Chimica Computazionale Molecular Mechanics and Dynamics

Emanuele Coccia

PhotoInduced Quantum Dynamics (PIQD) Group

< ロ > < 同 > < 三 >

Molecular mechanics

3

(日) (同) (目) (日) (日)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Towards biological systems

・ロト ・ 同ト ・ ヨト ・ ヨト

Simulations vs system size

Towards macroscopic materials

Force field in MM

- Set of equations to compute energy and force using MM
- Functions of nuclear positions (classical!)
- Parametrized set of equations

$$E_{FF} = E_{bonded} + E_{nonbonded}$$
$$E_{bonded} = E_{bond} + E_{bend} + E_{dihedral}$$
$$E_{nonbonded} = E_{elec} + E_{vdW}$$

Bond stretching

• Taylor expansion around the "equilibrium" bond length r_0

$$E_{\text{bond}} = k_{AB}(r_{AB} - r_0)^2 = k_{AB}\Delta r^2 \quad (P2)$$

$$E_{\text{bond}} = k_{AB,2}\Delta r^2 + k_{AB,3}\Delta r^3 + k_{AB,4}\Delta r^4 \quad (P4)$$

イロト イヨト イヨト イヨト

Bond stretching

- Stretching of the C-H bond in CH₄
- "Exact": quantum-chemistry calculations
- Morse: $E_{\text{Morse}} = D(1 e^{-\alpha\Delta r})^2$, $\alpha = \sqrt{k/(2D)}$
- P2: simple harmonic approximation
- P4: P2 + quartic term (and the cubic one)

E. Coccia (DSCF)

Molecular bending

- *E*_{bend}: energy required for bending an angle formed by three atoms A-B-C
- Taylor expansion around the "equilibrium" angle value θ_0

$$E_{\text{bend}} = k_{ABC}(\theta_{ABC} - \theta_0)^2 \quad (P2)$$

$$E_{\text{bend}} = k_{ABC,2}(\theta_{ABC} - \theta_0)^2 + k_{ABC,3}(\theta_{ABC} - \theta_0)^3 \quad (P3)$$

Molecular bending

- Bending energy for CH₄
- "Exact": quantum-chemistry calculations
- P2: simple harmonic approximation
- P3: P2 + cubic term

Out-of-plane bending

- Central atom B connected to the 3 peripheral atoms A, C and D
- E_{oop} used to enforce planarity
- Also dubbed as improper torsion
- Example of formaldehyde CH₂O

$$egin{array}{rcl} {\cal E}_{
m oop}&=&k_B\chi^2\ {\cal E}_{
m oop}&=&k_B^\prime d^2 \end{array}$$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Molecular torsion

- Four atoms connected in sequence (ABCD)
- The torsional angle ω defined as the angle between AB and CD bonds, when projected into the plane bisecting the BC bond
- ω is periodic and defines the stiffness

Molecular torsion

$$E_{\text{dihedral}} = \frac{1}{2} \sum_{n} A_{n} \left[1 + (-1)^{n+1} \cos(n\omega) \right] \quad (\triangle)$$
$$= \frac{1}{2} A_{1} \left[1 + \cos(\omega) \right] \quad (\diamond)$$
$$+ \frac{1}{2} A_{2} \left[1 - \cos(2\omega) \right] \quad (\circ)$$
$$+ \frac{1}{2} A_{3} \left[1 + \cos(3\omega) \right] + \cdots (\Box)$$

E. Coccia (DSCF)

- Partial charges assigned to each atom
- Assigned by fitting to the electrostatic potential calculated by quantum chemistry

イロト イポト イヨト イヨト

- Partial charges assigned to each atom
- Assigned by fitting to the electrostatic potential calculated by quantum chemistry
- Effective dielectric constant ϵ : $\epsilon = 1$ for vacuum

イロト イポト イヨト イヨト

- Partial charges assigned to each atom
- Assigned by fitting to the electrostatic potential calculated by quantum chemistry
- Effective dielectric constant ϵ : $\epsilon = 1$ for vacuum
- *E*_{elec} for atom pairs separated by three bonds or more

ヘロト ヘ回ト ヘヨト ヘヨト

- Partial charges assigned to each atom
- Assigned by fitting to the electrostatic potential calculated by quantum chemistry
- Effective dielectric constant ϵ : $\epsilon = 1$ for vacuum
- E_{elec} for atom pairs separated by three bonds or more
- Pairwise interaction

