. Notice that the notation for projectivities uses the un­
adorned symbol" /\./1 When a projectivity exists between two pencils, 
the pencils are said to be projectively related. If a projectivity maps 
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B C 

FIGURE 4.20 AEe 1\ Aft Eft eft. 

FIGURE 4.21 abc 1\ aftbft eft. 

FIGURE 4.22 abc 1\ Aft Eft eft. 

either a pencil of points or a pencil of lines onto itself, it is called a 
projectivity on the pencil. Axiom 4.6, which is self-dual, describes an 
important property of projectivities on pencils. 

Axiom 4.6 
If a projectivity on a pencil leaves three elements of the pencil 
invariant, it leaves every element of the pencil invariant. 
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Thus, a projectivity on a pencil that keeps three elements in­
variant is necessarily the identity mapping. Other observations that 
should be made at this point include: (1) a projectivity does not have 
a center or an axis unless it consists of just one perspectivity; and 
(2) the inverse of a projectivity and the product of two projectivities 
are again projectivities. 

Whereas a perspectivity between two pencils is uniquely de­
termined by two pairs of corresponding elements of the pencils, 
the existence of a projectivity between two pencils that maps any 
three elements of the first pencil to three corresponding elements 
of the second pencil can be demonstrated by construction. This 
construction is demonstrated for two distinct pencils of points. 

Construction of a Projectivity Between 
Pencils of Points 

Let A, B, C be elements of the pencil with axis p and A', B', C' 
corresponding elements of the pencil with axis p' (pf. p'). Construct 
line AA' and choose a point P f. A' on this line. Let m f. p' be 
an arbitrary line through A'. Let B1 = BP·m, C1 = CP·m. Thus, 
ABCEA'B C Now let Q = B B'·C C' Then A'B C <;lA'B'C' and /\ 1 1· 1 1· 1 1/\ ' 

therefore ABC J\ A'B'C' (Fig. 4.23). 

A~----~~---- P 

FIGURE 4.23 Constructing the projectivity ABC !\ A'B'C'. 
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Note that the preceding construction requires only two per­
spectivities, but the construction of these perspectivities is not 
unique. 

The existence of a projectivity between pencils oflines that maps 
any three lines of the first pencil to three corresponding lines of the 
second pencil follows by duality. The existence of a projectivity that 
maps three concurrent lines to three corresponding collinear points 
can also be easily demonstrated (see Exercise 4). 

Thus, any three elements of one pencil can be projectively 
related to three arbitrary elements of a second pencil and the corre­
spondence defined by the projectivity constructed from these three 
pairs can be extended to pair all the remaining elements of the two 
pencils. However, since the construction involved is not uniquely 
specified, it is not immediately apparent that the images of any 
fourth element of the first pencil determined by different construc­
tions always turn out to be the same. The remarkable result that 
says this does indeed happen is known as the fundamental theorem 
of projective geometry. 

Theorem 4.8 (Fundamental Theorem) 
A projectivity between two pencils is uniquely determined by three pairs 
of corresponding elements. 

Proof 
The existence of a projectivity has been demonstrated. The unique­
ness follows from Axiom 4.6 as shown. 

Case 1: TIuo pencils of points. Assume that A, B, C are elements of a 
pencil of points with axis p and that A', B', C' are the corresponding 
elements of a second pencil with axis pl. By the preceding result, 
there exists a projectivity T such that 

T : ABC ~ A'B'C'. 

If T is not unique, there exists another projectivity S such that 

S : ABC ~ A'B'C'. 

Then, under the projectivity ST-1 , 

A'B'C' 1\ ABC 1\ A'B'C', 
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or in other words ST-1 is a projectivity on p' keeping the three points 
A', B', and C' invariant. Therefore, by Axiom 4.6, ST-1 = I, or S = T. 

Case 2: TWo pencils of lines. The proof follows automatically by 
duality of case 1. 

Case 3: A pencil of points and a pencil of lines. This case follows 
from cases 1 and 2 and the use of a perspectivity between a pencil 
of points and a pencil oflines that is also uniquely determined. • 

The construction used to demonstrate the existence of a projec­
tivity mapping three elements of one pencil to three corresponding 
elements of a second pencil also provides direct proofs of two 
corollaries to the fundamental theorem (see Exercise 8). 

Corollary 1 
If in a projectivity between two distinct pencils an element corresponds 
to itself, then the projectivity is a perspectivity (i.e., the mapping requires 
only one perspectivity). 

Corollary 2 
A projectivity between two pencils can be expressed as the product of at 
most three perspectivities. 

Since projectivities are mappings induced by the general trans­
formations of the projective plane, it is important to note that the 
harmonic relation remains invariant under projectivities. 

Theorem 4.9 
The harmonic relation is invariant under a projectivity. So, for example, 
if H(AB, CD) andABCD /\ A'B'C'D', then H(A'B', C'D'). 

Proof 
Since the projective plane possesses duality, and any projectivity is 
a product of perspectivities, it is sufficient to show that H(AB, CD) 
implies H(ab, cd) where ABC7:abcd. Let 0 = a·b thus a = OA, b = 
OB, and so on. Since H(AB, CD), there exists a quadrangle with one 
vertex at 0, namely OEFG, such that A and B are diagonal points of 
the quadrangle, etc. Let A = EF·OG, B = OE-GF, C = OF-AB, and 
D = GE·AB (Fig. 4.24). Now consider quadrilateral GF, GE, AE, 
AB. Then GF·GE = G, and AE-AB = A are on a; GE-AE = E and 
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A o 

FIGURE 4.24 H(AB, CD) => H(ab, cd). 

GF-AB = B are on b; GE·AB = D is on d, and GF·AE = F is on c. 
Thus, R(ab, cd). • 

As we have seen, three elements of one pencil can always be 
mapped to three elements of a second pencil via a projectivity, but 
a set of four elements of one pencil cannot in general be mapped 
to a set of four elements of a second penci1. If, however, both the 
first and second sets are harmonic sets, the desired projectivity will 
exist. This is formalized in the following theorem, which holds for 
both pencils of points and pencils oflines, even though the notation 
used is suggestive of pencils of points. 

Theorem 4.10 
If four elements A, B, C, D of one pencil form a harmonic set, 
RCAB, CD), and four elements A', B', C', D' of a second pencil form 
a second harmonic set, RCA'B', C'D'), then there exists a projectivity 
mapping A, B, C, D to A', B', C', D', respectively. 

proof 
By Theorem 4.8, there is a projectivity such that ABC /\ A'B' C'. Let 
D* be the image of D under this projectivity. Then by Theorem 4.9, 
R(A'B', C'D*): but by Theorem 4.4, the harmonic conjugate of C' 
with respect to A' and B' is unique. Thus, D* = D'. • 

Before leaving the topic of projectivities, it is useful to note that 
there is a second, frequently more convenient method for construct-
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ing the images under a projectivity between pencils of points. This 
method makes use of the following definition and theorem. 

Definition 4.10 
If A and A', Band B' are pairs of corresponding points, the cross joins 
of these pairs of points are the lines AB' and BA' . 

Theorem 4.11 
A projectivity between two distinct pencils of points determines a unique 
line called the axis of homology, which contains the intersections of the 
cross joins of all pairs of corresponding points. 

Proof 
Consider two distinct pencils of points with axes p and p'. Assume 
ABC AA'B'C', where P = pop' is none of the six points. Clearly A'A, 
A'B, A'CAABC andA'B'C'AAA', AB', AC'. Thus, A'A, A'B', A'CAAA', 
AB', AC', so by Corollary I, of the fundamental theorem A'A, A'B, 
A'C*AA', AB', AC' for some axis h. So A'B·AB' andA'C.AC', are both 
on h (Fig. 4.25). 

To use h to find the image of another point D on p, proceed as 
follows. Construct A'D. Let Dl = A'D·h. Then D' = AD1op'. 

To show that h is unique, it is necessary to show that h is indepen­
dent of the choices for the centers of the pencils oflines (here A and 
A') and thus that the intersections of cross joins of all pairs of corre­
sponding points are on h. 'Ib do this it is sufficient to find two points 
on h that are independent of these choices. Let Q = hop' andR = hop. 
Using the technique described earlier to locate the image of R, let 

A 

p 

FIGURE 4.25 Axis of homology fOT ABC!\ A'B'C'. 
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Rl = A'R-h. But A'R-h = R. So Rl = R. Then R' = AR-p' = pop' = P; 
that is, the image of R is P. Likewise, the image of P can be shown 
to be Q. But the image and preimage of P are uniquely determined 
by Theorem 4.8. (Note that Q f= R, since this projectivity is not a 

perspectivity.) Thus h = QR is uniquely determined. • 

The proof of Theorem 4.11 contains a description of the method 
used to construct h, the axis of homology, and to find the image of 
any arbitrary point. Clearly the cross joins of two pairs oflines can be 
defined by dualizing Definition 4.10 and the dual of Theorem 4.11 
can be used to construct the images of lines under projectivities 
between pencils oflines using a center of homology. 

Exercises 

Dynamic geometry software can be used to carry out Exercises 3, 4, 6, 7, 
and 9. See http://www.stolaf.edu/people/cederj/geotext/info.htm. 

1. Prove that a perspectivity between two pencils of the same kind 
is uniquely determined by two pairs of corresponding elements 
(provided no element of the two pairs is on both pencils). 

2. Given a perspectivity between two distinct pencils of points with axes 
p and p', verifY each of the following: (a) the center ofthe perspectivity 
is not incident with either par p'; and (b) the point P = p.p' maps to 
itself under this perspectivity. 

3. Demonstrate the existence of a projectivity mapping concurrent lines 
a, h, C in a pencil with center P to concurrent lines a', hi, c' in a pencil 
with center P' (assume P #- P'). 

4. Demonstrate the existence of a projectivity mapping concurrent lines 
a, h, c to collinear points A, B, C. 

5. Let a, h, c be three concurrent lines and P, Q two points not on any of 
them. Let AI, A 2 , ... and B I , B2 , ... be points on a and h, respectively, 
such that AiP·BiQ = Ci where Ci is on line c. Show that Ai 1\ Bi. 

6. Given four distinct collinear points A, B, C, D, construct the following 
projectivities: (a) ABC 1\ ABD; (b) ABC 1\ ACD; (c) ABC 1\ BAD; (d) 
ABC 1\ ACB. Find the image of D under part (d). 
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7. What is the minimum number ofperspectivities required for each part 
in Exercise 5? 

8. Prove the corollaries to Theorem 4.8. 

9. Use the dual of Theorem 4.11 to find the center of homology deter­
mined by two projectively, but nonperspectively related pencils of 
lines. Demonstrate the construction of an image line. 

4.6 Conics in the Projective Plane* 

So far in Chapter 4, we have studied projective figures determined 
by sets of n points, where no three of these points are collinear. For 
n = 3 we considered figures known as triangles, and for n = 4 we 
considered figures known as quadrangles. We now consider figures 
that we shall eventually discover are uniquely determined by such 
sets when n = 5. These figures, known as point conics, are defined 
in terms of projectivities. 

Definition 4.11 
A point conic is the set of points of intersection of corresponding 
lines of two projectively, but not perspectively, related pencils of 
lines with distinct centers (Fig. 4.26). 

FIGURE 4.26 A, B, C on a point conic. 
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It is not obvious that the point conics just defined are in any 
way related to the familiar conics of Euclidean geometry. In this 
section, we demonstrate that point conics are determined uniquely 
by five points, no three collinear (Theorem 4.14), but the connec­
tion between the point conics of projective geometry and Euclidean 
conics does not become apparent until much later. However, the fol­
lowing definition of a tangent does resemble the familiar Euclidean 
definition. 

Definition 4.12 
A tangent to a point conic is a line that has exactly one point in 
common with the point conic. 

Both the definition of a point conic and the definition of a tangent 
can be dualized to define other concepts in projective geometry. The 
figure described by the dual of Definition 4.11 is known as a line conic 
and the point described by the dual of Definition 4.12 is known 
as a point of contact. With these definitions, each of the theorems 
describing properties of point conics developed in this section can 
be dualized to describe corresponding properties of line conics. 

Definition 4.13 
A line conic is the set of lines joining corresponding points of two 
projectively, but not perspectively, related pencils of points with 
distinct axes. 

Definition 4.14 
A point of contact of a line conic is a point that lies on exactly one line 
of the line conic. 

As Definition 4.11 indicates, a point conic is determined by a 
projectivity between two pencils of lines, and as stated by the fun­
damental theorem, these mappings are uniquely determined when 
three pairs of corresponding lines are specified. Thus, given pencils 
of lines with centers at P and pI (P =f pI), we can arbitrarily pick 
three lines a, h, and c incident with P and three corresponding lines 
aI, hI, and cl incident with pl. Provided this correspondence does not 
yield a perspectivity, we can immediately locate three pOints of the 
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point conic determined by this projectivity, namely, a·a', b·b', and 
c·c'. (Note that different choices of lines and/or their correspond­
ing lines may yield different point conics.) The following theorem 
shows that there are two more easily obtainable points of this point 
conic. However, other points in addition to these five must be located 
either by a construction of the projectivity or by other constructions 
described later in this section. 

Theorem 4.12 
The centers of the pencils of lines in the projectivity defining a point conic 
are points of the point conic. 

Proof 
Let P and p' be the centers of the pencils. Let m = PP', and consider 
m as a line in the pencil with center P (Fig. 4.27). Then there is a 
corresponding line m' in the pencil with center P'. Note that m =I m' 
since the projectivity is not a perspectivity. So m·m = p' is a point 
of the point conic. Similarly, by considering m as a line in the pencil 
with center P', and finding its corresponding line, P can be shown 
to be a point of the point conic. • 

As a result of this theorem, any five points PI, P2 , P3 , P4 , Ps (no 
three collinear) can be used to determine a conic as follows. 

Choose two of the points, say PI and P2 , as centers of pencils 
and construct lines PIP3 , PIP4 , PIPS and P2P3 , PZP4 , PzPs. Then the 
projectivity PIP3, PIP4 , PIPS /\ PZP3 , PZP4 , PzPs defines a point conic 
containing the five points. 

P P' a:_------'--_ 

FIGURE 4.27 Proof 4.12. 
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The point conic obtained by this construction clearly contains 
the original set of five points. To show that such a set of five points 
uniquely determines a point conic, we will use a projective figure con­
sisting of six points (here, however, we do not require the condition 
that no three of the points are collinear). 

Definition 4.15 
A hexagon is a set of six distinct points called vertices, say PI, PZ, P3 , 

P4, PS, P6, and the six lines PIPZ, PZP3 , P3P4, P4PS, PSP6, and 
P6PI (Fig. 4.28). These lines are called the sides of the hexagon 
PIPZP3P4PSP6· Points PI and P4, Pz and Ps, P3 and P6 are pairs of 
opposite vertices and lines PIPz and P4PS, PZP3 and PSP6, P3P4 and 
P6PI are pairs of opposite sides. The three points of intersection of 
opposite sides are diagonal points. 

It is important to observe that a given set of six points does not 
determine a unique hexagon, since a hexagon is determined by the 
order in which its vertices are named. In fact, a given set of six points 
can determine 5!/12 = 50 different hexagons (see Exercise 3). Thus, 
in Theorem 4.13 it is important to notice that P and pI, the centers 
of the pencils used to define the point conic, are used as the first 
and third vertices of the hexagon, respectively. 

Theorem 4.13 
If A, B, C, D are four points on a point conic defined by projectively 
related pencils with centers P and pI, then the diagonal points of hexagon 
PBp l A CD are collinear; and conversely, if the diagonal points of hexagon 
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Theorem 4.13 
If A, B, C, D are four points on a point conic defined by projectively 
related pencils with centers P and pI, then the diagonal points of hexagon 
PBp l A CD are collinear; and conversely, if the diagonal points of hexagon 
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FIGURE 4.29 Proof 4.13. 

PBP' ACD are collinear, then A, B, C, D are points of the point conic 
determined by the projectively related pencils with centers P and P'. 

Proof 
(a) The diagonal points for hexagon PBP'ACD are PB·AC = I, 
BP'·CD = L, and P'A·DP = K. Let AC·PD = M and AP'·DC = N 
(Fig. 4.29). By using these and the definition of a point conic, we 
obtain the following projectivities: 

AICM 1\ PA,PB,PC, PD 1\ P'A,P'B,P'C,P'D 1\ NLCD. 

So AICM I\NLCD. But since C I\C, this projectivity is a perspectivity. 
And since AN·MD = AP'·PD = K, the center of the perspectivity is 
K. Thus I, L, and K are collinear. 

(b) The proof of the converse is merely a reverse argument of 
the previous proof. • 

Using this result, we can now show that a set of five points, no 
three collinear, uniquely determines a point conic. This means that 
the constructions determined by using different pairs of the five 
points as centers of the projectively related pencils all yield the same 
set of points. 
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Theorem 4.14 
A point conic is uniquely determined by five distinct points, no three of 
which are collinear. 

Proof 
Let PI, PZ, P3, P4, Ps be five points, no three collinear. Then there 
exists a point conic determined by the pencils with centers PI, and Pz 
and the projectivity PIP3, PIP4, PIPS /\PZP3, PZP4, PzPs which contains 
these five points. Let D be any sixth point on this point on conic. 1b 
show that the conic is uniquely determined, that is, that the same 
set of points is determined when points other than PI and Pz are 
used as the centers of the pencils, it is sufficient to show that D is 
on the point conic defined by pencils with centers at any two of the 
other points. Consider hexagon PIP4PZP3PsD. By Theorem 4.13, the 
diagonal points PIP4·P3PS, P4Pz·PsD, PzP3·DPI are collinear. But this 
hexagon is the same as hexagon P4PZP3PsDPI, and thus by the second 
part of Theorem 4.13, D is on the point conic determined by pencils 
with centers P3 and P4 , By similarly renaming this hexagon or using 
other hexagons with PI and Pz as the first and third vertices, it can 
be shown that D is on the point conic determined by pencils with 
centers at any two of the points PI, Pz, P3, P4, Ps. • 

This theorem has several interesting corollaries. The first of these 
is known by the intriguing title Pascal's mystic hexagon theorem and 
was proved by Pascal in 1640, when he was 17. The dual of this 
corollary was not proved until 1806 when Brianchon developed its 
proof. 

Corollary 1 (Pascal's Theorem) 
If a hexagon is inscribed in a point conic (i. e., the vertices of the hexagon 
are points of the point conic), its diagonal points are collinear (Fig. 4.30). 

By considering hexagon P~PIPZP3P4PS and letting point P~ ap­
proach PI so that line P; PI, becomes the tangent at PI, we can verify a 
second corollary that gives an efficient method for constructing tan­
gents to a point conic. Applying a similar process to two hexagons, 
namely, PIPZP~P4P3P~ and PIP;P2P4P~P3, yields a third corollary (see 
Exercise 8). 
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FIGURE 4.30 Corollary I, Theorem 4.14. 

FIGURE 4.31 Corollary 2, Theorem 4.14. 

Corollary 2 
If the five points PI, PZ, P3, P4, Ps are points of a point conic, then the 
three points PIPZ,P4PS, PZP3 ·PSPI, and P3P4 • tangent (at PI) are collinear 
(Fig. 4. 31). 

Corollary 3 
If PI, Pz, P3, P4 are four points of a point conic, then the four points 
PIPZ·P3P4, PIP3 ·PZP4, tan Pz·tan P3, and tan PI·tan P4 qre collinear 
(Fig. 4.32). 

The construction of additional points of a point conic by setting 
up a construction for the projectivity involved is a fairly tedious pro­
cedure. However, the process can be simplified somewhat by using 
a center of homology as described by the dual of Theorem 4.11. A 
third method of constructing additional points uses Pascal's theorem 
as follows. 
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FIGURE 4.32 Corollary 3, Theorem 4.14. 

Construction of Points of a Point Conic 
Using Pascal's Theorem 

Let A, B, C, D, E be five points of a point conic. Then any additional 
point F, on the point conic can be considered as the sixth point of 
inscribed hexagon ABCDEF. Since the diagonal points P = AB·DE, 
Q = BC·EF, and CD·FA will be collinear, choose a line m through E 
(this will be the line EF). Construct pointsP and Q. ThenR = CD·PQ 
and F = RA·m (Fig. 4.33). To locate other points on the point conic, 
merely choose other lines through E. 

Even though the second corollary of Theorem 4.14 describes an 
easy method for constructing a tangent at a specific point, it does not 
give any insight into how tangent lines to a point conic are related 
to the projectivity defining the point conic. The proof of the follow­
ing theorem not only demonstrates this relation, but also leads to a 

Q 

FIGURE 4.33 Constructing F on the point conic ABCDE. 
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corollary we will use in Section 4.11 to find an equation for a point 
conic. 

Theorem 4.15 
For any point A of a point conic, there is exactly one line tangent to the 
conic at A. (This tangent is the line corresponding to line AB considered 
as a line of the pencil through B when the conic is defined by projectively 
related pencils with centers A and B). 

Proof 
Let B, C, D, E be four more points of the point conic. Then the point 
conic can be defined by projectively related pencils with centers A 

and B. Let h be the line in the pencil with center A that corresponds 
to line AB considered as a line in the pencil with center B. Clearly 
h contains the point A of the point conic, and h·AB = A. Assume h 
contains a second distinct point of the point conic, say X. 

Case 1: X is on AB. Then h = AB and h corresponds to itself 
under the projectivity, and hence by Corollary 1 of Theorem 4.8, 
the projectivity is a perspectivity contradicting the definition of a 
point conic. 

Case 2: X is not on AB. Then h = AX corresponds to line AB and 
to line BX, which is distinct from AB. But this contradicts the one­
to-one property of projectivities. Thus, h contains exactly one point 
of the point conic and is, therefore, a tangent. 

1b show that there is no other tangent to the point conic at A, 
assume that a second line h' is also a tangent at A. Since h'IA, there 
is a line m in the pencil with center B that corresponds to h'. Then 
m·h' is a point of the point conic. But since h' is a tangent at A, it 
contains only one point of the conic, namely A. Thus, m-h' = A, so 
m = AB, and hence h' = h. • 

Corollary 
A point conic is uniquely determined by three distinct noncollinear points 
and the tangents at two of them. 

By definition, tangents are the lines that intersect a conic exactly 
once. Other lines mayor may not intersect the conic, but as the next 
theorem shows, a line can never intersect a conic more than twice. 

248 4. Projective Geometry 

corollary we will use in Section 4.11 to find an equation for a point 
conic. 

Theorem 4.15 
For any point A of a point conic, there is exactly one line tangent to the 
conic at A. (This tangent is the line corresponding to line AB considered 
as a line of the pencil through B when the conic is defined by projectively 
related pencils with centers A and B). 

Proof 
Let B, C, D, E be four more points of the point conic. Then the point 
conic can be defined by projectively related pencils with centers A 

and B. Let h be the line in the pencil with center A that corresponds 
to line AB considered as a line in the pencil with center B. Clearly 
h contains the point A of the point conic, and h·AB = A. Assume h 
contains a second distinct point of the point conic, say X. 

Case 1: X is on AB. Then h = AB and h corresponds to itself 
under the projectivity, and hence by Corollary 1 of Theorem 4.8, 
the projectivity is a perspectivity contradicting the definition of a 
point conic. 

Case 2: X is not on AB. Then h = AX corresponds to line AB and 
to line BX, which is distinct from AB. But this contradicts the one­
to-one property of projectivities. Thus, h contains exactly one point 
of the point conic and is, therefore, a tangent. 

1b show that there is no other tangent to the point conic at A, 
assume that a second line h' is also a tangent at A. Since h'IA, there 
is a line m in the pencil with center B that corresponds to h'. Then 
m·h' is a point of the point conic. But since h' is a tangent at A, it 
contains only one point of the conic, namely A. Thus, m-h' = A, so 
m = AB, and hence h' = h. • 

Corollary 
A point conic is uniquely determined by three distinct noncollinear points 
and the tangents at two of them. 

By definition, tangents are the lines that intersect a conic exactly 
once. Other lines mayor may not intersect the conic, but as the next 
theorem shows, a line can never intersect a conic more than twice. 



4.6. Conics in the Projective Plane 249 

This result will be used in Section 4.11 when we use an analytic 
approach to study further properties of point conics. 

Theorem 4.16 
A line intersects a point conic in at most two points. 

Proof 
Assume line n intersects a point conic in three distinct points Q, R, 
and S. Let P and pi be two other points of the conic and consider the 
pencils with centers P and p'. Then, as shown previously, the conic 
can be defined in terms of a projectivity between these pencils where 
Q, R, and S are points of intersection of the corresponding pairs of 
lines PQ and plQ, PR and plR, PS and piS. Under this projectivity, 
PQ, PR, PS /\ plQ, PIR, piS. However, the three points Q, R, and 
S all lie on n, so in fact PQ, PR, PS!j:pIQ, plR, piS. It follows by 
the fundamental theorem that the projectivity is a perspectivity, 
contradicting the definition of a point conic. • 

Exercises 

For dynamic geometry software instructions duplicating Exercises 1,2,5, 
and 6. See http://w.WW.stolaf.edu/people/cederj/geotext/info.htm. 

1. Given five points, no three collinear, construct two more points of 
the point conic they determine and a tangent at one of the original 
five points using each of the following methods: (a) construction of 
the projectivity as a product of two perspectivities; and (b) using the 
center of homology. 

2. Dualize Exercise 1 and perform the construction. 

3. Explain why 6 points determine 60 different hexagons. 

4. Prove: Ifalternate vertices ofa hexagon lie on two lines (i.e., in hexagon 
PIP2P3P4PSP6, PI, P3, and Ps are collinear, as are P2, P4, and P6) then 
the diagonal points are collinear. (This is known as Pappus' theorem 
and dates from the 3rd century) [Hint: Find a projectivity between the 
two lines for which the points ofintersection of the cross joins are the 
diagonal points of the hexagon.] 
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5. Given five points, no three collinear, construct two more points ofthe 
point conic they determine using Pascal's theorem. 

6. Dualize Exercise 5, and perform the construction. 

7. Prove that the tangent to a point conic at A is the line joining A to the 
center of homology determined by a projectivity between two pencils 
defining the conic where A is the center of one of the pencils. 

8. Prove Corollary 3 of Theorem 4.14. 

9. Show that omitting the phrase "but not perspectively" from Definition 
4.11 would allow inclusion of sets oftwo lines (i.e., the points on these 
lines) as point conics. Which two lines would they be? 

4.7 An Analytic Model for the 
Projective plane 

Until now we have considered plane projective geometry from a 
strictly synthetic point of view. We now change our point of view 
and adopt the approach suggested by Klein's definition of geome­
try; that is, we begin exploring the invariants of the projective plane 
under a group of transformations. To obtain matrix representations 
of these projective transformations, we need an analytic model of 
the projective plane. Since our goal is to look at the real projective 
plane, we consider an analytic model of the projective plane simi­
lar to the model of the Euclidean plane. Our matrix representations 
then resemble the matrices that we used for isometries, similari­
ties, and affinities, so we are able to use techniques similar to those 
used in Chapter 3. Thus, this approach enables us to both explore 
additional properties of the real projective plane and view projective 
geometry as the next logical step in the progression from Euclidean 
to similarity to affine geometry. 

Our analytic model for the projective plane uses the nonzero 
equivalence classes determined by the relation on R3 defined in Sec­
tion 3.5 not only as lines but also as points. (Recall that (aI, a2, a3) '" 

(bl , b2, b3) if there is a nonzero real number k such that (aI, a2, a3) = 
k(b l , bz, b3 ).) As in Chapter 3, ordered triples used to represent 
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TABLE 4.1 Analytic Model of the Projective Plane. 

Undefined Term Interpretation 
Point A nonzero equivalence class of ordered triples 

of real numbers; any element (Xl, Xz, X3) of the 
equivalence class will be called homogeneous 
coordinates of the point 

Line A nonzero equivalence class of ordered triples 
of real numbers; any element [UI' Uz, U3] of the 
equivalence class will be called homogeneous 
coordinates of the line 

Incident The line U is said to be incident with the point X if 
the dot product U·X = 0, or in matrix notation, 

[u" u" u,] [::J ~ a 

points are denoted with parentheses as (Xl, xz, X3), while ordered 
triples used to represent lines are denoted with square brackets as 
[UI, Uz, U3]. It is important to observe that the additional restrictions 
required for the interpretations of point and line in the Euclidean 
model are no longer required. 

1b show that is set of interpretations is a model of our projective 
plane, it is necessary to verify that it satisfies Axioms 4.1 through 4.6. 
The verification of Axioms 4.1 through 4.3 is left as an exercise (see 
Exercise 2). We verify Axiom 4.5 at the end of this section, but post­
pone the verification of Axioms 4.4 and 4.6 to Sections 4.10 and 4.8, 
respectively. 

We can visualize this analytic model in terms of the extended 
Euclidean plane rr' introduced in Section 4.2. There we saw how to 
obtain rr' from rr (a Euclidean plane parallel to, but distinct from, the 
plane X3 = 0) by extending the following correspondence between 
the set of points and lines in rr and the set oflines and planes through 
the origin in E3 (Euclidean 3-space): 

1. A point P in rr corresponds to the line through the origin that 
intersects rr at P. 
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2. A line l in rr corresponds to the plane through the origin that 
intersects rr along l. 

1b show that this correspondence yields homogeneous coordi­
nates for the points and lines of rr' we need to recall several analytic 
geometry facts about E3. In particular the following observations are 
useful: 

1. Any line through the origin can be represented in vector notation 
as x = ts where x = (Xl, Xz, X3) is a vector from the origin to an 
arbitrary point X on the line, and s = (81, 8z, 83) is a direction 
vector for the line. (Note that any nonzero scalar multiple of a 
direction vector s is also a direction vector for the same line.) 

2. Any plane through the origin can be represented by an equation 
of the form n·x = nlxl + nzxz + n3X3 = 0, where x = (Xl, xz, X3) 
is a vector from the origin to an arbitrary point X on the plane 
and n = (nl' nz, n3) is a vector normal (i.e., perpendicular) to the 
plane. (Note that any nonzero scalar multiple of a normal vector 
n is also a normal vector for the same plane.) 

3. Thus, a line through the origin with direction vector s will lie in 
a plane through the origin with normal vector n if and only if 
n·s= O. 

We can then identify each point P in rr with a nonzero equiva­
lence class of R3 , namely, the set of all possible direction vectors 
for the line through the origin that intersects rr at P. Likewise, we 
can identify each line l in rr with a nonzero equivalence class of R3 , 

namely, the set of all possible normal vectors for the plane through 
the origin that intersects rr at l. In this way, elements of the equiv­
alence classes become the homogeneous coordinates of the points 
and lines in rr. 

1b complete the process, we need to find homogeneous coordi­
nates for the ideal points and line added to rr to obtain rr'. We can 
do this by identifying the ideal points with the nonzero equivalence 
classes that give direction vectors for lines through the origin that 
do not intersect rr, and by identifying the ideal line added to rr with 
the equivalence class of normal vectors for the plane X3 = O. It is in­
teresting to note the form of the homogeneous coordinates for these 
ideal points and the ideal line (see Exercise 3). 
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Using this identification, it should become apparent that points 
in rr' are collinear if and only if the corresponding lines through 
the origin in E3 are coplanar, but a result from linear algebra says 
these lines in E3 are coplanar if and only iftheir direction vectors are 
linearly dependent. Likewise, lines in rr' are concurrent if and only 
if the corresponding planes through the origin in E3 intersect along 
a common line, but this happens if and only if their normal vectors 
are linearly dependent. These observations anticipate the following 
results, which give algebraic conditions for the collinearity of points 
and concurrence of lines. (The proofs of these results are nearly 
identical to those used in Chapter 3.) 

Theorem 4.17 
Three points X, Y, Z are collinear if and only if the determinant 

Corollary 

Xl YI Zl 

xzyz Zz = 0 
X3 Y3 Z3 

The equation of the line PQ can be written 

Xl PI ql 

Xz pz qz = 0 
X3 P3 q3 

The dual statements give algebraic methods for determining 
when three lines are concurrent and for finding the equation of a 
point determined by two lines. Here, however, the coordinates of 
the lines are used as rows rather than columns. 

Theorem 4.18 
Three lines u, v, ware concurrent if and only if the determinant 

UI Uz U3 

VI Vz V3 = 0 
WI Wz W3 
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Corollary 
The equation of the point p.q can be written 

Example 4.1 

Ul Uz U3 

PI pz P3 = 0 
ql qz q3 

Find the equation of the point of intersection oflinesp[-2, 5, 7] and 
q[3, I, 2]. 

Solution 
Using the corollary to Theorem 4.18, we can find the equation of the 
point by setting the follOwing determinant equal to 0: 

Ul U2 U3 

-2 5 7 = 0 
3 1 2 

Expanding this determinant results in the equation 3Ul + 25uz -
17u3 = 0, which is the equation of a point. Note that the coordinates 
ofthis point are (3,25, -17). 0 

In this model we can now show that projectivities between pen­
cils can be represented via 2 x 2 matrices. (The analytic form of 
the transformations of the entire projective plane, transformations 
which induce projectivities, will require 3 x 3 matrices and be devel­
oped later. This matrix representation of projectivities requires that 
points and lines be assigned ordered pairs of real numbers rather 
than ordered triples. This is done by picking base elements for a pencil 
and making use of the following theorem. 

Theorem 4.19 
IfP(Pl,pz,P3) and Q(qz, qz, q3) are two distinct points, any pOint R of the 
line PQ has homogeneous coordinates (rl, rz, r3) where n = AlPi + A2Qi, 
i = 1,2,3, and AI, AZ are real but not both 0; and conversely any point 
R with homogeneous coordinates of this form is on line PQ. 
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Proof 
(a) Assume R has homogeneous coordinates ()"IPI + Azql, AIPZ + 
Azqz, AIP3 + AZq3); then 

rl PI ql 
rz pz qz 
r3 P3 q3 

AIPI + Azql PI ql 
AIPZ + Azqz pz qz = 0 
AlP3 + Azq3 P3 q3 

So by Theorem 4.17, the points P, Q, and R are collinear. 
(b) If R is on PQ then IPQRI = 0, or in other words, the vec­

tors corresponding to these three points are linearly dependent. 
Thus, there exist real numbers AI, AZ, A3, not all zero, such that 
AlP + AzQ + A3R = O. Note that A3 f= 0, since P and Q are distinct 
points, therefore, assume A3 = -1; thus, AlP + AzQ = R. • 

Definition 4.16 
The points P and Q used in Theorem 4.19 are called base points, 
while Al and AZ are called homogeneous parameters of R with respect 
toP and Q. 

Clearly the homogeneous parameters of the base points P and 
Q are (1, 0) and (0, 1), respectively. In general, the homogeneous 
parameters of a point depend on the base points chosen and on their 
homogeneous coordinates. So specific homogeneous coordinates for 
the base points must be used (see Exercise 9). Even so, there is 
not a unique set of homogeneous parameters for each point, since 
(AI, AZ) and (HI, kAz) represent the same point (k f= 0); but the 
ratio A = Al/AZ, is unique. This ratio is called the parameter of the 
point. Note that the parameter of Q is 0, while the parameter of P 

is said to be 00. Thus, the real numbers can be put into one-to-one 
correspondence with all points on a line except one, namely, the 
first base point. 

Using homogeneous parameters and Theorem 4.19, we can now 
show that our analytic model satisfies Axiom 4.5. (If two triangles 
are perspective from a point, then they are perspective from a line.) 
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Verification of Axiom 4.5 

Let the two triangles have vertices A(al' az, a3), B(bl , bz, b3), C( Cl, cz, 
C3) and A'(a~, a~, a;), B'(b~, b~, b;), C'(c~, c~, c;). Assume these trian­
gles are perspective fromP(pl,PZ,P3). Let Q = AB·A'B, R = BC·B'C', 
and S = AC·A'C'. We need to show that QR, and S are collinear 
(Fig. 4.34). 

Th do this we make use of homogeneous parameters. Since P is 
on line AA', BB', and CC', it has homogeneous parameters (a!, az), 
Uh, fh), and (Yl, Y2) with respect to base points A and A', Band B', 
C and C', respectively. Thus, the homogeneous coordinates of Pare 
given by Pi = alai + a2a; = f3l bi + f3zb; = YICi + YzC;, i = 1,2,3. The 
first two of these yieldalai-f31bi = f3zb;-aza;, so (alal-f3l b1, alaZ­
f3l bz, ala3-f3lb3) = (f32b~ -aza~, f3zb~-a2a~, f3zb;-a2a;), but the first 
of these ordered triples gives homogeneous coordinates for a point 
on line AB, whereas the second gives homogeneous coordinates for 
a point on line A'B'. Since the two triples are equal, both must be 
coordinates for the point Q. We will use the first set. Likewise we 
can show that R(f31bl - YIC1, f31bz - YICZ, f31b3 - YIC3) and finally that 
S(alal - YICl, ala2 - YICZ, ala3 - YIC3). Using these homogeneous 
coordinates, we can show that IQRSI = 0 so that the three points are 
indeed collinear. 

FIGURE 4.34 Verification of Axiom 4.5. 
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Exercises 
1. Show that the interpretation of incident used in our analytic model 

is independent of the particular homogeneous coordinates used for 
the point X and the line u. 

2. Verify that the set of interpretations of the undefined terms given in 
this section satisfies Axioms 4.1-4.3. 

3. (a) Describe the homogeneous coordinates of the ideal points. (b) 
Find homogeneous coordinates of the ideal line. (c) Show analytically 
that the ideal points lie on the ideal line. 

4. Let l[a, b, c] be a line. Find homogeneous coordinates of the ideal 
point(s) on 1. How many ideal points are there on 1? 

5. (a) Find the equation of the line joining the points (0,2,1) and (1, 1,0). 
(b) Find a set of coordinates for this line. ( c) Find the point of inter­
section of the lines 2xz + X3 = 0 and Xl + Xz = O. (d) Find the line 
joining the points 2uz + U3 = 0 and UI + Uz = o. 

6. Let l[a, b, c] and m[a, b, d] be two distinct lines in the projective plane 
(i.e., c i= d). (a) Find the point of intersection ofl and m (b) Do 1 and 
m intersect in the Euclidean plane? Why? 

7. Let X, Y, Z be the points with homogeneous coordinates (I, 0, 0), 
(0, I, 0), and (0, 0, I), respectively. (a) Show that X, Y, Z are non­
collinear. (b) Show that if P(PI,PZ,P3) is any point distinct from Z 
then the point pI = zp·XY has homogeneous coordinates (PI,PZ, 0). 

8. Show that the points P(2, 3, -2), Q(I, 2, -4), and R(O, I, -6) are 
collinear and find homogeneous parameters of R with respect to P 
and Q. What is the corresponding parameter of R? 

9. Find an example showing that the homogeneous parameters of a 
point with respect to a given pair of base points depend on the 
homogeneous coordinates used for the base points. 

10. Use ordered triples consisting of O's, and l's and arithmetic modulo 2 
to coordinatize the finite projective plane with three points on a line 
(see Section 1.3). 
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4.8 The Analytic Form of Projectivities 

Using our analytic model of the projective plane, it is now possible to 
find 2 x 2 matrix representations of the one-to-one correspondences 
between the elements of two pencils known as projectivities. 

Theorem 4.20 
A projectivity between the elements of two pencils can be represented by 
a real matrix equation of the form 

s [A} ] = -[an al2J [AI] 
A2 a21 a22 A2 

where ana22 - a2lal2 = IAI i= 0, s i= 0, and where (AI, A2) and (A~, A;) 
are homogeneous parameters of the original and image elements with 
respect to predetermined base elements. 

Proof 
We first show that a perspectivity from a pencil of points to a pencil 
of lines has this algebraic form. 

Let P and Q be base points of the pencil of points and let the 
lines m and n be base lines of the pencil of lines. Let X (A I, A2) be 
any other point on line PQ; assume it corresponds to line X'(A~, A;). 
By the definition of the perspectivity, ,,'·X = O. Writing this out in 
terms of components, gives the following equation: 

or 

[A~ ml + A;nl' A~ m2 + A;n2' A~ m3 + A;n3} 

(AlPl + A2ql, AlP2 + A2q2, AlP3 + A2q3) = 0 

A~AI(plml + P2m2 + P3m 3) + A~A2(qlml + q2m2 + q3m3) 

+ A;AI(Plnl + P2n2 + P3n3) + A;A2(qlnl + q2n2 + q3n3) = 0 (4.1) 

'Ib simplify Equation (4.1), we use a substitution for each of the 
sums in parentheses: 

a2l = LPimi, a22 = L qimi, an = - LPini, al2 = - L qini 

so 
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or 

This gives 

A~ anAl + alZAZ 

A; aZlAl + aZZAZ 

which can be written in matrix notation as 

where 5 f. O. Note that anazz -aZlalZ = IAI f. 0 since the projectivity 
is a one-to-one mapping. 

Ifwe solve Equation (4.2) for AI/AZ we obtain a similar represen­
tation for a perspectivity from a pencil of lines to a pencil of points. 
Since any projectivity is a finite product of perspectivities and any 
perspectivity either maps from a pencil of points to a pencil oflines, 
or from a pencil oflines to a pencil of points, or is a product of these 
two, it is sufficient to note that the product of two matrices of this 
form will also be a matrix of this form. • 

Using the matrix representation given in Theorem 4.20, it is now 
relatively easy to verify Axiom 4.6 (see Exercise 3). However, the 
verification of this axiom, as well as any other use of the matrix 
equation for a projectivity, requires careful atte11tion to 5, the scalar 
involved. Since the homogeneous parameters of elements of pen­
cils are not unique, it is essential to allow 5 to take on different 
values even within the context of a given projectivity. The follow­
ing example illustrates the way in which this indeterminate nature 
of the scalar must be handled in finding the matrix of a particular 
projectivity. 

Example 4.2 
Find a matrix of the projectivity that maps points on p with ho­
mogeneous parameters (1,3), (1,2), and (2,3) to points on pi with 
homogeneous parameters (1,-4), (0,1), and (-1,1), respectively. 
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Solution 
By Theorem 4.20, the projectivity can be represented by a 2 x 2 
matrix A where 

The algebra involved in finding such a matrix can be simplified 
somewhat by first considering any cases where the homogeneous 
parameters of either a point or its image include the value O. In this 
case we will first impose the condition that the ordered pair (I, 2) 
map to (0, 1). It is also helpful to find and use all convenient substi­
tutions as soon as possible. We will make use of both techniques in 
the following calculations. 

In order to map (1,2) to (0, 1) we must have 

[
OJ [a b J [1 J 0 = a + 2b 

S2 1 = c d 2 or Sl = C + 2d 
(4.3) 

(4.4) 

Equation (4.3) yields a = -2b, so we can use this substitution when 
requiring that the matrix map (1,3) to (I, -4). 

[ IJ [-2b bJ[lJ s2=b 
S2 -4 = c d 3 or - 482 = c + 3d 

(4.5) 

(4.6) 

Equation (4.5) allows us to replace 82 with b in equation (4.6), giving 
c = -3d - 4b. Using this substitution, the third point and its image 
give the following equations: 

[-1 J [-2b bJ [2J -83 = -b 
83 1 = -3d - 4b d 3 or S3 = -3d - 8b 

(4.7) 
(4.8) 

Since Equations (4.7) and (4.8) involve the three unknowns b, d, 
and S3; we can choose a value for one of the unknowns. Let 83 = 1. 
Then Equation (4.7) gives b = 1 and Equation (4.8) gives d = -3. 
Using these values in Equations (4.5) and (4.6) yields c = 5, and 
finally Equation (4.3) gives a = -2. So the matrix A is 

[-2 IJ 
5 -3 

Note that the scalar s did assume different values, namely, 81 = 
-1 while S2 = S3 = 1. D 
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The following proof of Theorem 4.21 (the converse of Theo­
rem 4.20) also illustrates the way in which the matrix of a projectivity 
is determined. 

Theorem 4.21 
A mapping given by an equation of the following form is a projectivity 

s[~U=[~ ~J[~~l ad-bc#O, s#O (4.9) 

Proof 
The proof assumes that both pencils are pencils of points; however, 
identical arguments can be made for the other cases. Let P(l, 0) and 
Q(O, 1) be the base points for the first pencil of points. Let R be the 
point with parameters (1,1) with respect to P and Q. Then under 
the mapping given by this matrix equation, P'(a, c), Q'(b, d), and 
R'(a + b, c + d) are the corresponding elements of the second pencil 
with respect to a predetermined basis. By the fundamental theorem, 
there is a unique projectivity T such that T : PQR ~ pi Q' R', but by 
Theorem 4.20 the projectivity T has a matrix equation 

S[AJJ=[all a1zJ[Al] Az aZl aZZ AZ 
It is then sufficient to show that this matrix is a scalar multiple of 

the matrix in Equation (4.9). 1b evaluate a, b, c, d, we will determine 
the algebraic conditions necessary for mapping P to pi, Q to Q', and 
R to R'. Since the scalar s may differ from point to point, we need to 
allow s to assume different values in each of these cases leading to 
the following three equations: 

Sl raJ = [all a1zJ [IJ Sz [b] = [all a1zJ [OJ c aZl aZZ ° d aZl azz 1 

S3 [a+bJ = [all a1zJ [lJ c + d aZl azz 1 

These matrix equations yield the following: 

Sla = all szb = alZ s3(a + b) = all + alZ 
SIC = aZl szd = azz S3(C + d) = aZl + azz 
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Since there are six equations in seven unknowns, one unknown can 
be chosen. Chose S3 = 1. Then 

so 

a + b = an + al2 = Sla + S2b 

c + d = a21 + azz = Sl C + s2d 

a(I - Sl) + b(l - S2) = 0 

c(l - Sl) + d(I - sz) = 0 

and since ad - bc =I- 0, the solution Sl = I, S2 = 1 is unique. Thus, 
a = an and so on, and the matrix equation 

is the representation of a projectivity. • 
Together, Theorems 4.20 and 4.21 tell us that there is a one-to­

one correspondence between the set of projectivities between two 
pencils relative to predetermined base elements and the set of equiv­
alence classes of 2 x 2 matrices with nonzero determinants where 
A '" B if and only if A = sB for some nonzero constant s. 

According to Axiom 4.6, projectivities on a pencil other than the 
identity have two or fewer invariant elements. The next theorem 
characterizes the matrix representations of projectivities with two, 
one, and zero invariant elements, respectively. The proof of this 
theorem makes use of an important result about eigenvectors from 
linear algebra. 

Theorem 4.22 
A projectivity on a pencil other than the identity, with matrix 

[ an al2 ] ' 
aZl azz 

has two distinct invariant elements, one invariant element, or no 
invariant elements according as 

(a2Z - ani + 4a12aZl > 0, = 0, or < O. 
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Proof 
Note ()'-l, A2) is an invariant element if and only if 

that is, if and only if (AI, A2) is a characteristic vector or eigenvector 
of the matrix.. But eigenvectors exist if and only ifthere is a nonzero 
solution of the characteristic equation IA -sII = O. Evaluating IA -sII 
gives (all -s)( a22 -s) -a12a21 = O. Expanding and solving for s yields 
the following: 

(a22 + all) ± J(a22 + all)2 - 4(allaZ2 - a12aZI) 
s= . 

2 

If the expression under the radical is positive, there are two 
distinct solutions for s and therefore two linearly independent eigen­
vectors and hence two distinct invariant points of the projectivity. If 
this expression is zero, there is exactly one solution for s and there­
fore exactly one invariant point of the projectivity (see Exercise 5). 
Finally, if the expression is negative, there are no real-valued so­
lutions for s and so no invariant points of the projectivity. Since 
this expression is algebraically equivalent to the expression in the 
statement of the theorem, the result follows. • 

Definition 4.17 
A projectivity on a pencil is called hyperbolic, parabolic, or elliptic if 
the number of invariant elements is 2, I, or 0, respectively. 

These definitions are suggestive of a connection between pro­
jectivities on pencils and similarly named conics, which will be 
formalized in Section 4.12. 

Exercises 
1. If under a projectivity between pencils, the base elements P and Q 

of the first pencil correspond to the base elements pI and Q' of the 
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second pencil, respectively, show that the matrix ofthe projectivity is 
a diagonal matrix. 

2. Find the matrix of the projectivity that maps points on p with ho­
mogeneous parameters (0, I), (I, 0), and (I, 1) to points on p' with 
homogeneous parameters (1,2), (2, 3), and (-1,0), respectively. 

3. Use Theorem 4.20 to verify that our analytic model satisfies Axiom 4.6. 
[Hint: You may want to choose two of the invariant elements as base 
elements.] 

4. Find the homogeneous parameters of the invariant elements under the 
projectivity on a pencil that has the following matrix representation: 

[~ -n 
5. A result from linear algebra says that there is at least one eigenvector 

corresponding to each solution s ofthe equation IA -sii = o. Show that 
there cannot be two linearly independent eigenvectors corresponding 
to the same solution s when A is a 2 x 2 nonscalar matrix, i.e., when 
A =1= sl for a scalar s. 

The following exercises refer to a special type of projectivity known as 
an involution. An involution is a transformation T =1= 1 such that T2 = 1. 

6. Prove that a projectivity on a pencil that interchanges one pair of 
distinct elements is an involution. [Hint: Use the two points that are 
interchanged as base points and find the matrix representation.] 

7. Show that in general the matrix of an involution is ofthe form 

[ a b] where a2 + be =1= o. 
e -a 

8. Show that an involution with a matrix of the form given in Exercise 7 
is elliptic if and only if a2 + be < o. 

9. By using two points that are interchanged as base points, show that 
the matrix of an elliptic involution is of the form given in Exercise 7 
with a = 0, and be < o. 

4.9 Cross Ratios 

Within the context of the analytic model of the projective plane, it is 
natural to ask if the Euclidean concept of distance is relevant. How-

264 4. Projective Geometry 

second pencil, respectively, show that the matrix ofthe projectivity is 
a diagonal matrix. 

2. Find the matrix of the projectivity that maps points on p with ho­
mogeneous parameters (0, I), (I, 0), and (I, 1) to points on p' with 
homogeneous parameters (1,2), (2, 3), and (-1,0), respectively. 

3. Use Theorem 4.20 to verify that our analytic model satisfies Axiom 4.6. 
[Hint: You may want to choose two of the invariant elements as base 
elements.] 

4. Find the homogeneous parameters of the invariant elements under the 
projectivity on a pencil that has the following matrix representation: 

[~ -n 
5. A result from linear algebra says that there is at least one eigenvector 

corresponding to each solution s ofthe equation IA -sii = o. Show that 
there cannot be two linearly independent eigenvectors corresponding 
to the same solution s when A is a 2 x 2 nonscalar matrix, i.e., when 
A =1= sl for a scalar s. 

The following exercises refer to a special type of projectivity known as 
an involution. An involution is a transformation T =1= 1 such that T2 = 1. 

6. Prove that a projectivity on a pencil that interchanges one pair of 
distinct elements is an involution. [Hint: Use the two points that are 
interchanged as base points and find the matrix representation.] 

7. Show that in general the matrix of an involution is ofthe form 

[ a b] where a2 + be =1= o. 
e -a 

8. Show that an involution with a matrix of the form given in Exercise 7 
is elliptic if and only if a2 + be < o. 

9. By using two points that are interchanged as base points, show that 
the matrix of an elliptic involution is of the form given in Exercise 7 
with a = 0, and be < o. 

4.9 Cross Ratios 

Within the context of the analytic model of the projective plane, it is 
natural to ask if the Euclidean concept of distance is relevant. How-



4.9. Cross Ratios 265 

ever, as previously indicated, projective geometry studies invariants 
under transformations-transformations that can be considered as 
generalized affinities and affinities in turn are generalizations of sim­
ilarities. In Chapter 3, we discovered that similarities do not preserve 
distances but only ratios of distances, and affinities only preserve 
segment division ratios. This suggests that the concept of distance 
may not be relevant in projective geometry, so it is surprising that 
we are able to show that projective transformations do preserve a nu­
merical value called the cross ratio, which can actually be interpreted 
as a ratio of ratios of distances. 

Definition 4.18 
If A, B, C, D are four distinct elements of a pencil with homogeneous 
parameters (aI, a2), (PI, P2), (YI, Y2), and (81, 82) with respect to given 
base points, then the cross ratio R(A, B, C, D) of the four elements, 
in the given order, is the number given by the following equation 
involving determinants: 

, 
RCA,B,G,D) = I 

YI PI 
Y2 P2 

81 aI' 82 a2 

81 PI ,. 

82 P2 

In this definition, if none of the four elements A, B, C, D is the first 
base element, each will also have homogeneous parameters (a, I), 
(P, 1), (y, 1), (8, 1), respectively, where a, p, y, 8 are the correspond­
ing (nonhomogeneous) parameters. Note in this case the cross ratio 
becomes 

y-a 8-a 
RCA,B, C,D) = -- -7- --. 

Y-P 8-P 

It is this restatement of the definition that makes the interpretation 
of "a ratio of ratios of distances II more apparent (see Exercise 3). Even 
though the notation used in the previous definition is suggestive of a 
pencil of points, the definition applies to both pencils of points and 
pencils oflines. We will make use of similar notation in the following 
theorems, which indicate how changes in the order of the elements 
affect the cross ratio. The proofs of these theorems follow from the 
definition by algebraic computation. 
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Theorem 4.23 
If A, B, G, D are four distinct elements of a pencil. then the cross ratio 
R(A, B, G, D) remains unchanged when any two pairs of the elements are 
interchanged; that is, R(A, B, G, D) = R(B, A, D, G) = R(G, D, A, B) = 
R(D, G,B,A). 

Theorem 4.24 
If the cross ratio of four distinct elements of a pencil named in a given 
order is r, interchanging either the first or second pair of elements changes 
the cross ratio to its reciprocal II r, interchanging either the inner pair 
or the outer pair changes the cross ratio r to I - r. 

Corollary 
The 24 possible permutations of four distinct elements of a pencil can be 
categorized into six sets of four, corresponding to cross ratios of 

r, Ifr, I-r, (r-I)!r, rl(r-I), and 1/(I-r). 

Theorem 4.25 
The cross ratio offour distinct elements of a pencil cannot be 0, 1, or 00. 

Since projective transformations will induce projectivities map­
ping one pencil to another, demonstrating the invariance of the cross 
ratio under projectivities will verify its invariance under projective 
transformations. 

Theorem 4.26 
The cross ratio of four distinct elements of a pencil is invariant un­
der a projectivity (so, e.g., if ABCD 1\ A'B'C'D', then R(A, B, G, D) 
R(A', B', G', D')). 

Proof 
Assume that distinct elements A, B, G, D of one pencil map to 
corresponding elements A', B', C', D' of a second pencil under a 
projectivity with matrix A = [aij]. Then 

\ ~i :~ \ = \ :~: :~~ \ \ ~~ ~~ \ 
where A has homogeneous parameters (aI, az), A' has homogeneous 
parameters (a~, a~) and so on, with respect to predetermined base 
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elements. So 

R(A' B' C' D') = , , , 

YI fh 
yz fh 

= R(A, B, C, D). 

4.9. Cross Ratios 267 

• 
This theorem leads to a useful corollary, which enables the 

computation of the cross ratio of four elements directly from the 
homogeneous coordinates of the elements rather than from homo­
geneous parameters, which in turn must be first computed relative 
to given base points. 

Corollary 
If A, B, C, D, with homogeneous coordinates (aI, az, a3) and so on, are 
four distinct elements of a pencil not containing Z (0, 0, 1) then 

= R(A, B, C, D). 

Thus, if Z(O, 0, 1) is not an element of the pencil, the first two 
homogeneous coordinates of each element can be used in the role 
of homogeneous parameters in the cross ratio. But ifthe pencil, does 
contain Z(O, 0, 1) (so this corollary fails to hold), then it cannot also 
contain bothX(l, 0, 0) and YeO, 1,0), and comparable corollaries can 
be proved for pencils not containing X and for pencils not containing 
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Y (see Exercise 8), The use of one of these comparable statements 
is demonstrated in Example 4.3. 

Example 4.3 
Find R(A, B, G, D) where A(I, 2, 1), B(3, 6, 1), G(2, 4, 1), and D(I, 2, 0) 
are points on l[2, -1, 0]. (Note that if these points are identified as 
points in the Euclidean plane, G would be called the midpoint of 
segment AB.) 

Solution 
Since Z(O, 0, 1) is clearly a point on l, we cannot use the corollary to 
Theorem 4.26 directly. However, since X(l, 0, 0) is not incident with 
l, we can use a comparable result; that is, we can use the last two 
homogeneous coordinates of each point in the role of homogeneous 
parameters in order to compute the cross ratio. This gives 

4 2 

I . I 
2 2 

1 1 0 1 2 2 
R(A, B, G, D) = =-7-=-1 

4 6 I ~ I 2 6 -2 2 

1 1 0 1 
0 

Recall that the fundamental theorem of projective geometry in­
dicates that in general there exists a projectivity mapping any three 
elements of one pencil to any three corresponding elements of a 
second pencil. However, as will be shown in Theorem 4.28, if any 
four elements of the first pencil are named and any four correspond­
ing elements of the second pencil with the same cross ratio are given, 
there is a projectivity mapping the first set of four elements to the 
second set offour elements. The proof of this result requires one ad­
ditional property of cross ratios that can also be verified by algebraic 
computation. 

Theorem 4.27 
If three distinct elements A, B, G of a pencil and a real number r(r "# 0,1) 
are given, then there exists a unique point D such that R(A, B, G, D) = r. 
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Y (see Exercise 8), The use of one of these comparable statements 
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RCA, B, C, D), then there exists a projectivity mapping A, B, C, D to 
A', B', C', D', respectively. 

Proof 
By the fundamental theorem, there exists a projectivity such that 
ABC 1\ A' B' C'. Let D* be the unique image of D under this pro-
jectivity. By Theorem 4.26, RCA, B, C, D) RCA', B', C', D*); but 
RCA,B,C,D) = RCA',B',C',D'). SoD* =D'. • 

The proof of Theorem 4.28, together with the previous theorems 
indicating the changes in the cross ratio resulting from various pos­
sible changes in the ordering of the four elements, is reminiscent 
of similar theorems about harmonic sets and suggests a possible re­
lation between the two concepts. This relation is formalized in the 
final theorem of this section. 

Theorem 4.29 
If A, B, C, D are four distinct elements of a pencil, then 

RCA,B, C,D) =-1 

if and only if HCAB, CD). 

Proof 
Ca)SinceHCAB, CD), it follows that HCAB, DC) and, by Theorem 4.10, 
there is a projectivity such that ABCD 1\ ABDC. Thus, by Theo­
rem 4.26 RCA, B, C, D) = RCA, B, D, C); but by Theorem 4.24, if 
RCA, B, C, D) = r, then RCA, B, D, C) = l/r. Thus, r = lIr, or r2 = 1. 
Since r =I I, this implies that r = -1. 

(b) Assume RCA, B, C, D) = -1. Let D' be a fourth element of a 
pencil such that HCAB, CD'). Thus, by the previous part of the proof, 
RCA,B, C,D') = -I, and it follows by Theorem 4.27thatD = D'. • 

Exercises 
l. Given collinear points with their homogeneous parameters A(I, I), 

B(3,2), C(l, 0), D( -1,2), find R(A,B, C,D) and R(C,A,B, D). 

2. Find the coordinates of a point D that is collinear with A(3, 1, 2), 
B(I,O - 1), ce1, 1,4), and R(A,B, C, D) = -~. 
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3. In the Euclidean plane, let A, B, C, D be distinct points on a number 
line with coordinates (x, f3, y, 8 respectively. Show that the (nonhomo­
geneous) parameters form of the cross ratio R(A, B, C, D) is the ratio 
of two segment division ratios ofthese four points (see Section 3.13). 

4. Show that if C has homogeneous parameters (1,1) and D has 
homogeneous parameters (r, 1) with respect to A and B, then 

R(A,B, C,D) = r. 

5. Prove Theorem 4.24. 

6. Prove Theorem 4.25. 

7. Prove the corollary to Theorem 4.26. [Hint: See Exercise 7 in 
Section 4.7] 

8. What is the comparable statement to the corollary to Theorem 4.26 for 
pencils not containingX(I, 0, O)? For pencils not containing YeO, I, O)? 

9. Prove Theorem 4.27. 

10. Prove: If A, B, C, D, E are five distinct collinear points, then 
R(A, B, C, D)-R(A, B, D, E) = R(A, B, C, E). 

4.10 Collineations 

There are two distinct types of transformations of the projective 
plane. The transformations considered in this section map collinear 
points to collinear points (and thus lines to lines). These transfor­
mations, called collineations, form a group; it is the invariants of this 
group that are studied in projective geometry. In the next section, 
we consider transformations that map collinear points to concur­
rent lines (and thus lines to points). These transformations, called 
correlations, allow mappings between dual figures and provide an 
analytic equation for conics. 

If we let V be the set of points of the analytic model of the 
projective plane together with {CO, 0, O)} (i.e., V is the set of all equiv­
alence classes of R3), we can show that V is a vector space under 
the usual addition and scalar multiplication in R3 (see Exercise 1). 
Collineations are defined as linear transformations of this vector 
space. 

270 4. Projective Geometry 

3. In the Euclidean plane, let A, B, C, D be distinct points on a number 
line with coordinates (x, f3, y, 8 respectively. Show that the (nonhomo­
geneous) parameters form of the cross ratio R(A, B, C, D) is the ratio 
of two segment division ratios ofthese four points (see Section 3.13). 

4. Show that if C has homogeneous parameters (1,1) and D has 
homogeneous parameters (r, 1) with respect to A and B, then 

R(A,B, C,D) = r. 

5. Prove Theorem 4.24. 

6. Prove Theorem 4.25. 

7. Prove the corollary to Theorem 4.26. [Hint: See Exercise 7 in 
Section 4.7] 

8. What is the comparable statement to the corollary to Theorem 4.26 for 
pencils not containingX(I, 0, O)? For pencils not containing YeO, I, O)? 

9. Prove Theorem 4.27. 

10. Prove: If A, B, C, D, E are five distinct collinear points, then 
R(A, B, C, D)-R(A, B, D, E) = R(A, B, C, E). 

4.10 Collineations 

There are two distinct types of transformations of the projective 
plane. The transformations considered in this section map collinear 
points to collinear points (and thus lines to lines). These transfor­
mations, called collineations, form a group; it is the invariants of this 
group that are studied in projective geometry. In the next section, 
we consider transformations that map collinear points to concur­
rent lines (and thus lines to points). These transformations, called 
correlations, allow mappings between dual figures and provide an 
analytic equation for conics. 

If we let V be the set of points of the analytic model of the 
projective plane together with {CO, 0, O)} (i.e., V is the set of all equiv­
alence classes of R3), we can show that V is a vector space under 
the usual addition and scalar multiplication in R3 (see Exercise 1). 
Collineations are defined as linear transformations of this vector 
space. 



4.10. Collineations 271 

Definition 4.19 
A one-to-one linear transformation of V onto itself is a collineation. 

With this definition, a slight modification of Theorem 3.3 leads 
to the following result giving the analytic form for collineations (see 
Exercise 2). 

Theorem 4.30 
A collineation can be represented by a 3 x 3 real-valued matrix A where 
IAI =1= o. The matrix equation for the collineation is sX' = AX where 
X E R3 and s =1= o. 

There are two important observations about this theorem we should 
make. First, equations of collineations, like equations of projectivi­
ties, contain nonzero scalars, and it is essential to allow this scalar 
to take on different values even within the context of the same 
collineation. Second, the matrix of a collineation is not unique (since 
if A is the matrix of a given collineation, kA will also be a matrix 
of the collineation for any nonzero scalar k), but there is a unique 
equivalence class of matrices corresponding to each collineation 
(see Exercise 4). 

Th show that the term "collineation" is appropriate, we need to 
verify that these mappings do indeed preserve collinearity as pre­
viously claimed. We can then conclude that collineations induce 
mappings from lines to lines, so it is appropriate to look for an 
equation that gives the image of a line directly. 

Theorem 4.31 
A collineation maps collinear points to collinear points. The image of 
a line U[Ul, Uz, U3] under a collineation with matrix A is given by the 
equation ku' = uA -1 J k =1= o. 

Proof 
Assume that P is a point on line QF.. Then it suffices to show that P', 
the image of P under the collineation, is collinear with the images of 
Q andR, namely, Q' andR'. Since P is on QR, Theorem 4.19 implies 
that there are two real numbers Al and AZ such that P = Al Q + AzR. 
Then sP' = AP = A(AI Q + AzR) for some nonzero scalar s, or P' = 
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()1.1/s)AQ + (Az/s)AR = A1Q' + AzR' SO, again by Theorem 4.19, p' is 
on line Q'R'. 

Th find the equation of the image line, assume the collineation 
with matrix A maps the line with coordinates u and equation uX = 0 
to the line with coordinates u' and equation u' X' = 0 where sX' = AX 
for some nonzero scalar s. Replacing X' in the equation of the image 
line with (l/s)AX yields u'X' = (l/s)u'AX = o. Thus, the point X' is 
on the line u'X' = 0 if and only if X is on the line (u'A)X = 0, but X' 
is on u' X' = 0 if and only if X is on uX = o. Since collineations are 
one-to-one mappings, u' AX = 0 and uX = 0 must be the same line. 
Thus, u = ku'A or ku' = uA -1. • 

This means that the same collineation that maps points according 
to the equation sX' = AX maps lines according to the equation ku' = 
uA -1. Thus, there are two equations that describe the mapping of 
any particular collineation: a point equation, that gives the images of 
points; and a line equation, that gives the images oflines. The matrix 
A used in the point equation is called the matrix of the collineation. 

Since a collineation maps collinear points to collinear points, 
duality suggests that it will also map concurrent lines to concurrent 
lines. The proof of this corollary begins with the line equation of the 
collineation and is an exact parallel of the first part of the proof of 
Theorem 4.31. 

Corollary 
Under a collineation, concurrent lines are mapped to concurrent lines. 

The set of collineations under the operation of composition form 
a group as can be verified by using the definition of group (see 
Exercise 5). 

Theorem 4.32 
The set of collineations forms a group under composition. 

As noted several times previously, Klein defined projective ge­
ometry as the study of properties of V that are invariant under 
the group of collineations. The following theorem shows that the 
properties of cross ratio and harmonic relation, which we have pre vi-
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ously shown invariant under projectivities, are also invariant under 
collineations. 

Theorem 4.33 
A collineation of the projective plane induces a projectivity between the 
elements of corresponding pencils. 

Proof 
Let P, Q, R be three collinear points, so R = AlP + AzQ. Let p', Q', 
and R' be their images under a collineation with matrix A. Then 
P', Q', and R' are also collinear so R' = ILlP' + ILzQ'. Applying the 
collineation to P, Q, and R yields SIP' = AP, szQ' = AQ, S3R' = 
AR, where each Si t= o. Since R = AlP + AzQ, this last equation 
gives S3R' = A(AIP + AzQ) = AIAP + AzAQ = SlAlP' + SzAzQ'. So 
when P and Q are base elements of the first pencil and p' and Q' 
are base elements of the second pencil, the element R of the first 
pencil has homogeneous parameters (AI, AZ), whereas its image R' 