- Partial charges assigned to each atom
- Assigned by fitting to the electrostatic potential calculated by quantum chemistry
- Effective dielectric constant ϵ : $\epsilon = 1$ for vacuum
- *E*_{elec} for atom pairs separated by three bonds or more
- Pairwise interaction
- Improvements:
 - Including dipoles, quadrupoles etc.
 - Beyond fixed charges: polarizable force fields

• Electrostatic potential $\phi_{esp}(\mathbf{r})$

$$\phi_{\text{esp}}(\mathbf{r}) = \sum_{k}^{K} \frac{Z_{k}}{|\mathbf{R}_{k} - \mathbf{r}|} - \int \frac{\rho(\mathbf{r})}{|\mathbf{r}' - \mathbf{r}|} d\mathbf{r}'$$

- $\phi_{esp}(\mathbf{r})$ from quantum chemistry
- Fitting to get the charges $\mathbf{q} = \{q_1, q_2, ..., q_k, ..., q_K\}$
- Minimize ErrF(**q**)

$$\mathsf{ErrF}(\mathbf{q}) = \sum_{i}^{N_{\mathsf{points}}} \left(\phi_{\mathsf{esp}}(\mathbf{r}_{i}) - \sum_{k}^{K} \frac{\mathbf{q}_{k}(\mathbf{R}_{k})}{|\mathbf{R}_{k} - \mathbf{r}_{i}|} \right)^{2}$$

イロン イボン イヨン ・

- *E*_{vdW}: van der Waals energy describing the repulsion or attraction between atoms not directly bonded
 - Repulsion: overlap of the electron clouds of the two atoms
 - Attraction: instantaneous dipole-dipole interaction ($\propto r_{AB}^{-6}$)

イロト イポト イヨト イヨト

- *E*_{vdW}: van der Waals energy describing the repulsion or attraction between atoms not directly bonded
 - Repulsion: overlap of the electron clouds of the two atoms
 - Attraction: instantaneous dipole-dipole interaction ($\propto r_{AB}^{-6}$)
- General functional form

$$E_{
m vdW} = E_{
m repulsion} - rac{C_{AB}}{r_{AB}^6}$$

- *E*_{vdW}: van der Waals energy describing the repulsion or attraction between atoms not directly bonded
 - Repulsion: overlap of the electron clouds of the two atoms
 - Attraction: instantaneous dipole-dipole interaction ($\propto r_{AB}^{-6}$)
- General functional form

$$E_{
m vdW} = E_{
m repulsion} - rac{C_{AB}}{r_{AB}^6}$$

Lennard-Jones potential

$$E_{\rm vdW} = 4\epsilon_{AB} \left[\left(\frac{\sigma_{AB}}{r_{AB}} \right)^{12} - \left(\frac{\sigma_{AB}}{r_{AB}} \right)^{6} \right]$$

- *E*_{vdW}: van der Waals energy describing the repulsion or attraction between atoms not directly bonded
 - Repulsion: overlap of the electron clouds of the two atoms
 - Attraction: instantaneous dipole-dipole interaction ($\propto r_{AB}^{-6}$)
- General functional form

$$E_{
m vdW} = E_{
m repulsion} - rac{C_{AB}}{r_{AB}^6}$$

Lennard-Jones potential

$$E_{\rm vdW} = 4\epsilon_{AB} \left[\left(\frac{\sigma_{AB}}{r_{AB}} \right)^{12} - \left(\frac{\sigma_{AB}}{r_{AB}} \right)^{6} \right]$$

Buckingham potential

$$E_{\rm vdW} = A_{AB} \exp[-B_{AB}r_{AB}] - \frac{C_{AB}}{r_{AB}^6}$$

イロト イポト イヨト イヨト

H₂-He interaction

э

H₂-He interaction

He₂ exists! (average bond length of 55 Å, 0.09 kJ mol $^{-1}$) \rightarrow

E. Coccia (DSCF)

Lennard-Jones potential

- ϵ_{AB} : well depth for E_{vdW}
- σ_{AB} : distance for $E_{vdW} = 0$

- Parameter values from:
 - Experimental data
 - Quantum-chemistry calculations

イロト イヨト イヨト イヨト

- Parameter values from:
 - Experimental data
 - Quantum-chemistry calculations
- Experimental data:
 - X-ray crystallography (equilibrium bond lengths and angles)
 - Infrared spectroscopy (force constants)
 - Bulk properties such as density (non-bonded terms)