has homogeneous parameters (ILl, ILz), where 

and l SI 0 I t= o. o Sz 

Therefore, by Theorem 4.21 the induced mapping between pencils 
of points is a projectivity. The proof for pencils of lines follows by 
~~~. . 
Corollary 
Cross ratios and harmonic sets are invariant under collineations. 

Having established the connection between collineations of the 
projective plane and projectivities of pencils, we will now study 
the general properties of collineations. Whereas projectivities are 
uniquely determined by three pairs of corresponding elements, the 
next theorem shows that collineations are uniquely determined by 
four pairs of corresponding elements. The proof of this theorem 
illustrates a useful technique for finding the matrix of a collineation. 

Theorem 4.34 
There exists a unique collineation that maps any four points, no three 
collinear, to any four points, no three collinear. 
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Proof 
The verification of this theorem consists of algebraically finding a 
matrix A of the collineation that maps any four points P, Q, R, S (no 
three collinear) to any four points P', Q', R', S' (no three collinear) 
and noting that this matrix is uniquely determined modulo the 
equivalence relation. This procedure can be simplified somewhat by 
first finding a matrix B such that SIP' = BX, S2Q' = BY, S3R' = BZ 

and S4S' = BU where X(I, 0, 0), YeO, 1, 0), Z(O, 0, 1), and U(I, 1, 1) 
and then finding a matrix C such that ssP = CX, S6Q = CY, 
S7R = CZ, ssS = CU. The matrix A is then given by A = BC- I . • 

Corollary 
A collineation of the plane with four invariant points, no three collinear, 
is the identity transformation. 

Clearly a collineation is also uniquely determined by four lines 
(no three concurrent) and four image lines (no three concurrent) 
and the matrix A-I used in the line equation of the collineation 
can be found by a procedure similar to that outlined in the proof 
of Theorem 4.34. This "simplified" procedure for finding the ma­
trix of a collineation that maps a given set of four points (no three 
collinear) to a given set of four image points (no three collinear) is 
demonstrated in Example 4.4. 

Example 4.4 
Find a matrix of the collineation that maps P(I, -3, 2), Q(2, -1,3), 
R(0,3,-2), and S(-1,3,0) to P'(3,7,7), Q'(O,O, 1), R'(5,7,6), and 
S'(I, 9, 7), respectively, 

Solution 
The verification that no three of the points P, Q, R, and S are 
collinear requires the verification that none of the four determi­
nants IPQR!, IPQS!, IPRS!, and IQRSI are zero. Similar computations 
are required to show that no three of the points P', Q', R', and S' are 
collinear. 

Following the procedure outlined in the proof of Theorem 4.34, 
we first find the matrix B by writing out the matrix equations for each 
of the equations: SlP' = BX, S2Q' = BY, S3R' = BZ, and S4S' = BU. 
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The first of these equations becomes 

or 
bll = 381 

b21 = 781 
b31 = 781 

(4.10) 

Before writing out the matrix version of the second equation, we 
replace the first column by these values. 

or 
b12 = 0 
b22 = 0 

b32 = 82 

By replacing the second column, the third equation becomes 

[381 o b13
] [0] [ 5 ] b13 = 583 

781 o b23 0 = 83 7 or b23 = 783 

781 82 b33 1 6 b33 = 683 

Finally the fourth equation becomes 

[381 
o S83]n n 381 + 583 = 84 

781 o 783 1 = 84 9 or 781 + 783 = 984 
781 82 683 1 7 781 + 82 + 683 = 784 

(4.11) 

(4.12) 

(4.13) 

Applying straightforward row reduction to the coefficient matrix 
for these equations yields 81 = -19, 82 = 24, 83 = 10, and 84 = -7; 
so the matrix B can be obtained by substituting these values in the 
matrix in (4.13): 

[ 
-57 0 50] 

B = -133 0 70 
-133 24 60 

Having found the matrix B, we now need to find the matrix C, which 
is determined by the four equations 8sP = CX, 86Q = CY, 87R = CZ, 
and 8sS = cu. We can simplify these calculations considerably by 
merely noting that we are again mapping the points X, Y, and Z with 
the matrix C so that the matrix equation comparable to (4.13) can 
be obtained by merely replacing the first, second, and third columns 
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with ssP, S6Q, and S7R giving 

or 

[
Iss 

- 385 

2ss 

Iss + 2s6 = -88 

-3ss - 86 + 3S7 = 3s8 

285 + 3s6 - 2s7 = 0 
(4.14) 

These equations yield Ss = 19, S6 = -6,87 = 10, and S8 = -7; so the 
matrix C is given by 

[ 
19 -12 0] 

C = -57 6 30 
38 -18 -20 

Finally, computing the matrix product BC-1 gives the matrix of 
the collineation: 

A = [ ~ ~ -~] 
-1 2 0 o 

Since collineations preserve collinearity, concurrence, and cross 
ratios, Theorem 4.34 allows us to simplify analytic proofs involving 
these properties by choosing any four points, no three collinear, as 
the points X, Y, Z, and U; as before, we will assume these points 
have the following coordinates: X(I, 0, 0), YeO, I, 0), Z(O, 0, I), and 
U(I, I, 1). This technique is illustrated in the following proof, which 
shows that our analytic model satisfies Axiom 4.4. 

Verification of Axiom 4.4 

Let X(l, 0, 0), YeO, 1,0), Z(O, 0, I), and U(I, I, 1) be the four points 
of a quadrangle. Using straightforward calculations, we can show 
that the diagonal points of this quadrangle are XY·UZ = A(I, I, 0), 
XZ·uy = B(I, 0,1). and UX·ZY = C(O, I, 1). A quick computation 
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shows that IABC! "# 0, so the diagonal points of the quadrangle are 
not collinear (see Exercise 7). 

As indicated by Theorem 4.22, projectivities need not have any 
invariant elements. Collineations, on the other hand, always have 
at least one invariant point and one invariant line. The proof of this 
statement is a direct application of the theory of eigenvectors from 
linear algebra. 

Theorem 4.35 
A collineation has at least one invariant point and one invariant line. 

Proof 
Th show that a collineation with matrix A has at least one invariant 
point, note that there will be an invariant point X if and only ifthere 
is a nonzero scalar s such that sX = AX. But sX = AX if and only if 
sIX - AX = (sI - A)X = 0 where I is the identity matrix. This last 
equation has a nontrivial solution X if and only if lsI - AI = 0i but 
since A is a 3 x 3 matrix with real entries lsI - AI is a third degree 
polynomial in s and so has at least one real solution for s. (Note this 
solution cannot be 0.) Th show that the collineation with matrix A 

has at least one invariant line, the same procedure is used, beginning 
with the equation ku' = uA -1. • 

The invariant line of a collineation need not be pointwise invari­
anti that is, even though points on the invariant line must remain 
on the line under the collineation, the points themselves may not 
remain fixed. 

Definition 4.20 
A collineation that has one pointwise invariant line is called a 
perspective collineation. The pointwise invariant line is called the axis. 

By Theorem 4.34 a perspective collineation other than the iden­
tity can have at most one invariant point not on the axis. The 
following theorem demonstrates that there is always one linewise 
invariant point under a perspective collineation. 
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FIGURE 4.35 Proof 4.36, case 1. 

Theorem 4.36 
Every perspective collineation has a linewise invariant point. (This point 
is called the center). 

Proof 
Let m be the axis of the perspective collineation. 

Case 1: There is an invariant point not on m. Let this invariant 
point be called C. Then any line through C intersects m in a second 
invariant point (Fig. 4.35). Thus, each line through C has two in­
variant points, and hence is invariant. It follows that C is linewise 
invariant. 

Case 2: The only invariant points are those on m. Let P be any point 
not on m. Consider the line n = pp' where p' is the image of P under 
the perspective collineation. Let C = n·m. Then n = CP = CP' is 
invariant. If R is another point not on m or n, there similarly exists 
an invariant line 0 = RR'. Let X = o·n (Fig. 4.36). Then since 0 and 
n are both invariant, it follows that X is invariant so X is on m. But 
n·m = C, thus X = C. Therefore, every point not on m lies on an 
invariant line through C, or in other words, every line through C is 
invariant. • 

FIGURE 4.36 Proof 4.36, case 2. 
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The proof of Theorem 4.36 shows that a perspective collineation 
with center C and axis m maps a given point P (P "# C) not on m to 
a point pIon PC. Subject to this condition, however, the image of P 
can be arbitrary, However, once the image of P is named, the image 
of any other point under a perspective collineation with a given axis 
and center is completely determined. 

Theorem 4.37 
There exists a unique perspective collineation with axis m and center C 
that maps a given point P (P "# C and P not on m) to a given point p' 
on pc. 

Proof 
Case 1: C is not on m. Let PC·m = D and let E and F be two additional 
points on m (Fig. 4.37). Then by Theorem 4.34 there exists a unique 
collineation that maps P to pI, C to C, E to E, and F to F. Clearly, 
this collineation keeps m invariant since it keeps E and F invariant. 
Note that PC = pIC is a second invariant line. Thus, D = PC·m 
is a third invariant point on m, and it follows that the projectivity 
induced on m by this collineation is the identity (Theorem 4.8), and 
so m is pointwise invariant. Thus, the collineation is a perspective 
collineation with axis m, and as in the proof of Theorem 4.36, the 
center can be shown to be C. 

Case 2: C is on m. Let PX·m = D where X is a point not on either 
PC or m (Fig. 4.38). Then if a perspective collineation exists as 
desired, it must map X to X' = CX·P'D (see Exercise 10). But by 
Theorem 4.34, there exists a unique collineation mapping P to pI, 
X to X', C to C, and D to D. As before, m is invariant under the 
collineation because C and D are invariant. However, m must be 

p. 

c 

FIGURE 4.37 Proof 4.37, case 1. 
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FIGURE 4.37 Proof 4.37, case 1. 
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p 

FIGURE 4.38 Proof 4.37, case 2. 

shown pointwise invariant and C line wise invariant. As shown in 
Problem 9, it is sufficient to show that C is linewise invariant and 
then note that since m has at least two invariant points, it must be 
the axis. 

Tb show that C is linewise invariant, note that CP = Cp', m, and 
cx = CX' are three invariant lines through C. Thus, by the dual 
of the argument in case I, C is linewise invariant and the result 
fu~~. • 

These collineations are called perspective collineations since they 
map triangles to perspective triangles. The proof of this result follows 
directly from the definitions of the center and axis of a perspective 
collineation and from the definition of perspective triangles. 

Theorem 4.38 
l:::.P' Q'R' is the image of l:::.PQR under a perspective collineation with 
center C and axis m if and only if the triangles are perspective from the 
point C and perspective from the line m. 

Proof 
(a) For the first half of the proof, see Exercise 11. 
(b) Now assume that l:::.PQR and l:::.P'Q'R' are perspective from C and 
m. Since l:::.PQR is a triangle, the three points P, Q, R are not collinear. 
Thus, at least one of the points, say P, is not on m. Furthermore, 
since l:::.PQR and l:::.P'Q'R' are perspective from C, p' is on PC. So by 
Theorem 4.37, there is a perspective collineation T with center C 
and axis m that maps P to P'. It must now be shown that T( Q) = Q' 
and T(R) = R'. 
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By the proof of Theorem 4.37, T(Q) = P'D·QCwhereD = PQ·m. 
But PQ·m = P'Q'·m, since the triangles are perspective from m, so 
P'D = P'Q'. 

Thus, T(Q) = P'Q'·QC. But Q' is on QC since the triangles are 
perspective from C, so T(Q) = Q. Likewise, T(R) = R'. • 

As the proof of Theorem 4.37 indicates, there is a distinction be­
tween the perspective collineations that have their centers on their 
axes and those that do not. 

Definition 4.21 
A perspective collineation other than the identity is called an elation 
if its center lies on its axis and a homology if its center does not lie 
on its axis. 

Homologies have another property worthy of note. 

Theorem 4.39 
Under a homology, with center C and axis m, any point P not on m (P =j:. 
C) has an image P' such that C, P, and P' are collinear; and, ifm·CP = 
Q, then R(C, Q, P, P') is constant for all P. 

Proof 
The fact that C, P, and P' are collinear for all perspective 
collineations has been noted previously. 

Case 1: X is a point not on CP or on m. Let X' be its image under the 
homology, and let D = CX·m, E = PX·m. So X' = XC·EP' (Fig. 4.39). 
Then CQPP' ~ CDXX', and thus by Theorem 4.26, R(C, Q, P, P') 
R(C, D, X, X'). 

FIGURE 4.39 Proof 4.39, case 1. 
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X' 

FIGURE 4.40 Proof 4.39, case 2. 

Gase 2: X is a point on GP. Then let Y be a point not on GP 
(Fig. 4.40). By case I, R(G, Q P, pI) = R(G, D, Y, yl) and y can then 
be used in place of P in case 1 to yield a similar result for X. • 

If this constant cross ratio is -I, the homology is called a 
harmonic homology. 

Exercises 
1. Prove that the set of points of the analytic model (i.e., nonzero equiva­

lence classes of ordered triples from R3) together with the equivalence 
class {(O, 0, O)} form a vector space under the usual addition and scalar 
multiplication in R3. 

2. Prove Theorem 4.30. 

3. Given the collineation with matrix 

[~ ~ n 
(a) Write out the point equation for this collineation and find pI and 
Q/, the images of P(l, 2, 3) and Q( -1,0, 1), respectively. (b) Find the 
coordinates of the line P'Q/. (c) Write out the line equation for this 
collineation and find the image of l[l, -2, 1]. (d) Do your answers 
for parts band c agree? 

4. Show that the relation II"," defined below is an equivalence relation 
on the set of 3 x 3 matrices: 
A'" B if and only if A = kB for some nonzero scalar k. 
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5. Prove Theorem 4.32. 

6. Find the matrix of the collineation that maps P(I, 0, I), Q(2, 0, I), 
R(O, I, 1), and S(O, 2, 1) to X(I, 0, 0), YeO, I, 0), Z(O, 0, 1), and U(I, I, 1), 
respectively. 

7. Complete the details in the verification of Axiom 4.4. 

8. Find the invariant points and lines of the collineations with the 
following matrices: 

(a) u ~~] (e) U ~ !] 
where a =1= 0, 1. where a =1= o. 

9. Prove: Every collineation with a linewise invariant point is a 
perspective collineation. 

10. Show that in the proof of case 2 of Theorem 4.37, X' = eX·p'D. 

11. Prove the first part of Theorem 4.38. 

12. Show that the collineation with the following matrix is a homology. 
Is it a harmonic homology? 

[~ ~ j] 
13. Find the matrix of an elation with axis [0,0,1] and center (I, 0, 0). 

4.11 Correlations and Polarities 

The second type of transformations of the projective plane, known 
as correlations, are also one-to-one linear transformations. Here, 
however, the images of points are lines. 

Definition 4.22 
A correlation is a one-to-one linear transformation ofthe set of points 
of the projective plane onto the set oflines of the projective plane. 

Correlations, too, can be represented by 3 x 3 matrices with ma­
trix equations much like those used for collineations; except in this 
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case, the ordered triples resulting from these mappings are inter­
preted as homogeneous coordinates oflines. Just as for collineations, 
there is an entire equivalence class of matrices corresponding to 
each correlation. These and several other results characterizing 
properties of correlations can be proved using arguments nearly 
identical to those used to prove similar results about collineations. 

Theorem 4.40 
A correlation can be represented by a 3 x 3 real-valued matrix A where 
IA I =F O. The matrix equation for the correlation is sut = AX where 
X E R3 and s =F O. 

Theorem 4.41 
A correlation maps collinear points to concurrent lines. The image of 
a line u under a correlation with matrix A is given by the equation 
kXt = uA-\ k =F O. 

Corollary 
Under a correlation, concurrent lines are mapped to collinear points. 

Theorem 4.42 
A correlation of the projective plane induces a projectivity between the 
elements of the corresponding pencils. 

Corollary 
Cross ratios and harmonic sets are invariant under correlations. 

Theorem 4.43 
There exists a unique correlation that maps any four points, no three 
collinear; to any four lines, no three concurrent. 

Thus, a given correlation that maps pOints to lines according 
to the equation sut = AX also maps lines to points according to the 
equation kXt = uA -1. (The transpose is used in both equations, since 
points are represented by column matrices and lines are represented 
by row matrices.) In general, correlations map any given set to the 
dual set. For example, the image of a quadrangle under a correlation 
is a quadrilateral, and vice versa. It follows that correlations give us 
an analytic method for studying duality. 
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Since correlations map points to lines and lines to points, it seems 
reasonable to expect that a correlation that maps a point P to a line 
p will automatically map the line p to the point P. However, this 
does not necessarily happen, since a correlation that maps a point 
X to a line u according to sut = AX will map the line u to a point 
Y according to kyt = uA -1. Solving the first equation for u gives 
u = (l/s)(AXY = (l/s)XtAt. If each point X mapped to line u, which 
in turn is mapped back to X, so that X = Y for each point X, then 
kXt = k'yt = uA-1 = ((l/s)xtAt)A -lor skxt = Xt(AtA-1). This will 
hold for all possible points X if and only if At A-I = I, that is, if and 
only if At = A. So a correlation maps every point X to a line u and the 
line u back to X if and only if its matrix is symmetric. Correlations 
of this type are called polarities. Since we shall soon show that the 
set of polarities give analytic expression to conics, we begin using 
the letter C to denote matrices of polarities. 

Definition 4.23 
A correlation whose matrix is symmetric is called a polarity. If a 
polarity maps a point P to a line p (and thus p to P), thenp is called 
the polar of P and P is called the pole of p with respect to the given 
polarity. 

Since polarities are correlations, they are one-to-one mappings; 
hence polars of distinct points are distinct lines, and vice versa. This 
polarity relation also has the characteristic property first described 
in Section 1.S in that it pairs points that lie on one another's polar. 
Such points are called conjugate points with respect to the polarity. 

Theorem 4.44 
A point P is on the polar of a point Q under a given polarity if and only 
if Q is on the polar of P under this same polarity. 

Proof 
Let C be the matrix of the polarity and let q and p be the polars of Q 

and P, that is, Sl qt = CQ and szpt = CP. Since P is on the polar of Q, 
qP = 0; but Slq = QtC, so QtCP = o. 'Itansposing gives ptCQ = 0 or 
pQ = 0, that is, Q is on the polar of P. • 
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Corollary 
p is on the polar of Q with respect to a polarity with matrix C if 
and only if QtcP = o. And p contains the pole of q with respect to 
this same polarity if and only ifpC-1qt = o. 

Definition 4.24 
TWo points are called conjugate points with respect to a given polarity 
if each point is on the polar of the other. A point that lies on its own 
polar is called a self-conjugate point with respect to the given polarity. 

TWo lines are called conjugate lines with respect to a given polarity 
if each line is incident with the pole of the other. A line that is 
incident with its own pole is called a self-conjugate line with respect 
to the given polarity. 

The corollary to the previous theorem leads directly to a matrix 
equation for sets of self-conjugate points (see Exercise 2). Multiply­
ing out the matrix product in this equation yields a quadratic form 
whose similarity to the quadratic forms encountered in Section 3.13 
should be suggestive of a connection between sets of self-conjugate 
points and point conics. 

Theorem 4.45 
The set of self-conjugate points of a polarity with matrix C is the set of 
points X satisfYing the equation X t CX = o. The set of self-conjugate lines 
of this same polarity is the set of lines satisfYing the equation uc-1 ut = o. 

Corollary 
The set of self-conjugate points of a polarity with matrix C is the set of 
points X satisfYing the equation: 

cnxi + C22X~ + C33X~ + 2C12XIXZ + 2C13XIX3 + 2CZ3XZX3 = 0 

Using the matrix equation for a set of self-conjugate points, we 
can now show that such sets are preserved under collineations. A 

similar procedure can be used to show that the pole-polar relation is 
also preserved under these mappings, that is, if P and p are pole and 
polar with respect to a polarity with matrix C; then pI and p', their 
images under a collineation, will be pole and polar with respect to 
the polarity with matrix C' (see Exercise 3). 
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Theorem 4.46 
A collineation with matrix A maps a set of selfconjugate points with 
matrix C to a set of self conjugate points with matrix C' = (A -lYC(A -1). 

Proof 
Let Sbe a set of self-conjugate points with equationXtCX = 0 where 
C is a 3 x 3 nonsingular, symmetric matrix. Let A be the matrix of 
an arbitrary collineation. Then A is also a 3 x 3 nonsingular ma­
trix, and the corresponding point equation is sX' = AX. Solving 
for X and Xt gives X = sA -lX' and Xt = s(X'y(A -ly. Substitut­
ing into the equation XtCX = 0 yields (X'Y(A -lYCCA -l)X' = 0 or 
(X'Y((A -lYCA -l)X' = O. But (A -lYCA -1 is a 3 x 3 nonsingular, sym­
metric matrix and hence the matrix of a polarity. Thus, X is in the 
set S of self-conjugate points with matrix C if and only if X' is in the 
set S' of self-conjugate points with matrix C' = (A -lYCA -1. • 

The previous theorem will allow us to simplify our work with 
self-conjugate sets of points by "assigning" special coordinates to 
some of the points involved, much as we did when we verified 
Axiom 4.4 in Section 4.10. In particular, we use this technique to 
demonstrate that sets of self-conjugate points (which are defined 
analytically in terms of polarities) are point conics-figures that can 
be constructed entirely with points and lines. Even with this sim­
plifying technique, the proof of this result is somewhat long and 
involved, but it nicely illustrates the use of analytic methods in pro­
jective geometry. The significance of the theorem and corollaries 
make the effort worthwhile. 

Theorem 4.47 
A nonempty set of selfconjugate points with respect to a given polarity 
is a point conic and a nonempty set of selfconjugate lines with respect 
to a given polarity is a line conic. Conversely, any point conic is a set of 
selfconjugate points with respect to some polarity and any line conic is 
a set of selfconjugate lines with respect to some polarity. 

Proof 
By the principle of duality, it is sufficient to verify the result for point 
conics. 
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Let C be a nonempty set of self-conjugate points. Since C is 
nonempty, we can show that C contains at least three distinct, non­
collinear points (see Exercise 6). We will assume these points are 
X(I, 0, 0), Z(O, 0, I), and U(1, I, 1) and that the polars at X and Z in­
tersect at YeO, I, 0). Since X and Z are self-conjugate points, their 
polars relative to Care XY[O, 0, 1] and ZY[I, 0, 0]. Algebraically, this 
means we need a symmetric matrix C that satisfies the following: 

C(I, 0, O]t = 81[0, O,1]t and C(O, 0, 1 t = 8z[1, 0, ot 
These equations yield Cll = CIZ = CZ3 = C33 = 0 and C13 =1= O. Finally, 
requiring that the point U also be self-conjugate gives C2Z = 1 and 
Cl3 = -! so the equation of C becomes (XZ)2 - XIX3 = o. It is then 
sufficient to show that the set of points satisfying this equation is a 
point conic, that is, a set of points of intersection of corresponding 
lines of two projectively related pencils of lines. 

We will use the two pencils centered at X and Z. The projec­
tivity we will use is uniquely determined by the correspondence: 
XY XZ XU /\ ZX ZY ZU. Note that under this projectivity, X, Z, and 
U are all points of intersection of corresponding lines; and since XY 
corresponds to ZX, the line between the centers of the two pencils, 
it will be a tangent at X. Similarly, ZY will be a tangent at Z. Letting 
XY and XZ be base lines of the first pencil and ZX and ZY base lines 
of the second pencil will give us a projectivity with a diagonal matrix 
(see Section 4.8, Exercise 1). Finally, requiring thatXU[O, I, -1] with 
homogeneous parameters (-1, 1) maps to ZU(1, -1, 0], also with ho­
mogeneous parameters (-I, I), gives the 2 x 2 identity matrix as the 
matrix of the projectivity. 

Th show that C is exactly the set of points of intersection 
of corresponding lines under this projectivity, let P(Pl,PZ,P3) be 
an arbitrary point of C. Then the projectivity will map the line 
XP = Z[O, -P3,PZ] with homogeneous parameters (P2, -P3) to line 
l' through Z with the same homogeneous parameters. So Z' has coor­
dinates [-P3,PZ, 0]. Using the determinant condition to find the point 
1·1' gives (-(Pzi, -P3PZ, -(P3i) as the coordinates of this point ofin­
tersection, but since P is a point in C, (Pzi = PIP3, so the point 1·1' 
has coordinates (Pl,PZ,P3). In other words, the point P is the point 
of intersection of the projectively related lines 1 and I' if and only if 
PisinC. 
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1b complete the first half of the proof, we need to verify that this 
projectivity is not a perspectivity. 1b do this, it is sufficient to note 
that the line XZ, which joins the two centers of the pencils, does not 
correspond to itself. 

Conversely, to show that any point conic C is the set of self­
conjugate points with respect to a polarity we can use a similar 
procedure. Let P, Q, R be three distinct points of C and let S be 
the point of intersection of the tangents to C at P and Q. Then P, 

Q, R, and S are four distinct points, no three collinear (see Exercise 
7). Since collineations preserve incidence and therefore conics, we 
can assume that P, Q, R, and S are the points X(I, 0, 0), Z(O, 0, 1), 
U(1, I, I), and YeO, I, 0), respectively. 

By the corollary to Theorem 4.15, the tangents at X and Z, to­
gether with the three points X, Z, and U, uniquely determine the 
conic, so it is sufficient to show that these tangents and points de­
termine a polarity with matrix C relative to which C is a set of 
self-conjugate points. Since in the first part of the proof, the two 
self-conjugate lines became tangents to the conic, here we will find 
a polarity under which the two tangent lines are self-conjugate. This, 
together with the condition that U be a self-conjugate point, leads 
to the same equation as before, namely, (xz)z - XIX3 = O. So there is 
indeed a polarity under which C is a set of self-conjugate points. • 

Corollary 1 
A point conic has an equation of the form xt CX = 0 and a line conic 
has an equation of the form uc-1 ut = 0 where C is a symmetric, nonsing­
ular 3 x 3 matrix. 

Therefore, any point conic corresponds to a symmetric matrix 
that is the matrix of a polarity. This polarity matrix is called the 
matrix of the point conic. Furthermore, if line p corresponds to point 
P under the polarity determined by the conic, P and p are said to be 
pole and polar with respect to the conic. This terminology is used in the 
statement of two more corollaries to Theorem 4.47, which formalize 
the relationship between self-conjugate lines and tangents. 
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Corollary 2 
Let P be a point of a point conic C. The polar of P with respect to C is 
the tangent at P; conversely, the tangent to C at P is the polar of P with 
respect to C. 

Corollary 3 
If X is a point of a point conic C, with matrix C, then u, the tangent to C 
at X, is given by the equation sut = cx. 

Using this last corollary, we can show that the line conic deter­
mined by a given polarity consists of the tangents to the point conic 
determined by the same polarity. 

Theorem 4.48 
The tangents to a point conic are the lines of the line conic determined 
by the same polarity. 

Proof 
Let X be a point on a point conic with matrix. C. By Corollary 3 to 
Theorem 4.47, u, the tangent at X, is given by sut = ex. Solving this 
equation for X gives X = sC-1ut . 

Since X is on the point conic, X t CX = 0 by Corollary 1 of the 
same theorem. Substituting the previous expression for X into this 
equation gives (sC-1utyC(SC-1ut) = 0, or uC-1CC-1Ut = uC-1ut = 
O. So u satisfies the equation of the line conic determined by the 
same polarity. • 

A polarity also determines polars of points not on the correspond­
ing conic. The following theorems and definitions yield a method 
of constructing polars of other points (and, by duality, poles of lines 
other than tangents). These constructions will assume added impor­
tance in Section 4.12 when we describe non-Euclidean geometries 
as subgeometries of projective geometry. 

Theorem 4.49 
The point of intersection of two tangents to a point conic is the pole of 
the line joining the points of tangency. 
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FIGURE 4.41 Proof 4.49. 

Proof 
Let p and q be tangents to a point conic at points P and Q, respec­
tively; that is, p and q are the polars of P and Q, respectively. Let 
R = p.q (Fig. 4.41). Then R is on both the polar of P and the polar of Q 

so by Theorem 4.44, P and Q are both on the polar of R, so PQ is the 
polar of R, and therefore R is the pole ofline PQ by definition. • 

Corollary 
Any point lies on at most two tangents to a given point conic. 

The proof of Theorem 4.49 demonstrates the existence of trian­
gles where one vertex is the pole of the opposite side. Triangles in 
which each vertex is the pole of the opposite side are particularly 
significant. The existence of triangles like this is demonstrated by 
the next theorem. 

Definition 4.25 
If each vertex of a triangle is the pole of the opposite side of the 
triangle with respect to a conic, then the triangle is said to be self­
polar relative to the conic. 

Theorem 4.50 
If A, B, C, and D are four distinct points of a point conic then the diagonal 
triangle of quadrangle ABCD is self-polar. 
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gles where one vertex is the pole of the opposite side. Triangles in 
which each vertex is the pole of the opposite side are particularly 
significant. The existence of triangles like this is demonstrated by 
the next theorem. 

Definition 4.25 
If each vertex of a triangle is the pole of the opposite side of the 
triangle with respect to a conic, then the triangle is said to be self­
polar relative to the conic. 

Theorem 4.50 
If A, B, C, and D are four distinct points of a point conic then the diagonal 
triangle of quadrangle ABCD is self-polar. 
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Q 

FIGURE 4.42 Proof 4.50. 

Proof 
Let P = CD·AB, Q = CB·AD, and R = AC·BD be the diagonal points 
of the quadrangle, and let 

S = tanB· tan A and T = tan C· tanD, 
U = tan C· tan A and V = tanD· tanB. 

Then by a corollary to Theorem 4.14, Q, R, S, and T are collinear, 
as are P, Q, U, and V (Fig. 4.42). By Theorem 4.49, P is on the polars 
of both Sand T, so TS = OF. is the polar of P. Similarly, R is on the 
polars of both U and V, so UV = PQ is the polar of R. And finally, 
since Q is on the polars of P and R, then PR is the polar of Q. • 

Corollary 
If a line m through a point P not on a point conic intersects the conic, 
the points of intersection are harmonic conjugates with respect to P and 
the point of intersection of m with the polar of P. 

Theorem 4.49 indicates how to construct poles of lines that in­
tersect a conic twice. Lines that intersect a conic exactly once are 
just the tangents and hence the polars of the point of intersection, 
but there are lines that do not intersect the conic at any point. This 
distinction provides the basis for the next definition. 
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Definition 4.26 
If the polar of P with respect to a given conic does not intersect a 
given point conic, P is said to be an interior point of the conic. If the 
polar of P with respect to a given point conic intersects the conic in 
two distinct points, P is said to be an exterior point of the conic. 

In order to demonstrate the construction of polars of interior and 
exterior points and the construction of poles oflines that do and do 
not contain any interior points, we will make use of the following 
lemma (see Exercise ll). 

Lemma 
A line contains interior points of a point conic if and only if it intersects 
the conic at two distinct points. 

Construction of Poles and Polars 
Case 1 : Construction of the polar of a point P not on the conic. Let land 
m be two lines through P, both of which intersect the conic C at two 
points. Let A and B be the points of intersection of 1 with C and let C 
an D be the points of intersection ofm with C. Then A, B, C, and D 
form a quadrangle so by Theorem 4.50, its diagonal triangle is self­
polar. In other words, the line joining Q = AC·BD and R = AD·BC 
is the polar of P (see Fig. 4.43). 

Q 

B 

FIGURE 4.43 Constructing polar of P. 
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FIGURE 4.44 Constructing pole of p, case 1. 

Case 2 : Construction of the pole of a line p not tangent to a conic. If p 
intersects the conic at distinct points Rand S, thenP = tanK tan S = 
pole of p by Theorem 4.49 (Fig. 4.44). If p does not intersect the 
conic, let Rand S be two distinct points on p. Then since p does 
not intersect the conic, it follows from the preceding lemma that all 
points on p and in particular Rand S, are exterior points of the conic. 
Hence, their respective polars rand s each intersect the conic twice. 
Let P = r·s (Fig. 4.45). Then, since P is on the polar of R and the 
polar of S, it follows thatP is the pole ofp. (Note thatP is an interior 
point.) 

Self-polar triangles are also used in mapping a particular point 
conic to another point conic in standard fonn. (A conic in standard 
form will play an important role in the next section.) The proof of 
the first of the theorems necessary to achieve this mapping involves 
a special self-polar triangle and makes use of techniques similar to 
those used in part of the proof of Theorem 4.47 (see Exercise 13). 

Theorem 4.51 
The triangle .6.XYZ (whereX(I, 0, 0), YeO, I, 0), andZ(O, 0, 1)) is a self­
polar triangle with respect to a conic if and only if the matrix of the conic 
is diagonal. 

FIGURE 4.45 Constructing pole of p, case 2. 
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Thus, any point conic is equivalent, that is, can be mapped via a 
collineation, to a conic with an equation of the form a(xl)z +b(xzi + 
C(X3)Z = O. However, the next theorem shows that conics with equa­
tions of this form can, in turn, be mapped to conics with yet a simpler 
equation. This theorem will even include the case where the original 
point conic contains no points in the real projective plane. 

Theorem 4.52 
Any point conic is projectively equivalent to a conic with an equation of 
the form (Xl)Z + (xz)z ± (x3i = 0 (i.e., any conic can be mapped via a 
collineation to a conic with this equation). 

Proof 
Let I::!.PQF.. be a self-polar triangle with respect to a given point conic 
C, and let T be a collineation that maps P, Q, R to X, Y, Z, respec­
tively. Then I::lXYZ will be self-polar with respect to the conic T(e), 
so this latter conic will have a diagonal matrix by Theorem 4.5l. 
Now either all of the diagonal entries are of the same sign or one of 
the entries differs in sign from the other two. In the first case, we 
will use a matrix representation in which the diagonal entries are 
all positive. In the second case we can, if necessary, make use of 
a collineation that switches an appropriate pair of the points X, Y, 
and Z to obtain a conic with a diagonal matrix representation with 
a negative third entry (see Exercise 15). So we can assume that the 
matrix representation of the image conic T(C) is of the following 
form where a and b are positive and c is nonzero: 

[
a 0 0] 

C = 0 b 0 
o 0 c 

Finally, let S be the collineation with matrix 

[va 
A= ~ 

o 
.jb 
o 1] 
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Then by Theorem 4.46 the conic ST(C) will have matrix C' 
(A-l)C(A- l ). Computing this matrix product gives 

C' = [~~ ~] 
o 0 ±l 

So conic ST(C) has an equation of the form (Xl)2 + (x2i ± (x3i = 0 .• 

A point conic whose equation is of this form is said to be in stan­
dard form. The two possible standard forms determine two types 
of polarities. The names assigned to these two types are meant to 
be suggestive of two non-Euclidean geometries. In the next sec­
tion, we explore the connection between these polarities and the 
corresponding geometries. 

Definition 4.27 
A polarity whose associated conic is equivalent to the conic with 
equation (xli+(X2i -(X3)2 = 0 is called hyperbolic. A polarity whose 
associated conic is equivalent to the conic with equation (xli + 
(x2i + (x3i = 0 is called elliptic. 

Exercises 
1. Given the polarity with matrix 

[ ~ ~ -~] 
-1 1 0 

(a) Find the equations of the sets of self-conjugate points and self­
conjugate lines determined by this polarity. (b) Find the pole of the 
line [1, I, 1]. (c) Find a point conjugate to the point (I, I, 1). 

2. Prove Theorem 4.45 and its corollary. 

3. Show that the pole-polar relation is preserved under a collineation. 

In Exercises 4-6, C is a nonempty self-conjugate set of points determined 
by a given polarity. 

4. Using Theorem 4.44, prove: if P is a point of C, then the polar of P 
contains exactly one point of C. 

296 4. Projective Geometry 

Then by Theorem 4.46 the conic ST(C) will have matrix C' 
(A-l)C(A- l ). Computing this matrix product gives 

C' = [~~ ~] 
o 0 ±l 

So conic ST(C) has an equation of the form (Xl)2 + (x2i ± (x3i = 0 .• 

A point conic whose equation is of this form is said to be in stan­
dard form. The two possible standard forms determine two types 
of polarities. The names assigned to these two types are meant to 
be suggestive of two non-Euclidean geometries. In the next sec­
tion, we explore the connection between these polarities and the 
corresponding geometries. 

Definition 4.27 
A polarity whose associated conic is equivalent to the conic with 
equation (xli+(X2i -(X3)2 = 0 is called hyperbolic. A polarity whose 
associated conic is equivalent to the conic with equation (xli + 
(x2i + (x3i = 0 is called elliptic. 

Exercises 
1. Given the polarity with matrix 

[ ~ ~ -~] 
-1 1 0 

(a) Find the equations of the sets of self-conjugate points and self­
conjugate lines determined by this polarity. (b) Find the pole of the 
line [1, I, 1]. (c) Find a point conjugate to the point (I, I, 1). 

2. Prove Theorem 4.45 and its corollary. 

3. Show that the pole-polar relation is preserved under a collineation. 

In Exercises 4-6, C is a nonempty self-conjugate set of points determined 
by a given polarity. 

4. Using Theorem 4.44, prove: if P is a point of C, then the polar of P 
contains exactly one point of C. 



4.11. Correlations and Polarities 297 

5. Prove: If A is a point ofC and B i- A is a second point on the polar of 
A, then the polar of B contains exactly two points ofC. [Hint: Assume 
A and B are the points Z(O, 0, 1) and YeO, I, 0), respectively.] 

6. Use the result of Exercise 5 to show that C contains at least three 
noncollinear points. 

7. Show that the four points P, Q, R, and S chosen in the proof of the 
second half of Theorem 4.47 are distinct with no three collinear. 

8. Given the conic (Xl)Z + 2(xz)z + 5(x3i - 2XZX3 - 2XIX3 - 4XIXZ = 0 find 
(a) the tangent at point (I, I, I), (b) the polar of (3, I, 5), and (c) the 
tangents from the point (I, -2, 0). 

9. Prove the corollary to Theorem 4.49. 

10. Prove the corollary to Theorem 4.50. [Hint: Let n be a second line 
through P intersecting the conic at two points. Find a harmonic set 
formed by these four points and then use a perspectivity.] 

11. Let C be the conic with equation (xzi - XIX3 = O. (a) Show that the 
POintP(Pl, Pz, P3) is an interior point ofC if and only if (Pz)z -PIP3 < O. 
(In general, P is an interior point of the conic X t CX = 0 if and only if 
ptcp < 0) (b) Show that every line contains exterior points ofC. (c) 
Use parts (a) and (b) to show that any line contains interior points of 
C if and only if it intersects C at two distinct points. 

12. In the construction of the polar of a point P not on a conic, land 
m were chosen as two lines through P, both of which intersect the 
conic twice. Describe how the polar of P can be obtained if 1 and/or 
m intersect the conic exactly once. will this happen if P is an interior 
point? 

13. Prove Theorem 4.5l. 

14. Show that a harmonic homology whose center and axis are pole and 
polar with respect to a point conic C keeps C invariant (i.e., it maps 
points on C back to points on C). 

15. IfC is the point conic with equation a(xd +b(xzi +C(X3)z = 0 where 
a < 0, b > 0, C > 0, find the matrix of a collineation T such that the 
point conic T(C) has an equation a'(xli + b'(xzi + c'(x3i = 0 where 
a' > 0, b' > 0, and c' < O. [Hint: Use a collineation that interchanges 
the points X and Z and keeps Y invariant.] 

16. Show that the point conic determined by an elliptic polarity contains 
no points in the real projective plane. 
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17. Show that any collineation with an orthogonal matrix A will keep 
the conic determined by an elliptic polarity invariant. [Hint: Use the 
standard form of the conic and note that the matrix A is orthogonal if 
and only if At = A -1.] 

18. Prove: If T is a correlation then T2 is a collineation. If A is the matrix 
of T, what is the matrix of T2? 

4.12 Subgeometries of Projective 
Geometry 

In this final section, we see that Klein's definition of geometry allows 
us to view projective geometry as an umbrella geometry under which 
affine, similarity, Euclidean, hyperbolic, and single elliptic geome­
tries all reside. Our approach is to demonstrate that the respective 
plane geometries can all be obtained as subgeometries of plane pro­
jective geometry. Although we do not do so, this approach can be 
extended to demonstrate a similar relation among the corresponding 
three-dimensional geometries. 

1b obtain the appropriate viewpoint, we begin by selecting an 
absolute polarity (its corresponding conic is known as the absolute 
conic C) for each of the three geometries and then demonstrate that 
fundamental concepts of each geometry can be defined in terms 
of properties left invariant under a group of transformations that 
preserve C. Since we have already explored these geometries in 
some depth in Chapters 2 and 3, we do not dwell on the details 
of each geometry here. Rather, we concentrate on identifying con­
cepts in terms of their projective counterparts and indicate ways in 
which theorems of projective geometry can be used to verify stan­
dard results in each geometry. The ease with which we are able to 
make these identifications and prove these results should increase 
your appreciation for both the significance and beauty of projective 
geometry. 

As indicated earlier, we begin by considering a particular po­
larity of the projective plane. We refer to this polarity and its 
associated point conic as the absolute polarity and absolute conic. 
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As we discovered in Section 4.11, this absolute conic can be rep­
resented in standard form as (Xl)Z + (XZ)Z ± (X3i = O. In order to 
obtain both non-Euclidean and affine geometries, and eventually 
Euclidean geometry as subgeometries, we rewrite this equation as 
C[(Xl)Z + (xzi] + (x3i = 0, where C = ±1 or O. The first two values 
of c yield the standard form given earlier, whereas c = 0 yields the 
degenerate conic X3 = 0, that is, the line with coordinates [0,0,1]. 
So in this last case, the absolute conic consists of the ideal points, 
which were added to the affine plane to obtain an analytic model of 
the projective plane (see Section 4.7). It should then come as no sur­
prise that the geometry obtained using this absolute conic is affine 
geometry. In the cases where c = ±1, we will also refer to points of 
the absolute conic as ideal points. The polarities determining the ab­
solute conic when c = 1 and c = -1 are called elliptic and hyperbolic 
(Definition 4.27), since we shall see that these polarities determine 
elliptic and hyperbolic geometries, respectively. 

We use the following procedure to demonstrate the relationship 
of each of these geometries to projective geometry. For each value of 
c, we select an absolute polarity and corresponding absolute conic C. 
Using C, we describe a special subset of points of the real projective 
plane. This subset of (ordinary) points will be the points remaining 
after the ideal (and in the case of hyperbolic geometry, ultraideal) 
points are deleted. In the case where c = I, there are no real points 
on the absolute conic, so no points are deleted; that is, the set of 
points of the elliptic plane is identical to the set of points of the 
projective plane. (However, the absolute polarity that determines 
this empty conic is still useful.) It is important to observe that for each 
subgeometry, the only points of the geometry will be the (ordinary) 
points; that is, the ideal and ultraideal points are not points of the 
geometry. However, in order to make use of concepts in projective 
geometry, we will consider the point set of each geometry as a subset 
of the point set of the projective plane. We refer to this process as 
embedding the geometry into the projective plane. This embedding 
allows us to use the ideal and ultraideal points in addition to the 
(ordinary) points. 

Following the identification of the appropriate set of points, we 
will list several definitions indicating how basic concepts of each ge­
ometry can be defined via properties of the projective plane. As you 
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(ordinary) points. 
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will list several definitions indicating how basic concepts of each ge­
ometry can be defined via properties of the projective plane. As you 
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should note, these definitions are all stated in terms of projective 
properties that remain invariant under collineations that preserve 
the absolute conic. After we describe the definitions used in the 
non-Euclidean geometries, our presentation will focus on affine ge­
ometry, since this geometry includes the most familiar geometry, 
Euclidean. This approach will allow us to see that, with a slight 
stretch of the definition of a line conic, the cross ratio can be used to 
give a common definition of angle measure in all three geometries. 
Even though a similar definition can be used to define distance in 
the two non-Euclidean geometries, it is not possible to extend this 
definition to affine geometry. 

Stating the definitions in terms of projective properties enables 
us to use theorems ofprojective geometry to verify that the concepts 
so defined do indeed have other expected properties. However, since 
the purpose of this section is to merely illustrate the relationships 
between the geometries, we will only indicate how a few such prop­
erties can be verified. You will be asked to verify a number of other 
properties. These exercises should increase your appreciation for 
the interrelatedness of the geometries we have studied, as well as 
provide an opportunity to review ideas from this chapter. 

Hyperbolic Geometry 

Interpretations of undefined terms 

Ideal Points: Points of the absolute conic C : (Xl)2 + (x2i - (x3i = o. 
Ultraideal Points: Points exterior to C. 
(Ordinary) Points: Points of the real projective plane interior to C. 
Lines: Open chords of C (Le., parts of projective lines containing 
points interior to C). 

Defined terms 

lh. 'TWo hyperbolic lines are sensed parallel if the corresponding 
projective lines intersect in ideal points. 
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2h. Two hyperbolic lines are ultra parallel if the corresponding 
projective lines intersect in ultraideal points. 
3h. Two hyperbolic lines are perpendicular if the corresponding 
projective lines are conjugate with respect to the absolute conic. 
4h. If A and B are two hyperbolic points, the hyperbolic distance, 
dh(A, B) = k Iln(R(A, B, P, Q))I for some k > 0 where P and Q are 
ideal points ofline AB, and "In" represents the natural logarithm. 
5h. If a and b are intersecting hyperbolic lines, then the hyper­
bolic angle measure mh( L.( a, b) = k'ln(R(a, b, p, q)) where p and q 
are tangents to C from the point a·b. 

Using these definitions, we can embed the hyperbolic plane into 
the projective plane and use theorems of projective geometry to con­
struct proofs of hyperbolic theorems. We will illustrate this process 
by verifying an extension of Theorem 53h (see Section 2.8). Note 
that hyperbolic and projective lines are not identical, since hyper­
bolic lines contain only those points of the corresponding projective 
line that are interior to the absolute conic C. 1b keep track of this 
distinction, we will denote by I' the projective line that corresponds 
to the hyperbolic line l. We will also find it helpful to make use of a 
diagram within the projective plane. This diagram should took famil­
iar, since it is merely a depiction within the Klein model described 
in Section 2.3. 

Property lh 
TWo hyperbolic lines are ultra parallel if and only if they have a unique 
common perpendicular. 

Proof 
(a) Let land m be two ultraparallellines. Then the corresponding 
projective lines l' and m' intersect in a point p' where p' is exterior 

FIGURE 4.46 Ultraparallellines 1 and m. 
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to C (Fig. 4.46). Let p' be the polar of P'. Since p' is exterior to C, 
p' intersects C at two distinct points and therefore determines a hy­
perbolic line p (see the lemma in Section 4.11). Furthermore, p' is 
conjugate to both l' and m', so p is perpendicular to both land m by 
Definition 3h. Since the polar of p' is unique, it follows that p' is the 
unique common perpendicular to Z and m. 

(b) Assume that land m are two hyperbolic lines with a unique 
common perpendicular p. Then the corresponding projective lines 
l' and m' are both conjugate to p', the projective line corresponding 
to p, so they must intersect at the pole of p'. Denote this pole by 
P'. Since p' contains interior point of C, p' must intersect C at two 
distinct points, so p' is an ultraideal point. It follows that land mare 
ultraparallellines (Definition 2h). • 

The definitions used for sensed-parallel and ultra parallel lines in 
hyperbolic geometry do not apply to single elliptic geometry (why?). 
However, the definitions of perpendicular, distance, and angle measure 
do apply. Here, however, the points of intersection with C and the 
lines tangent to C referred to in Definitions 2e and 3e will necessarily 
have coordinates that involve complex numbers. 

Single Elliptic Geometry 

Interpretations of undefined terms 

Ideal Points: Points of the absolute conic C : (xli + (xzi + (x3i = o. 
(Ordinary) Points: Points of the real projective plane. 
Lines: Lines of the real projective plane. 

Defined terms 

Ie. Two elliptic lines are perpendicular if the corresponding projec­
tive lines are conjugate with respect to C. 
2e. If A and B are two elliptic points, the elliptic distance, de (A , B) = 
k Iln(R(A, B, P, Q))I for some k > 0 where P and Q are points 
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of intersection of line AB with C, and "In" represents the natural 
logarithm. 
3e. If a and b are elliptic lines, then the elliptic angle measure 
me(L(a, b)) = k' In(R(a, b,p, q)) where p and q are tangents to C 
from a·b. 

Again these definitions and theorems of projective geometry can 
be used to verify properties of the single elliptic plane. Since the ab­
solute conic used to define the point set of the elliptic plane is empty, 
it is often not possible to depict properties of the single elliptic plane 
within the context of the projective plane. However, these properties 
can be illustrated within the model described in Section 2.9. 

It is fairly easy to see that parallel lines can be defined in affine 
geometry using a definition analogous to that used for sensed­
parallel lines in hyperbolic geometry. Since perpendicularity and 
angle measure are properties of similarity geometry, but not of affine 
geometry, it is appropriate to postpone their definitions until later. 
We can, however, include definitions of midpoint and types of conics 
in affine geometry. 

Affine Geometry 

Interpretations of undefined terms 

Ideal Points: Points of the absolute conic C : X3 = o. 
(Ordinary) Points: Points of the real projective plane not on C. 
Lines: All lines of the real projective plane except the line X3 = o. 

Defined terms 

la: TWo affine lines are parallel if the corresponding projective lines 
intersect in an ideal point. 
2a: M is the midpoint of AB if H(AB, PM) where P is the ideal point 
of line AB. 
3a: A point conic is a hyperbola, parabola, or ellipse according to 
whether it contains two, one, or no real ideal points, respectively 
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FIGURE 4.47 Hyperbola, parabola, and ellipse. 

(Fig. 4.47). The center of a conic is the pole of the ideal line with 
respect to the conic. The polar of any ideal point with respect to the 
conic is a diameter ofthe conic. A tangent to a conic at an ideal point 
is called an asymptote. 

These definitions and theorems of projective geometry can be 
used to verify a number of affine properties, including the following. 

Property la 
A line joining the midpoints of two sides of a triangle is parallel to the 
third side. 

Proof 
Let M be the midpoint of AB in 6ABC and let 1 be the unique parallel 
to BC through M (see Exercise 16). We shall show that N = l·AC is 
the midpoint of AC (Fig. 4.48). Let P = AB·C. Then we have the 
harmonic set H(AB, PM) by Definition 2a. Let V = EC·C; then 1 = 
MV. Finally, let Q = AC·C. We need to show that H(AC, QN). This 

A 

FIGURE 4.48 Proof lao 
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follows once we note that ABPM7ACQN, since harmonic sets are 
preserved under perspectivities. So N is the midpoint of AC. • 

In order to obtain similarity geometry, it is essential that we be 
able to give a definition for perpendicular lines. This was done in 
hyperbolic and single elliptic geometry using the absolute polarity. 
Since the absolute conic determining the affine and similarity planes 
is degenerate, there is no associated absolute polarity. However, we 
can introduce an absolute elliptic involution (i.e., a projectivity T 
such that T Z = l) on X3 = ° to use in place of an absolute polarity. 
This absolute projectivity will have no invariant points since it is 
elliptic, but it will interchange pairs of points (i.e., if T(P) = Q, then 
T(Q) = P) since it is an involution. The projectivity we will choose 
will be the one that interchanges X(I, 0, 0) and YeO, 1,0). 

In order to show that it is possible to use a definition of angle 
measure in similarity geometry like that used in the non-Euclidean 
geometries, it is necessary to determine what we mean by the line 
conic corresponding to our degenerate point conic X3 = 0. 

Recall that if a point conic has equation XtCX = 0, then the 
corresponding line conic has equation uC-Iut = 0. In general, the 
absolute conic has matrix 

Hence, the line conic associated with the point conic c[(xli + 
(xzil + (x3i = ° is (UI)Z + (uzi + c(u3i = 0. In the case under 
consideration, C = 0, so the corresponding degenerate line conic is 
(uli + (uz)z = 0. We can factor this as (UI + iUZ)(UI - iuz) = ° where 
i Z = -1. The lines of this line conic are all lines through the points 
lU, 1,0) and JCi, -1,0); any point P will be on two tangents to the 
absolute conic, namely, PI and PJ. Using these two lines, it is then 
possible to give a definition for angle measure comparable to that 
used in hyperbolic and single elliptic geometries. This definition, 
together with the definition of perpendicular lines, is stated later. 
The affine definitions given previously also apply in similarity ge­
ometry, since this geometry is defined in terms of the same absolute 
conic and has the same point set as affine geometry. 
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Similarity Geometry 

Interpretation of undefined terms 

Absolute Conic: C : X3 = 0. 
Absolute Projectivity: The elliptic involution on C that interchanges 
X(1, 0, 0) and YeO, 1,0) and keeps IU, I, 0) andJ(i, -1,0) invariant. 
Ideal Points: Points of the absolute conic C. 
(Ordinary) Points: Points of the real projective plane not on C. 
Lines: All lines of the real projective plane except the line X3 = 0. 

Defined terms 

Is: Two lines of similarity geometry are perpendicular if their ideal 
points correspond under the absolute projectivity. 
2s: If a and b are lines of similarity geometry, then the angle measure 
ma(L.(a, b)) = kln(R(a, b,p, q)) where p and q are the tangents to C 
from a·b, and "In" represents the natural logarithm. 

Using these definitions it is also possible to verify a familiar 
property of similarity geometry. 

Property Is 
TWo lines U[UI, Uz, U3] and V[VI, Vz, V3] are perpendicular if and only if 
UIVI + UzVz = 0. 

Proof 
The line U[UI, Uz, U3] has the ideal point U( -Uz, UI, 0), which has ho­
mogeneous parameters (-uz, UI) with respect to X and Y. Using a 
matrix representation relative to these base points, we can obtain 
U', the image of U under the absolute projectivity as follows (see 
Exercise 5): 

, [0 1] sU = _IOU 

So U' has homogeneous parameters (UI, uz) and therefore homoge­
neous coordinates (UI, Uz, 0). The lines perpendicular to U are those 
lines with U' as ideal point, but these lines are the lines V[VI, vz, V3] 

where VIUI + VzUz = 0. • 

306 4. Projective Geometry 

Similarity Geometry 

Interpretation of undefined terms 

Absolute Conic: C : X3 = 0. 
Absolute Projectivity: The elliptic involution on C that interchanges 
X(1, 0, 0) and YeO, 1,0) and keeps IU, I, 0) andJ(i, -1,0) invariant. 
Ideal Points: Points of the absolute conic C. 
(Ordinary) Points: Points of the real projective plane not on C. 
Lines: All lines of the real projective plane except the line X3 = 0. 

Defined terms 

Is: Two lines of similarity geometry are perpendicular if their ideal 
points correspond under the absolute projectivity. 
2s: If a and b are lines of similarity geometry, then the angle measure 
ma(L.(a, b)) = kln(R(a, b,p, q)) where p and q are the tangents to C 
from a·b, and "In" represents the natural logarithm. 

Using these definitions it is also possible to verify a familiar 
property of similarity geometry. 

Property Is 
TWo lines U[UI, Uz, U3] and V[VI, Vz, V3] are perpendicular if and only if 
UIVI + UzVz = 0. 

Proof 
The line U[UI, Uz, U3] has the ideal point U( -Uz, UI, 0), which has ho­
mogeneous parameters (-uz, UI) with respect to X and Y. Using a 
matrix representation relative to these base points, we can obtain 
U', the image of U under the absolute projectivity as follows (see 
Exercise 5): 

, [0 1] sU = _IOU 

So U' has homogeneous parameters (UI, uz) and therefore homoge­
neous coordinates (UI, Uz, 0). The lines perpendicular to U are those 
lines with U' as ideal point, but these lines are the lines V[VI, vz, V3] 

where VIUI + VzUz = 0. • 



4.12. Subgeometries of Projective Geometry 307 

It should be obvious after noticing the extra effort required to 
obtain the definitions for perpendicularity and angle measure for 
similarity and hence Euclidean geometry that it is more difficult 
to view Euclidean geometry as a subgeometry of projective geome­
try than it is to view the less familiar hyperbolic and single elliptic 
geometries this way. This added difficulty results since the abso­
lute conic used to determine the point set for affine, similarity, and 
Euclidean geometry is a line rather than a conic determined by a 
polarity. In order to obtain similarity geometry, we had to introduce 
an elliptic involution on the ideal line. Th obtain Euclidean geom­
etry as a sub geometry of similarity geometry we could introduce a 
metric (i.e., a distance function). So Euclidean geometry can be de­
scribed as a metric geometry based on an elliptic involution on the 
ideal line. 

In closing, we will see that we can summarize the discussion 
in this section by applying one further adjective in the description 
of Euclidean geometry. This adjective describes a characterization 
based on the following comparison: (1) Each line in the Euclidean 
plane has one real ideal point; (2) each line in the hyperbolic plane 
has two distinct real ideal points; and (3) each line in. the single 
elliptic plane has no real ideal points. This should be reminiscent 
of the definition of types of point conics in the affine plane. There 
a conic is labeled a parabola, a hyperbola, or an ellipse depending 
on whether it contains one, two, or zero real ideal points, respec­
tively. The two non-Euclidean geometries are thus appropriately 
called "hyperbolic" and "elliptic!' Likewise, Euclidean geometry can 
be classified as a parabolic geometry. The relations among these 
geometries are summarized in Thble 4.2. 

Exercises 
1. Verify that the set of collineations that keep a given conic C invariant 

forms a group. 

2. Explain why ultraparallellines cannot be defined in either affine or 
single elliptic geometry. 

3. Verify that the collineations that keep X3 = 0 invariant are the 
affinities described in Section 3.13. 
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4.12. Subgeometries of Projective Geometry 309 

4. IfA(O, 0,1) andB(l, 0,1) are points of the affine plane, use Definition 
2a to find the coordinates of the midpoint of AB. 

5. Show that the matrix of the absolute projectivity used to define 
Similarity geometry is 

[Hint: See Exercise 9 in Section 4.8.] 

6. Show that the affinities which preserve the absolute projectivity used 
to define similarity geometry are the similarities described in Sec­
tion 3.12. [Hint: If S(P) = P' where S is the absolute projectivity with 
the matrix given in Exercise 5 and T is an affinity, find the conditions 
under which S(T(P)) = T(P') for all points P on the ideal line.] 

7. Show that similarities that are also equiareal transformations are the 
isometries of Euclidean geometry. (See Exercise 13 in Section 3.13.) 

8. Using Definition 2s with k = -il2 (where i2 = -1), show that the an­
gle measure in similarity geometry for L( a, b) where a·b = Z(O, 0, 1) 
is the same as that obtained using Definition 3.14 in Section 3.5. 

Use the definitions of the appropriate properties listed in this section, 
together with theorems from projective geometry, to verifY each of 
the following results in hyperbolic, single elliptic, affine, and similarity 
geometries. 

Hyperbolic Geometry 

9. Any two points determine a unique line. 

10. Any two distinct lines determine at most one point. 

11. Through a given point P, not on a given line l, there are exactly two 
lines sensed parallel to l. 

12. Through a given point there is exactly one line perpendicular to a 
given line. 
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Single Elliptic Geometry 

l3. Two points determine a unique line. 

14. Two lines determine a unique point. 

15. All the lines perpendicular to a given line are concurrent at a point, 
namely, the pole of the line. 

Affine Geometry 

16. Through a given point P not on a given line m there exists exactly 
one line parallel to m. 

17. Two distinct lines parallel to the same line are parallel to each other. 

18. If a line intersects one of two parallel lines, it intersects the other. 

19. The medians of a triangle are concurrent. [Hint: Use perspective 
triangles. ] 

20. A hyperbola has a center that is an exterior point, an ellipse has a 
center that is an interior point, a parabola has a center on the absolute 
conic, and thus has no center in the affine plane. 

21. Hyperbolas are the only conics with asymptotes in the affine plane. 
Parabolas have only a single asymptote, namely, the ideal line; and 
as a result, have no asymptotes in the affine plane. 

22. The diameters of a conic go through the center. 

23. A conic X'CX = 0 is a hyperbola, parabola, or ellipse according to 
whether (cIzi - CUCIZ >, =, < O. 

Similarity Geometry 

24. There is a unique line perpendicular to any given line through a given 
point. 

25. A line perpendicular to one of two parallel lines is perpendicular to 
the other also. 

26. Lines perpendicular to the same line are parallel to each other. 

27. The altitudes of a triangle are concurrent. [Hints: First, recall that an 
altitude of L.ABC is a line through vertex A and perpendicular to BC. 
Second, assume your triangle is L.ABC where A(O, 0, 1), B(l, 0, 1), and 
C(a, b, 1).] 
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Coxeter, H.S.M. (1957). Non-Euclidean Geometry, 3rd ed. 'Ibronto: Univer­
sity of Toronto Press (Includes a detailed presentation of Euclidean and 
non-Euclidean geometries as subgeometries of projective geometry.) 

Coxeter, H.S.M. (1961) The Real Projective Plane, 2nd ed. Cambridge: The 
University Press. (A primarily synthetic presentation restricted to the 
real plane, it includes the development of affine geometry.) 

Coxeter, H.S.M. (1987). Projective Geometry, 2nd ed. New York: Springer­
Verlag. (A classic text containing a detailed development of this 
geometry.) 

Dorwart, H. (1966). The Geometry of Incidence. Englewood Cliffs, NJ: 
Prentice-Hall. (An expository overview of projective geometry.) 

Meserve, B.E. (1983). Fundamental Concepts of Geometry. New York: Dover. 
(Chapters 5 and 8 give a more detailed presentation of the material in 
Section 4.12.) 

Mihalek, R.J. (1972). Projective Geometry and Algebraic Structures. New 
York: Academic Press. (A detailed presentation emphasizing the 
interrelation between geometry and algebra.) 

Pedoe, D. (1963). An Introduction to Projective Geometry. Oxford: Pergamon 
Press. (Contains an extensive treatment of the theorems of Desargues 
and Pappus.) 

Penna, M.A., and Patterson, R.R. (1986). Projective Geometry and Its 
Applications to Computer Graphics. Englewood Cliffs, NJ: Prentice-Hall. 

Seidenberg, A. (1962). Lectures in Projective Geometry. New York: Van Nos­
trand Reinhold. (The initial chapter introduces the major concepts in 
a fairly naive form: the remaining chapters develop the subject from 
axioms.) 

Stevenson, F.W. (1972). Projective Planes. San Francisco: W.H. Freeman. 
Thller, A. (1967). Modem Introduction to Geometries. New York: Van 

Nostrand Reinhold. (Uses matrix representations of the projective 
transformations. ) 

Wylie, C.R. Jr. (1970). Introduction to Projective Geometry. New York: 
McGraw-Hill. (Contains both analytic and axiomatic developments.) 

Young, J.w. (1930). Projective Geometry. The Cams Mathematical Mono­
graphs, No.4. Chicago: Open Court Publishing Co. (for the MAA) (De­
velops concepts intuitively first, then incorporates metric properties 
and group concepts.) 
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Readings on the History of Projective 
Geometry 

Bronowski, J. (1974). The music ofthe spheres. In The Ascent of Man, pp. 
155-187 Boston: Little, Brown. This chapter is the companion to the 
52-minute episode of the same name in The Ascent of Man television 
series. 

Edgerton, S.Y. (1975). The Renaissance Rediscovery of Linear Perspective. 
New York: Basic Books. 

Ivins, W.M. (1964). Art and Geometry: A Study in Space Intuitions. New 
York: Dover. 

Kline, M. (1963). Mathematics: A Cultural Approach. Reading, MA: 
Addison-Wesley. 

Kline, M. (1968). Projective geometry. In Mathematics in the Modem World: 
Readings from Scientific American, pp. 120-127. San Francisco: W.H. 
Freeman. 

Kline, M. (1972). Mathematical Thought from Ancient to Modem Times. New 
York: Oxford University Press. 

Pedoe, D. (1983). Geometry and the Visual Arts. New York: Dover. 

Suggestions for Viewing 

The Art of Renaissance Science (1991, 45 min). Part IV relates the discovery 
and implementation of perspective in drawing and painting. Available 
from Science Tv, PO. Box 2498, Times Square Station, New York, NY 
10108. 

Central Perspectivities (1971, 13.5 min). Demonstrates perspectivities and 
projectivities with flashing dots and lines. Produced by the College 
Geometry Project at the University of Minnesota. Available from In­
ternational Film Bureau, 332 South Michigan Avenue, Chicago, IL 
60604. 

Masters of nlusion (1991, 30 min). Another illustration of the discovery and 
implementation of perspective in works of art. Produced and directed 
by Rick Harper, National Gallery of Art, Washington, DC. 

Projective Generation of Conics (197l, 16 min). Illustrates four methods of 
constructing point conics and demonstrates their logical equivalence. 
Available from International Film Bureau, 332 South Michigan Avenue, 
Chicago, IL 60604. 
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Projective Geometry, Zeeman Masterclass Series with BBC (1986). Avail­
able from The Open University Production Centre, Walton Hall, Milton 
Keynes MK7 6BH, UK. 
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CHAPTER 

Chaos to 
Symmetry: An 
Introduction 
to Fractal 
Geometry 

Although the term "modern geometries" traditionally refers to 
post-Euclid geometries, namely the non-Euclidean and projective 
geometries presented in Chapters 2 and 4, it seems ironic to de­
scribe topics formalized hundreds of years ago as "modern;' The 
topics presented in this chapter, on the other hand, are among 
those in a newly emerging area of mathematics and are honestly 
modern. In fact, the area known as fractal geometry is so new that 
its exact content has yet to be determined, let alone given a for­
mal axiomatic structure. Thus, this chapter contains an informal 
presentation of concepts and themes basic to the topics currently re­
garded as part of fractal geometry. This presentation also attempts to 
convey the excitement experienced by professional mathematicians 
and scientists and large numbers of interested non-professionals as 
they discover and comprehend these new ideas and contemplate 
their far-reaching applications. In this vein, the presentation inter­
weaves a number of exercises that will involve you in discovering 
and exploring concepts. Hopefully, in so doing, you will experi­
ence the excitement of mathematical discovery in a truly modern 
geometry as well as gain a deeper understanding of the affine trans­
formations that are essential tools of fractal geometry. If you have 
access to appropriate computers and software, you can use these 
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tools to conduct additional fractal explorations. Check the website 
http://www.stolaf.edu/people/cederj/geotext/info.htm for 
suggested computer-based explorations that complement sections 
marked with an asterisk. 

5.1 A Chaotic Background* 

''A mathematical definition of chaos would say something like 
'deterministic behavior that appears to be random: /I [Davis, p. 325] 

Th understand the significance of fractals and their role in mod-
ern mathematics, it is necessary to know something about the area 
of scientific and mathematical inquiry known as chaos theory. The 
importance of this new area, together with the excitement and frus­
trations experienced by scientists and mathematicians as they made 
their initial discoveries, often without knowledge of other related 
work, is wonderfully portrayed in James Gleick's Chaos: Making a 
New Science. 1 

Gleick suggests [po 5] that chaos is "a science of the global nature 
of systems" and notes that some consider chaos to be the third great 
revolution in twentieth century science, placing it on the same level 
as relativity and quantum mechanics. Gleick continues [po 6]: "As 
one physicist put it: 'Relativity eliminated the Newtonian illusion of 
absolute space and time; quantum theory eliminated the Newtonian 
dream of a controllable measurement process; and chaos eliminates 
the Laplacian fantasy of deterministic probability: Of the three, the 
revolution in chaos applies to the universe we see and touch, to 
objects at human scale;' 

The attitudes of science at the time initial discoveries in chaos 
were being made is summarized by Gleick as follows [po 15]: ''As 
one theoretician liked to tell his students: 'The basic idea of West­
ern science is that you don't have to take into account the falling 
of a leaf on some planet in another galaxy when you're trying to 

1 Published in 1987, this bestseller achieved widespread critical acclaim and played 
a major role in bringing this new discipline to popular awareness. 
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account for the motion of a billiard ball on a pool table on earth. 
Very small influences can be neglected. There's a convergence in 
the way things work, and arbitrarily small influences don't blow up 
to have arbitrarily large effects.' Classically, the belief in approxi­
mation and convergence was well justified. It worked." However, as 
Gleick indicates, and as the quotation below confirms, chaos created 
a revolution in scientific thought. 

The magnificent successes in the fields ofthe natural sciences and 
technology had, for many, fed the illusion that the world on the whole 
functioned like a huge clockwork mechanism, whose laws were only 
waiting to be deciphered step by step. Once the laws were known, it 
was believed, the evolution or development of things could-at least 
in principle-be ever more accurately predicted. Captivated by the 
breathtaking advances in the development of computer technology 
and its promises of a greater command of information, many have 
put increasing hope in these machines. 

But today it is exactly those at the active core of modern science 
who are proclaiming that this hope is unjustified; the ability to see 
ever more accurately into future developments is unattainable. One 
conclusion that can be drawn from the new theories is that stricter 
determinism and apparently accidental development are not mutually 
exclusive, but rather that their coexistence is more the rule in nature. 
Chaos theory and fractal geometry address this issue. [Peitgen et al., 
(1992) pp. vii-viii]. 

5.1.1 A tlChaotic" Experiment 

In the early 1960s Edward Lorenz, a meteorologist at the 
Massachusetts Institute of Technology, was working in the context 
of this classical scientific framework when he used a computer to 
investigate a simple mathematical model of a weather system. Since 
this was very early in the era of computer development, his com­
puter (a Royal McBee LGP-300) used vacuum tubes and wires. It 
was downright sluggish compared to current models and Lorenz's 
calculations often lasted for days. One day in 1961, Lorenz decided 
to examine one particular output sequence more carefully. Rather 
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5.1.1 A tlChaotic" Experiment 
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calculations often lasted for days. One day in 1961, Lorenz decided 
to examine one particular output sequence more carefully. Rather 



318 5. Chaos to Symmetry: An Introduction to Fractal Geometry 

than start the run from the beginning, Lorenz decided to start mid­
way through by typing in the numbers from the earlier output as 
initial conditions. When he returned to look at the new output, he 
discovered that the new output diverged rapidly from the old. Lorenz 
realized that although he intended to put in the same numbers used 
in the previous run, he had entered numbers with only three decimal 
places, since these were the numbers on the printout. However, on 
the first run, the computer had used the six decimal place versions 
that it had stored. Lorenz later summarized this incident by saying, 
"I realized that any physical system that behaved nonperiodically 
[like the weather] would be unpredictable;' [Gleick, p. 18] 

Lorenz's continued examination of this phenomenon included 
the analysis of a model of convection developed by B. Saltzman. 
Further simplifying Saltzman's model, Lorenz used the following 
three differential equations where t represents time, x the rate of 
convective overturning, y the horizontal temperature variation, and 
z the vertical temperature variation. 

dx 
- = -10x+ lOy 
dt 

dy 
- = 28x-y-xz 
dt 

dz 8 - = --z+xy 
dt 3 

He chose the value 28 in the second equation so that the model 
would represent a systemjust after the onset of unsteady convection. 
Lorenz summarized his results as follows in the abstract of a 1963 
paper "Deterministic Nonperiodic Flow."2 

Finite systems of deterministic ordinary nonlinear differential 
equations may be designed to represent forced dissipative hydro­
dynamic flow. Solutions of these equations can be identified with 
trajectories in phase space. For those systems with bounded solutions, 
it is found that nonperiodic solutions are ordinarily unstable with re­
spect to small modifications, so that slightly differing initial states 
can evolve into considerably different states. Systems with bounded 
solutions are shown to possess bounded numerical solutions. 

2The term phase space in this summary refers to a "hypothetical" space with a 
dimension for each variable in the dynamical system. Coordinates of points in 
phase space thus represent a set of simultaneous values of the variables [Lorenz, 
p. 211]. 
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A simple system representing cellular convection is solved nu­
merically. All ofthe solutions are found to be unstable and almost all 
of them are nonperiodic. 

The feasibility of very long-range weather prediction is exam­
ined in the light of these results. [Stewart, (1989) p. 133] 

This paper was published in the Journal of Atmospheric Sciences, 
a journal not widely read by mathematicians and scientists who 
were concurrently exploring similar phenomena. However, with the 
advantage of hindsight, we note that Lorenz's abstract specifically 
identifies a phenomenon that has become a major concept in chaos 
theory, namely "sensitive dependence on initial conditions." As Gle­
ick notes, "The modern study of chaos began with the creeping 
realization in the 1960s that quite simple mathematical equations 
could model systems every bit as violent as a waterfall. Tiny differ­
ences in input could quickly become overwhelming differences in 
output ... " [Gleick, p. 8]. 

Even though the work of Lorenz and others in the 1960s is con­
sidered the beginning of chaos theory, some of its fundamental 
ideas were noted much earlier. Credited with creating the theory 
of dynamical systems, Henri Poincare discussed unpredictability in 
Science et Methode (1908), claiming that chance and determ.inism are 
reconciled by long term unpredictability and concluded: "[A] very 
small cause, which escapes us, determines a considerable effect 
which we cannot ignore, and we then say that this effect is due 
to chance." [Poincare as quoted in Ruelle, p. 48] Poincare's statement 
appears to be an even earlier description of sensitive dependence on 
initial conditions. In fact, he even gave two illustrative examples: 
(1) motion of a gas made up of many molecules, and (2) weather 
forecasting. 

However, the ideas of Poincare were apparently unknown by 
those exploring chaos in the 1960s. Ruelle gives two possible rea­
sons for what he calls "this puzzling historical gap" in which the 
ideas of Poincare fell into "oblivion instead of being followed by the 
modern theory of chaos: ... The new [ quantum] mechanics changed 
the scientific landscape of physicists and occupied all their energies 
for many years .... These ideas came too early: the tools to exploit 
them did not exist!' [Ruelle, p. 49] 
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FIGURE 5.1 The Lorenz attractor, a.k.a. butterfly. 

Thus it was left to Lorenz ·and his colleagues to rediscover and 
amplify Poincare's ideas. In doing so, they made use of geometric 
representations of trajectories in phase space. The particular one 
that Lorenz referred to in his 1963 abstract is now known as the 
Lorenz attractor or the Lorenz butterfly. The latter name is suggestive 
of the attractor's shape (Fig. 5.1) and reminiscent of the term but­
terfly effect. This term apparently first arose in 1972 when Lorenz 
presented a paper entitled "Does the Flap of a Butterfly's Wings in 
Brazil Set Off a Thrnado in Texas?" and the term became widely 
known after Gleick used it as a title for the first chapter in his book. 
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Interestingly, Lorenz indicates that the paper title was not his cre­
ation but that of the convener of the session where Lorenz was to 
present the paper.3 Unable to contact Lorenz, the convener created 
this title for the paper [Lorenz, p. 15]. So, in a strange twist offate, the 
sensitive dependence on initial conditions, a defining characteristic 
of chaotic systems such as Lorenz's weather models, has become 
known as the butterfly effect. 

Although Lorenz is a meteorologist, his research is typical of that 
used to understand the long term behavior of a "dynamical system!' 
The use of the term dynamical system to refer to a system of dif­
ferential equations (or their discrete analogues, difference equations) 
apparently originated with an American topologist, Stephen Smale 
in the 1960s [Stewart, p.106]. The term now also refers to the branch 
of mathematics that studies the behavior of systems for which there 
is a deterministic rule for how the system evolves with time. Mathe­
matical research in this area makes extensive use of computers, and 
as a result the research has taken on the nature of an experimen­
tal science. And following Smale's lead, this research often views 
the systems in terms of their geometry, not just in terms of their 
defining formulas. 

The term "chaos" was introduced into the dynamical systems 
area in 1975 when researchers Li and Yorke published a paper titled 
"Period Three Implies Chaos!' Lorenz notes, "Whatever they may 
have intended to do, they succeeded in establishing a new scien­
tific term, although one with a somewhat different meaning from 
what they had in mind." [Lorenz, p. 120] Although chaos theory can 
be intuitively described as the theory of "complicated dynamical 
systems," so-called chaotic behavior can occur even when functions 
as simple as quadratics are iterated, thus making basic concepts of 
chaos accessible at a reasonably elementary level. Indeed, Devaney 
notes "This is a fundamental breakthrough made by mathematicians 
in recent years, the realization that chaotic systems need not depend 
on huge numbers of variables but may in fact depend on only one, 
as in the case of [the family oflogistic functions]!' [Devaney, (1990) 
p. 151] 

3This paper is Appendix 1 in Lorenz's book, The Essence of Chaos. 
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5.1.2 Chaotic Behavior of Logistic Functions 

As previously indicated, chaotic behavior can arise from iterating 
logistic functions, that is, functions of the form: 

Lc(x) = cx(l - x), c > 0 

Since each value of the parameter c gives a distinct function, this is 
really a family of functions. Functions from this family are widely 
used to model population growth where the growth is restricted by 
an upper limit. In these functions, the variable x represents the 
current population and the function value Lc(x) represents the pop­
ulation after one time period, for example, a year. Using subscripts 
to indicate time periods, we can write Xi+l = Lc(Xi), allowing us to 
rewrite the equation as Xi+l = cXi(l-xi). We will use the latter form, 
with the usual convention that all values Xi represent fractions of the 
population limit, that is, they can only take on real number values 
in the interval [0, 1]. 

Understanding the long term behavior of iterated functions like 
the logistic functions is one of the major goals of dynamic systems 
theory and is the major subject of entire texts. 4 As a brief example 
of the analysis oflogistic functions, consider the logistic function in 
which c = 4, L4(X) = 4x(1-x). The process of iterating this function 
consists of computing a sequence beginning as follows: 

Xl = L4(xo), Xz = L4(XI) = L4(L4(xo)), 

X3 = L4(XZ) = L4(L4(XI)) = L4(L4(L4(xo))), ... 

The ordered set beginning with Xo and followed by these successive 
images of Xo is known as the orbit of Xo under (iteration by) L4. Applying 
L4 to the endpoints of its domain gives L 4 (0) = L4(l) = 0, so all 
successive iterates Xi for both Xo = 0 and Xo = 1 yield the value 
o. Thus, 0 is said to be an invariant point or a fixed pointS of the 
logistic function L4 . Also, it is worth noting that 0 is an attracting 

4See, for example, Richard Holmgren's A First Course in Discrete Dynamical 
Systems, 2nd ed .. 
SHere the term point is used as it is commonly used in the study of dynamical 
systems; namely, to represent a value of the dependent x-variable, as in the ex­
pression p is a fixed point of the function f. In this usage, points are represented by 
lowercase rather than uppercase letters. Frequently, the value represented by a 
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TABLE 5.1 Various Orbits of L4(X) = 4x(1 - x). 

Xo .1 .25 .3 .4 .49 .5 .74 .75 .8 

Xl .360 .75 .84 .96 1.00 1 .77 .75 .640 

X2 .922 .75 .538 .154 .002 0 .709 .75 .922 

X3 .289 .75 .994 .520 .006 0 .825 .75 .289 

X4 .822 .75 .022 .998 .025 0 .578 .75 .822 

Xs .585 .75 .088 .006 .099 0 .976 .75 .585 

X6 .971 .75 .321 .025 .357 0 .095 .75 .971 

X7 .113 .75 .872 .099 .918 0 .343 .75 .113 

Xs .402 .75 .448 .358 .302 0 .902 .75 .402 
Xg .962 .75 .989 .919 .843 0 .354 .75 .962 

XlO .148 .75 .043 .298 .530 0 .915 .75 .148 

Xu .504 .75 .166 .837 .996 0 .310 .75 .504 

Xl2 1.000 .75 .554 .547 .015 0 .856 .75 1.00 
X13 .000 .75 .988 .991 .058 0 .493 .75 .000 

Xl4 .001 .75 .046 .035 .220 0 1.00 .75 .001 

XIS .004 .75 .177 .135 .686 0 .001 .75 .004 

Xl6 .016 .75 .583 .466 .861 0 .003 .75 .016 
Xl? .062 .75 .973 .995 .478 0 .013 .75 .062 

XIS .232 .75 .106 .018 .998 0 .051 .75 .232 

Xl9 .712 .75 .379 .071 .008 0 .193 .75 .712 

X20 .820 .75 .942 .263 .031 0 .622 .75 .820 

fixed point, that is, points x close to 0 have orbits that converge to 
0; fixed points p where nearby points diverge from p are said to be 
repelling. Other points Xo give more interesting orbits but require 
tedious amounts of calculation best relegated to a computer. Thble 
5.1 shows the first 20 iterates in the orbits for various values of xo. For 
example, as indicated in this table,6 when Xo = .1, Xl = L4(.I) = .36, 
X2 = L4(.36) = .922, X3 = L 4(.922) = .289. 

The process of determining the long term behavior of orbits of 
a given dynamical system is known as orbit analysis. For the cases 
shown in the table, note that the orbit of x = .25 converges to the 
fixed point. 75, whereas the orbit of x = .5 converges to the fixed 

point in this usage is associated graphically with a "geometrical" point on a line 
or in a plane as in Algorithm S.l. 
6These values were generated to IS-digit accuracy using MathCad. 
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TABLE 5.2 Behavior of Orbits of Lc = cx(l - x). 

c Behavior of orbits 
.50 all orbits converge to 0 
.75 all orbits converge to 0 

l.00 all orbits converge to 0, but very slowly 
l.50 all orbits converge to 1/3 
2.00 all orbits converge to 112 
3.00 all orbits converge very slowly to 2/3 oscillating 

from one side of 2/3 to the other as they do so 
3.25 all orbits converge to a period 2 cycle 
3.50 all orbits converge to a period 4 cycle 
3.55 all orbits converge to a period 8 cycle 
4.00 there is no pattern whatsoever for a given Xo 

5.00 some orbits diverge to -00, but many others do not 

point o. Orbits of other initial points under L4 do not seem to ex­
hibit any particular pattern. If orbits of logistic functions Lc(x) for 
values of c other than 4 are considered, other types of behavior also 
appear. The summary of some of these behaviors is given in Thble 
5.2. For values of c greater than the so-called Feigenbaum point (ap­
proximately 3.56995), orbits of many initial values Xo under Lc seem 
to hop around the line wildly and randomly? 

The orbit of a initial point under a logistic function can also be 
constructed graphically using the step-by-step procedure described 
in Algorithm 5.1 to generate a construction known as a web diagram 
similar to that shown in Figure 5.2. This method, while lacking 
the precision of numerical calculations, should enhance visual un­
derstanding of the process. If you have access to a computer or 
programmable calculator, you may want to automate the tracing 
of orbits according to the algorithm. Sources for appropriate BASIC 
programs are listed at the end of the chapter. 

Algorithm 5.1 (Orbit 1tacing for Logistic Function Lc) 
A. Given an integer n and an initial variable value Xo: 

?For a detailed discussion of this constant and the period-doubling phenomenon, 
see Chapter 11 in Peitgen et al., Chaos and Fractals: New Frontiers of Science. 
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of orbits according to the algorithm. Sources for appropriate BASIC 
programs are listed at the end of the chapter. 

Algorithm 5.1 (Orbit 1tacing for Logistic Function Lc) 
A. Given an integer n and an initial variable value Xo: 

?For a detailed discussion of this constant and the period-doubling phenomenon, 
see Chapter 11 in Peitgen et al., Chaos and Fractals: New Frontiers of Science. 
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FIGURE 5.2 Orbit of Xo = 0.8, C = 4. 

(1) On a graph showing both a logistic function Le and the 
line y = x, locate the point Z on the x-axis that has its 
x-coordinate equal to Xo. 

(2) On the line y = x, locate the point with x-coordinate also 
equal to Xo and label it Xo. 

B. Beginning at the location of the current point Xi, draw a vertical 
segment (upward or downward) along the line x = Xi until the 
segment intersects the graph of Le. Let Xi + 1 be the value of the 
y-coordinate of this intersection point. 

c. From this intersection point, draw a horizontal segment (ei­
ther right or left) until the segment intersects the graph of the 
diagonal line y = x. Label the intersection point Xi + 1. 

D. lfi + 1 = n, stop. Otherwise return to step B. 
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Exercises (Logistic Functions) 
1. For each c-value (c = I, 2, 3, 4, 5): 

a. Construct a graph showing both y = Le(x) and y = x for 0 ::: x ::: 1. 

b. On this graph, carry out the construction of Algorithm 5.1 (with 
n = 5) to find the next 5 entries in the orbit of Xo = .2 under Le. 

c. On the same graph, use a second color to carry out the Algorithm 
5.1 construction (again with n = 5) to find the next 5 entries in the 
orbit of Xo = .8 under Le. 

d. Do you expect any of the orbits shown on your various graphs 
to eventually converge? If so, indicate which ones and give the 
apparent limit point of each. Would you expect any of the orbits to 
become chaotic? If so, indicate which ones and why. 

2. For Xo = .2 and each c-value (c = I, 2, 3, 4, 5): 

a. Use a computer or calculator to find the entries in the orbit 
{Xo, Xl, ... , XlO} under Le(x). 

b. Do these results support or contradict the conjectures you made 
about apparent limit points and chaotic behavior in the previous 
exercise? Explain. 

3. Explain what happens when you apply the construction of Algorithm 
5.1 to the points Xo = 0; Xo = l. Will your results be the same for all 
values of c? 

4. Explain the mathematics behind the "construction" in Algorithm 5.1; 
that is, why does this construction lead to successive elements in the 