《曰》《聞》《臣》《臣》

- Parameter values from:
 - Experimental data
 - Quantum-chemistry calculations
- Experimental data:
 - X-ray crystallography (equilibrium bond lengths and angles)
 - Infrared spectroscopy (force constants)
 - Bulk properties such as density (non-bonded terms)
 - Minimizing a penalty function Z

$$Z = \left[\sum_{i}^{\text{Observables Occurrences}} \frac{(\text{calc}_{i,j} - \text{expt}_{i,j})^2}{\omega_i^2}\right]^{1/2}$$

- Parameters selected minimizing Z
- Generality versus accuracy

イロト イポト イヨト イヨト

Atom types: atoms sharing the same expected bonding and interaction properties

Туре	Symbol	Description	Туре	Symbol	Description
1	С	sp3-carbon	28	Н	enol or amide
2	С	sp2-carbon, alkene	48	н	ammonium
3	С	sp2-carbon, carbonyl, imine	36	D	deuterium
4	С	sp-carbon	20	lp	lone pair
22	С	cyclopropane	15	s	sulfide (R ₂ S)
29	C.	radical	16	S ⁺	sulfonium (R ₃ S ⁺)
30	C^{+}	carbocation	17	S	sulfoxide (R ₂ SO)
38	С	sp2-carbon, cyclopropene	18	S	sulfone (R ₂ SO ₂)
50	С	sp2-carbon, aromatic	42	S	sp2-sulfur, thiophene
56	С	sp3-carbon, cyclobutane	11	F	fluoride
57	С	sp2-carbon, cyclobutene	12	Cl	chloride
58	С	carbonyl, cyclobutanone	13	Br	bromide
67	С	carbonyl, cyclopropanone	14	I	iodide
68	С	carbonyl, ketene	26	в	boron, trigonal
71	С	ketonium carbon	27	в	boron, tetrahedral
8	N	sp3-nitrogen	19	Si	silane
9	N	sp2-nitrogen, amide	25	Р	phosphine
10	N	sp-nitrogen	60	Р	phosphor, pentavalent
37	N	azo or pyridine (-N==)	51	He	helium
39	N^{+}	sp3-nitrogen, ammonium	52	Ne	neon
40	N	sp2-nitrogen, pyrrole	53	Ar	argon
43	N	azoxy (-N=N-O)	54	Kr	krypton
45	N	azide, central atom	55	Xe	xenon
46	N	nitro (-NO ₂)	31	Ge	germanium
72	N	imine, oxime (=N-)	32	Sn	tin
6	0	sp3-oxygen	33	Pb	lead
7	0	sp2-oxygen, carbonyl	34	Se	selenium
41	0	sp2-oxygen, furan	35	Te	tellurium
47	O ⁻	carboxylate	59	Mg	magnesium
49	0	epoxy	61	Fe	iron (II)
69	0	amine oxide	62	Fe	iron (III)
70	0	ketonium oxygen	63	Ni	nickel (II)
5	н	hydrogen, except on N or O	64	Ni	nickel (III)
21	Н	alcohol (OH)	65	Co	cobalt (II)
23	H	amine (NH)	66	Co	cobalt (III)
24	Н	carboxyl (COOH)			

Specific force fields for liquid water (TIP3P)

• General biological force fields (AMBER, CHARMM)

E. Coccia (DSCF)

Periodic systems and cut-offs

- Non-bonded (vdW) interactions: N atoms and $\approx N^2/2$ terms
- Many of pairwise interaction are negligible

イロト イポト イヨト イヨト

Periodic systems and cut-offs

- Electrostatic interactions: larger than VdW ones for a given r_{cutoff}
- Alternative technique: periodic boundary conditions
 - Modelling an infinitely sized system

•
$$(x, y, z) \rightarrow (x + n_x L, y + n_y L, z + n_z L)$$

Docking

- Prediction of strength and specificity with which molecule may bind to a biological macromolecule
- Rigid structures
- Only nonbonded interactions

Molecular dynamics

æ

(日) (同) (目) (日) (日)

Phase space

- Classical system: its state completely given by coordinates and momenta of the N particles
- 6N-dimensional space: phase space
- One point in the phase space at given time

 $\mathbf{X} = (x_1, y_1, z_1, p_{x1}, p_{y1}, p_{z1}, x_2, y_2, z_2, p_{x2}, p_{y2}, p_{z2}, ...)$

ヘロン ヘアン ヘビン ヘビン
Phase space

- Classical system: its state completely given by coordinates and momenta of the N particles
- 6N-dimensional space: phase space
- One point in the phase space at given time

$$\mathbf{X} = (x_1, y_1, z_1, p_{x1}, p_{y1}, p_{z1}, x_2, y_2, z_2, p_{x2}, p_{y2}, p_{z2}, ...)$$

$$\mathbf{q} = (x_1, y_1, z_1, x_2, y_2, z_2, ...)$$

$$\mathbf{p} = (p_{x1}, p_{y1}, p_{z1}, p_{x2}, p_{y2}, p_{z2}, ...)$$

Phase space

- Classical system: its state completely given by coordinates and momenta of the N particles
- 6N-dimensional space: phase space
- One point in the phase space at given time

$$\mathbf{X} = (x_1, y_1, z_1, p_{x1}, p_{y1}, p_{z1}, x_2, y_2, z_2, p_{x2}, p_{y2}, p_{z2}, ...)$$

$$\mathbf{q} = (x_1, y_1, z_1, x_2, y_2, z_2, ...)$$

$$\mathbf{p} = (p_{x1}, p_{y1}, p_{z1}, p_{x2}, p_{y2}, p_{z2}, ...)$$

$$X = (q, p)$$

System at equilibrium

• System with constant N, V and T

• Computing the property A of the system at equilibrium

$$\langle A \rangle = \int \int A(\mathbf{q},\mathbf{p}) P(\mathbf{q},\mathbf{p}) d\mathbf{q} d\mathbf{p}$$

System at equilibrium

• System with constant N, V and T

• Computing the property A of the system at equilibrium

$$\langle A \rangle = \int \int A(\mathbf{q},\mathbf{p}) P(\mathbf{q},\mathbf{p}) d\mathbf{q} d\mathbf{p}$$

• *P* is the probability of the system to be in a point of the phase space

$$P = Q^{-1}e^{-E(\mathbf{q},\mathbf{p})/k_{B}T}$$

$$Q = \int \int e^{-E(\mathbf{q},\mathbf{p})/k_{B}T} d\mathbf{q} d\mathbf{p}$$

$$\mathbf{q}, \mathbf{p}) = V(\mathbf{q}) + \sum_{i} \frac{\mathbf{p}_{i}^{2}}{2m_{i}}$$

27/54

- $e^{-E(\mathbf{q},\mathbf{p})/k_BT}$: Boltzmann factor
- E: energy of the system
- $k_B = 1.38 \times 10^{-23} \text{ JK}^{-1}$: Boltzmann constant

E(

• Q: canonical partition function E. Coccia (DSCF)

System at equilibrium

- Phase space is huge (e.g., $N \approx 10^4 10^6$ in a protein)
- How to compute $\langle A \rangle$?
- Sampling important points in the phase space
- High-energy phase points have near-zero probability

ヘロン ヘアン ヘビン ヘビン

How to compute $\langle A \rangle$

・ロト ・ 同ト ・ ヨト ・ ヨト

No equation of motion to integrate

æ

イロン イボン イヨン イヨン

- No equation of motion to integrate
- A is separable in terms of **q** and **p**

$$\langle A \rangle = \int A(\mathbf{q}) P(\mathbf{q}) d\mathbf{q} + \int A(\mathbf{p}) P(\mathbf{p}) d\mathbf{p}$$

• 3N- instead of 6N-dimensional integrals

$$\langle A \rangle = \frac{1}{R} \sum_{i}^{R} A(\mathbf{q}_{i})$$

- *R* random points
- Choosing phase points randomly is inefficient

• Points **q**_i selected through the Metropolis algorithm

Points q_i selected through the Metropolis algorithm

• Choose \mathbf{q}_i , compute $V(\mathbf{q}_i)$ and $A(\mathbf{q}_i)$

イロン イボン イヨン イヨン

• Points **q**_i selected through the Metropolis algorithm

• Choose \mathbf{q}_i , compute $V(\mathbf{q}_i)$ and $A(\mathbf{q}_i)$

2)
$$\mathbf{q}_{i+1} = \mathbf{q}_i + \Delta \mathbf{q}_{trial}$$
 and compute $V(\mathbf{q}_{i+1})$