orbit of the given initial point? 

5. Assume thatp is a fixed point of the functionf (i.e., f(P) = p). 

a. Show that for any positive integer n, p is a fixed point of the 
function r = f 0 f 0 f 0 ... 0 f ( n times). 

b. What will be true about the orbit of p under iteration by f? 

c. What will be true about orbits of other points Xo under f that include 
Xi = P for some i > O. 

6. Explain the steps in the proof of the following theorem:8 

8Ignace 1. Kolodner, The American Mathematical Monthly 71 (64) p. 906. 
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Theorem 
If for some k, fk has exactly one fixed point p, that is fk (P) = p, then p 
is also a fixed point of the function f, that is, f(P) = p. 

Proof 
fk(f(p)) = fk+l(p) = f(fk(p)) = f(P). Thus, f(P) = p. • 

7. For which values of c does a logistic curve Le appear to have a non­
trivial fixed point? Describe the location of this nontrivial fixed point 
in terms of its graph. 

8. Explain why a logistic function will never have more than one 
nontrivial fixed point. 

9. On the graphs of functions Le with a nontrivial fixed pointp, describe 
how you could graphically find an initial value Xo i= p such that the 
orbit of Xo converges to the fixed point p in exactly one iteration. In 
exactly two iterations. Will you always be able to find such initial 
values. Explain. 

10. For each of the following, assume that Le is a logistic function: 

a. Show that the nontrivial fixed point of a function Le is equal to 
p = (c - I)lc 

b. Find the nontrivial fixed point of Le for each of the values c = 
1.5,2,3,4,5. 

c. Explain why there is no nontrivial fixed point of Le when c ::::: 1. 

d. Show that the slope of Le at its nontrivial fixed point p is equal to 
mp = 2 -c. 

11. For a logistic function L e, assume that x = p is a nontrivial fixed point 
of L e, and that mp is the slope of Le at p. 

a. Using diagrams, explain the following: The attracting or repelling 
nature of p under Le will be the same as that of 0 under iteration 
by f(x) = mpx, that is, if x is a point /lclose" to p it will be attracted 
to (or repelled from) p under iteration by Lc in the same way that 
the point x - p is attracted to (or repelled from) p under iteration 
by f(x) = mpx. 

b. If mp < -I, use diagrams to show how the previous reasoning 
indicates that p is a repelling point, whereas if mp > -1, P is an 
attracting point. What happens if mp = -I? 
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c. For which values of c will Lc have a nontrivial repelling point, a 
nontrivial attracting point. Explain your reasoning. 

12. Recall that logistic functions are often used to model population 
growth where x represents the population as a percentage of an upper 
limit. 

a. For the general logistic function Lc(x) = cx(1 - x) what is this 
upper limit on the population? Report your answer in terms of c. 

b. For models of population growth based on logistic functions Lc: 

i. Are there any limits on the possible values of c? Explain. 

ii. Of what value is knowing the nontrivial fixed point of Lc if 
the fixed point is attracting? If repelling? 

The following exercise requires the use of computers or appropriate 
calculators. 

l3. Use computer- (or calculator-) generated traces of orbits to develop 
conjectures about the apparent long term behavior of orbits of initial 
points Xo (where a < Xo < 1) under a logistic function Lc in each of 
the cases described below. In cases where there is a non-trivial fixed 
point, determine if this point is attracting or repelling. For each case, 
give a clear statement of your conjecture and justify your reasoning. 

(a) c ~ 1 (b) 1 < c < 3 (c) c = 3.2 (d) c = 3.48 

Summary 

Th summarize this brief introduction to chaos theory, we note that 
the dynamic systems in which chaos arises are deterministic since 
they evolve according to precise rules given by equations which 
are usually not linear and often involve several variables. However, 
even when the equations of a system are not very complicated, the 
systems can be unstable due to their sensitive dependence on initial 
conditions. 

As a result, the behavior described by the system can become 
extremely complicated and, in the long run, unpredictable. And in 
cases like weather models, where we know the initial conditions 
somewhat imprecisely, very slight differences in the values of these 
initial conditions may lead to vastly different results. This leads to a 
dim future for long-range weather forecasting. 
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It is now realized that no new better simulation of weather 
on more accurate computers of the future will be able to predict 
the weathet more than about fourteen days ahead, because of the 
very nonlinear nature of the evolution of the state of the weather. 
[Robinson, p.l] 

Thus, the innocuous sounding butterfly effect provides a major 
counterexample to the classical assumption that arbitrarily small 
influences do not have arbitrarily large effects. 

5.1.3 Famous Sets in Chaos Theory 

The previous brief introduction of chaotic behavior provides a ba­
sis for understanding a collection of sets that play significant roles 
in chaos theory, namely Julia sets, and the even more well known 
Mandelbrot set. Julia sets are named after the French mathematician 
Gaston Julia, who together with Pierre Fatou, invented and studied 
these sets in the early 20th century. The Mandelbrot set is named 
after the contemporary French mathematician Benoit Mandelbrot 
whose work from the 1950s through the 1970s at IBM in New York 
is generally recognized as the foundation of fractal geometry. With 
this connection, it is most appropriate that the Mandelbrot set has be­
come a "logo" for fractal geometry and chaos theory. Its spectacular 
color representations generated by high speed modern computers 
are appreciated by mathematicians and nonmathematicians alike. 

Julia Sets 

The way the graphical representation of a Julia set is obtained is 
distinctly different from the usual mathematical process of plotting 
a curve representing a function. For a function f of one real variable, 
the latter process, commonly known as "graphing the function," in­
volves substituting a real number Xl for the variable X in the function 
expression; computing the result, Xz = f(XI); and plotting the point 
with coordinates (Xl, Xz) on a two-dimensional Cartesian coordinate 
graph. However, to obtain a representation for the Julia set of a func­
tion f, an initial variable value, usually denoted Xo, is substituted into 
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the function expression yielding a new value Xl = f(xo). This new 
value is then used to produce a value Xz = f(Xl) and this process is 
iterated repeatedly to produce the orbit of Xo. This iteration contin­
ues until the long term orbit behavior can be identified. Then the 
point Xo is plotted in a color indicating this orbit behavior. Generally, 
the points with bounded orbits are shown in black. 

Definition 5.1 
For a given function f, the set of points whose orbits are bounded 
under iteration of the function f is called the filled Julia set off. The 
boundary of a filled Julia set is called the Julia set.9 

Logistic functions have associated Julia sets, but since the initial 
values used for logistic functions consist only of single-variable real 
numbers, the graphical representation of such Julia sets is merely 
a set of points on the x-axis, and hence rather uninteresting. Th ob­
tain two-dimensional Julia sets, we move into the realm of complex 
functions, that is, functions whose domain and range are sets of 
complex numbers. Here when an initial complex value Zo produces 
a bounded orbit, the point Zo is plotted, that is, colored black, in 
the two-dimensional complex plane. Some of the simplest functions 
that yield interesting Julia sets are the quadratic complex functions 
of the form Oc(z) = Zz + c, where each complex constant c yields a 
different function in this family and hence a different shaped Julia 
set. 

In the Julia set illustrations in Figure 5.3, points of the complex 
plane shown in black have very predictable orbits, for example, the 
orbits either converge to specific points or cycle. In color illustra­
tions, points depicted with colors have orbits that diverge to infinity. 
Different colors indicate different "speeds" with which the orbits di­
verge to infinity. As Definition 5.1 indicates, the boundary between 
the set of black points and the set of colored (in our case white) points 
is the actuaZ Julia set while the boundary and its interior are called 
the filled Julia set. For example, for the function Qo(z) = zZ, points 
z where Izl < 1 all have orbits that converge to O. Points z, where 

9The boundary of a set is the collection of points for which every neighborhood 
contains an element of the set as well as an element not in the set. 
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FIGURE 5.3 Some samples of Julia sets. [Peitgen et al., Chaos and 
Fractals: New Frontiers of Science, Springer-Verlag] 
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Izi > 1 all have orbits that diverge to infinity. Thus, the Julia set of 
On is exactly the set of points on the circle Izl = l. However, points 
on this "simple" Julia set exhibit the same unpredictable behavior 
that points on any Julia set exhibit under iteration by its defining 
function; namely, any point on the circle Izl = 1 has an orbit that 
does not "escape;' that is, diverge, to infinity but the point itself is 
arbitrarily close to other points whose orbits under On eventually hit 
any nonzero point in the plane. Thus, just as in the case of Lorenz's 
weather model, there is sensitive dependence on initial conditions. 

As might be expected from such complicated properties, Julia 
sets can be extremely intricate, and come in a vast array of shapes. 
One indication of the range of diversity in their shapes is the fact 
that some Julia sets are connected, that is, they are in one piece, 
while others are totally disconnected and thus described by the 
picturesque term "fractal dust:' 

The Mandelbrot Set 

As complicated as Julia sets appear, there is another set that is more 
complicated and has been labeled "the most complex object in math­
ematics." Mandelbrot discovered this set in the late 1970s when he 
attempted to make generalizations about Julia sets. Whereas in­
dividual members of the family of complex quadratic functions, 
Qc(z) = Z2 +c, each determine a Julia set in the z-plane, the Mandel­
brat set is plotted in the c-plane and represents a catalog of the entire 
function family {Qc(z)}. The characteristic property of Julia sets cat­
alogued by the Mandelbrot set is that of connectedness-whether or 
not the Julia set of Qc consists of exactly one piece. 

Definition 5.2 
The Mandelbrot set is the set of complex numbers c such that the 
Julia set for the function Qc(z) = Z2 + c is connected. 

At first glance, this set appears to be nearly impossible to find, 
since determining whether a single complex point c is in the set 
would seem to require not only finding the entire Julia set for the 
function Qc but also determining whether this Julia set is connected. 
Fortunately, there is a more efficient method of determination as a 

332 5. Chaos to Symmetry: An Introduction to Fractal Geometry 

Izi > 1 all have orbits that diverge to infinity. Thus, the Julia set of 
On is exactly the set of points on the circle Izl = l. However, points 
on this "simple" Julia set exhibit the same unpredictable behavior 
that points on any Julia set exhibit under iteration by its defining 
function; namely, any point on the circle Izl = 1 has an orbit that 
does not "escape;' that is, diverge, to infinity but the point itself is 
arbitrarily close to other points whose orbits under On eventually hit 
any nonzero point in the plane. Thus, just as in the case of Lorenz's 
weather model, there is sensitive dependence on initial conditions. 

As might be expected from such complicated properties, Julia 
sets can be extremely intricate, and come in a vast array of shapes. 
One indication of the range of diversity in their shapes is the fact 
that some Julia sets are connected, that is, they are in one piece, 
while others are totally disconnected and thus described by the 
picturesque term "fractal dust:' 

The Mandelbrot Set 

As complicated as Julia sets appear, there is another set that is more 
complicated and has been labeled "the most complex object in math­
ematics." Mandelbrot discovered this set in the late 1970s when he 
attempted to make generalizations about Julia sets. Whereas in­
dividual members of the family of complex quadratic functions, 
Qc(z) = Z2 +c, each determine a Julia set in the z-plane, the Mandel­
brat set is plotted in the c-plane and represents a catalog of the entire 
function family {Qc(z)}. The characteristic property of Julia sets cat­
alogued by the Mandelbrot set is that of connectedness-whether or 
not the Julia set of Qc consists of exactly one piece. 

Definition 5.2 
The Mandelbrot set is the set of complex numbers c such that the 
Julia set for the function Qc(z) = Z2 + c is connected. 

At first glance, this set appears to be nearly impossible to find, 
since determining whether a single complex point c is in the set 
would seem to require not only finding the entire Julia set for the 
function Qc but also determining whether this Julia set is connected. 
Fortunately, there is a more efficient method of determination as a 



5.1. A Chaotic Background 333 

result of the following theorem discovered by Julia and Fatou before 
1920, making their result one of the earliest in chaos theory: 

Theorem 5.1 
The Julia set corresponding to the function Qc, for a specific c, is con­
nected if and only if for all critical points z of Qc, the orbit of z does not 
diverge to infinity. 

A critical point of a function f is, as you recall from elementary cal­
culus, a number z such thatf'(z) = O. Since our functions are of the 
form Qc(z) = Z2 + c, the only critical point of each is z = O. Thus, 
the previous theorem leads to the following corollary making the 
determination of a Mandelbrot set far easier. 

Corollary 
A complex number c is in the Mandelbrot set if and only if the value 0 is 
in the filled Julia set of Qc· 

Graphical representations of the Mandelbrot set usually show 
the set itself in black. This means a point c in the complex 
plane is colored black if the orbit Qc(O) = c, Qc(Qc(O)) = c2 + 
C, Qc(Qc(Qc(O))) = (c2 + ci + c, etc., is bounded. If on the other 
hand, the values in this orbit diverge to infinity, or, in practice if 
they become greater than 2 in absolute value (in which case the or­
bit will diverge to infinity), the iteration is broken off and the point 
c is colored white. In some cases, white is not used for points in 
this second set; instead, gradations of color are used to indicate how 
long the iteration proceeded before being stopped. For example, if 
the iteration stopped after 10 steps (because the value became 2 or 
greater), the point is colored red, after 20 steps, orange, etc. These 
colors then show types of contours in the area outside the actual 
Mandelbrot set and create the magnificent colored pictures you may 
have seen. Using elementary properties of complex numbers, it can 
be shown that the Mandelbrot set lies entirely within the region in 
the c-plane where Icl < 2 as shown in Figure 5.4. 

Even though the first images of the Mandelbrot set were pub­
lished only in 1980, the set has already undergone intensive study 
and numerous interesting properties have been catalogued. For a 
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real 

FIGURE 5.4 The Mandelbrot set-old and new rendering. The insert 
shows an original printout from Mandelbrot's experiment. We have pro­
duced the large Mandelbrot set using a modern laser printer and a more 
accurate mathematical algorithm. 

description of many of these, see Chapter 14 in Chaos and Fractals 
by Peitgen, Jurgens, and Saupe. 

5.2 Need for a New Geometric Language 

When we examine the development of a process over a period of 
time, we speak in terms used in chaos theory. When we are more 
interested in the structural forms which a chaotic process leaves in 
its wake, then we use the terminology of fractal geometry, which is 
really the geometry whose structures are what give order to chaos. 
[Peitgen et al., (1992), pp. viii] 
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Julia sets and the Mandelbrot set, as well as other complicated 
geometric shapes that arise in chaos theory, cannot be adequately 
described using the figures of traditional Euclidean geometry. In­
stead, their descriptions require the language of fractal geometry. 
Even though most of the research developments in fractal geometry 
have occurred since the advent of high-resolution computer graph­
ics, this geometry had its beginnings nearly a century ago with the 
development of several strange sets, including the Cantor set, the 
Koch and Peano curves, and the Sierpinski triangle and carpet. The 
Cantor set was discovered by Henry Smith in 1875, but named af­
ter Georg Cantor, the founder of set theory, who used the set as an 
example of an uncountably infinite set of measure zero. This same 
abstract mathematical object acquired practical significance when 
Mandelbrot's work at IBM on data transmission errors led to his re­
alization that their occurrence in bursts was similar in appearance 
to the Cantor set. Algorithms for the Cantor set as well as for the 
Koch curve and the two Sierpinski shapes (the latter three were de­
veloped between 1900 and 1920) will be given later. With these as 
examples, you will develop an algorithm for the Peano curve that 
should enable you to explain why its behavior led Steen to describe 
it as follows: "It meandered so much that it passed through every 
point in a unit square!" [Steen, p. 123]. And all of this should lead to 
an appreciation of Mandelbrot's colorful depiction: 

These new structures were regarded . .. as 'pathological' . .. as a 
'gallery of monsters,' akin to the cubist painting and atonal music that 
were upsetting established standards of taste in the arts at about the 
same time. The mathematicians who created the monsters regarded 
them as important in showing that the world of pure mathematics con­
tains a richness of possibilities going far beyond the simple structures 
that they saw in Nature. Twentieth century mathematics flowered in 
the belief that it had transcended completely the limitations imposed 
by its natural origins. [Mandelbrot, The Fractal Geometry of Nature p. 3.] 

In fact, it is Mandelbrot who coined the term "fractal" to describe 
these strange sets. 

I coined fractal from the Latin adjective fractus. The corresponding 
Latin verb frangere means "to break": to create irregular fragments. It 
is therefore sensible- and how appropriate for our needs!- that, in 
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addition to "fragmented" (as in fraction or refraction) fractus should also 
mean "irregular," both meanings preserved in fragment. [Mandelbrot, 
p.4] 

As we will indicate later, Mandelbrot originally gave a definition 
for his new fractal sets, but later expressed regret for having done 
so. Similarly, before giving any formal indication of the nature of 
fractals, we will explore fractal examples and investigate three ma­
jor concepts intrinsic to the creation and understanding of fractals, 
namely self-similarity, dimension, and iterated function systems. In 
these investigations we will make extensive use of iteration just as 
we did in orbit analysis. 

5.2.1 Fractal Examples 

Th appreciate the fragmented nature of fractals, it is necessary to 
look at specific examples. The two explored in this section, namely, 
the Cantor set and the Koch curve, are among the early examples 
of fractals. Both can be generated from an initial set by iterating, 
or repeating, a process over and over. This is done by following a 
step-by-step procedure known as an algorithm that involves repeated 
iteration of the same process. In theory, this repetition would be 
continued forever; in practice, we can create a figure resembling 
the final fractal to any given resolution by a finite number of rep­
etitions of the generating process. Strictly speaking, the initial set, 
also known as the stage 0 figure, and the stage n figures (the figures 
resulting after n stages in the process) are called prefractals, while 
the term fractal is reserved for the figure that results from infinite 
repetition of the generation process. 

The Cantor Set 

The Cantor set is generated by beginning with a segment (usually 
assumed to have length 1) and removing the open middle third of 
this segment (leaving the endpoints). The process of removing the 
open middle third of each remaining segment is then repeatedly 
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o~---------------------------------------------------o 

o----------------~o o~--------------~o 

0--.... 0 0--.... 0 o~-..... o o~---o 

FIGURE 5.5 Stages 0, 1, and 2 in Cantor set generation. 

iterated using the procedure described in Algorithm 5.2. Figure 
5.5 shows the first three stages in this generation. As noted pre­
viously, the actual Cantor set is the set of points remaining after 
infinite repetition of this process. 

Algorithm 5.2 (Generating a Cantor Set) 
• Initial Set (Stage 0): A segment. 
• Stage 1: 

a. 'Trisect the segment, that is, divide the segment into three 
congruent subsegments. 

b. Remove the middle subsegment of the trisected segment, 
leaving the endpoints. 

• Stage n (n ::: 2): Repeat the procedure of Stage 1 on each of the 
2n - 1 remaining congruent segments. 

Exercises (Cantor Sets) 
1. Beginning with a unit length line segment,lO use Algorithm 5.2 to carry 

out the first four stages in the generation of the Cantor set. 

2. How many subintervals exist in the stage 4 Cantor set? How long is 
each? 

3. How many subintervals exist in the stage 5 Cantor set? In the stage 10 
Cantor set? In the stage n Cantor set? How long are the subintervals 
in each ofthese stages? 

IOFor easy measurement, you may want to use 8.1 em as your unit length. 
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4. Verify that the (final) Cantor set is nonempty and actually contains an 
infinite number of points. 

5. What is the length of the Cantor set? Explain. 

The Koch Curve 

The Koch curve is another well known fractal that is often used to 
illustrate some ofthe basic concepts of fractal geometry. Generating 
a Koch curve involves trisecting each input segment to create three 
congruent sub segments, constructing an equilateral triangle on the 
middle sub segment, and then erasing the base of this triangle. The 
procedure is detailed in Algorithm 5.3. 

Algorithm. 5.3 (Generating a Koch Curve) 
• Initial Set (Stage 0): A segment. 
• Stage 1: 

a. Ttisect the segment, i.e., divide each segment into three 
congruent subsegments. 

b. On the middle subsegment, construct an equilateral triangle 
with the middle sub segment as its base. 

c. Remove the subsegment base of the newly constructed 
triangle. (Figure 5.6.) 

• Stage n (n ::: 2). Repeat the procedure of Stage 1 on each of the 
4n - 1 new congruent segments. 

Exercises (Koch Curves) 

The following exercise asks you to carry out the first three stages in 
the generation of a Koch curve simultaneously on the three sides of an 
equilateral triangle. The final figure generated by infinite iteration of 
this procedure is known as a Koch snowflake. As you will see, the Koch 
snowflake not only demonstrates the fractal properties of Koch curves 
but also leads to an interesting paradox. 
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FIGURE 5.6 Stages 0, I, and 2 in Koch curve generation. 

6. Construct an equilateral triangle using either paper and pencilll (so 
you can erase) or dynamic geometry software. For the following, 
assume that the sides of your triangle have length of one unit. 

Then, for n = 1, 2, 3, 

a. Construct a stage n Koch curve on all three sides of the original tri­
angle, creating a stage n Koch snowflake. For each value ofn, carry 
our the computations below before modifying the construction to 
obtain the next (n + 1) stage. 

b. Compute the number and length of the segments in your stage 
n Koch snowflake, as well as the perimeter and area of this 
snowflake. Report these in the appropriate row in Thble5.3. (Note: 
You will find it easiest to generalize your results for the next ex­
ercise if you express all of your answers using the same pattern; 
for example, you may want to express them as products and/or 
sums of powers of the numbers 3 and 4.) 

7. By generalizing the patterns you observe, find the perimeter and area 
for the stage 10 Koch snowflake; for the stage n Koch snowflake. 

llThe construction works especially well on triangular isometric dot paper. On 
such paper, locate the triangle vertices 27 (or an integer multiple of 27) "dot 
spaces" apart. 
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TABLE 5.3 Koch Snowflake Data. 

Number of Segment 
Segments Length Perimeter Area 

Stage 0 3 1 

Stage 1 

Stage 2 

Stage 3 

Stage 10 

Stage n 

8. Use your formula for stage n to determine the length of the perimeter 
of the (final) Koch snowflake. In particular, determine if the length 
is finite or infinite. Explain your answers. 

9. What is the area of the Koch snowflake? How does it compare to the 
area of the original equilateral triangle? 

10. What is the paradox presented by your answers to the previous two 
exercises? How can it be explained? 

5.2.2 The Measurement Dilemma 

The Koch curve illustrates some of the problems that arose when 
mathematicians tried to apply to fractals their usual notions of mea­
surement. Meaningful Euclidean measurements cannot account for 
the new detail revealed in fractal sets under increasing magnifica­
tion. This inadequacy is well illustrated by an attempt to measure 
lengths of fractal-like natural curves such as coastlines and national 
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boundaries. An attempt to measure anyone of these curves using dif­
ferent scales of Euclidean measurement (taking into account these 
changes of scale) leads to different results. Likewise, if the same 
scale of measurement is used for each measurement, but the curve 
is increasingly magnified, Euclidean measurement cannot account 
for the increasing detail shown. In fact, this measurement problem 
played a significant role in the development of fractal geometry. 
Mandelbrot discovered that English scientist Lewis F. Richardson12 

had noted that encyclopedias in Spain and Portugal had discrep­
ancies of twenty percent in the estimated length of their common 
boundary (987 versus 1214 km).13 Mandelbrot's subsequent article 
"How Long Is the Coast of Britain?" made the problem of measuring 
national boundaries and coastlines more widely known. 

Measuring Coastlines 

An indication of the way coastlines have been measured historically 
is given in Table 5.4. The information in this table and the footnotes 
come from the 1998 World Almanac (p. 541). The footnotes for Ta­
ble 5.4 indicate that the reported lengths were obtained using a 
technique known as divider measurement. This is a standard way 
of measuring lengths of irregular curves and makes use of a divider, 
a tool similar to a noncollapsible compass where the two divider legs 
have identical points. 14 The directions below describe a regimen for 
measuring curve lengths using a divider. 

Divider Measurement of Curve Length 
Directions: Label an initial point Po on the curve. With the divider set 
for a fixed opening e (referred to as the step-length), place one point 

12Richardson also worked with early mathematical models for weather forecast­
ing. In his book Weather Prediction by Numerical Process (1922) he described his 
procedures and his vision for a weather center where 64,000 people working in 
shifts could produce forecasts faster than the weather could advance [Richardson, 
p.219]. 
13Reported in "The problem of contiguity: An appendix of statistics of deadly 
quarrels," General Systems Yearbook 6 (1961): 139-187. 
14In practice, a compass with pencil inserted can be used as a divider. 
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FIGURE 5.7 Divider measuring. 

of the divider on Po and rotate the divider around this point until 
the second point of the divider lands on another point on the curve. 
Mark and label this second point as Pl. Then with the divider point 
fixed at PI, rotate the divider until the other point lands on a third 
point of the curve. Mark and label this point Pz (Fig. 5.7.). Continue 
this process of "walking the divider" along the curve until for some 
integer n the point Pn coincides with, or falls less than, one step­
length from, 
• the end of the curve, if the curve is not closed; or 
• the original point Po, if the curve is closed. 

The divider-measure of the curve length is then given by the number 
L = n £ where n is the number of divider steps using a step-length £. 

Exercises (Divider Measure) 
11. Finding the divider-measure of the perimeter of a Koch snowflake 

constructed from segments one unit long: 

a. Set the step-length to one unit, i.e., the length of the sides ofthe 
original equilateral triangle. Let Po be one of the original triangle 
vertices. How many divider steps lie along the perimeter? What 
is the corresponding divider-measure of the curve? 

b. Now assume that your step-length is ~ unit long, i.e., ~ as long 
as the original sides of the equilateral triangle. Using the same 
point as Po and the same technique, how many steps lie along the 
perimeter this time? What is the divider-measure of the perimeter 
according to this measurement? 
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c. Repeat the previous exercise assuming that the step-length is i 
as long as the original sides. 

d. Why do divider-measures obtained by using decreasing step­
lengths yield increasingly larger values for the perimeter of the 
Koch snowflake? Is there an upper bound on these lengths? 

12. Would divider-measures with decreasing step-lengths yield increas­
ingly larger values for the perimeter length of a circle or of a regular 
polygon such as a square? Would there be an upper bound on the 
lengths so determined. Explain. 

13. What would happen to divider-measures of a coastline obtained by 
using decreasing step-lengths? 

14. Give a possible explanation for the different lengths reported for the 
common boundary between Spain and Portugal. (Note: You may want 
to consider the magnification ratios used to make a standard size map 
of each country.) 

15. Use the idea of divider measurement to explain the differences 
reported in Table 5.4 for the lengths of coastlines and shorelines. 

5.2.3 Self-Similarity 
The examples examined so far, and the difficulty in measuring them, 
confirm the irregular and fractured nature suggested by Mandel­
brat's term fractal. However, we will discover that fractals actually 
possess a special type of symmetry "across scale" known as self­
similarity. This scale invariance makes fractals appear the same 
under higher and higher magnification. IS And as the following quo­
tation suggests, the concept of self-similarity is central to fractal 
geometry. 

The key idea in fractal geometry is self-similarity. An object is self­
similar if it can be decomposed into smaller copies of itself. Thus 
self-similarity is the property in which the structure of the whole is 
contained in its parts. [Hastings, p. 1] 

15This property is beautifully illustrated in videos where the camera continues to 
zoom in on a small section of the fractal. As the zooming continues, the viewer 
sees the original fractal shape appear repeatedly. 
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The "magnification" mappings that map the smaller parts onto 
the object itself (or inversely, map the object onto each of its smaller 
parts) are implemented mathematically using transformations de­
scribed in Chapter 3. Thus, whereas a set of points can be called 
self-congruent, if there is a nonidentity isometry mapping the set onto 
itself, that is, if the set is invariant under the isometry, we will see 
that a set of points is described as self-similar if it is in "some sense" 
invariant under a (nonidentity) similarity.16 To define self-similarity 
more precisely, we will use the geometric concept of tiling. As de­
fined by Grunbaum and Shephard, a plane tiling is a countable family 
of closed sets that cover the plane without gaps or overlaps (except 
at vertices and edges) [Grunbaum and Shephard, p. 16]. In order to 
keep track of the scaling (i.e., magnification) factors, we will use the 
terminology s-scale tiling. 

Definition 5.3 
A set of points a is said to be (strictly) self-similar with scaling factor s, 
if a can be tiled with subsets, each of which can be mapped onto the 
original set a using a similarity with ratio s. Such a tiling is called 
an s-scale tiling; the subsets are called tiles; and s is called the scaling 
factor of the tiling. 

The self-similarity properties of the Cantor set and Koch curve be­
come evident when we note that these two examples are constructed 
by iterating the same transformation at smaller and smaller scales. 
However, since the construction of other fractals frequently involves 
more than one transformation and the transformations used may 
be more general than similarity transformations, the self-similarity 
property defined above will need to be generalized. 

Exercises (Self-Similarity) 
16. Sketch an illustration showing that a square has a 2-scale tiling. 

16Mandelbrot has an interesting discussion of self-similarity invariance in The 
Fractal Geometry of Nature, p. 18. 
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17. For what other values of 8, does a square have 8-scale tilings? Explain 
your answer. 

18. What must be true about the size of the scaling factors 8 in Definition 
5.3? For a given self-similar set a, is the scaling factor unique? Explain 
your answer. 

19. Self-similarity of the Cantor set: 

a. Explain why the Cantor set is self-similar with scaling factor 3; de­
termine the number of tiles in such a 3-scale tiling; and describe 
the location of each tile relative to the entire set. 

b. For each tile in the tiling you described in a, name a specific 
similarity that will map the tile onto the entire Cantor set. 

c. What role does the number 3 play in the similarities you 
described? 

d. Give two more possible scaling factors 8 i= 3 for the Cantor set 
and determine the number of tiles in the corresponding 8-scale 
tilings of the Cantor set. 

20. Self-similarity of the Koch curve: 

a. Explain why the Koch curve is self-similar. What is the smallest 
possible scaling factor for this curve? 

b. Explain why there is more than one possible scaling factor for 
the Koch curve. Name two possible scaling factors; and for each, 
give the number of tiles required and describe the tile locations 
relative to the entire Koch curve. 

c. For each tile in the tiling of the Koch curve with the smallest 
possible scaling factor, name a specific similarity that will map 
the tile onto the entire Koch curve. (You may want to describe a 
particular similarity as a product of specific transformation.) 

21. Assume that a is a (strictly) self-similar set of points with scaling 
factor 8 that can be tiled as in Definition 5.3 with tiles aI, az, ... , an. 
Prove each of the following: 

a. The original set a can be mapped onto any of the tiles ai with a 
similarity. (What would be the ratio of such a similarity?). 

b. Any two of the tiles ai and aj are congruent. 

c. If the distance between two given points in the set a is given by 
K and £ is the distance between the corresponding points in one 
ofthe 8-scale tiles ai, then 8 = K/£. 
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22. As indicated in this section, a set a can be called selfcongruent ifthere 
is a nonidentity isometry mapping a onto itself. Will a self-similar set 
f3 necessarily have a nonidentity similarity mapping f3 onto itself? 
Explain. 

5.3 Fractal Dimension 

The fractal dimension of a set is a number that tells how densely 
the set occupies the metric space in which it lies. It is invariant under 
various stretchings and squeezings ofthe underlying space. [Barnsley, 
p.3] 

As indicated by the dilemma of trying to find the length of a 
coastline and the Koch curve, attempts to measure the length (or, in 
other cases, area or volume) of a fractal are futile. Applying tradi­
tional methods of size measurement to highly irregular fractals leads 
to meaningless results. Instead, Mandelbrot and others discovered 
that to make any meaningful statement about the size of a fractal, 
they needed to resort to assigning it a dimension value; but in order 
to do so, the concept of dimension had to be expanded. 

5.3.1 Expanding Thpological Dimension 

Mathematicians have formulated a number of dimension concepts, 
but that in most common use (known as topological dimension) in­
volves the number of directions or degrees of freedom inherent in an 
object. Using this notion, the objects oftraditional Euclidean geome­
try are all assigned non-negative integer dimensions. For example, a 
point is assigned dimension 0, a line segment is assigned dimension 
1, a square is assigned dimension 2, and a cube is assigned dimen­
sion 3. One way of explaining this assignment is to simply begin 
by assigning dimension 0 to a point and then inductively assigning 
dimensions to other objects by determining the dimension of the 
"smallest" set whose removal will disconnect it, that is, separate it 
into two or more distinct parts. The dimension then assigned to the 
original set is one more than that of the "smallest disconnecting" 
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by assigning dimension 0 to a point and then inductively assigning 
dimensions to other objects by determining the dimension of the 
"smallest" set whose removal will disconnect it, that is, separate it 
into two or more distinct parts. The dimension then assigned to the 
original set is one more than that of the "smallest disconnecting" 
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set. So since a line can be disconnected when a single point, (a set of 
dimension 0) is removed, lines are assigned dimension 1. Removing 
a point from a square will not disconnect it; however, removing an 
appropriate segment (a set of dimension 1), can disconnect it. So 
squares are assigned dimension 2. Likewise disconnecting a cube 
requires the removal of an appropriate 2-dimensional set, so cubes 
are assigned dimension 3. Using this assignment, we sometimes re­
fer to points, segments, squares and cubes as d-cubes where d takes 
on the values 0, 1, 2, and 3, respectively. Extending this idea further 
produces the so-called 4-cube, also known as the hypercube, an ob­
ject that has intrigued many through the ages and is explored in the 
exercises below. 

Exercises (Properties of the Hypercube) 

One way to "discover" properties of the hypercube, or 4-cube, is by ob­
serving properties of d-cubes for smaller values of d, finding patterns that 
appear, and then generalizing these to predict properties for d = 4. 

1. Fill in numerical values in Thble 5.5 in rows corresponding to d = 2 
and d = 3. 

2. Use predictions based on the values already in cells in the same column 
to fill in row d = 4 in Thble 5.5. 

3. For the general d-cube, fill in the final row in Thble 5.5 with a formula 
containing the variable d. 

Another way to investigate properties of the hypercube is to observe how 
a (d -I)-cube can be used to generate a d-cube for d = I, 2, 3. Exercises 
4 through 7 indicate how this can be done. It may help to think of your 
points, segments, squares, etc., as being made out of chalk and leaving 
"chalk trails" as they are dragged. 

4. Show how a point can be "dragged" to trace out a segment of unit-length 
with one endpoint of the segment at the initial position of the point, 
and the second endpoint at the final position of the point. 

5. Show how the number of points (vertices) and segments (sides) of 
a square can be determined by dragging a unit-length segment in a 
direction perpendicular to the segment and counting both initial and 
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TABLE 5.5 Elements of ad-Cube. 

d Points Segments Squares Cubes Hypercubes 

o (point) 1 0 0 0 0 

1 (segment) 2 1 0 0 0 

2 (square) 

3 (cube) 

4 (hypercube) 

d (d-cube) 

final positions of points and segments. Also count the segments traced 
out by dragging the points, and the square traced out by dragging the 
segment. 

6. Explain how this procedure could be used to obtain a cube from a 
square. Again, verifY that your counts of vertices, segments, squares, 
and cubes come out correctly. 

7. Finally, imagine dragging a cube in a direction "perpendicular to itself" 
to trace out a hypercube and make a count of its various elements. 
Compare your results with those you obtained in Thble 5.5. 

Tb understand how fractals can be assigned dimensions, it is nec­
essary to extend the concept of topological dimension. 'TWo such 
extensions are seZfsimilarity dimension and box dimension. Both 
of these are explored in this section. A third variant called divider 
dimension is introduced in the exercises, while the even more gen­
eralized Hausdorff-Besicovitch dimension will be mentioned later in 
the context of Mandelbrot's early definition of fractals. All of these 
variants are referred to using the generic term fractal dimension. And 
at this early stage in the development of fractal geometry, the com­
monly accepted practice is to determine the fractal dimension of a 
set of points by using the dimension variant deemed to be the most 
appropriate for the set. Fortunately, when the fractal dimension of a 
set can be computed in more than one way, the computations usu-
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ally yield the same value. And as the examples will demonstrate, 
most (but not all) fractal sets will have noninteger fractal dimension. 

5.3.2 Self-Similarity Dimension 

Th assign fractals a self-similarity dimension, it is helpful to consider 
how segments, squares, and cubes can be tiled with a number of 
smaller tiles such that magnification of each tile by an integer scaling 
factor (using the same scaling factor for each tile) results in an object 
congruent to the original. Th illustrate this, note that a segment can 
be tiled using two segment-shaped tiles (meeting at the midpoint of 
the original segment) so that magnification of each tile by the scaling 
factor 2 creates a segment congruent to the original. Similarly, a 
square can be tiled by four square-shaped tiles so that magnification 
of each tile by the scaling factor 2 (doubling each side) creates a 
square congruent to the original. The exercises below explore the 
continuation of this procedure leading to an equation relating an 
object's dimension d, the scaling factor s, and the number of tiles N 
in an s-tiling of the object. 

Exercises (Self-Similarity) 
8. For s = 2, sketch a figure illustrating a segment tiled with segment­

shaped tiles such that magnification of anyone of the tiles by the 
scaling factor s creates a segment congruent to the original. Sketch a 
similar figure for s = 3. 

9. Sketch similar illustrations for a square for scaling factors 2 and 3. 

10. Sketch similar illustrations for a cube for scaling factors 2 and 3. 

11. Fill in the data requested in Table 5.6 using the suggestions below: 

a. For the segment, square, and cube use your previous illustrations. 

b. For the 4-cube and the generic d-cube, generalize from the 
patterns appearing in the previous rows of the table. 

12. Find an equation giving the apparent relation between the dimension 
d of an object, the scaling factor s applied to magnify the tiles and the 
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TABLE 5.6 Dimension Data for Euclidean d-Cubes. 

No. (N) of Tiles Congruent to Original 
Original Dimension (d) After Magnification by: 
Object of Object Scaling Factor s = 2 Scaling Factor s = 3 

Segment 1 

Square 

Cube 

4-Cube 

d-Cube 

number N of tiles that become congruent to the original object after 
magnification by s. 

13. Assume that AB is a segment with endpoints A(O, 0) and B(l, 0), and 
that C is the midpoint of AB. Find the 3 x 3 matrices of the similarities 
required to map segments AC and CB onto the segment AB. (you'll 
need to make use of homogeneous coordinates for points.) What role 
does the scaling factor have in these matrices? 

As you may have discovered, the equation relating the dimension 
d of the d-cube to N, the number of subobjects congruent to the 
original d-cube after magnifying by scaling factor s, is N = Sd. 

This equation is used to define the self-similarity dimension of ob­
jects. 1b make the language of the new definition less awkward 
and more precise, we will use the term s-scale tiling introduced in 
Definition 5.3. 

Definition 5.4 
Let a be a self-similar set and let N be the number of tiles in an 
s-scale tiling of a. Then the self-similarity dimension d of a is given 
by N = sd. 

Since we now have both self-similarity and topological dimensions, 
we will adopt the following convention to distinguish between the 
two. Dimension as defined by Definition 5.4 will always be labeled 
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self-similarity dimension, whereas the more common topological 
dimension will be referred to simply as dimension. Since self­
similarity dimension is a generalization of (topological) dimension, 
this distinction is less significant than it first appears. 

In exploring self-similarity dimension it is useful to have fractal 
examples other than the Cantor set and the fractal curves intro­
duced up to this point. Another well known fractal for which the 
self-similarity dimension can be readily computed is the Sierpinski 