(日) (同) (目) (日) (日)

Points q_i selected through the Metropolis algorithm

- Choose \mathbf{q}_i , compute $V(\mathbf{q}_i)$ and $A(\mathbf{q}_i)$
- 2 $\mathbf{q}_{i+1} = \mathbf{q}_i + \Delta \mathbf{q}_{\text{trial}}$ and compute $V(\mathbf{q}_{i+1})$
- In NVT ensemble, acceptance probability p

$$p = \min\left[1, \frac{e^{-\frac{V_{i+1}}{k_B T}}}{e^{-\frac{V_i}{k_B T}}}\right]$$

(日) (同) (目) (日) (日)

- Points q_i selected through the Metropolis algorithm
 - Choose \mathbf{q}_i , compute $V(\mathbf{q}_i)$ and $A(\mathbf{q}_i)$
 - 2 $\mathbf{q}_{i+1} = \mathbf{q}_i + \Delta \mathbf{q}_{trial}$ and compute $V(\mathbf{q}_{i+1})$
 - In NVT ensemble, acceptance probability p

$$p = \min\left[1, \frac{e^{-\frac{V_{i+1}}{k_B T}}}{e^{-\frac{V_i}{k_B T}}}\right]$$

- If V(**q**_{i+1}) ≤ V(**q**_i), the move is accepted (compute A(**q**_{i+1}))
 Otherwise, p is compared with an uniform random number z
 - Move accepted if $p \ge z$ (compute $A(\mathbf{q}_{i+1})$)
 - Otherwise, the move is rejected

イロン イ理シ イヨン イヨン

- Points q_i selected through the Metropolis algorithm
 - Choose \mathbf{q}_i , compute $V(\mathbf{q}_i)$ and $A(\mathbf{q}_i)$
 - 2 $\mathbf{q}_{i+1} = \mathbf{q}_i + \Delta \mathbf{q}_{trial}$ and compute $V(\mathbf{q}_{i+1})$
 - In NVT ensemble, acceptance probability p

$$p = \min\left[1, \frac{e^{-\frac{V_{i+1}}{k_B T}}}{e^{-\frac{V_i}{k_B T}}}\right]$$

- If $V(\mathbf{q}_{i+1}) \leq V(\mathbf{q}_i)$, the move is accepted (compute $A(\mathbf{q}_{i+1})$)
- Otherwise, *p* is compared with an uniform random number *z*
 - Move accepted if $p \ge z$ (compute $A(\mathbf{q}_{i+1})$)
 - Otherwise, the move is rejected
- 🔕 Repeat 2) to 5)

イロト イポト イヨト イヨトー

- Points q_i selected through the Metropolis algorithm
 - Choose \mathbf{q}_i , compute $V(\mathbf{q}_i)$ and $A(\mathbf{q}_i)$
 - 2 $\mathbf{q}_{i+1} = \mathbf{q}_i + \Delta \mathbf{q}_{trial}$ and compute $V(\mathbf{q}_{i+1})$
 - In NVT ensemble, acceptance probability p

$$p = \min\left[1, \frac{e^{-\frac{V_{i+1}}{k_B T}}}{e^{-\frac{V_i}{k_B T}}}\right]$$

- If $V(\mathbf{q}_{i+1}) \leq V(\mathbf{q}_i)$, the move is accepted (compute $A(\mathbf{q}_{i+1})$)
- Otherwise, p is compared with an uniform random number z
 - Move accepted if $p \ge z$ (compute $A(\mathbf{q}_{i+1})$)
 - Otherwise, the move is rejected
- Repeat 2) to 5)
- Markov chain

イロト イポト イヨト イヨトー

- Points q_i selected through the Metropolis algorithm
 - Choose \mathbf{q}_i , compute $V(\mathbf{q}_i)$ and $A(\mathbf{q}_i)$
 - 2 $\mathbf{q}_{i+1} = \mathbf{q}_i + \Delta \mathbf{q}_{trial}$ and compute $V(\mathbf{q}_{i+1})$
 - In NVT ensemble, acceptance probability p

$$p = \min\left[1, \frac{e^{-\frac{V_{i+1}}{k_B T}}}{e^{-\frac{V_i}{k_B T}}}\right]$$

- If $V(\mathbf{q}_{i+1}) \leq V(\mathbf{q}_i)$, the move is accepted (compute $A(\mathbf{q}_{i+1})$)
- Otherwise, p is compared with an uniform random number z
 - Move accepted if $p \ge z$ (compute $A(\mathbf{q}_{i+1})$)
 - Otherwise, the move is rejected
- Repeat 2) to 5)
- Markov chain
- Step too small or too large

ヘロン ヘアン ヘビン ヘビン

Monte Carlo method: flowchart

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

Average over trajectory

- Reasonable phase point as initial condition (t_0)
- Evolution over time
- Samples relevant regions of the phase space

$$\langle A \rangle = \frac{1}{M} \sum_{i}^{M} A(t_i)$$

• M: number of times A is computed

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Average over trajectory

- Reasonable phase point as initial condition (t_0)
- Evolution over time
- Samples relevant regions of the phase space

$$\langle A \rangle = \frac{1}{M} \sum_{i}^{M} A(t_i)$$

- M: number of times A is computed
- Continuous formulation

$$\langle A \rangle = \lim_{t \to \infty} \frac{1}{t} \int_{t_0}^{t_0 + t} A(\tau) d\tau$$

• $\langle A \rangle$ independent of t_0 : 'ergodic hypothesis'

Molecular dynamics (MD)

• How to follow a phase-space trajectory?

イロン イボン イヨン ・

Molecular dynamics (MD)

- How to follow a phase-space trajectory?
- Classical representation of nuclei, second Newton's law

$$\mathbf{F} = m\mathbf{a} \quad \Rightarrow \quad -\frac{dV}{d\mathbf{q}} = m\frac{d^2\mathbf{q}}{dt^2}$$

- V: potential energy at position **q**
- $\mathbf{q}_i = \mathbf{q}(t_i)$

• MD trajectory is deterministic

$$t_0$$
 $t_0 + \Delta t$ $t_0 + 2\Delta t$ $t_0 + 3\Delta t$ \cdots $t_0 + (N_t - 1)\Delta t$ $t_0 + N_t\Delta t = t$

• Taylor expansion: movement forward with a Δt later

$$\mathbf{q}_{i+1} = \mathbf{q}_i + \frac{\partial \mathbf{q}}{\partial t} (\Delta t) + \frac{1}{2} \frac{\partial^2 \mathbf{q}}{\partial t^2} (\Delta t)^2 + \frac{1}{6} \frac{\partial^3 \mathbf{q}}{\partial t^3} (\Delta t)^3 + \dots$$
$$\mathbf{q}_{i+1} = \mathbf{q}_i + \mathbf{v}_i (\Delta t) + \frac{1}{2} \mathbf{a}_i (\Delta t)^2 + \frac{1}{6} \mathbf{b}_i (\Delta t)^3 + \dots$$

• Taylor expansion: movement forward with a Δt later

$$\mathbf{q}_{i+1} = \mathbf{q}_i + \frac{\partial \mathbf{q}}{\partial t} (\Delta t) + \frac{1}{2} \frac{\partial^2 \mathbf{q}}{\partial t^2} (\Delta t)^2 + \frac{1}{6} \frac{\partial^3 \mathbf{q}}{\partial t^3} (\Delta t)^3 + \dots$$
$$\mathbf{q}_{i+1} = \mathbf{q}_i + \mathbf{v}_i (\Delta t) + \frac{1}{2} \mathbf{a}_i (\Delta t)^2 + \frac{1}{6} \mathbf{b}_i (\Delta t)^3 + \dots$$

• Movement backward with a Δt earlier ($-\Delta t$)

$$\mathbf{q}_{i-1} = \mathbf{q}_i - \mathbf{v}_i(\Delta t) + \frac{1}{2}\mathbf{a}_i(\Delta t)^2 - \frac{1}{6}\mathbf{b}_i(\Delta t)^3 + \dots$$

Time discretization

• Verlet algorithm

$$\mathbf{q}_{i+1} = \mathbf{q}_i + \mathbf{v}_i(\Delta t) + \frac{1}{2}\mathbf{a}_i(\Delta t)^2 + \frac{1}{6}\mathbf{b}_i(\Delta t)^3 + \dots + \mathbf{q}_{i-1} = \mathbf{q}_i - \mathbf{v}_i(\Delta t) + \frac{1}{2}\mathbf{a}_i(\Delta t)^2 - \frac{1}{6}\mathbf{b}_i(\Delta t)^3 + \dots + \mathbf{q}_{i+1} = (2\mathbf{q}_i - \mathbf{q}_{i-1}) + \mathbf{a}_i(\Delta t)^2 + \dots$$