triangle. Algorithm 5.4 gives a deterministic method for generating 
this set. The actual construction of the Sierpinski triangle involves 
"removing" portions of the original figure at each stage, but in our 
representations of this triangular figure we will use color to indi­
cate the remaining portions. This coloring procedure requires that 
at each stage we keep track of the portion to be "removed," that is, 
left uncolored. 

Algorithm 5.4 (Generating a Sierpinski 'Itiangle) 
• Initial Set (Stage 0): A triangle. 
• Stage 1: 

a. Construct the midpoint of each side of the triangle. 
b. Construct segments between the midpoints of the three sides. 
c. Mark for "removal" the new middle subtriangle by placing a 

small dot in its interior. 
• Stages 2 through n: Repeat the procedure of Stage 1 on each of the 

3n- 1 new congruent unmarked triangles. (Fig. 5.8.) 
• "Remove" the marked sub-triangles.17 

Exercises (Self-Similarity Dimension) 
14. Solve the equation given in Definition 5.4 to give an expression for d. 

15. Using the scaling factor s = 3, find the self-similarity dimension of 
the Cantor set. 

17The procedure for doing this will vary depending on the construction 
method used. For paper and pencil constructions, merely shade the unmarked 
subtriangles and remove the dots marking the others. 
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FIGURE 5.8 Stages 0, I, and 2 in generation ofSierpinski triangle. 

FIGURE 5.9 Stages 0 and 1 in generation of a Koch-like curve. 

16. Using another appropriate scaling factor s =J. 3, again find the self­
similarity dimension of the Cantor set. Does your answer agree with 
that found in Exercise IS? Should it? 

17. Compute the self-similarity dimension of the Koch curve using two 
different scaling factors. How do your answers compare? Will this 
always happen? Explain. 

18. Figure 5.9 shows stages 0 and 1 in the generation of a Koch-like 
curve. I8 At each stage, every segment is replaced by S new congruent 
segments, each one-fourth as long as the replaced segment. 

a. Sketch stage 2 in the generation of this curve. 

b. Determine the self-similarity dimension of the fractal curve. 

laThe curve is described by Donald Davis [Davis, p. 307]. 
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19. Exploring the Sierpinski triangle: 

a. Use Algorithm 5.4 and an initial equilateral triangle to carry out 
stages 1 through 4 in the generation of the Sierpinski triangle 
either on paper19 or by using dynamic geometry software. 

b. By analyzing the procedure used in Algorithm 5.4, determine a 
possible scaling factor for the Sierpinski triangle and compute its 
self-similarity dimension. 

c. What is the area ofthe Sierpinski triangle? 

20. Draw stages 0 and 1 in the generation of a fractal curve with self­
similarity dimension d = In 6/ln 4 and write out an algorithm for the 
generation of your fractal. Explain why the resultant fractal will have 
the required dimension. (There is more than one way to do this.) 
[Davis, p. 307] 

21. Stages 0 and 1 in the generation of the Peano curve are shown in 
Figure 5.10. Note that the congruent replacement segments are all 
one-third the size of the segment they replace. 

a. Write an algorithm for generating stages 1 through n ofthis curve. 

b. Draw stage 2 in the generation of this curve. 

FIGURE 5.10 Stages 0 and 1 in generation of Peano curve. 

19This works especially well on triangular isometric dot paper. On such paper, 
place the triangle vertices 16 Cor an integer multiple of 16) "dot spaces" apart. 
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c. Compute the self-similarity dimension of the Peano curve. 

d. Use the value of the self-similarity dimension ofthe Peano curve 
to explain Steen's description of its meandering nature. (See quote 
at beginning of Section 5.2.) 

5.3.3 Box Dimension 

Whereas self-similarity dimension applies only to sets that are 
strictly self-similar, there are more generalized dimensions that can 
be applied to sets that are only "approximately" self-similar, includ­
ing natural fractals like coastlines. One of these generalizations that 
moves in the direction of the more esoteric Hausdorff-Besicovitch 
dimension is called box. dimension. 2o Here the term box. refers to a 
segment, a square, or a cube, that is, a d-cube of the appropriate 
dimension d. Tb understand how box dimension generalizes self­
similarity dimension, recall that the self-similarity dimension d of a 
set a is given by the equation N = sd where s is the scaling-factor 
and N is the number of tiles in an s-scale tiling of a. Solving for d 
yields 

Self-similarity dimension: ds = InN 
Ins 

(A) 

When a set a is strictly self-similar and we have determined an ap­
propriate scaling factor s, it is possible to tile the set with congruent 
s-tiles. Using the number of these tiles as N in Equation (A) above, 
we can immediately compute the fractal dimension of a. However, 
when a is not strictly self-similar, we cannot tile it with congruent 
"shrunken" copies of itself. So in good mathematical fashion, we ap­
proximate such a covering. Tb do so, we do not attempt to use smaller 
versions of the original set, but instead choose a box-shaped set with 
a side length e and place a grid of these boxes over the set a. The di­
mension d of the box chosen depends on the nature of the set a. For 
example, even though it may seem that the appropriate box shape 
for any curve should be that of a segment, curves that are extremely 

2°Box dimension is sometimes referred to as capacity dimension [Robinson, p. 358]. 
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"wiggly" are usually covered with square grids as shown in Figure 
5.11. 

With the grid in place, we count the number of boxes that contain 
at least some portion of the set a. Then we reduce the side-length 
t and repeat this procedure with the same box shape. Clearly, the 
number of boxes required varies as t changes since, as we reduce 
the side length of our boxes to achieve better fits, the number of 
"covering" boxes will generally increase. We use the notation N(t) to 
represent the number of covering boxes of side-length t. In theory 
this process is iterated over and over as t continues to shrink, thus 
explaining the need for the limit in the definition below. The reason 
for the choice of the denominator should become apparent after you 
do the exercises. 

Definition 5.5 
For a bounded set a, let N(t) denote the minimum number of boxes 
oflength t > 0 required to cover a. Then the box dimension of a is 
given by 

InN(t) 
Box dimension: dB = lim 1 I 

i_O n(1 i) 
(B) 

Notice that the box dimension of an object is defined only when 
the limit in Definition 5.5 exists. And even in cases where the limit 
does exist, its value may not be obvious. However, the definition 
does give us a way to estimate the box dimension by evaluating the 
quotient in Equation (B) for several lengths t. In practice, data points 
(In(II i), In N(t)) are plotted and linear regression is used to find the 
line of best fit for the data. The slope of this line is then used as the 
box dimension. 

Exercises (BOX and Divider Dimensions) 
22. Use Definition 5.5 and square boxes to show that the box dimension 

of a solid square is 2. [Hint: You may want to assume your square 
has side lengths of one unit and use boxes with side length 1I2n for 
increasing values ofn. Be sure to explain why the result you get using 
boxes with these side lengths will be the actual box dimension.] 
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InN(t) 
Box dimension: dB = lim 1 I 

i_O n(1 i) 
(B) 

Notice that the box dimension of an object is defined only when 
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FIGURE 5.11 The coast of the southern part of Norway. The outline 
was traced from an atlas and digitized at about 1800 x 1200 pixels. The 
square grid indicated has a spacing of 8 ~ 50 km. [Reprinted from Feder, 
Fractals, Plenum Press, p. 7.] 
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23. Let C be the Cantor set generated from a segment of unit length. 

a. What is the appropriate d-cube to use in measuring the box 
dimension of C? 

b. Which value(s) of the box side-length £ yield the "best-fitting" 
boxes? 

c. How do these "best" values of £ relate to the scale-factors s used 
to determine the self-similarity dimension of C? 

d. Compute the box dimension ofC. How does your value compare 
with the self-similarity dimension of C? 

24. Let K be the Koch-like curve generated from a segment of unit length. 
(Stage 1 of this curve is shown in Figure 5.9.) Use a procedure similar 
to that in the previous exercise to determine the box dimension of K. 
Again compare your answer with the self-similarity dimension of K. 

25. Find the box dimension of the Sierpinski triangle. Be sure to explain 
and illustrate the procedure you use. 

26. The fractal known as the Sierpinski carpet has a solid square as its 
initial set. In stage 1 of the generation, the square is subdivided into 
9 congruent subsquares, and the middle subsquare is removed. In 
stages 2 through n, the procedure of stage 1 is repeated on each of 
the remaining congruent subsquares. 

a. Construct stage 1 and stage 2 Sierpinski carpets. 

b. How many subsquares will remain at the end of stage 3? At the 
end of stage n? 

c. Find the fractal dimension of the (final) Sierpinski carpet using 
self-similarity dimension and using box dimension. How do your 
results compare? 

d. How much is the area reduced at each stage? What is the area of 
the Sierpinski carpet? 

27. A 3-D version of the Sierpinski carpet is known as a Sierpinski sponge. 
The initial set for the sponge is a cube. In stage 1 of the genera­
tion, the cube is subdivided into 27 congruent subcubes, and the 
middle subcube and its 6 nearest neighbor cubes are removed. In 
stages 2 through n, the procedure of stage 1 is repeated on each of 
the remaining congruent subcubes. 

a. Find the fractal dimension of the (final) Sierpinski sponge. 
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b. How much is the volume reduced at each stage? What is the 
volume of the Sierpinski sponge? 

c. Find the surface area of the Sierpinski sponge. 

28. In the self-similarity exercises at the end of Section 5.2, the following 
property for a self-similar set Ci was derived: 

Assume that Cl is a selfsimilar set with an s-scale tiling 
consisting of congruent sets Cli. If K is the distance between 
two given points in Ci, and £ is the distance between the 
corresponding points in Cli, then s = Kle. 

(C) 

a. Use natural logarithms to find the relation this yields between 
In sand In (lie). 

b. Use your previous result to explain the relation between the de­
nominators in Equations (A) and (B); in particular, explain why 
the value of K does not appear in Equation (B). 

29. Explain in general terms why the box dimension of a strictly self­
similar set will be the same as its self-similarity dimension. 

Definition 5.6 (Divider Dimension of Curves) 
If L is the divider length of curve A obtained using step length £, then 
de, the divider dimension of A, is given by the equation below. (Note: 
In this equation C is a constant independent of steplength.) 

Divider Dimension: L = C £ I-dt (D) 

30. Suppose that the length of curve A is computed once using step 
lengths £1, yielding divider measure Ll for its length; and again us­
ing step lengths £2, yielding L2 for its length. If we assume that the 
two divider dimensions computed from these two measurements are 
equal, i.e., del = de, = d, show that d can be found without know­
ing the value of C. (Note: Because of the assumption of equality, we 
can only assert that our value for d is an approximation of the actual 
divider dimension of A.) 

31. Mandelbrot presents Richardson's data for measuring the west coast 
of Britain as follows: 

• If dividers with step length £ = 100 km are used, then the total 
length is 1700 km . 

• If dividers with step length £ = 10 km are used, then the total 
length is 3020 km. 
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Use this data and the result from Exercise 30 to determine an ap­
proximate value for the fractal dimension of the west coast of Britain. 
[Problem modified from Davis, p. 310.] 

32. Use the result from Exercise 30 to determine the approximate fractal 
dimension of coastlines of two different states using the data from 
Table 5.4. Note that both coastline and shoreline lengths reported for 
the same state can be considered as coastline measurements using 
different divider lengths. 

33. Th show that the relation in Definition 5.6 is true for self-similar 
curves: 

a. Let A be a self-similar curve with scaling factor s. Explain why, for 
certain values of e, a divider measurement of A with step length 
e can be said to be an "approximate" tiling of A with segments of 
length e. For tilings that fit best, how is e related to the scaling 
factor s? (Be sure to indicate if there is more than one possible 
value of e.) How can the fit of such a tiling be made even better? 

b. Find an equation relating L, the curve's length determined by the 
divider measurement, to the tile length e and the number of tiles 
N. Solve your equation for N. 

c. In the formula giving the self-similarity dimension (Definition 
5.4), replace N by your above result and use Equation (C) to re­
place s. Then solve for the divider length L to verifY Equation 
(D). What does the constant C represent in this equation? 

5.4 Iterated Function Systems* 

A fractal set generally contains infinitely many points whose organi­
zation is so complicated that it is not possible to describe the set by 
specifYing directly where each point in it lies. Instead, the set may be 
defined by 'the relations between the pieces! [Barnsley, p. 4] 

So fa.r the examples of fractals we have explored, namely, the 
Koch curve and various Sierpinski sets, are all strictly self-similar, 
that is, each can be tiled with congruent tiles where the tiles can 
be mapped onto the original using similarities with the same scal­
ing factor; or inversely, the original object can be mapped onto the 
individual tiles using similarities with a common scaling factor. 
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However, as the above quotation indicates, there are so called 
fractals with such complexity that they are not self-similar in this 
strict sense. 'Ib construct objects with such complicated organiza­
tions would seem to require very involved procedures. However, the 
key to their construction is that the "relations between the pieces" 
of such fractals can be described using relatively small sets of the 
affine transformations covered in Chapter 3. 

5.4.1 A Sierpinski Introduction 

'Ib begin our consideration of fractal generating transformations, we 
will find a set of three so called Sierpinski transformations that can 
be used in combination to generate the Sierpinski triangle. 

Exercises (The Sierpinski 1tansformations) 

In the exercises below, assume that the initial set used to generate the 
Sierpinski triangle is equilateral !:.ABC as shown in Figure 5.12. 

1. Describe the location of three tiles that form a 2-scale tiling of the Sier­
pinski triangle in Figure 5.12. For each tile, specify a dilation (giving 
both its center and ratio) that maps the entire Sierpinski triangle onto 
the tile. 

c 

A B 

FIGURE 5.12 Stage 2 in the generation of a Sierpinski triangle. 
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Note: We will call the transformations found in Exercise 1, the Sierpinski 
transformations. 

2. As you probably discovered, the three Sierpinski transformations each 
leave one of the vertices of l::,.ABC invariant. Using the notation T 1, 

Tz, and T3 to represent the transformations that leave A, B, and C 
invariant, respectively, describe the image of l::,.ABC under each of 
the composite transformations below. In your description, indicate the 
stage in the Algorithm 5.4 generation in which the image would first 
appear. 

(a) Tl 0 Tz 
(b) Tz 0 Tl 
(c) Tl 0 Tz 0 T3 

(d) (T3i 0 Tl 
(e) T1oT30Tl 
(f) (Tzl 0 (Td 

3. How could a sequence of these three transformations be used to gener­
ate a stage 2 Sierpinski triangle? A stage 3 Sierpinski triangle? A stage 
n Sierpinski triangle? 

4. Let P and Q be two distinct points in the plane. How will the distance 
between their images under a Sierpinski transformation T compare to 
the distance between the original points, i.e., compare d(T(P), T(Q)) 
and d(P, Q)? Explain why the result will be the same for each of the 
three transformations. 

5. Assume that Z is the invariant point of a Sierpinski transformation T 
and P =1= Z is any other point. 

a. What happens to the distance d(Z, Tn(p)) as n increases? 

b. What does this tell you about the limit of the orbit of P under 
iteration by T?Zl 

c. Will the limit of the orbit in part (b) depend on the point P? On 
the transformation T? Explain. 

6. Assume that homogeneous coordinates of the three vertices are 
A(O, 0,1), B(2, 0, 1), and C(I,.J3, 1). Write out a 3 x 3 matrix repre­
sentation for each Sierpinski transformation. 

7. Use your transformation matrices to find the images of the three 
vertices A, B, and C under each of the three Sierpinski transformations. 

21As before the orbit is the infinite sequence {P, T(P), ... , Tn(P), ... }. 
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As the previous exercises demonstrate, a stage n Sierpinski trian­
gle (for any natural number n) can be generated by finite iteration 
of the three Sierpinski transformations where at any stage the three 
transformations are, in effect, simultaneously applied to the output 
from the previous stage. Thus, it seems reasonable to expect that 
the actual Sierpinski triangle would result from an infinite iteration 
of this process of simultaneous application of the three transfor­
mations. Such an application process is said to be deterministic in 
contrast to a stochastic, or random application process in which each 
transformation Ti is assigned a probability Pi and the transforma­
tion to be applied at each step in the iteration is chosen randomly 
with probability Pi. 22 When this random application process is used 
to iteratively apply the three Sierpinski transformations to individ­
ual points, the resultant procedure is commonly known as the chaos 
game. In practice, computers are used to play this game; however, 
a short hands-on version of this game serves to illustrate random 
sequencing of function iteration. 

Rules for Chaos Game 
Required Equipment: Each player will need a 6-sided die, a trans­
parency pen, and a transparency on which the vertices of an 
equilateral triangle are marked and labeled with the letters A, B, 
and C. (Th be effective, all transparencies should contain congru­
ent sets of vertices so similarly labeled vertices coincide when the 
transparencies are stacked.) 
A. Assign A to the faces 1 and 2 of the die, B to the faces 3 and 4, 

and C to the faces 5 and 6. Finally, plot (but do not label) a point 
Xo somewhere in the triangle. 

B. Roll the die. Then plot (but do not label) the point Xl, which 
lies halfway between Xo and the vertex determined by the die. 
(Note: The labels Xi are used only to clarify the directions. 1b 
avoid clutter, you should avoid labeling the points you plot.) 

C. Roll the die again and plot the point X 2 , which lies halfway 
between Xl and the vertex determined by the die. 

22The sum of these assigned probabilities Pi must be 1. 
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D. The game continues by iterating the previous procedure, i.e., at 
each step a new point is plotted that lies halfway between the 
previous point and the vertex indicated by the rolled die. 

Exercises (The Chaos Game) 
8. Using the rules above, play the chaos game for about 10 minutes, 

plotting each point on the same clear plastic transparency. Th make 
this go quickly, merely estimate distances. After you finish, stack your 
transparency together with those made by others to see an image that 
should bear some resemblance to the Sierpinski triangle. 23 

9. Explain why the chaos game is actually using the Sierpinski 
transformations found in the previous exercise set. 

10. If a fair die is used in the chaos game, each of the three Sierpinski 
transformations is chosen with probability ~. If these probability as­
signments were changed, would the appearance ofthe image change? 
Explain. 

The activities below all refer to the specific transformations described in 
the rules for the chaos game described above. As in the exercise set for 
the Sierpinski transformations, assume that homogeneous coordinates 
of the three vertices are A(O, 0, I), B(Z, 0, I), and C(I,./3, 1) and use the 
transformation matrices found in those exercises. 

11. Carefully plot the points A, B, and C. On this same graph, plot and 
label the first 5 points that result from playing the chaos game as 
detailed below. 

a. Beginning with the point Xo = A, randomly choose one of the 
three Sierpinski transformations to apply to Xo. Use the matrix 
representation of this transformation to compute the coordinates 
of Xl, the image of Xo under this transformation. Then plot Xl. 

b. Continue iterating the procedure described in part ( a) to plot and 
label points Xz, X3, X4 , and Xs. 

23The desired effect requires a sufficient number of points plotted on transparen­
cies containing congruent copies ofthe triangle vertices. There should be enough 
points obtained when 10 or more play the game, each for 10 minutes or so. Fewer 
players will need to play for a longer period. 
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12. Explain why all of your points Xi (i = 0, ... ,5) are located in the actual 
Sierpinski triangle. Would this happen if you chose a point other than 
A for Xo? Explain. 

13. (Optional) Use a computer or calculator to carry out a much longer 
simulation of the chaos game. Possible methods include: 

• Using computer programs available as freeware on the web or 
commercially. For sources of such programs see the website 
http://www.stolaf.edu/people/cederj/geotext/info.htm 

• Entering code for such a program. Sources of code for BASIC pro­
grams and for programs written for CASIO and Thxas Instrument 
graphing calculators are listed at the end of this chapter. 

• Writing and using your own program. 

5.4.2 IFS Basics 

The set of Sierpinski transformations is an example of an iterated 
function system (IFS). Notice that the three Sierpinski transforma­
tions are all similarity transformations with the same ratio r. Since 
r < I, the transformations are contractive, that is, the transforma­
tions decrease the distance between points making image points 
closer together than their corresponding pre-images. Thus, if any 
one of the Sierpinski transformations is individually iterated, the 
image of any initial set under this iteration will shrink to a point. 
However, when the three transformations are iterated as a system 
in either deterministic or random order they appear to generate the 
Sierpinski triangle. 

In general, an iterated function system need not consist only 
of similarities all with the same ratio, or even of similarities 
with different ratios. IFS transformations may also include affine 
transformations (shears, and strains or combinations of these with 
similarities), thus allowing direction specific scaling factors as well 
as changes in angles. We formalize these ideas in the following 
definitions. 
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Definition 5.7 
An affine transformation T is contractive if there is a constant c, 
o ~ c < 1 such that for all points X and Y, d(T(X), T(Y)) ~ c d(X, Y). 
The constant c is caned the contraction factor of T. 

Definition 5.8 
An iterated function system (IFS) is a finite set of contractive24 affine 
transformations. 

As in our previous work with logistic functions, we are interested 
in the long term behavior ofiterated function systems. In particular, 
we wish to know whether repeated iterations of the transforma­
tions involved will lead to a limit image. Since an IFS consists of 
multiple transformations, a precise determination ofthe limiting be­
havior of their infinite iteration requires mathematical results from 
advanced analysis and topology. However, we can achieve a gen­
eral understanding of the behavior of iterated function systems and 
their utilization of affine transformations by carefully exploring the 
behavior of a few specific systems. We begin our explorations by ex­
amining systems in which the iteration is carried out in deterministic 
fashion. 

Deterministic Iteration 

In the case of deterministic iteration, it is customary to use a set 
of multiple points as the initial input. We will represent such an 
initial set using the boldface notation Ao. The transformations of 
the IFS are then iteratively applied in a stage-by-stage procedure 
in which the output of any stage is considered to be a collage, or 
union, of the images produced by simultaneously applying each of 
the transformations to the output from the previous stage. When Ao 
is a multiple-point set, it follows that the images (sometimes called 

24The requirement that each transformation be contractive is relaxed in more 
advanced treatments of fractal geometry. It is actually sufficient to require only 
that the entire transformation set be contractive, i.e., the overall effect of iteration 
of the transformations must continually decrease the distance between points. 
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d-images to indicate their deterministic generation) will also be 
multiple-point sets which we will denote An. All of this is formalized 
in Definition 5.9. 

Definition 5.9 
Let TI , ... , Tk be the transformations of an IFS and let Ao be 
an initial set in the common domain of these transformations. 
Then AI, the first d-image of Ao under the IFS, consists of the 
following union of sets obtained by applying each of the trans­
formations Ti once: Al = TI(Ao) U Tz(Ao) U··· U Tk(Ao). And sim­
ilarly An, the nth d-image of Ao under the IFS, is given by: 
An = TI(An- l ) U Tz(An- l ) U ... U Tk(An- I). The process of finding 
these d-images is called deterministic iteration of the IFS and the se­
quence of d-images {Ao, AI, ... , An, ... } is the d-orbit of Ao under the 
IFS. 

Using the terminology and notation of this definition, we can make 
a precise statement of our mathematical question: Does the d-orbit 
of Ao under a given IFS have a limit, and if so, is this limit a fractal? 

Exercises (Deterministic Iterated Function 
Systems) 
14. The Cantor IFS 

a. Which two affine transformations can be used to generate a Can­
tor set from an initial segment Ao = PQ (See Algorithm 5.2)7 For 
each, name the invariant points if any, and any other defining 
properties. 

b. Explain why the set of these two Cantor transformations is an IFS. 

c. Draw a diagram showing the initial set Ao and its first, second, 
and third d-images under this IFS. 
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d. Assuming that the initial set Ao corresponds to the unit interval 
[0,1] on the x-axis, find an algebraic representation for each of 
the two Cantor transformations. 25 

e. Assuming that Ao is the same unit interval, use your algebraic 
representations to find the endpoints of segments contained in 
the d-images An of Ao under this IFS for n = I, 2, 3. 

f. If the Cantor IFS transformations are applied to the actual Cantor 
set, what will be true about the d-images produced? 

15. The Sierpinski IFS. Let I be the system consisting of the three 
Sierpinski transformations with invariant points located at the ver­
tices of equilateral MBG (see the exercises for the Sierpinski 
transformations). 

a. Assume that the initial set Ao = MB' G', where MB' C' is the 
small equilateral triangle (and its interior) shown in Figure 5.l3. 
Draw two figures Fl and F2 each containing MBG. Use shading to 
show d-image Al in figure F1, and d-image Az in figure Fz. In each 
figure, indicate which shaded portions resulted from applying TI, 
from applying T2 , and from applying T3. 

b. Assume that the initial set Ao is a circle (and its interior) located 
somewhere inside ~ABG. Draw and label three figures Fo, F1 , 

F2 each containing MBG. Draw and use shading to show Ao in 
figure Fo, Al in figure F2 , and A2 in figure F2 . Then describe 
your expectations for the long-term behavior of the d-orbit of this 
initial set Ao under T. 

c. Using observations from parts a and b., describe your general 
expectations for the long-term behavior of the d-orbits of an initial 
set Ao under T. In particular, comment on the following: Is there 
a limit set? If so, are there any points that must be in this limit 
set and what is the set's shape? Is the behavior dependent on the 
shape of Ao? On the location of the points A, B, and G? 

d. If the Sierpinski IFS transformations are applied to the actual 
Sierpinski triangle with vertices A, B, and G, what will be true 
about the d-images produced? 

25Since the pOints involved are all on the x-axis, you may want to make use of 
simple linear equations. 
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FIGURE 5.13 Equilateral triangles ABC and AB'C' . 

The limiting behavior of deterministic IFS orbits in a complete 
metric space (in our case, Euclidean space with the usual dis­
tance metric), was formally demonstrated in a 1981 publication by 
J. Hutchinson. 26 A generalized statement of Hutchinson's results is 
given in Theorem 5.2. 

Theorem 5.2 
Let I be an IFS with domain 8, a complete metric space, and assume 
Ao C 8. Then the d-orbit of Ao under I will have a unique limit set 
ADO' Furthermore, the set ADO is independent of the initial set Ao and 
invariant under I. ADO is called the attractor of I. 

Thus, just as each IFS transformation T has an invariant point 
that can be found by finding the limit point of the orbit of any point 
Ao under T, the IFS itself has an invariant set that can be found by 
finding the limit set of the d-orbit of any initial set Ao under the 
IFS. And, as the name attractor suggests, this invariant set ADO is 

26See Hutchinson, pp. 713-747, or Barnsley, Chapter 3. Hutchinson'S results, based 
on Banach's contraction mapping principle, are explained and illustrated in Chapter 
5 of Peitgen et aI., Chaos and Fractals: New Frontiers of Science. 
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attracting, that is, if we deterministically apply the IFS to an initial 
set, we obtain a sequence of d-images that always "shrink" to this 
same unique Aoo. So, the IFS consisting of the two Cantor transfor­
mations does generate a unique Cantor set and the IFS consisting of 
the three Sierpinski transformations generates a unique Sierpinski 
triangle; where both can be approximated by d-image sets An with 
the approximation becoming more accurate as n increases. 

Random Iteration 
As noted above, the Sierpinski triangle can be generated from any 
initial multiple-point set by deterministic iteration of the three 
Sierpinski transformations. However, the chaos game also appears 
to generate the Sierpinski triangle using a step-by-step procedure 
where each step involves randomly chOOSing one of these same 
transformations and applying it to a single point. At first glance, 
using deterministic iteration on an initial multiple-point set appears 
to generate an image with a greater resemblance to the Sierpinski 
triangle with less effort than the chaos game. But a closer examina­
tion indicates the immensity of the memory requirements for the 
deterministic approach. Deterministic generation of the image An 
requires that every transformation in the system be applied to all 
the points in the set An-I, thus requiring storage for the location of 
each point in An-I. By comparison, the chaos game requires storage 
for only one point, since at each step one of the Sierpinski transfor­
mations is applied to a single point to produce one image point; 
the image point (sometimes called an r-image to indicate its random 
generation) is then added to the previous graphical display. In other 
words, the graphical display at any step shows the accumulation of 
all previously generated image points. 

Definition 5.10 
Let TI , ... , Tk be the transformations of an IFS, and Xo a given 
point in the common domain of these transformations. Then the 
nth r-image of Xo is Xn = Tn/Xn-I) with ni chosen randomly (with 
pre-assigned probability) from the set {I, 2, ... , k}. The process of 
finding these r-images is called random iteration of the IFS and the 
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infinite sequence of r-images {Xo, Xl, ... ,Xn , ... } is an r-orbit of Xo 
under the IFS. 

As you may have noticed in playing the chaos game, when the 
initial point Xo is chosen arbitrarily, the first few r-images of Xo may 
not lie in the attractor of the IFS, in this case, the Sierpinski triangle. 
However, when Xo is an invariant point of one of the transforma­
tions in the IFS, we can show that all r-images of Xo are elements of 
A oo , the attractor of the IFS. And as n increases, the finite r-orbits 
{Xo, Xl, ... ,Xn } appear to "fill out" the attractor. Since the attractor 
of an IFS is dependent only on the transformations involved and 
not on the initial set, this result may seem less than surprising. But 
the difference in the sequence of transformation applications be­
tween random and deterministic iteration means the result is not 
automatic. In fact, it is necessary to confirm that the elements in 
an r-orbit of Xo under the IFS form a dense covering of Aoo.27 This 
result is summarized below in Theorem 5.3.28 

Theorem 5.3 
If I is an iterated function system with attractor A oo, and Xo is an 
invariant pOint of one of the transformations in I, then the elements in 
an r-orbit of Xo under I form a dense covering of Aoo. 

Since the attractor of an IFS is a limiting set of an infinite process, 
its complete generation is only theoretically possible. However, with 
modern high speed computers, it is possible to generate approxima­
tions that are within the limits of resolution of the available graphic 
display equipment. In practice, the computer depiction of an attrac­
tor Aoo is usually generated by using the far more efficient method 
of computing a finite r-orbit Xn with n chosen sufficiently large so 
that the density of the covering of Aoo by Xn is within the resolution 
of the computer. 

27I.e., for any point P in the set A oo , it is possible to find among the elements of 
the r-orbit a sequence that converges to P. 
28For additional details, see Chapter 6 of Peitgen et al., Chaos and Fractals: New 
Frontiers of Science. 
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The images thus produced often exhibit intricate detail even if 
they represent an attractor of an IFS consisting of only a small num­
ber of transformations. 29 Thus, we have a powerful technique for 
generating graphical images when an image happens to be the at­
tractor of an IFS, but the real value of the technique will not be 
apparent until we obtain some understanding of the number and 
diversity of these "attracting" images. 

Exercises (Random Iterated Function Systems) 
16. Given an IFS consisting of k transformations, a finite number n 

and a point Xo in the domain of the IFS, how many finite r-orbits 
{Xo, Xl, ... , Xn} are possible under the IFS? Explain your answer. 

17. Given the Sierpinski IFS consisting of the Sierpinski transformations 
T I , Tz and T3 with invariant points at equilateral triangle vertices A, 
B, and C, respectively: 

a. If the initial point Xo = A, indicate on a sketch of the stage 3 
Sierpinski triangle all possible locations of an r-image X3 under 
this IFS. (Be sure to label the vertices A, B, and C.) 

b. Again, assuming that Xo = A, is it possible to arrive at the same 
point for X3 using two or more sequences of exactly three trans­
formations Ti? If so, explain where one such point X3 is located, 
and give all such sequences. 

18. Assume that S is a point in the Sierpinski triangle. Let Po be an arbi­
trary second point (not necessarily in the Sierpinski triangle) and 
assume that Pk is the kth r-image of P under the Sierpinski IFS: 
Find a value of k for which the following must be true: d(Pk, S) < 
.0001 d(Po, S). Explain how a generalization of this procedure could 
be used to show that under iteration by the Sierpinski IFS points are 
"attracted to the Sierpinski triangle!' 

19. In the chaos game, the use of a fair die effectively assigns equal proba­
bility to each of the three transformations. What would be the effect of 
changing these probabilities? In particular, what would be the result 
if one of the probabilities was reduced to zero? Explain. 

29 Particularly attractive images are known as strange attractors. 
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29 Particularly attractive images are known as strange attractors. 
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20. Show that an invariant point of a transformation T in an IFS will be 
in the atiractor Aoo of the IFS. 

5.4.3 Designing an IFS for a Thrget Image 

Michael Barnsley used an IFS consisting of four affine transforma­
tions to generate the black spleenwort fern that has become another 
"icon" of fractal geometry (Fig. 5.14). He described a method for 
finding an IFS to generate a target image in his Collage Theorem of 
1985.30 According to Barnsley, the theorem 

... tells us that to find an IFS whose attractor is "close to" or "looks 
like" a given set, one must endeavor to find a set of transformations­
contraction mappings on a suitable space within which the given set 
lies-such that the union, or collage, of the images of the given set un­
der the transformations is near to the given set. Nearness is measured 
using the Hausdorff metric. [Barnsley, p. 95] 

In other words, the process of finding appropriate IFS transforma­
tions involves finding affine transformations that generate smaller, 
perhaps distorted, copies of the target image and map these small 
"copies" to various positions so as to cover the target (Fig. 5.15). The 
transformed target images need not be congruent and may differ 
both in size and shape from each other (due to the use of shears, 
strains, etc.)' Also the covering does not have to be a "perfect" 
tiling; the transformed target images can overlap slightly. Methods 
of finding and modifying these transformations vary from keyboard 
manipulation of numerical entries in the transformation matrices to 
onscreen dragging of transformation images that induces computer 
calculation of the corresponding matrix entries. 

The IFS consisting of the transformations used to generate this 
"covering" collage can then be applied to an initial point set to 
generate the target image. Refinements of this process that create 
remarkably realistic looking pictures of natural objects have been 
developed. Some have even been patented by Barnsley and his 

30 An explicit statement of the theorem is given in Barnsley's Fractals Everywhere, 
2nd ed., pp. 94-95. 
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FIGURE 5.14 The Fern. 100,000 game points of the chaos game. Left: 
generated using equal probability for all contractions. Right: Here the 
probabilities for choosing the different transformations are not the same. 
(Source: Peitgen et a1., Chaos and Fractals: New Frontiers of Science, 
Springer-Verlag. ) 

colleagues.31 Early applications of these techniques appeared as the 
landscape of the Genesis planet in the movie Star Trek II: The Wrath of 
Khan and the surface of the moons of End or and outlines of the Death 

31For example, the" basic mathematics [of the so-called fractal transform discov­
ered in 1988] forms the core of US Patent #5065447 jointly held with Alan Sloan, 
cofounder of Iterated Systems, Inc .... 1/ [Barnsley and Hurd, p.xi] 
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FIGURE 5.15 Leaf collage. Design stages for a leaf: scanned image of a 
real leaf and a polygon capturing its outline (top), collage by 7 transformed 
images of the polygon and the attractor of the corresponding IFS (bot­
tom). (Source: Peitgen et aI., Chaos and Fractals: New Frontiers of Science, 
Springer-Verlag.) 

Star in The Return of the Jedi .32 More recent examples of pictures 
generated this way, along with a detailed description of the math-

32Dewdney, "Computer Recreations" in the December 1986 Scientific American 
contains color photos of a computer-generated mountain scene and a computer­
generated scene from the Genesis sequence in the movie Star Trek II. 
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FIGURE 5.16 Target image. 

ematical ideas behind their generation, are contained in Barnsley 
and Hurd's book, Fractal Image Compression. The remarkable photo­
like quality of these pictures is especially amazing considering that 
the information required to produce them consists primarily of nu­
merical entries for the matrix representations of a relatively small 
number of affine transformations. 

Exercises (Finding Image-Generating IFS 
1tansformations) 
21. On a copy of the target image shown in Figure 5.16, sketch four 

smaller transformed target images that form a covering of the original 
target image. Describe the gen-eral type of affine transformation that 
could be used to produce each of your transformed target images. 

5.4.4 Are IFS Attractors Fractal? 

So far the term fractal has been left undefined even though it has 
been used in naming several examples. 10 determine the exact na­
ture of sets that we wish to deem "fractals," we first note that the 
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attractor resulting from deterministic application of an IFS consist­
ing only of similarities, all with the same ratio r < I, will be strictly 
self-similar in the sense of Definition 5.3. Thus, the magnification of 
any of the individual tiles described in this definition will produce 
the exact same detail found in the original. But the previous dis­
cussion suggests that a "fractal" may exhibit only a resemblance of 
self-similarity since magnification of any small part of an image gen­
erated by random iteration of an IFS can, at best, produce detail that 
"closely" resembles that of the attractor of the IFS. Furthermore, the 
transformations used in either type of IFS need not be similarities 
but can also be contractive affinities. All of this suggests that in order 
for fractals to include images generated from these more generalized 
iterated function systems using either deterministic or random iter­
ation, we need to broaden the concept of self-similarity by not only 
generalizing the types of transformations that can be used, but also, 
by expanding our interpretation of self-similarity from an exact to a 
stochastic sense. 

5.5 Finally-What Is a Fractal? 
'IYPically, fractals are extremely irregular curves or surfaces that wig­
gle enough to partially fill the gap between one dimension and the 
next higher one? [Steen, p. 122] 

As noted previously, the term "fractal" was invented by Mandel­
brot to describe geometric shapes that in simplistic terms can be 
described as very fractured. In 1977, Mandelbrot gave the follow­
ing formal definition, a definition over which he later expressed 
reservations: 

Mandelbrot's Early Definition 
A fractal is a set for which the Hausdorff-Besicovitch dimension 
strictly exceeds the topological dimension. [Mandelbrot, p. 361] 

A complete understanding of this definition requires a formal 
presentation of H-B (Hausdorff-Besicovitch) dimension, a concept 
whose explanation requires a significant amount of analysis and 
topology. However, for a general understanding, it is sufficient to 
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point out that the H-B dimension is a generalization of the box dimen­
sion described earlier and like box dimension, the H-B dimension 
of a fractal set is usually a noninteger. 

In 1983, Mandelbrot explained his reservations about defining 
fractals in terms of dimensions and the desire to define them instead 
in keeping with the formal definition of geometry introduced at the 
beginning of Chapter 3. 

I feel. .. that the notion of fractal is more basic than any particular 
notion of dimension. A more basic reason for not defining fractals 
resides in the broadly held feeling that the key factor to a set's being 
fractal is invariance under some class oftransform[ation]s but no one 
has yet pinned this invariance satisfactorily [Mandelbrot, Proceedings. 
p. 1675] 

Later in 1987, Mandelbrot, in a widely quoted communication, 
described fractals as shapes "made of parts similar to the whole in 
some way!' [Feder, p. 11] Intentionally vague, this characterization, 
together with our preceding investigations, suggests that the defin­
ing characteristic of fractals is a generalized version of self-similarity, 
where the generalization includes the use of affine transformations. 

Definition 5.11 
A set of points a is said to be (strictly) self-affine if a can be tiled with 
subsets, each of which can be mapped onto the original set a using 
an affine transformation. 

Notice that this definition does not require that the affine trans­
formations used to map individual tiles onto the original set be 
alike. So, for example, the magnification factors used may differ for 
each transformation and a single transformation may even involve 
magnifications by different factors in different directions. 

Even with this generalization, it is still difficult to make the def­
inition of a fractal precise. The various so called "fractal" examples 
introduced in this chapter demonstrate not only the need to gen­
eralize the self-similar requirement to a self-affine requirement, but 
also the need to include stochastic as well as deterministic interpre­
tations of the self-affine requirement. In particular, the Koch curve 
and Sierpinski triangle (the latter as generated by Algorithm 5.4) 
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clearly satisfy the original strict version of self-similarity. However, 