æ

イロン イロン イヨン イヨン

Time discretization

• Verlet algorithm

$$\mathbf{q}_{i+1} = \mathbf{q}_i + \mathbf{v}_i(\Delta t) + \frac{1}{2}\mathbf{a}_i(\Delta t)^2 + \frac{1}{6}\mathbf{b}_i(\Delta t)^3 + \dots + \mathbf{q}_{i-1} = \mathbf{q}_i - \mathbf{v}_i(\Delta t) + \frac{1}{2}\mathbf{a}_i(\Delta t)^2 - \frac{1}{6}\mathbf{b}_i(\Delta t)^3 + \dots + \mathbf{q}_{i+1} = (2\mathbf{q}_i - \mathbf{q}_{i-1}) + \mathbf{a}_i(\Delta t)^2 + \dots + \mathbf{q}_{i+1} = (2\mathbf{q}_i - \mathbf{q}_{i-1}) - \frac{1}{m}\frac{dV}{d\mathbf{q}}(\Delta t)^2 + \dots + \mathbf{q}_i(\Delta t)^2 + \mathbf{q}_i(\Delta t)^2 + \dots + \mathbf{q}_i(\Delta t)^2 + \mathbf{q}_i(\Delta t)^2 + \mathbf{q}_i(\Delta t)^2 + \dots + \mathbf{q}_i(\Delta t)^2 + \mathbf{q$$

About the initial point

$$\mathbf{q}_{-1} = \mathbf{q}_0 - \mathbf{v}_0 \Delta t$$

イロト イヨト イヨト イヨト

Time discretization

• Verlet algorithm

$$\mathbf{q}_{i+1} = \mathbf{q}_i + \mathbf{v}_i(\Delta t) + \frac{1}{2}\mathbf{a}_i(\Delta t)^2 + \frac{1}{6}\mathbf{b}_i(\Delta t)^3 + \dots + \mathbf{q}_{i-1} = \mathbf{q}_i - \mathbf{v}_i(\Delta t) + \frac{1}{2}\mathbf{a}_i(\Delta t)^2 - \frac{1}{6}\mathbf{b}_i(\Delta t)^3 + \dots + \mathbf{q}_{i+1} = (2\mathbf{q}_i - \mathbf{q}_{i-1}) + \mathbf{a}_i(\Delta t)^2 + \dots + \mathbf{q}_{i+1} = (2\mathbf{q}_i - \mathbf{q}_{i-1}) - \frac{1}{m}\frac{dV}{d\mathbf{q}}(\Delta t)^2 + \dots + \mathbf{q}_i(\Delta t)^2 + \mathbf{q}_i(\Delta t)^2 + \dots + \mathbf{q}_i(\Delta t)^2 + \mathbf{q}_i(\Delta t)^2 + \dots + \mathbf{q}_i(\Delta t)^2 + \dots + \mathbf{q}_i(\Delta t)^2 + \mathbf{q}_i(\Delta t)^2 + \dots + \mathbf{q}_i(\Delta t)^2 + \mathbf{q$$

About the initial point

$$\mathbf{q}_{-1} = \mathbf{q}_0 - \mathbf{v}_0 \Delta t$$

Velocity Verlet algorithm

$$\mathbf{q}_{i+1} = \mathbf{q}_i + \mathbf{v}_i \Delta t + \frac{1}{2} \mathbf{a}_i (\Delta t)^2$$

$$\mathbf{v}_{i+1} = \mathbf{v}_i + \frac{1}{2} (\mathbf{a}_i + \mathbf{a}_{i+1}) \Delta t_{\text{AB}}$$

Molecular dynamics: flowchart (NVT)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

• NVE ensemble

- N, V and E are constant
- P and T fluctuate
- Natural ensemble in MD

イロン イボン イヨン ・

• NVE ensemble

- N, V and E are constant
- P and T fluctuate
- Natural ensemble in MD
- Total energy E
 - Conservation of energy
 - Finite precision and time steps
 - E preserved within a numerical threshold