to include the Sierpinski triangle as generated by the chaos game IFS, 
we need to allow the interpretation of self-similarity in a stochastic 
sense. When including Julia sets, we note that some Julia sets re­
quire not only random application of the generating transformations 
but also the use of transformations even more general than affine 
transformations. All of this should further explain the challenge of 
formulating a precise definition of fractal and the extreme difficultly 
in computing the dimension of many fractals. In fact, as Devaney 
notes, the exact dimension for many Julia sets is unknown. [De­
vaney (1990), p. 147] These and other "open" questions continue 
to occupy mathematical researchers. The research that will even­
tually firm up the foundations of this new mathematics involves 
not only mathematicians but numerous others interested in ap­
plications of fractal geometry in both the sciences and the social 
sciences, in particular, economics. Thus, it is appropriate that we 
consider the ways in which the term "fractal" is used both in mathe­
matical and scientific research. In his 1997 publication, Fractal River 
Basins: Chance and Self-Organization, Rodriguez-Iturbe emphasizes 
that "fractals are objects in which properly scaled portions are iden­
tical (in a deterministic or statistical sense) to the original object." 
[Rodriguez-Iturbe, pp. 145-146] Based on this description and the 
Mandelbrot description given above, we will adopt the definition 
below. 

Definition 5.12 
A fractal is a set of points that is self-affine either in a deterministic 
or stochastic sense. 

It may seem that this definition allows any "strange" set to be 
labeled a fractal. However, the Mandelbrot set is commonly agreed 
to be nonfractal even though ever increasing magnifications of the 
set appear to show similar shapes over and over. But as Mandel­
brot indicates in the quotation below, closer observation reveals 
surprising new shapes which continue to appear under these same 
magnifications. 

In the Mandelbrot set, nature (or is it mathematics?) provides us 
with a powerful visual counterpart of the musical idea of 'theme and 
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variation': the same shapes are repeated everywhere, yet each repe­
tition is somewhat different .... It leaves us no way to become bored, 
because new things appear all the time, and no way to become lost, be­
cause familiar things come back time and time again. Because [of] this 
constant novelty, this set is not truly fractal by most definitions; we 
may call it a borderline fractal, a limit fractal that contains many frac­
tals. Compared to actual fractals, its structures are more numerous, its 
harmonies are richer, and its unexpectedness is more unexpected.33 

[Peitgen et al., Chaos and Fractals, p. 841] 

Also, so called natural fractals, that is, physical objects appearing 
to be fractal, will not be exactly, or perhaps even statistically, self­
similar. However, as Donald Davis indicates in the quote below, there 
is general agreement on the required level of self-similarity these 
objects must exhibit to be considered as fractals. 

For physical objects, one does not require statistical self-similarity 
at all magnifications. It is generally agreed that a physical object may 
be considered to be a fractal if it has statistical self-similarity over a 
range of magnifications in which the largest is at least ten times the 
smallest. [DaviS, p. 298] 

5.6 Applications of Fractal Geometry 

[F]ractal geometry is first and foremost a new "language" used to de­
scribe the complex forms found in nature. But while the elements 
of the "traditionallanguage"-the familiar Euclidean geometry-are 
basic visible forms such as lines, circles and spheres, those of the 
new language do not lend themselves to direct observation. They are, 
namely, algorithms, which can be transformed into shapes and struc­
tures only with the help of computers. In addition, the supply of these 
algorithmic elements is inexhaustibly large; and they are capable of 
providing us with a powerful descriptive tool. Once this new language 
has been mastered, we can describe the form of a cloud as easily and 

33 As edited from an interview in the video Fractals: An Animated Discussion. 
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precisely as an architect can describe a house using the language of 
traditional geometry. [Peitgen et al., (1992) pp. v-viii] 

The meandering nature of fractals is, as Steen indicates, " ... a good 
idealization of the geometry of river networks and of the vascular 
network in a body: Th do their job, rivers and veins must pass within 
a small distance of every point of the territory they serve:' [Steen, 
p.123] It is precisely this meandering nature of fractals that makes 
them important. Mandelbrot notes: "The importance of fractals lies 
in their ability to capture the essential features of very complicated 
and irregular objects and processes in a way that is susceptible to 
mathematical analysis:' [Peterson, p.42] The fractal forms generated 
by computers are used by mathematicians and scientists to model 
a variety of natural phenomenon such as trees, coastlines, rivers, 
mountains, mineral veins, vascular systems, etc. The widespread 
applications of fractal geometry as well as the speed with which these 
were being recognized in the late 1980s is indicated by a sampling 
of articles that appeared in the space of three months at the end 
of 1987. These articles describe applications ranging from physical 
chemistry ["Steady-state chemical kinetics on fractals: Geminate and 
nongeminate generation of reactants," Journal of Physical Chemistry, 
Oct. 22 '87 (91: 5555-5557)] to acoustics ["Fractal finite element mesh 
generation for vibration problems:' Journal of the Acoustical Society of 
America, Nov. '87] to econ01nics ["Thmorrow's shapes: The practical 
fractal:' The Economist, Dec. 26, '87 (305: 99-103)]. The enthusiasm 
with which fractal geometry was often endorsed is indicated by the 
introductory statement in the latter article: 

It is no accident that the inventor of fractal geometry, Dr. Benoit 
Mandelbrot, works for IBM. His new science is a child of the com­
puter age. Without the calculating power to explore its weird avenues, 
and electronic pictures to fire the imagination, fractal geometry 
would have remained a mathematical oddity. Instead, it may overtake 
Euclid. [po 99] 

Since then, a number of books containing numerous applications 
have been published. These include Hastings and Sugihara, Fractals: 
A User's Guide for the Natural Sciences (1993) and Bunde and Havlin 
(1994) Fractals in Science. Once more, an apparently esoteric math­
ematical subject has become the source of a magnitude of practical 
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A User's Guide for the Natural Sciences (1993) and Bunde and Havlin 
(1994) Fractals in Science. Once more, an apparently esoteric math­
ematical subject has become the source of a magnitude of practical 
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applications leading to an irony that Mandelbrot delightfully points 
out. 

Nature has played ajoke on the mathematicians. The 19th century 
mathematicians may have been lacking in imagination, but Nature 
was not. The same pathological structures that the mathematicians 
invented to break loose from the 19th century naturalists turn out to 
be inherent in familiar objects all around us. [Mandelbrot, pp. 3-4]. 

Furthermore, this wealth of applications threatens to overwhelm 
interest in the intriguing mathematics and the many open math­
ematical questions still remaining in fractal geometry. Concerned 
about this possibility, Barnsley issues a concluding warning: 

It seems now that deterministic fractal geometry is racing ahead 
into the serious engineering phase. Commercial applications have 
emerged in the areas of image compression, video compression, com­
puter graphics and education. This is good because it authenticates 
once again the importance of the work of mathematicians. However, 
sometimes mathematicians lose interest in wonderful areas once sci­
entists and engineers seem to have the subject under control. But 
there is so much more mathematics to be done. What is a useful met­
ric for studying the contractivity of the vector recurrent IFS of affine 
maps in m2i What is the information content of a picture? Measures, 
pictures, dreams, chaos, flowers and information theory-the hours 
of the days keep rushing by: do not let the beauty of all these things 
pass us by too. [Barnsley, (1993) concluding remarks in Forward] 

5.7 Suggestions for Further Reading 

The following sources contain a wealth of information about fractals and 
related topics. 

Abbott, E. A. (1991). Flatland, Princeton NJ: Princeton University Press. 
(A reprint of the classic introduction to the fourth dimension together 
with a must-read introduction by Banchoffthat explains the social satire 
Abbott uses.) 

Banchoff, T. F. (1990). "Dimension:' In On the Shoulders of Giants, Edited 
by Lynn Arthur Steen. National Academy Press, Washington DC. 
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Steen, L. A. (1977). Fractals: A world of nonintegral dimensions. Science 
News 112: 122-123. 

Stewart, I. (1987). The two-and-a-halfth dimension. The Problems of 
Mathematics. Oxford: Oxford University Press. 

Stewart, I. (1989). Does God Play Dice? The Mathematics of Chaos. Oxford: 
Blackwell. 

Wegner, T., and Peterson, M. (1991). Fractal Creations. Mill Valley, CA: The 
Waite Group Press. 

Other Fractal Resources 

Software, Programs, and Websites 
Macintosh Software 
Fractal Attraction. (1992). Kevin D. Lee, Yosef Cohen. Uses IFS (iterated 

function systems) to generate fractals with either random or deter­
ministic algorithms. The IFS codes can be specified either by making 
numerical entries in a spreadsheet-like display or by using click and 
drag techniques. Allows interactive application of the collage theorem 
to create fractal generation of predetermined images. Includes an in­
formative 80-page manual. Currently out of print, but well worth the 
effort to find. 

FractaSketch 2.0 (1998). Peter Van Roy. Creates fractals at specified levels 
by iterating a template, i.e., by replacing each segment in the prior level 
with a copy of the template, and displays the fractal dimension of the 
resulting fractal. Thmplates can be created by click and drag techniques. 
Available from Dynamic Software, PO Box 13991, Berkeley, CA 9470l. 

PC Software 
James Gleick's CHAOS: The Software. (1990). Originally written by Josh 

Gordon, Rudy Rucker, and John Walker for Autodesk, Inc. to accompany 
Gleick's book, it includes the following programs: The Mandelbrot Sets, 
Magnets and Pendulum, Thy Universes, The Chaos Game, Strange At­
tractors and Fractal Forgeries. For the current web address from which 
the software can be obtained, see the website below. 

FRACTINT. A freeware fractal generator created and constantly upgraded 
and improved by the Stone Soup team. For the current web address from 
which the software can be obtained see the website below. 
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Websites 
For a list of several websites containing fractal information, information 
about more fractal software, and other resources see 
http://www.stolaf.edu/people/cederj/geotext/info.htm 

BASIC Computer Programs 
Bannon, Thomas J. (1991). Fractals and Transformations. Mathematics 

'Thacher 84: 178-85. Programs incorporating IFS algorithms for graph­
ical display of the Dragon curve, the Koch curve, and the Sierpinski 
triangle. True BASIC programs generating the Sierpinski triangle using 
both deterministic and random algorithms. 

Davis, Donald (1993). The Nature and Power of Mathematics. Princeton U ni­
versity Press. Programs for iterating logistic functions and for graphical 
display of orbits, the Lorenz attractor, Julia sets, and the Mandelbrot 
set. 

Devaney, Robert L. (1990). Chaos, Fractals, and Dynamics: Computer Ex­
periments in Mathematics. Menlo Park CA Addison-Wesley. Programs 
for computing orbits by iterating functions and for graphical display of 
Julia sets, the Mandelbrot set, and the Sierpinski triangle. 

Peitgen, Heinz-Otto, Jurgens, Hartmut, and Saupe, Dietmar (1992). Chaos 
and Fractals: New Frontiers of Science, New York: Springer-Verlag. Pro­
grams for graphical iteration, the Koch curve, the Sierpinski triangle, 
the chaos game for the fern, and for graphical display of Cantor, 
Mandelbrot, and Julia sets. 

Programs for Graphing Calculators 
Peitgen, Heinz-Otto, Jurgens, Hartmut, and Saupe, Dietmar (1991-2) 

Fractals for the Classroom-Strategic Activities, Volume 1. New York: 
Springer-Verlag and NCTM. Programs for simulating the chaos game 
for both the CASIO and Thxas Instrument graphing calculators. 

Videos 
The Beauty and Complexity of the Mandelbrot Set: School Edition (1989; 47 

min.). A richly illustrated video-lecture by John H. Hubbard of Cornell 
University. The talk describes iteration and its use in creating pictures 
of the Julia set and the Mandelbrot set. Available from The Science 
Thlevision Co., POBox 2498, Times Square Station, New York, NY 
10108. 

Chaos, Fractals and Dynamical Systems (1989; 63 min.). ISBN 1-878310-00-
3. Robert Devaney. Thlls the mathematical story behind chaos, fractals, 
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and dynamical systems. Computer-generated diagrams and graphs give 
a visual introduction to the concepts. Available from The Science 
Television Co., POBox 2498, Times Square Station, New York, NY 
10108. 

Focus on Fractals (1990; 23 min.). An "entry level introduction" with some 
narration featuring footage from the Dr. John Hamal Hubbard Dynam­
ical Systems Laboratory. Contains four zooms of the Mandelbrot set, 
two Julia set promenades, and a 3D rendition of the Lorenz attractor. 
Available from Art Matrix, PO 880NA, Ithaca, NY 14851-0880 

Fractals: An Animated Discussion (1990; 63 min.). Heinz-Otto Peitgen et 
al. A combination of animated sequences and interviews with Benoit 
Mandelbrot and Edward Lorenz, accompanied by music composed 
according to fractal principles. Available from WHo Freeman, New York. 

Fractals: the colors of infinity (1994; 30 min.) An explanation of the Man­
delbrot set and the revolutions in thought resulting from its discovery. 
Includes interviews with Benoit Mandelbrot, Michael Barnsley and Ian 
Stewart. Available from Films for the Humanities and Sciences, P.O. 
Box 2053, Princeton NJ 08543-2053. 

The Hypercube: Projections and Slicing (1978; 15 min.). A Banchoff/Strauss 
Production that uses computer graphics to describe the three and four 
dimensional cubes and the forms they create when rotated around var­
ious axes; discusses perspective and shows shapes that evolve when a 
three and four dimensional cube is sliced at various points. Available 
from International Film Bureau. 

Mandelbrot Sets and Julia Sets (1990; 2 hrs.). Animated zooming (no 
narration) into the Mandelbrot set, from the Cornell National Super­
computer Facility and the Dr. John Hamal Hubbard Dynamical Systems 
Laboratory. Available from Art Matrix, PO 880, Ithaca, NY 14851-0880. 
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APPENDIX 

Definitions 

Euclid's 
Definitions, 
Postulates, and 
the First 30 
Propositions of 
Elements, Book I 

1. A point is that which has no part. 
2. A line is breadthless length. 
3. The extremities of a line are points. 
4. A straight line is a line which lies evenly with the points on itself. 
5. A sUrface is that which has length and breadth only. 
6. The extremities of a surface are lines. 
7. A plane sUrface is a surface which lies evenly with the straight 

lines on itself. 
8. A plane angle is the inclination to one another of two lines in a 

plane which meet one another and do not lie in a straight line. 
9. And when the lines containing the angle are straight, the angle 

is called rectilineal. 
10. When a straight line set up on a straight line makes the adjacent 

angles equal to one another, each ofthe equal angles is right, and 

Reprinted with permission of Cambridge University Press from The Thirteen Books 
of Euclid's Elements, 2nd ed., pp. 154-155 (1956). Thanslated by Sir Thomas L. 
Heath. New York: Dover. 
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Reprinted with permission of Cambridge University Press from The Thirteen Books 
of Euclid's Elements, 2nd ed., pp. 154-155 (1956). Thanslated by Sir Thomas L. 
Heath. New York: Dover. 

389 



390 Appendix A. First 30 Propositions of Euclid's Elements, Book I 

the straight line standing on the other is called perpendicular to 
that on which it stands. 

11. An obtuse angle is an angle greater than a right angle. 
12. An acute angle is an angle less than a right angle. 
13. A boundary is that which is an extremity of anything. 
14. A figure is that which is contained by any boundary or 

boundaries. 
15. A circle is a plane figure contained by one line such that all the 

straight lines falling upon it from one point among those lying 
within the figure are equal to one another. 

16. And the point is called the centre of the circle. 
17. A diameter of the circle is any straight line drawn through the 

centre and terminated in both directions by the circumference 
of the circle, and such a straight line also bisects the circle. 

18. A semicircle is the figure contained by the diameter and the cir­
cumference cut offby it. And the centre of the semicircle is the 
same as that of the circle. 

19. Rectilineal figures are those which are contained by straight lines, 
trilateral figures being those contained by three, quadrilateral 
those contained by four, and multilateral those contained by more 
than four straight lines. 

20. Of trilateral figures, an equilateral triangle is that which has three 
sides equal, an isosceles triangle that which has two of its sides 
alone equal, and a scalene triangle that which has its three sides 
unequa1. 

21. Further, of trilateral figures, a right-angled triangle is that which 
has a right angle, an obtuse-angled triangle that which has an 
obtuse angle, and an acute-angled triangle that which has its three 
angles acute. 

22. Of quadrilateral figures, a square is that which is both equilateral 
and right-angled; an oblong that which is right-angled but not 
equilateral; a rhombus that which is equilateral but not right­
angled; and a rhomboid that which has its opposite sides and 
angles equal to one another but is neither equilateral nor right­
angled. And let quadrilaterals other than these be called trapezia. 

23. Parallel straight lines are straight lines which, being in the same 
plane and being produced indefinitely in both directions, do not 
meet one another in either direction. 
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The Postulates 

1. Th draw a straight line from any point to any point. 
2. Th produce a finite straight line continuously in a straight line. 
3. Th describe a circle with any centre and distance. 
4. That all right angles are equal to one another. 
5. That, if a straight line falling on two straight lines makes the in­

terior angles on the same side less than two right angles, the two 
straight lines, ifproduced indefinitely, meet on that side on which 
are the angles less than the two right angles. 

The Common Notions 

l. Things which are equal to the same thing are also equal to one 
another. 

2. If equals be added to equals, the wholes are equal. 
3. If equals be subtracted from equals, the remainders are equal. 
4. Things which coincide with one another are equal to one another. 
5. The whole is greater than the part. 

The First 30 Propositions of Book I 

1. On a given finite straight line, to construct an equilateral 
triangle. 

2. Th place at a given point (as an extremity) a straight line equal 
to a given straight line. 

3. Given two unequal straight lines, to cut off from the greater a 
straight line line equal to the less. 

4. If two triangles have the two sides equal to two sides, respec­
tively, and have the angles contained by the equal straight lines 
equal, they will also have the base equal to the base, the trian­
gle will be equal to the triangle, and the remaining angles will 
be equal to the remaining angles, respectively, namely, those 
which the equal sides subtend. 

Appendix A. First 30 Propositions of Euclid's Elements, Book I 391 

The Postulates 

1. Th draw a straight line from any point to any point. 
2. Th produce a finite straight line continuously in a straight line. 
3. Th describe a circle with any centre and distance. 
4. That all right angles are equal to one another. 
5. That, if a straight line falling on two straight lines makes the in­

terior angles on the same side less than two right angles, the two 
straight lines, ifproduced indefinitely, meet on that side on which 
are the angles less than the two right angles. 

The Common Notions 

l. Things which are equal to the same thing are also equal to one 
another. 

2. If equals be added to equals, the wholes are equal. 
3. If equals be subtracted from equals, the remainders are equal. 
4. Things which coincide with one another are equal to one another. 
5. The whole is greater than the part. 

The First 30 Propositions of Book I 

1. On a given finite straight line, to construct an equilateral 
triangle. 

2. Th place at a given point (as an extremity) a straight line equal 
to a given straight line. 

3. Given two unequal straight lines, to cut off from the greater a 
straight line line equal to the less. 

4. If two triangles have the two sides equal to two sides, respec­
tively, and have the angles contained by the equal straight lines 
equal, they will also have the base equal to the base, the trian­
gle will be equal to the triangle, and the remaining angles will 
be equal to the remaining angles, respectively, namely, those 
which the equal sides subtend. 



392 Appendix A. First 30 Propositions of Euclid's Elements, Book I 

5. In isosceles triangles, the angles at the base are equal to one 
another, and, if the equal straight lines be produced further, the 
angles under the base will be equal to one another. 

6. lfin a triangle two angles be equal to one another, the sides which 
subtend the equal angles will also be equal to one another. 

7. Given two straight lines constructed on a straight line (from its 
extremities), and meeting in a point, there cannot be constructed 
on the same line (from its extremities), and on the same side of 
it, two other straight lines meeting in another point and equal 
to the former two, respectively, namely, each to that which has 
the same extremity with it. 

8. If two triangles have the two sides equal to two sides, respec­
tively, and have also the base equal to the base, they will also 
have the angles equal which are contained by the equal straight 
lines. 

9. Th bisect a given rectilinear angle. 
10. Th bisect a given finite straight line. 
11. Th draw a straight line at right angles to a given straight line from 

a given point on it. 
12. Th a given infinite straight line, from a given point which is not 

on it, to draw a perpendicular straight line. 
13. If a straight line set up on a straight line make angles, it will 

make either two right angles or angles equal to two right angles. 
14. If with any straight line, and at a point on it, two straight lines 

not lying on the same side make the adjacent angles equal to 
two right angles, the two straight lines will be in a straight line 
with one another. 

15. If two straight lines cut one another, they make the vertical 
angles equal to one another. 

16. In any triangle if one of the sides be produced, the exterior angle 
is greater than either of the interior and opposite angles. 

17. In any triangle two angles taken together in any manner are less 
than two right angles. 

18. In any triangle the greater side subtends the greater angle. 
19. In any triangle the greater angle is subtended by the greater side. 
20. In any triangle two sides taken together in any manner are 

greater than the remaining one. 
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21. If on one of the sides of a triangle, from its extremities, there be 
constructed two straight lines meeting within the triangle, the 
straight lines so constructed will be less than the remaining two 
sides of the triangle, but win contain a greater angle. 

22. Out of three straight lines, which are equal to three given straight 
lines, to construct a triangle: thus it is necessary that two of the 
straight lines taken together in any manner should be greater 
than the remaining one. 

23. On a given straight line and at a point on it, to construct a 
rectilineal angle equal to a given rectilineal angle. 

24. If two triangles have the two sides equal to two sides, respec­
tively, but have the one of the angles contained by the equal 
straight lines greater than the other, they will also have the base 
greater than the base. 

25. If two triangles have the two sides equal to two sides, respec­
tively, but have the base greater than the base, they will also 
have the one of the angles contained by the equal straight lines 
greater than the other. 

26. If two triangles have the two angles equal to two angles, re­
spectively, and one side equal to one side, namely, either the 
side adjoining the equal angles, or that subtending one of the 
equal angles, they will also have the remaining sides equal to 
the remaining sides and the remaining angle to the remaining 
angle. 

27. If a straight line falling on two straight lines makes the alternate 
angles equal to one another, the straight lines will be parallel to 
one another. 

28. If a straight line falling on two straight lines makes the exterior 
angle equal to the interior and opposite angle on the same side, 
or the interior angles on the same side equal to two right angles, 
the straight lines will be parallel to one another. 

29. A straight line falling on parallel straight lines makes the alter­
nate angles equal to one another, the exterior angle equal to the 
interior and opposite angle, and the interior angles on the same 
side equal to two right angles. 

30. Straight lines parallel to the same straight line are also parallel 
to one another. 

Appendix A. First 30 Propositions of Euclid's Elements, Book I 393 

21. If on one of the sides of a triangle, from its extremities, there be 
constructed two straight lines meeting within the triangle, the 
straight lines so constructed will be less than the remaining two 
sides of the triangle, but win contain a greater angle. 

22. Out of three straight lines, which are equal to three given straight 
lines, to construct a triangle: thus it is necessary that two of the 
straight lines taken together in any manner should be greater 
than the remaining one. 

23. On a given straight line and at a point on it, to construct a 
rectilineal angle equal to a given rectilineal angle. 

24. If two triangles have the two sides equal to two sides, respec­
tively, but have the one of the angles contained by the equal 
straight lines greater than the other, they will also have the base 
greater than the base. 

25. If two triangles have the two sides equal to two sides, respec­
tively, but have the base greater than the base, they will also 
have the one of the angles contained by the equal straight lines 
greater than the other. 

26. If two triangles have the two angles equal to two angles, re­
spectively, and one side equal to one side, namely, either the 
side adjoining the equal angles, or that subtending one of the 
equal angles, they will also have the remaining sides equal to 
the remaining sides and the remaining angle to the remaining 
angle. 

27. If a straight line falling on two straight lines makes the alternate 
angles equal to one another, the straight lines will be parallel to 
one another. 

28. If a straight line falling on two straight lines makes the exterior 
angle equal to the interior and opposite angle on the same side, 
or the interior angles on the same side equal to two right angles, 
the straight lines will be parallel to one another. 

29. A straight line falling on parallel straight lines makes the alter­
nate angles equal to one another, the exterior angle equal to the 
interior and opposite angle, and the interior angles on the same 
side equal to two right angles. 

30. Straight lines parallel to the same straight line are also parallel 
to one another. 



APPENDIX 

Hilbert's 
Axioms for 
Plane Geometry 

Undefined Thrms. Point, line, plane, on, between, congruence. 

Group I: Axioms of Connection 

1.1. Through any two distinct points A, B, there is always a line m. 

1.2. Through any two distinct points A, B, there is not more than 
one line m. 

1.3. On every line there exist at least two distinct points. There exist 
at least three points which are not on the same line. 

1.4. Through any three points, not on the same line, there is one and 
only one plane. 

Reprinted with permission of Open Court Publishing Co. from D. Hilbert, The 
Foundations of Geometry, 2nd ed. (1921). Thanslated by E. J. Thwnsend, Chicago: 
Open Court Publishing Co. 
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Group II: Axioms of Order 

ILl. If point B is between points A and C, then A, B, C are distinct 
points on the same line, and B is between C and A. 

1l.2. For any two distinct points A and C, there is at least one point 
B on the line AC such that C is between A and B. 

1l.3. If A, B, C are three distinct points on the same line, then only 
one of the points is between the other two. 

Definition 
By the segment AB is meant the set of all points which are between 
A and B. Points A and B are called the endpoints ofthe segment. The 
segment AB is the same as segment BA. 

1l.4. Pasch's Axiom. Let A, B, C be three points not on the same 
line and let m be a line in the plane A, B, C which does not pass 
through any of the points A, B, C. Then if m passes through 
a point of the segment AB, it will also pass through a point of 
segment AC or a point of segment BC. 

Note: lI.4'. This postulate may be replaced by the separation ax­
iom. A line m separates the points of the plane which are not on m 
into sets such that if two points X and Yare in the same set, the 
segment XY does not intersect m, and if X and Yare in different 
sets, the segment XY does intersect m. In the first case X and Yare 
said to be on the same side of m; in the second case, X and Yare said 
to be on opposite sides of m. 

Definition 
By the ray AB is meant the set of points consisting of those which 
are between A and B, the point B itself, and all points C such that B 
is between A and C. The ray AB is said to emanate from point A. 

A point A, on a given line m, divides m into two rays such that 
two points are on the same ray if and only if A is not between them. 

Definition 
If A, B, and C are three points not on the same line, then the system 
of three segments AB, BC, CA, and their endpoints is called the 
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triangle ABC. The three segments are called the sides of the triangle, 
and the three points are called the vertices. 

Group III: Axioms of Congruence 

III.I. If A and B are distinct points on line m, and if A' is a point 
on line m' (not necessarily distinct from m), then there is one 
and only point B' on each ray of m' emanating from A' such 
that the segment A'B' is congruent to the segment AB. 

III.Z. If two segments are each congruent to a third, then they are 
congruent to each other. (From this it can be shown that con­
gruence of segments is an equivalence relation; i.e., AB ::: AB; 
if AB ::: A'B', then A'B' ::: AB; and if AB ::: CD and CD::: EF, 
then AB ::: EF.) 

III.3. Ifpoint C is between A andB, and C' is between A' andB', and 
if the segment AC ::: A' C' and the segment CB ::: C' B', then 
segment AB ::: segment A' B'. 

Definition 
By an angle is meant a point (called the vertex of the angle) and two 
rays (called the sides of the angle) emanating from the point. 

If the vertex of the angle is point A and if Band C are any two 
points other than A on the two sides of the angle, we speak of the 
angle BAC or CAB or simply of angle A. 

III.4. If BAC is an angle whose sides do not lie on the same line and 
if in a given plane, A' B' is a ray emanating from A', then there 
is one and only one ray A' C' on a given side of line A' B', such 
that LB'A'C' ::: LBAC. In short, a given angle in a given plane 
can be laid off on a given side of a given ray in one and only 
one way. Every angle is congruent to itself. 

Definition 
If ABC is a triangle then the three angles BAC, CBA, and ACB are 
called the angles of the triangle. Angle BAC is said to be included by 
the sides AB and AC of the triangle. 
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IlI.S. If two sides and the included angle of the one triangle are 
congruent, respectively, to two sides and the included angle 
of another triangle, then each of the remaining angles of the 
first triangle is congruent to the corresponding angle of the 
second triangle. 

Group IV: Axioms of Parallels (for a 
plane) 

IV 1. Playfair's Postulate. Through a given point A not on a given 
line m there passes at most one line which does not intersect m. 

Group V: Axioms of Continuity 

V 1. Axiom of Measure ( Archimedean Axiom). If AB and CD 
are arbitrary segments, then there exists a number n such that 
if segment CD is laid off n times on the ray AB starting from A, 
then a point E is reached, where n·CD = AE, and where B is 
between A and E. 

V2. Axiom of Linear Completeness. The system of points on a 
line with its order and congruence relations cannot be extended 
in such a way that the relations existing among its elements 
as well as the basic properties of linear order and congruence 
resulting from Axioms I-III and VI remain valid. 

Note: V. These axioms may be replaced by Dedekind's axiom 
of continuity. For every partition of the points on a line into two 
non empty sets such that no point of either lies between two points 
of the other, there is a point of one set which lies between every 
other point of that set and every point of the other set. 
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APPENDIX 

Birkhoff's 
Postulates for 
Euclidean Plane 
Geometry 

Undefined Elements and Relations. (a) Points A, B, ... ; (b) sets 
of points called lines, m, n, ... ; (c) distance between any two points: 
dCA, B) a real nonnegative number with dCA, B) = deB, A); (d) angle 
formed by three ordered points A, 0, B, (A #- 0, B #- 0) : LAOB a 
real number (mod 2rr). The point 0 is called the vertex ofthe angle. 

Postulate I (postulate of Line Measure) 
The points A, B, ... of any line m can be out into 1:1 correspondence 
with the real numbers x so that IXB - xAI = dCA, B) for all points A, B. 

Definitions 
A point B is between A and G (A #- G) if dCA, B) + deB, G) = dCA, G). 
The points A and G, together with all points B between A and G, 
form segment AG. The haIrline m' with endpoint 0 is defined by two 
points 0, A in line m (A #- 0) as the set of all points A' of m such that 
o is not between A and A'. If A, B, G are three distinct points the 
three segments AB, BG, GA are said to form a triangle MBG with 
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sides AB, BC, CA and vertices A, B, C. If A, B, C are in the same line, 
LABC is said to be degenerate. 

Postulate II (Point-Line Postulate) 
One and only one line m contains two given points P, Q(P i= Q). 

Definitions 
If two distinct lines have no points in common they are parallel. A 
line is always regarded as parallel to itself. 

Postulate III (Postulate of Angle Measure) 
The half-lines m, n, ... through any point 0 can be put into 1:1 corre­
spondence with the real numbers a (mod 2n) so that if A i= 0 and B i= 0 
are points of m and n, respectively, the difference an - am (mod 2n) is 
LAOB. Furthermore if the point B on n varies continuously in a line r 
not containing the vertex 0, the number an varies continuously also. 

Definitions 
'TWo half-lines m, n through 0 are said to form a straight angle if 
LmOn == n. 'TWo half-lines m, n through 0 are said to form a right an­
gle if LmOn == ±n/2, in which case we also say that n is perpendicular 
to m. 

Postulate IV (Similarity Postulate) 
If in two triangles LABC, LA'B'C' and for some constant k > 0, 

dCA', B') = kd(A, B), dCA', C') = kd(A, C), and LB'A'C' = ±LBAC, 
then also deB', C') = kd(B, C), LC'B'A' = ±LCBA, LA'B'C' = 
±LACB. 

Definitions 
Any two geometric figures are similar if there exists a 1:1 cor­
respondence between the points of the two figures such that. all 
corresponding distances are in proportion and corresponding an­
gles are all equal or all negatives of each other. Any two geometric 
figures are congruent if they are similar with k = 1. 
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The SMSG 
Postulates for 
Euclidean 
Geometry 

Undefined Thrms. Point, line, plane. 

Postulate 1 
Given any two different points, there is exactly one line which contains 
both of them. 

Postulate 2 (The Distance Postulate) 
Tb every pair of different points there corresponds a unique positive 
number. 

Postulate 3 (The Ruler Postulate) 
The points of a line can be placed in correspondence with the real 
numbers in such a way that: 

r. Tb every point of the line there corresponds exactly one real number. 
ii. Tb every real number there corresponds exactly one point of the line. 

m. The distance between two points is the absolute value of the 
difference of the corresponding numbers. 

Reprinted from SMSG, Geometry: Student's 7ext, A.C Vroman, Pasadena, CA (1965). 
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Postulate 4 (The Ruler placement Postulate) 
Given two points P and Q of a line, the coordinate system can be chosen 
in such a way that the coordinate of P is zero and the coordinate of Q is 
positive. 

Postulate 5 
(a) Every plane contains at least three noncollinear points. (b) Space 
contains at least four non coplanar points. 

Postulate 6 
If two points lie in a plane, then the line containing these points lies in 
the same plane. 

Postulate 7 
Any three points lie in at least one plane, and any three noncollinear 
points lie in exactly one plane. More briefly, any three points are coplanar; 
and any three noncollinear points determine a plane. 

Postulate 8 
Any two different planes intersect, then their intersection is a line. 

Postulate 9 (The plane Separation Postulate) 
Given a line and a plane containing it, the points of the plane that do not 
lie on the line form two sets such that: 

I. each of the sets is convex. 
ii. if P is in one set and Q is in the other then the segment PQ intersects 

the line. 

Postulate 10 (The Space Separation Postulate) 
The points of space that do not lie in a given plane form two sets such 
that: 

i. each of the sets is convex. 
ii. if P is in one set and Q is in the other; then the segment PQ intersects 

the plane. 

Postulate 11 (The Angle Measurement Postulate) 
7b every angle .i.BAC there corresponds a real number between 0 and 
180. 

402 Appendix D. The SMSG Postulates for Euclidean Geometry 

Postulate 4 (The Ruler placement Postulate) 
Given two points P and Q of a line, the coordinate system can be chosen 
in such a way that the coordinate of P is zero and the coordinate of Q is 
positive. 

Postulate 5 
(a) Every plane contains at least three noncollinear points. (b) Space 
contains at least four non coplanar points. 

Postulate 6 
If two points lie in a plane, then the line containing these points lies in 
the same plane. 

Postulate 7 
Any three points lie in at least one plane, and any three noncollinear 
points lie in exactly one plane. More briefly, any three points are coplanar; 
and any three noncollinear points determine a plane. 

Postulate 8 
Any two different planes intersect, then their intersection is a line. 

Postulate 9 (The plane Separation Postulate) 
Given a line and a plane containing it, the points of the plane that do not 
lie on the line form two sets such that: 

I. each of the sets is convex. 
ii. if P is in one set and Q is in the other then the segment PQ intersects 

the line. 

Postulate 10 (The Space Separation Postulate) 
The points of space that do not lie in a given plane form two sets such 
that: 

i. each of the sets is convex. 
ii. if P is in one set and Q is in the other; then the segment PQ intersects 

the plane. 

Postulate 11 (The Angle Measurement Postulate) 
7b every angle .i.BAC there corresponds a real number between 0 and 
180. 



Appendix D. The SMSG Postulates for Euclidean Geometry 403 

Postulate 12 (The Angle Construction Postulate) 
~ 

Let AB be a rayon the edge of the halfplane H. For every number r 
~ 

between 0 and 180 there is exactly one ray AP, with P in H,such that in 
L.PAB = r. 

Postulate 13 (The Angle Addition Postulate) 
If D is a point in the interior of L.BAC, then mL.BAC = mL.BAD + 
mL.DAC. 

Postulate 14 (The Supplement Postulate) 
If two angles form a linear pair; then they are supplementary. 

Postulate 15 (The SAS Postulate) 
Given a correspondence between two triangles (or between a triangle and 
itself), if two sides and the included angle of the first triangle are congruent 
to the corresponding parts of the second triangle, then the correspondence 
is a congruence. 

Postulate 16 (The Parallel Postulate) 
Through a given external point there is at most one line parallel to a given 
line. 

Postulate 17 
Th every polygonal region there corresponds a unique positive number. 

Postulate 18 
If two triangles are congruent, then the triangular regions have the same 
area. 

Postulate 19 
Suppose that the region R is the union of two regions R 1 and Rz. Suppose 
that Rl and Rz intersect at most in a finite number of segments and 
points. Then the area of R is the sum of the areas of Rl and Rz. 

Postulate 20 
The area of a rectangle is the product of the length of its base and the 
length of its altitude. 
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Postulate 21 
The volume of a rectangular parallelepiped is the product of the altitude 
and the area of the base. 

Postulate 22 (Cavalieri's Principle) 
Given two solids and a plane, iffor every plane which intersects the solids 
and is parallel to the given plane the two intersections have equal areas, 
then the two solids have the same volume. 
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Some SMSG 
Definitions for 
Euclidean 
Geometry 

1. The distance between two points is the positive number given 
by the distance postulate (Postulate 2). If the points are P and 
Q, then the distance is denoted by PQ. 

2. A correspondence of the sort described in Postulate 3 is called 
a coordinate system for the line. The number corresponding to a 
given point is called the coordinate of the point. 

3. B is between A and G if (1) A, B, and G are distinct points on the 
same line, and (2) AB + BG = AG. 

4. For any points A and B the segment AB is the set whose points 
are A and B, together with all points that are between A and B. 
The points A and B are called the endpoints of AB. 

5. The distance AB is called the length of the segment AB. 
~ 

6. Let A and B be points of a line L. The ray AB is the set which 
is the union of (1) the segment AB and (2) the set of all points 
G for which it is true that B is between A and G. The point A is 

. ~ 
called the endpomt of AB. 

~ -+ 
7. If A is between Band G, then AB and AG are called opposite rays. 

Reprinted from SMSG, Geometry: Student's Text, A.C. Vroman, Pasadena, CA (1965). 
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8. A point B is called a midpoint of a segment AC if B is between A 
and C, and AB = BC. 

9. The midpoint of a segment is said to bisect the segment. More 
generally, any figure whose intersection with a segment is the 
midpoint of the segment is said to bisect the segment. 

10. The set of all points is called space. 
11. A set of points is collinear if there is a line which contains all the 

points of the set. 
12. A set of points is coplanar if there is a plane which contains all 

the points of the set. 
13. A set A is called convex if for every two points P and Q of A, the 

entire segment PQ lies in A. 

14. Given a line L and a plane E containing it, the two sets deter­
mined by Postulate 9 are called half-planes, and L is called an 
edge of each of them. We say that L separates E into the two half­
planes. If two points P and Q of E lie in the same half-plane, 
we say that they lie on the same side of L; if P lies in one of the 
half-planes and Q in the other, they lie on opposite sides of L. 

15. The two sets determined by Postulate 10 are called half-spaces, 
and the given plane is called the face of each of them. 

16. An angle is the union of two rays which have the same endpoint 
but do not lie in the same line. The two rays are called the sides 
of the angle, and their common endpoint is called the vertex. 

17. If A, B, and C are any three noncollinear points, then the union 
of the segments AB, BC, AC is called a triangle, and is denoted 
by l1ABC; the points A, B, and C are called its vertices, and the 
segments AB, BC, and AC are called its sides. Every triangle 
determines three angles, l1ABC determines the angles LBAC, 
LABC, and LACB, which are called the angles of l1ABC. 

18. Let LBAC be an angle lying in plane E. A point P of E lies in the 
interior of LBAC if (1) P and B are on the same side of the line 
+--+ +--+ 
AC and (2) P and C are on the same side of the line AB. The 
exterior of LBAC is the set of all points of E that do not lie in the 
interior and do not lie on the angle itself. 

19. A point lies in the interior of a triangle if it lies in the interior of 
each ofthe angles of the triangle. A point lies in the exterior of a 
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triangle if it lies in the plane of the triangle but is not a point of 
the triangle or of its interior. 

20. The number specified by Postulate 11 is called the measure of the 
angle, and is written as mLBAC. 

-+ ~ ~ 
21. If AB and AC are opposite rays, and AD is another ray, the LBAD 

and LDAC form a linear pair. 
22. Angles are congruent if they have the same measure. Segments 

are congruent if they have the same length. 
23. Given a correspondence ABC 9 DEF between the vertices of 

the two triangles. If every pair of corresponding sides are con­
gruent, and every pair of corresponding angles are congruent, 
then the correspondence ABC 9 DEF is a congruence between 
the two triangles. 

24. If the sum of the measure of two angles is 180, then the angles 
are called supplementary, and each is called a supplement of the 
other. 

25. If the two angles of a linear pair have the same measure, then 
each of the angles is a right angle. 

26. TWo intersecting sets, each of which is either a line, a ray, or a 
segment, are perpendicular if the two line which contain them 
determine a right angle. 

27. The perpendicular bisector of a segment in a plane is the line in 
the plane which is perpendicular to the segment and contains 
the midpoint. 
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Theorem F.l 

TheASA 
Theorem 

If in nondegenerate triangles /:::;.ABC and M'B'C', L.CAB ~ L.C'A'B', 
L.ABC ~ LA'B'C', andAB ~ A'B', then L.BCA ~ L.B'C'A', BC ~ B'C', 
andAC ~ A'C'. 

The proof of this theorem is given in each of three axiom systems. 
Hilbert's Birkhoffs, and SMSG's. 

Proof I. (Based on Hilbert's axioms) 
We begin by proving the following lemma. • 
Lemma 
If in nondegenerate triangles MEC and M'B'C', AB ~ A'B', AC ~ 
A'C', and L.CAB ~ L.C'A'B', then BC ~ B'C', LABC ~ LA'B'C', and 
L.BCA ~L.B'C'A'. 

Proof 
Let triangles MBC and /:::;'A'B'C' be given as in the hypothesis of 
the lemma. Then L.ABC ~ LA' B' C' anq L.BCA ~ L.B' C' A' by Axiom 
III-5. Hence, all that remains is to prove BC ~ B'C'. 
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410 Appendix F. The ASA Theorem 

FIGURE F.l 

-+ --- ---
On ray BC find C" such that BC" ~ B'C' (III-I), and construct 

AC" (I-I) (Fig. F.1). If C = C", then BC" ~ BC, and hence BC ~ B'C'. 
If C i=- C' the three points B, C, C" are distinct since liABC and 

liA' B' C' are nondegenerate triangles. Furthermore, since C" is on 
-+ 

ray BC, either C is between Band C", or C" is between Band C. 
Case 1: C is between Band C". Since AB ~ A'B', BC" ~ B'C', and 

LABC ~ LA'B'C', LC"AB ~ LC'A'B' (III-5). But LC'A'B' ~ LCAB. 
~ ~ ---

Thus, LC" AB ~ CAB. l So ray AC = rayAC" (III-4), and hence AC" = 
AC (I-I). Therefore, C and C" each lie on bothAC andBC so C = C". 
But this is a contradiction. 

Case 2: C" is between Band C. In this case a contradiction is 
obtained in a similar manner. Hence, C = C", and as a result BC = 
B'C'. 

Let triangles liABC and liA' B' C' be as given in the hypothesis. 
Then by the preceding lemma it suffices to show AC ~ A'C'. On 
~ --- --

ray AC find C" such thatAC" ~ A'C' (III-I) and constructBC" (I-I). 
If C = C", then AC = AC", and hence AC ~ A'C'. If C i=- C", the 
remainder of the proof is analogous to the proof of the lemma. • 

proof II (Based on Birkhoffs axioms) 
Let triangles liABC and liA'B'C' be as given in the hypothesis. 
Then by the definition of congruence dCA, B) = d(A'B'), LCAB = 
±LC'A'B', LABC = ±LA'B'C'. We will assume that LCAB = 
LC'A'B', LABC = LA'B'C' since the proof is similar in the other 
case. Using Postulate IV and the definition of congruence it suffices 
to show dCA, C) = deAl, C'). If dCA, C) i=- deAl, C'), then without loss 

INote that we need to establish the transitivity of angle congruence. 
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obtained in a similar manner. Hence, C = C", and as a result BC = 
B'C'. 

Let triangles liABC and liA' B' C' be as given in the hypothesis. 
Then by the preceding lemma it suffices to show AC ~ A'C'. On 
~ --- --

ray AC find C" such thatAC" ~ A'C' (III-I) and constructBC" (I-I). 
If C = C", then AC = AC", and hence AC ~ A'C'. If C i=- C", the 
remainder of the proof is analogous to the proof of the lemma. • 

proof II (Based on Birkhoffs axioms) 
Let triangles liABC and liA'B'C' be as given in the hypothesis. 
Then by the definition of congruence dCA, B) = d(A'B'), LCAB = 
±LC'A'B', LABC = ±LA'B'C'. We will assume that LCAB = 
LC'A'B', LABC = LA'B'C' since the proof is similar in the other 
case. Using Postulate IV and the definition of congruence it suffices 
to show dCA, C) = deAl, C'). If dCA, C) i=- deAl, C'), then without loss 

INote that we need to establish the transitivity of angle congruence. 



Appendix F. The ASA Theorem 411 

-+ 
of generality dCA, G) < d(A'G' ). Let Gil be a point of ray AG2 such 
that dCA, Gil) = d(A', GI) (I), and consider BG" (II). Now LC'A'B' = 

-+ -+ 
LGAB. Furthermore since ray AG = ray AG" (II), LGAB = LG"AB 
(III). Therefore LC'A'B' = LG"AB. In addition d(A', C') = dCA, Gil) 
and d(A', B') = dCA, B). Hence, LA'B'G' = LABG" (IV). This im-

-:'> -:'> 
plies that LABG" = LABG so ray BG = ray BG" (III). Therefore, 
G and Gil are each contained in BG and AG and so G = Gil. It fol­
lows that dCA, G) = dCA, Gil). Since dCA, Gil) = d(A', GI) this implies 
dCA, G) = d(A', C'). • 

Proof III (Based on the SMSG axioms) 
Let triangles !::"ABG and !::"A'B'C' be as given in the hypothesis. By 
Postulate 15 it suffices to show AG ~ NC'. If AG ;t NC', then by 
definition of congruent segments, AG f. A'GI. Without loss of gen­
erality, we can assume AG < AlGI. Let Gil be a point ofline AG such 
that AG" ~ NC' (Fig. F.2). Consider line BG" (Post. 1). Now 
mLGAB = mLG"AB (Post. 11) and mLGAB = mLG'A'B' by the 
definition of congruent angles. Hence, mLG"AB = mLG'A'B'; so 
LG"AB ~ LC'A'B'. Furthermore, NG' ~ AG" by the definition 
of congruent segments, and A' B' ~ AB by hypothesis. Therefore, 
LABG" ~ LA'B'G' (Post. 15), i.e., mLABG" = mLA'B'G' = mLABG. 

--7 -:'> 
This implies ray BG" = ray BG (Post. 12). And since line AG = line 
AG" (Post. I), it follows that G and Gil are each points of both lines 
AG and BG. Hence, G = Gil. Therefore, AG ~ AG", so AG = AG" ~ 
A'C'. • 

B B' 

~ ~ 
A C Coo A' C' 

FIGURE F.2 

2Here it is necessary to show that this notation is well defined. 
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Absolute line conic, see Conic, line 
Absolute (point) conic, see Conic, 

point 
Absolute polarity, see Polarity relation 
Absolute projectivity, see Projectivity 
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conics in, 303-304 
ideal points of, 303 
lines of, 303 
midpoint in, 303 
(ordinary) points of, 303 
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Affine transformation, 100, 190-198; 
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definition of, 130, 190 
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line equation of, 133, 190 
matrix of, 130, 190 
point equation of, 133, 190 
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similarity, 194 
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conic sections, 196 
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segment division ratio, 191-192 

role in fractal definition, 373, 378 
Affinity, 190; see also Affine 

transformation 
Algorithm 

as descriptive procedure, 336 
for Cantor set, 337 
for Koch curve, 338 
for logistic orbit tracing, 324-325 
for Sierpinski triangle, 352-353 
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Analytic geometry, 16, 99 
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Analytic model 
for affine ( and Euclidean) planes, 

see Affine geometry 
for projective plane, see Projective 

geometry 
Angle, 389, 397, 406 

exterior of, 406 
interior of, 406 
measure 

in double elliptic geometry, 87 
in Euclidean geometry, 126, 407 
in hyperbolic geometry, 301 
in similarity geometry, 306 
in single elliptic geometry, 87, 

303 
of parallelism, 66-67 
of rotation, see Rotation 
sum of a triangle 

in double elliptic geometry, 90, 92 
in Euclidean geometry, 36 
in hyperbolic geometry, 69, 74 
in single elliptic geometry, 92 

Angular defect of a triangle, 78 
Area 

axioms for, 74 
of a rectangle, 403 
of a triangle 

in double elliptic geometry, 92 
in Euclidean geometry, 198 
in hyperbolic geometry, 74-80 
in single elliptic geometry, 92 

ASA theorem, 409-411 
Associative, see Transformation, 

group 
Asymptote of a conic, 304 
Asymptotic triangles, 61-67 
Attracting 

fixed point, see Logistic function 
set, see Iterated function system, 

attractor 
Axiomatic system, 2-9 

components of, 3 
model of, 4 

properties of, 1, 3-8 
Axioms, 3, 34 
Axioms for geometries and 

configurations, see specific 
geometries (e.g., Euclidean, 
Finite, Projective, etc. 

Axis 
of frieze pattern, see Frieze pattern 
of glide reflection, see Glide 

reflection 
of homology, see Projectivity 
of pencil of points, see Pencil, of 

points 
of perspective collineation, see 

Perspective, collineation 
of perspectivity, see Perspectivity 
of reflection, see Reflection 
of shear, see Shear 
of strain, see Strain 

Barnsley, M., 373-374 
collage theorem, 373 

use in image generation, 373-376 
fern, 373-374 

Base 
elements, see Pencil 
of Saccheri quadrilateral, see 

Sac cheri quadrilateral 
Beltrami, E., 93 
Between, 139, 398, 405 
Bilateral, see Symmetry, in m2 

Binocular visual space, 93 
Birkhoff, axioms of, 43, 399-400 
Bisect, 406 
Bolyai, J., 48 
Boundary of set, 330 
Boundless, 40, 85 
Box dimension, see Fractal dimension 
Brianchon, C.J. 245 
Butterfly effect, see Chaos theory, 

sensitive dependence on initial 
conditions 
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Cantor, G., 335 

set, 335-338, 358 
algorithm, 337 

self-similar property, 345-346, 

352-353 

transformations, 367-368 

Cartesian coordinate system, 121 

Center 
of a circle, 390 

of a conic, 304 

of a dilation, see Dilation 
of a frieze group, see Frieze, group 
of a homology, see Projectivity 
of a pencil of lines, see Pencil, of 

lines 
of a perspective collineation, see 

Perspective, collineation 
of a perspectivity, see Perspectivity 
of a rotation, see Rotation 

Central similarity, see Dilation 
Chaos game, 363-365, 370-372 

Chaos theory, 316-317, 

descriptive definition, 316, 321 

development, 316-321 

origin of term, 321 

nonperiodic nature, 318 
sensitive dependence on initial 

conditions (butterfly effect), 
318-321, 329, 332 

early description by Poincare, 
319 

significance compared to 
quantum mechanics, 316, 319 

relativity, 316 

weather prediction, 317-321, 329 
Chaotic behavior, 321; see also 

Sensitive dependence on initial 
conditions 

oflogistic function, 322-329 

related to deterministic behavior, 
317-318,328 

Characteristic vector, see Eigenvector 
Circle, 390 

Coastline measurement, 340-342, 

344, 347, 359-360 
Coding theory, 19 

Collage, 366, 373 

theorem, see Barnsley, collage 
theorem 

Collinear points, 10, 12, 215, 406 

in affine plane, determinant 
condition for, 124 

in projective plane, determinant 
condition for, 253 

Collineation, 213, 229, 270-283 

definition of, 271 

equations of, 271 

group of, 272 

invariant points and lines, 277 
invariant properties 

collinearity, 229, 271 

concurrence, 230, 272 

matrix of, 271-272 

perspective, see Perspective, 
collineation 

uniqueness of, 273 

Column matrix, 123 

Common notions of Euclid's Elements, 
34,391 

fourth common notion, 100, 391 
Commutative, see Transformation, 

group 
Complete axiomatic system, 1, 7 
Complete quadrangle, 217 
Complete quadrilateral, 217-218 

Computer graphics, 214 

Concurrent lines, 10, 12 

in affine plane, determinant 
condition, 125 

in projective plane, determinant 
condition, 253 

Configuration 
Desargues', 25-29 

axioms for, 27 

incidence table for, 26 

model of, 25, 27 
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Configuration (cant.) 
pole-polar relation in, 26-27 

Pappus', 29-30 
axioms for, 30 

Congruence 
in Euclidean geometry 

Hilbert's axioms of, 397-398 
of sets of points (figures), 138, 

400, 407 
in hyperbolic geometry 

of asymptotic triangles, 65-66 
of Saccheri quadrilaterals, 74 
oftriangles, 72-73 

Conic (conic section) 
in the affine plane, 196-197 

equation of, 196 
identification of, 196, 303 
matrix of, 196 
preserved by affinities, 196 

line conic 
absolute, 305 
definition of, 241 
equation of, 289 
point of contact for, 241 

point conic, 240-250 
absolute, 298-301, 303, 305 
construction of, 247 
definition of, 240 
determination by five points, 

244-245, 247 
equation of, 289 
equivalence of, 295 
exterior point of, 293, 297 
interior point of, 293, 297 
intersection of a line with, 249, 

293 
matrix of, 289 
standard form of, 294, 296 
tangent to, 241, 248, 289-291 

Conjugate 
lines, 286 
points, 286 

Connected set, 332, 347 

Connection, Hilbert's axioms of, 395 
Consistency of an axiomatic system, 

1, 3 

absolute, 4 
relative, 4 

Continuity 
of circles, 39 
Dedekind's axiom, 39, 51, 398 
Hilbert's axioms, 398 

Convex set, 406 
Coordinates, homogeneous, see Line, 

Point 
Coordinate system, 405; see also 

Cartesian coordinate system 
Coplanar, 406 
Correlation, 270, 283-298; see also 

Polarity 
definition of, 283 
equations of, 284 
matrix of, 284 
projectivity induced by, 284 
uniqueness of, 284 

Coxeter, H. S. M., 12 
Critical point, 333 
Cross joins, 238 
Cross ratio, 264-270 

computation of, 267 
definition of, 265 
of a harmonic set, 269 
invariance under 

collineation, 273 
correlation, 284 
projectivity, 266 

uniqueness of fourth point, 268 
Crystallographic restriction, 172, 175 
Cyclic group, see Group, cyclic 

d-image, d-orbit, see Iterated 
function system, deterministic 
application 

de Fermat, P., 99 
Dedekind's axiom, see Continuity 
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Deductive reasoning, 2-3 
Deductive system, 2 
Defect of a triangle, see Angular 

defect 
Defined terms (definitions), 3 

of Euclid's Elements, 389-390 

Desargues' configuration, see 

Configuration 
Desargues' theorem, 25, 221 
Descartes, R., 99 
Deterministic iteration, see Iterated 

function system, application 
Diagonal 

line, of a quadrilateral, 217-218 
point 

of a hexagon, 243 
of a quadrangle, 217 

triangle 
of a quadrangle, 217 
of a quadrilateral, 218 

Diameter 
of a circle, 390 
of a conic, 304 

Dihedral group, see Group, dihedral 
Dilatation, see Dilation 
Dilation (central similarity), 185-189 

center of, 185 
definition of, 185 
invariant 

lines, 185 
points, 185 

matrix of, 186 
ratio of, 185 

Dimension, 347-348 
fractal, see Fractal dimension 
topological, 347-348, 352 

Direct isometry, see Isometry 
Direct similarity, see Similarity 
Direction vector, 252 
Distance 

elliptic, 88, 302-303 
hyperbolic, 301 
Euclidean, 126,405 

from a point to a line, 35 
Divider 

dimension, see Fractal dimension 
measurement, 341-344 

Double elliptic geometry, 86-92 
axioms for, 86 
length of a line in, 91 
model of, 86-87, 91 
opposite points in, 91 
pole and polars in, 91 
properties of, 90-92 

Dual statement, 9, 12, 215 
Duality, principle of, 12, 218 
Dualizing, 12 
Dynamical systems theory, 322 

orbit analysis, 323-324, 330, 332; 
see also Logistic function, Julia 
and Mandelbrot sets 

phase space, 318, 320 
role of iterated functions, 322 

Eigenvector, 262 
Einstein, A., 93 
Elation, see Perspective collineation 
Elements of Euclid, see Euclid's 

Elements 

Ellipse, 196, 303 
Elliptic axiom, 47, 85 
Elliptic geometry, 50, 86, 310; see 

also Double elliptic geometry, 
Single elliptic geometry 

Elliptic polarity, see Polarity relation 
Elliptic projectivity, see Projectivity 
Embed, 299, 301 
Endpoints of a segment, 139, 396, 

405 
Equation 

of a line, see also Line 
vector equation in :1P, 252 

of a plane, vector equation in ffi3, 
252 

of a point, see Point 
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Equiareal transformation, 198, 309 

Equidistant lines, 36, 81 

Equivalence 
class, 122 

representative of, 122 

relation, 122, 250-251 

Equivalent conics, see Conic, point 
Equivalent statements, 35 

proof of, 36 

Erlanger program, 99 

Error-correcting code, 2, 18-24 

generator matrix, 19-20, 23 

Hamming 
code, 19-24 

distance, 21-24 

information positions, 20 

linear code, 21 

minimum weight of, 22 

I-sphere, 23 

parity check matrix for, 21 

perfect t-code, 23 
redundancy positions, 20 
weight of vectors, 19 

Euclid's Elements, 34-43, 47; see also 
Common notions of Euclid's 
Elements, Postulates of Euclid's 
Elements, Propositions of 
Euclid's Elements 

unstated assumptions of, 38-43, 51, 

86 
Euclidean geometry, 33-43, 99-183, 

307 
analytic model of, 121-129 

axioms for, 42-43, 391, 395-404 

development of, 33-36, 99-100 
transformations of, 100-164, 200, 

202-207; see also Isometry 
Euler's formula, 201 

Existence, guaranteed by axioms, 4-5 

Exterior angle theorem, see 
Proposition sixteen 

Exterior point of a conic, see Point 
conic 

Fano plane, see Finite geometry 
Fano's axiom, 220 

Fatou, P., 329 

Feigenbaum point, see Logistic 
function 

Fifth postulate, see Postulates of 
Euclid's Elements 

Finite geometry, 1-2 

affine plane of order n, 2, 17-18 

axioms for, 17 

number of points and lines, 18 

Desargues' configuration, see 
Configuration 

development of, 1-2 

Fano plane, 18-19, 24 

incidence table for, 19 

four-line geometry, 9 
axioms for, 9 

four-point geometry, 4-7, 9 
axioms for, 4 
models of,S 

Pappus' configuration, see 
Configuration 

projective plane of order n, 9-17 

axioms for; 10 
consistency of, 11 

existence of, 12, 16 
models of, 11-12 

number of points and lines in, 
12, 16 

three-point geometry, 9 
axioms for, 9 

Four-line geometry, see Finite 
geometry 

Four-point geometry, see Finite 
geometry 

Fractal dimension, 347-360 
box, 349, 355-359 

definition, 356 

relation to self-similarity 
dimension, 359 

descriptive definition, 347 
difficulty in computing, 379 
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Erlanger program, 99 

Error-correcting code, 2, 18-24 

generator matrix, 19-20, 23 

Hamming 
code, 19-24 

distance, 21-24 

information positions, 20 

linear code, 21 

minimum weight of, 22 

I-sphere, 23 

parity check matrix for, 21 

perfect t-code, 23 
redundancy positions, 20 
weight of vectors, 19 

Euclid's Elements, 34-43, 47; see also 
Common notions of Euclid's 
Elements, Postulates of Euclid's 
Elements, Propositions of 
Euclid's Elements 

unstated assumptions of, 38-43, 51, 

86 
Euclidean geometry, 33-43, 99-183, 

307 
analytic model of, 121-129 

axioms for, 42-43, 391, 395-404 

development of, 33-36, 99-100 
transformations of, 100-164, 200, 

202-207; see also Isometry 
Euler's formula, 201 

Existence, guaranteed by axioms, 4-5 

Exterior angle theorem, see 
Proposition sixteen 

Exterior point of a conic, see Point 
conic 

Fano plane, see Finite geometry 
Fano's axiom, 220 

Fatou, P., 329 

Feigenbaum point, see Logistic 
function 

Fifth postulate, see Postulates of 
Euclid's Elements 

Finite geometry, 1-2 

affine plane of order n, 2, 17-18 

axioms for, 17 

number of points and lines, 18 

Desargues' configuration, see 
Configuration 

development of, 1-2 

Fano plane, 18-19, 24 

incidence table for, 19 

four-line geometry, 9 
axioms for, 9 

four-point geometry, 4-7, 9 
axioms for, 4 
models of,S 

Pappus' configuration, see 
Configuration 

projective plane of order n, 9-17 

axioms for; 10 
consistency of, 11 

existence of, 12, 16 
models of, 11-12 

number of points and lines in, 
12, 16 

three-point geometry, 9 
axioms for, 9 

Four-line geometry, see Finite 
geometry 

Four-point geometry, see Finite 
geometry 

Fractal dimension, 347-360 
box, 349, 355-359 

definition, 356 

relation to self-similarity 
dimension, 359 

descriptive definition, 347 
difficulty in computing, 379 
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divider 
definition, 359 
relation to self-similarity 

dimension, 360 

Hausdorff-Besicovitch (H-B), 349, 

355, 377-378 

generalization of box dimension, 
378 

self-similarity, 349-355 

definition, 351 

Fractal geometry 
applications, 373-376, 379-382 

compared to Euclidean geometry, 
335, 380-381 

development, 315 

language of chaos theory, 335, 

380 

measurement dilemmas leading to, 
340-341, 347 

ongoing mathematical questions, 
379,382 

properties, 
fractional dimension, see Fractal, 

dimension 
self-affine, see Self-affine 
self-similarity, see Self-similarity 

transformation, see Iterated 
function system 

Fractal sets 
definition 

descriptive, 344, 360, 376-378 

Mandelbrot's early version, 336, 

377 

"final," 379 

mathematical examples, see Cantor 
and Julia sets, IFS attractors, 
Koch curve, Peano curve, 
Sierpinski sets 

natural examples, 340-341, 355, 

380-382 

dimension of, 355 
terminology, 335-336 

prefractal, 336 

Frieze group, 118, 166 

axis of, 118, 166 
classification of, 168 

Frieze pattern, 117-118, 165-17l 

axis of, 118, 166 

reference points in, 167-168 

symmetries of, 166-17l 

Fundamental theorem of projective 
geometry, see Projective 
(plane) geometry 

Gans, D., 86 

Gauss, K. F., 48 

Generator matrix, see Error-correcting 
code 

Geometry, definition of, 100, 378 

Glide reflection, 118-120, 142-143, 

161-164 

definition of, 118-119, 142-143 

invariant 
lines, 163 

pOints, 163 

symmetry, see Symmetry, glide 
vector of, 118-119, 142-143 

Gbdel's theorem, 8 
Great circle, 40, 87 

Group, see also 'Itansformation, group 
of 

cyclic, 115 

definition, 110, 131 

dihedral, 115 

finite, 110 

generators of, 115, 166 

infinite, 110 

order of, 110 

pOint, 171 

Half-line (ray), 399, 405 

Half-planes, 406 

Half-spaces, 406 
Half-turn, 108, 167 
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Hamming, R. w., 19 

Hamming code, see Error-correcting 
code, Hamming 

Hamming distance, see 
Error-correcting code, 
I lamming 

Harmonic, 229 

Harmonic conjugate, 224 

uniqueness of, 225, 227 

Harmonic homology, 282 

invariance of a conic under, 297 

Harmonic set (relation), 223-229 

cross ratio of, 269 

invariance under 
collineations, 273 

correlations, 284 

projectivities, 236 

of lines, 227 

of points, 223-227 

Hausdorff-Besicovitch dimension, see 
Fractal dimension 

Heath, Sir Thomas, 35 
Hexagon, 243 

diagonal points of, 243 
sides of, 243 

vertices of, 243 

Hilbert, axioms of, 43, 48, 395-398 

Homogeneous coordinates, see Line, 
Point 

Homogeneous parameters, 255 

Homology, see Perspective 
collineation, homology 

Hutchinson, J., 369 
Hyperbola, 196, 303 

Hyperbolic axiom, 47, 69, 84 
Hyperbolic geometry, 47-84, 

300-302, 310 

angle measure in, 50, 67, 301 
consistency of, 50, 94 

distance measurement in, 50, 67, 

301 
Klein model, 49-50, 56, 301 

Poincare model, 49-50, 56, 93 

Hyperbolic polarity, see Polarity 
relation, in projective plane, 
hyperbolic 

Hyperbolic projectivity, see 
Projectivity, hyperbolic 

Hyperbolic subgeometry of 
projective, 300-302 

absolute conic, 300 

angle measure, 301 

distance, 301 

ideal points, 300 

lines, 300 

perpendicular lines, 300 

points, 300 

sensed parallels, 300 

ultraideal points, 300 

ultraparallel, 300 

Hypercube, 348-349 

Ideal line for projective plane, 213, 

220, 252 
Ideal points 

for affine plane, 303 

for hyperbolic plane, 56, 300 

for projective plane, 213, 220, 252, 

299 

for single elliptic plane, 302 

Identity transformation, 131 
Incidence table, 18-19, 26 

Incident, 10, 14 

interpretation in models 
of affine plane, 123 
of finite projective plane, 11 
of infinite projective plane, 220, 

251 

notation for, 216 

substitute terms for, 14 

Independence 
of an axiom, 1, 6 
of an axiomatic system, 6 
of the fifth postulate, 35, 93 

verification of, 6 
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Indirect isometry, see Isometry 
Indirect similarity, see Similarity 
Induced mapping, 132 

Infinite extent of line, 40, 85 

Information positions, see 

Error-correcting codes 
Interior point of a conic, see Conic, 

point 
Invariant (fixed), 132 

point under logistic function, see 

Logistic function 
properties under a transformation 

see 1tansformation type 
Involution, 264 

absolute elliptic, 305 

Isometry (of~)t2), 100, 136-173 

definition, 136 

direct, 138-154; see also Rotation, 
1tanslation 

group, 138 

indirect, 138-143, 154-164; see also 

Glide reflection, Reflection 
invariance of angle measure under, 

139 

matrix of, 136 

product of reflections, 158-161 
types of, 151, 161, 163 

uniqueness of, 164 

Isometry (onn3), 198-207 
definition, 200 

glide reflection, 204 

line reflection, 203 

matrix of, 205-207 

plane reflection, 202 

point reflection, 203 
rotary reflection, 205 

rotation, 204 

screw displacement, 204 

translation, 204 
Isomorphic models, 8 
Iterated function system (IFS), 

360-376; see also Cantor and 
Sierpinski transformations, 

Dynamical systems theory 
attractor set, 369-373,376-377 
definition, 366 

deterministic application (d-image, 
d-orbit) 363, 366-367 

limiting behavior of, 369 

random (stochastic) application 
(r-image, r-orbit), 363, 370-373, 

379; see also Chaos game 
target image, 373, 376 

transformation types, 366 

Julia G., 329 

Julia sets, 329-332, 335, 379; see also 

Mandelbrot set 
coloring of, 330 

definition, 330 

graphical representation, 
329-330 

orbit analysis determination, 
329-330 

Kepler, J., 200 

Klein, F., 99-100 
Klein model, see Hyperbolic geometry 
Klein's definition of gee 'etry, 100 

Koch curve, 335-'336, 3 -340, 
345-347, 378 

algorithm for, 338 

measurement of, 340, 343-344 

self~similar property, 345-347, 353, 

360, 378 
Koch snowflake, 338-340 

Lambert quadrilateral, 84 

Latin squares, 2 

Length 
of a line in elliptic geometry, see 

Double and Single elliptic 
geometry 
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Length (cant.) 

of a segment, 405; see also Measure 
of a segment 

of a translation, see 1tanslation 
Line 

conic, see Conic 
equation 

in affine geometry, 121, 125 

in projective geometry, 253 

Euclid's "definition," 389 

homogeneous coordinates for 
in affine geometry, 122-123 

in projective geometry, 251-252 

notation for, 14, 121-123, 216 

symmetry, see Symmetry, in :H2 

Linear code, see Error-correcting code 
Linear equation, 121 

Linear pair of angles, 407 

Linear transformation, see 
1tansformation, linear 

Linewise invariant, 277; see also 
Pointwise invariant 

Lobachevsky, N. 1., 49 

Logic, 3 
Logistic function, 321-328 see also 

Chaotic behavior 
Feigenbaum point, 324 

fixed point of, 322-323, 327 

attracting, 322-323 

repelling, 323 

model of population growth, 322, 
328 

orbit analysis, 322-324 

algorithm for tracing, 324-325 

web diagram, 324-325 

Lorenz, E., 317-321 

attractor (butterfly), 320 

Mandelbrot B., 329, 332-336, 341, 347, 

377-382 
Mandelbrot set, 332-335, 379-380 

coloring of, 333 

connection with Julia sets, 
332-333 

definition, 332 

determination via orbit analysis, 
333 

Mathematics, definition of, 102-103 

Matrix (representation) of a 
transformation, 130; see 
also Affine transformation, 
Collineation, Isometry, 
Projectivity, Similarity, etc. 

nonsingular, 287, 289 

orthogonal, 298 

symmetric, 196, 285, 287-289 

Measure of a segment, 139; see also 
Length of a segment 

Metric, 143, 307 

Midpoint, 303-304, 406 

Minimum weight, see Error-correcting 
code 

Models, 4; see also Four-point 
geometry, Projective 
geometry, etc., 

isomorphic, 8 

Natural fractals, see Fractal sets 
Non-Euclidean geometry, 47-50; 

see also Elliptic geometry, 
Hyperbolic geometry 

axiomatic basis for, 47-48 

development of, 1, 33, 42, 93, 99 

Nonintersecting, 53; see also 
Ultraparallel 

Nonsingular matrix, see Matrix, 
nonsingular 

Normal vector, see Vector 

Obtuse angle, 390 
One-to-one transformation, see 

1tansformation 
I-Sphere, see Error-correcting code 
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development of, 1, 33, 42, 93, 99 

Nonintersecting, 53; see also 
Ultraparallel 

Nonsingular matrix, see Matrix, 
nonsingular 

Normal vector, see Vector 

Obtuse angle, 390 
One-to-one transformation, see 

1tansformation 
I-Sphere, see Error-correcting code 



Index 437 
~---------------------------------

Opposite points, see Double elliptic 
geometry, Single elliptic 
geometry 

Opposite sides 
of a hexagon, 243 

of a quadrangle, 217-218 

Opposite vertices 
of a hexagon, 243 

of a quadrilateral, 217-218 

Orbit analysis, see Dynamical systems 
theory 

Order 
of a finite affine plane, 17 

of a finite projective plane, 10 
of a group, see Group 
Hilbert's axioms of, 396-397 

reversing, 686 
Ordinary point, 299-300, 302-303, 

306 

Orientation 
same, 105, 140 

opposite, 140 

reverse, 139 

Orthogonal matrix, see Matrix 

Pappus' configuration, see 
Configuration 

Pappus' theorem, 30, 249 

Parabola, 196, 303 

Parabolic geometry, 307 

Parabolic projectivity, see Projectivity 
Parallel 

lines, 3, 303, 390, 400; see 
also Sensed parallel lines, 
Ultraparallellines 

postulate, see Postulates of Euclid, 
fifth 

Parallelism 
elliptic, nonexistence of, 84-86 

Euclidean, properties of, 53 
hyperbolic, properties of, see 

Sensed parallel, Ultraparallel 

preserved by affinities, 190 

Parameter, 255 
homogeneous, see Homogeneous 

parameters 
Parity check matrix, see 

Error-correcting code 
Pascal's theorem, 245, 247 

conic construction with, 247 

Pasch's axiom, 41-42, 55, 58, 394 

equivalence to separation axiom, 
42, 394 

modified form for asymptotic 
triangles, 62-64 

Pattern, 174-175; see also Wallpaper 
pattern 

Peano curve, 335, 354-355 

Pencil 
base elements for, 254 

of lines, 230 

center of, 230 

of points, 230 

axis of, 230 

Penrose, R., 180 

Perfect t-code, see Error-correcting 
code 

Perpendicular lines 
in hyperbolic geometry, 301 
in Similarity and Euclidean 

geometry, 306, 389-390, 400, 
407 

in single elliptic geometry, 302 
Perspective collineation, 277-281 

axis of, 277 
center of, 278 

definition of, 277 

elation, 281 

homology, 281 
constant cross ratio under, 281 

mapping of perspective triangles, 
280 

uniqueness of, 279 
Perspective 

from a line, 26, 221-222 
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Perspective (cant.) 
from a point, 26, 221-222 
triangles, 221-222 

Perspectively related pencils, 232 
Perspectivity, 230-240 

axis of, 231 
center of, 231 
definition of, 231 

Phase space, see Dynamical systems 
theory 

Planar representation, 214 
Planes Jr, Jr', 219-220, 251-253 
Plato, 200, 213 
Platonic solid, see Polyhedron, regular 
Playfair's axiom, 36-37, 47, 84, 

396 
equivalence with the fifth postulate, 

36-37 
Poincare H., 319 

model, see Hyperbolic geometry 
Point 

conic, see Conic 
equation 

in affine geometry, 126 
in projective geometry, 254 

Euclid's "definition," 389 
group, 171 
homogeneous coordinates for, 

in affine, Euclidean and 
similarity geometry, 122-123 

in projective geometry, 250-252 
notation for, 14, 121-123, 216 
of contact, see Conic, line 
symmetry, see Symmetry 

Pointwise invariant, 104, 154, 277 
Polar 

in Desargues' configuration, see 
Configuration, Desargues' 

in double elliptic geometry, 91 
in projective geometry, 285 

construction of, 293 
with respect to a conic, 289 

in single elliptic geometry, 92 

Polarity (pole-polar) relation 
in Desargues' configuration, 25-26 
in projective plane, 283-298 

absolute, 298 
definition of, 285 
elliptic, 296, 299 
hyperbolic, 296, 299 

Pole 
in Desargues' configuration, see 

Configuration, Desargues' 
in double elliptic geometry, 91 
in projective geometry, 285 

construction of, 294 
with respect to a conic, 289 

in single elliptic geometry, 92 
Polygon en-gon), see Regular polygon 
Polyhedron (pI. polyhedra), 199 

convex, 199 
regular (Platonic solid), 199 

five possible, 201 
Postulates, see also Axioms 

of Euclid's Elements, 34-35, 391 
fifth, 35-37, 83-84, 391 

independence of, 93 
statements equivalent to, 36, 69 

second,85 
Pre fractal, see Fractal terminology 
Preserve, 132 
Principle of duality, see Duality 
Projective (plane) geometry, 100-101, 

213-311; see also Finite 
geometry 

axioms for, 215, 221, 233 
definition of, 215 
development of, 213-214 
fundamental theorem of, 235 
infinite, 16 

models of, 219-220, 250-253, 
255-256, 263, 276 

Projective transformations, see 
Collineation, Correlation, 
Projectivity 

Projectively related pencils, 232 
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Perspective (cant.) 
from a point, 26, 221-222 
triangles, 221-222 

Perspectively related pencils, 232 
Perspectivity, 230-240 

axis of, 231 
center of, 231 
definition of, 231 

Phase space, see Dynamical systems 
theory 
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Planes Jr, Jr', 219-220, 251-253 
Plato, 200, 213 
Platonic solid, see Polyhedron, regular 
Playfair's axiom, 36-37, 47, 84, 

396 
equivalence with the fifth postulate, 

36-37 
Poincare H., 319 

model, see Hyperbolic geometry 
Point 

conic, see Conic 
equation 

in affine geometry, 126 
in projective geometry, 254 

Euclid's "definition," 389 
group, 171 
homogeneous coordinates for, 

in affine, Euclidean and 
similarity geometry, 122-123 

in projective geometry, 250-252 
notation for, 14, 121-123, 216 
of contact, see Conic, line 
symmetry, see Symmetry 

Pointwise invariant, 104, 154, 277 
Polar 
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Configuration, Desargues' 

in double elliptic geometry, 91 
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in Desargues' configuration, 25-26 
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absolute, 298 
definition of, 285 
elliptic, 296, 299 
hyperbolic, 296, 299 

Pole 
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in double elliptic geometry, 91 
in projective geometry, 285 

construction of, 294 
with respect to a conic, 289 

in single elliptic geometry, 92 
Polygon en-gon), see Regular polygon 
Polyhedron (pI. polyhedra), 199 

convex, 199 
regular (Platonic solid), 199 
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Postulates, see also Axioms 

of Euclid's Elements, 34-35, 391 
fifth, 35-37, 83-84, 391 
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statements equivalent to, 36, 69 

second,85 
Pre fractal, see Fractal terminology 
Preserve, 132 
Principle of duality, see Duality 
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geometry 
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definition of, 215 
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Projectivity, 232-240; see also 

Perspectivity 
absolute, 305-306, 309 

analytic form of, 258-264 

axis of homology for, 238 

center of homology for, 239 

construction of, 234 

cross ratio invariant under, 266 

definition of, 232 

elliptic, 263 

harmonic relation invariant under, 
236 

hyperbolic, 263 

induced by collineation, 273 

invariant elements, 262 

matrix of, 258 

on a pencil, 233 

parabolic, 263 

uniqueness of, 235 

Propositions of Euclid's Elements, 

391-393 

first, 38-39 

fourth, 100 

eighth, 100 

sixteenth, 39-40, 85 

twenty-first, 40-41 

twenty-seventh, 42, 85 

twenty-eighth, 35 

Quadrangle, see Complete quadrangle 
Quadrilateral, 390; see also Complete 

quadrilateral 
Quantum mechanics, see Chaos 

theory 

r-image, r-orbit, see Iterated function 
system, random application 

Random iteration, see Iterated 
function system, application 

Ratio of a dilation, see Dilation 
Ray, 396, 405; see also Half-line 

Redundancy positions, see 

Error-correcting codes 
Reflection (line), 104, 140, 154-165 

axis of, 104, 140 

definition of, 104, 140 

invariant 
lines, 157 

points, 104, 155, 157 

matrix of, 155 

products of, 158-161, 164 

symmetry, see Symmetry, line 
Reflection (point), 106-107, 141 

symmetry, see Symmetry, point 
Regular polygon, 106 

interior angle measure of, 177 

Regular polyhedron, see 

Polyhedron 
Relative consistency, see Consistency 

of an axiomatic system 
Relativity, 93; see also Chaos theory 
Repelling fixed point, see Logistic 

function, fixed point 
Reverse orientation, see Orientation 
Richardson, L., 341 

coastline measurement, 339, 

359-360 
weather prediction, 341 

Riemann, G. B. F., 84, 93 

Right angle, 389, 400, 407 

Right- (left-) sensed parallel, see 

Sensed parallel lines 
Rotation (with center C), 109, 141, 

148-151 

angle (measure) of, 109, 141 
center of, 109, 141 
definition of, 109, 141 

group, 151 

invariant 
lines, 154 
points, 151 

matrix of, 149 

symmetry, see Symmetry 
Row matrix, 123 

Index 439 ------------------------------------------------------------

Projectivity, 232-240; see also 

Perspectivity 
absolute, 305-306, 309 

analytic form of, 258-264 

axis of homology for, 238 

center of homology for, 239 

construction of, 234 

cross ratio invariant under, 266 

definition of, 232 

elliptic, 263 

harmonic relation invariant under, 
236 

hyperbolic, 263 

induced by collineation, 273 

invariant elements, 262 

matrix of, 258 

on a pencil, 233 

parabolic, 263 

uniqueness of, 235 

Propositions of Euclid's Elements, 

391-393 

first, 38-39 

fourth, 100 

eighth, 100 

sixteenth, 39-40, 85 

twenty-first, 40-41 

twenty-seventh, 42, 85 

twenty-eighth, 35 

Quadrangle, see Complete quadrangle 
Quadrilateral, 390; see also Complete 

quadrilateral 
Quantum mechanics, see Chaos 

theory 

r-image, r-orbit, see Iterated function 
system, random application 

Random iteration, see Iterated 
function system, application 

Ratio of a dilation, see Dilation 
Ray, 396, 405; see also Half-line 

Redundancy positions, see 

Error-correcting codes 
Reflection (line), 104, 140, 154-165 

axis of, 104, 140 

definition of, 104, 140 

invariant 
lines, 157 

points, 104, 155, 157 

matrix of, 155 

products of, 158-161, 164 

symmetry, see Symmetry, line 
Reflection (point), 106-107, 141 

symmetry, see Symmetry, point 
Regular polygon, 106 

interior angle measure of, 177 

Regular polyhedron, see 

Polyhedron 
Relative consistency, see Consistency 

of an axiomatic system 
Relativity, 93; see also Chaos theory 
Repelling fixed point, see Logistic 

function, fixed point 
Reverse orientation, see Orientation 
Richardson, L., 341 

coastline measurement, 339, 

359-360 
weather prediction, 341 

Riemann, G. B. F., 84, 93 

Right angle, 389, 400, 407 

Right- (left-) sensed parallel, see 

Sensed parallel lines 
Rotation (with center C), 109, 141, 

148-151 

angle (measure) of, 109, 141 
center of, 109, 141 
definition of, 109, 141 

group, 151 

invariant 
lines, 154 
points, 151 

matrix of, 149 

symmetry, see Symmetry 
Row matrix, 123 



440 Index -------------------------------------

s-scale tiling, see Self-similarity 
Saccheri, G., 48, 68 

Saccheri quadrilateral, 68-74 

base of, 68 

congruence of, 74 

equivalent triangle to, 70 

summit of, 68 

Saltzman, B., 318 

model of convection, 318 

Scaling factor, see Self-similarity 
School Mathematics Study Group, see 

SMSG 
Segment, 139, 396, 399, 405 

division ratio, 191, 265 

Sel~affine, 378-379 

Self-conjugate 
lines, 286 

equation of, 286 

identified as line conic, 287 

points, 286 

equation of, 286 

identified as point conic, 287 
image under a collineation, 287 

Self-dual, 216 

Self-polar triangle, 291 
Self-similarity, 342-346 

definition, 345 
dimension, see Fractal dimension 
s-scale tiling, 345 

scaling factor, 345 

strict, 345, 360, 377 

Semicircle, 390 
Sensed parallel lines, 51-60, 300 

definition of, 53 

properties of, 54-60, 71 
Separation 

axiom, 396 
of line by point, 42 

of plane by line, 42, 86, 90, 92 

Sensitive dependence on initial 
conditions, see Chaos theory 

Shear, 192-194 

axis of, 192 

definition of, 192 

matrix of, 193 

Sierpinski 
sets, 358 

carpet, 335, 358 

sponge, 358-359 

triangle, 335, 352, 354, 361-363, 

365, 370-372, 379 

triangle algorithm, 352 

transformations, 361-365, 368, 370 

Similar 
sets, definition of, in similarity (and 

Euclidean) geometry, 184, 400 

triangles, in hyperbolic geometry, 
73-74 

Similarity, 183-189 

definition of, 183 

direct, 184 

geometry, 100, 183-189, 306-307, 

309 

transformations of, see Similarity, 
Isometry 

group, 184 

indirect, 184 

invariant properties 
angle measure, 184 

ratios of distance, 189 
matrix of, 184 

product of dilation and isometry, 
188 

ratio of, 183 
self-, see Self-similarity 
subgeometry of projective, 306-307 

absolute conic, 306 

absolute projectivity, 306 

angle measure, 306 

ideal points, 306 
lines, 306 

(ordinary) points, 306 

perpendicular lines, 306 

Single elliptic geometry, 86, 92, 
302-303 

axioms for, 86 
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length of a line in, 92 

model of, 86-87, 91 
opposite points in, 92 

pole and polar in, 92 

properties of, 92 

subgeometry of projective, 302-303 

absolute conic, 302 

angle measure, 303 

distance, 302-303 

ideal points, 302 

lines, 302 

(ordinary) points, 302 

perpendicular lines, 302 

Slope of a line, 128 

Smale, S., 321 

SMSG 
axioms (postulates) of, 43, 401-404 

definitions of, 405-407 

Smith, H., 335 

Square, 390 

Standard form of a point conic, see 
Conic, point 

Stochastic iteration, see Iterated 
function system, random 
application 

Straight angle (rectilineal), 389, 400 
Strain, 194 

axis of, 194 

definition of, 194 

matrix of, 194 
Subgeometries of projective 

geometry, 298-311 

Summit of a Saccheri quadrilateral, 
see Saccheri quadrilateral 

Superposition, 100, 138 
Supplementary angles, 407 

Symmetric 
matrix, see Matrix 
property of parallels, see 

Parallelism, Euclidean 
Symmetry, in general 

concept, 101, 103 

definition, 102 

Symmetry, in ~)F 
bilateral (line), 101, 104 
glide, 119, 143 

group for 
equilateral triangle, 112 

square, 113 

frieze patterns, 118, 166-171 

line (bilateral), 104, 140 

n-fold (rotation), 109, 141 

of general sets, 102 

of an equilateral triangle, 112 

of a square, 113 

point, 107, 141 

rotation, 109, 141 
transformation, 102 

translation, 117, 142 

Symmetry, in m3 

of regular tetrahedron, 204 

point, 206 

Synthetic geometry, 16, 99 

t-Code, see Error-correcting code 
Thngent to a point conic, see Conic, 

point 
Thrget image, see Iterated function 

system 
Tessellation, see Tiling 
Tetrahedron, regular, 201 
Theorems, 3 
Three-point geometry, see Finite 

geometry 
Tiling (tessellation) of Euclidean 

plane, 174-178, 179-183,345 
aperiodic, 180 
dihedral, 174 

Escher-type, 180-183 

monohedral, 174 

Penrose, 180 
periodic, 180 

prototiles, 174 

regular, 174-176 

semiregular, 174, 177-l78 

Index 441 ------------------------------------------------------------

length of a line in, 92 

model of, 86-87, 91 
opposite points in, 92 

pole and polar in, 92 

properties of, 92 

subgeometry of projective, 302-303 

absolute conic, 302 

angle measure, 303 

distance, 302-303 

ideal points, 302 

lines, 302 

(ordinary) points, 302 

perpendicular lines, 302 

Slope of a line, 128 

Smale, S., 321 

SMSG 
axioms (postulates) of, 43, 401-404 

definitions of, 405-407 

Smith, H., 335 

Square, 390 

Standard form of a point conic, see 
Conic, point 

Stochastic iteration, see Iterated 
function system, random 
application 

Straight angle (rectilineal), 389, 400 
Strain, 194 

axis of, 194 

definition of, 194 

matrix of, 194 
Subgeometries of projective 

geometry, 298-311 

Summit of a Saccheri quadrilateral, 
see Saccheri quadrilateral 

Superposition, 100, 138 
Supplementary angles, 407 

Symmetric 
matrix, see Matrix 
property of parallels, see 

Parallelism, Euclidean 
Symmetry, in general 

concept, 101, 103 

definition, 102 

Symmetry, in ~)F 
bilateral (line), 101, 104 
glide, 119, 143 

group for 
equilateral triangle, 112 

square, 113 

frieze patterns, 118, 166-171 

line (bilateral), 104, 140 

n-fold (rotation), 109, 141 

of general sets, 102 

of an equilateral triangle, 112 

of a square, 113 

point, 107, 141 

rotation, 109, 141 
transformation, 102 

translation, 117, 142 

Symmetry, in m3 

of regular tetrahedron, 204 

point, 206 

Synthetic geometry, 16, 99 

t-Code, see Error-correcting code 
Thngent to a point conic, see Conic, 

point 
Thrget image, see Iterated function 

system 
Tessellation, see Tiling 
Tetrahedron, regular, 201 
Theorems, 3 
Three-point geometry, see Finite 

geometry 
Tiling (tessellation) of Euclidean 

plane, 174-178, 179-183,345 
aperiodic, 180 
dihedral, 174 

Escher-type, 180-183 

monohedral, 174 

Penrose, 180 
periodic, 180 

prototiles, 174 

regular, 174-176 

semiregular, 174, 177-l78 



442 Index ------------------------------------

Tiling (tessellation) of Euclidean 
plane (cant.) 

notation for, 178 

tiles, 174 

to design an IFS, 373 

vertex of, 174 

Tiling hyperbolic plane, 178-179 

Thpological dimension, see Dimension 
'Transformation; see also Affine 

transformation, Isometry, 
Similarity, etc. 

composition (product), 106, no 
contractive, 366 

group of, 1l0, 131 

associative property, 130-l31 

identity in, 131 

noncommutative property, 136 

linear, 129-130 

one-to-one, 129-130 

'Transitive property of parallels, see 
Parallelism, Euclidean 

'Translation, 1l6-118 

definition of, 117, 142 
group, 146 

invariant 
lines, 147 

points, 146 
length of, 11 7 
matrix of, 145 

shortest, 167 

symmetry, see Symmetry 
uniqueness of, 146 

vector of, 117, 142 

'Triangle 
altitude of, 311 
angle sum of, see Angle sum 
equilateral, 390 

in the Euclidean plane 
definition of, 139, 390, 396-397, 

399, 406 

interior of, 406 

exterior of, 406-407 

in the hyperbolic plane, area of, 
74-80 

in the projective plane, definition 
of, 216 

isosceles, 390 

perspective 
from a line, 26, 221 

from a point, 26, 221 

right, 390 

scalene, 390 

Ultraideal point, see Hyperbolic 
subgeometry 

Ultraparallellines, 53, 65, 301 

definition of, 53 

properties of, 81-84, 301-302 

Undefined term, 3 
interpretation of, 4-5 

Vanishing point, 214 

Vector 
analytic interpretation, 127 
normal vector, 252 

of glide reflection, see Glide 
reflection 

of translation, see 1Tanslation 
operations, 127 

weight, see Error-correcting code 
Von Staudt, K. C. G., 10 

Wallpaper pattern, 171-173 
Weather prediction, see Chaos theory, 

Richardson 
Web diagram, see Logistic function 
Weyl, H., 101 
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