< ロ > < 同 > < 臣

• NVE ensemble

- N, V and E are constant
- P and T fluctuate
- Natural ensemble in MD
- Total energy E
 - Conservation of energy
 - Finite precision and time steps
 - E preserved within a numerical threshold
- Temperature *T* from average kinetic energy

$$E_{K} = \sum_{i}^{N} \frac{\mathbf{p}_{i}^{2}}{2m_{i}} = \sum_{i}^{N} \frac{1}{2}m_{i}\mathbf{v}_{i}^{2} = \frac{3}{2}Nk_{B}T$$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

MD and ensembles

NVT ensemble

- Scaling velocities v_i
- System coupled to a heat bath
- Nosé-Hoover method: bath with dynamic variables

イロン イ理シ イヨン イヨン

MD and ensembles

NVT ensemble

- Scaling velocities v_i
- System coupled to a heat bath
- Nosé-Hoover method: bath with dynamic variables
- NPT ensemble
 - Scaling coordinates **q**_i
 - Pressure bath and Nosé-Hoover method

ヘロト ヘ回ト ヘヨト ヘヨト

Example: liquid water

- Box length of 20 Å, 270 molecules, density of around 0.997 g cm⁻³
- Initial structure: r(O-H) = 1 Å and H-O-H angle of 100°

イロン イ理シ イヨン イヨン

- Box length of 20 Å, 270 molecules, density of around 0.997 g cm⁻³
- Initial structure: r(O-H) = 1 Å and H-O-H angle of 100°
- TIP3P force field (molecular mechanics)
 - Stretching and bending terms

•
$$r_0 = 0.9572 \text{ Å}$$
, $k_{\text{stretc}} = 600 \text{ kcal mol}^{-1} \text{ Å}^{-2}$

•
$$\theta_0 = 104.52^\circ$$
, $k_{\text{bend}} = 75 \text{ kcal mol}^{-1} \text{ rad}^{-2}$

- -0.834 (0.417) au charges on O (H)
- Lennard-Jones term for O

• $\epsilon = 0.1521 \text{ kcal mol}^{-1}$, $\sigma_{OO} = 3.15061 \text{ Å}$

- Box length of 20 Å, 270 molecules, density of around 0.997 g cm⁻³
- Initial structure: r(O-H) = 1 Å and H-O-H angle of 100°
- TIP3P force field (molecular mechanics)
 - Stretching and bending terms

•
$$r_0 = 0.9572 \text{ Å}$$
, $k_{\text{stretc}} = 600 \text{ kcal mol}^{-1} \text{ Å}^{-2}$

- $\theta_0 = 104.52^\circ$, $k_{\text{bend}} = 75 \text{ kcal mol}^{-1} \text{ rad}^{-2}$
- -0.834 (0.417) au charges on O (H)
- Lennard-Jones term for O

• $\epsilon = 0.1521 \text{ kcal mol}^{-1}, \sigma_{OO} = 3.15061 \text{ Å}$

• NVT conditions, thermostat at 298 K

- Box length of 20 Å, 270 molecules, density of around 0.997 g cm⁻³
- Initial structure: r(O-H) = 1 Å and H-O-H angle of 100°
- TIP3P force field (molecular mechanics)
 - Stretching and bending terms

•
$$r_0 = 0.9572 \text{ Å}$$
, $k_{\text{stretc}} = 600 \text{ kcal mol}^{-1} \text{ Å}^{-2}$

•
$$\theta_0 = 104.52^\circ$$
, $k_{\text{bend}} = 75 \text{ kcal mol}^{-1} \text{ rad}^{-2}$

- -0.834 (0.417) au charges on O (H)
- Lennard-Jones term for O

• $\epsilon = 0.1521 \text{ kcal mol}^{-1}$, $\sigma_{OO} = 3.15061 \text{ Å}$

• NVT conditions, thermostat at 298 K

• Equilibration phase
- Box length of 20 Å, 270 molecules, density of around 0.997 g cm⁻³
- Initial structure: r(O-H) = 1 Å and H-O-H angle of 100°
- TIP3P force field (molecular mechanics)
 - Stretching and bending terms

•
$$r_0 = 0.9572 \text{ Å}$$
, $k_{\text{stretc}} = 600 \text{ kcal mol}^{-1} \text{ Å}^{-2}$

•
$$\theta_0 = 104.52^\circ$$
, $k_{\text{bend}} = 75 \text{ kcal mol}^{-1} \text{ rad}^{-2}$

- -0.834 (0.417) au charges on O (H)
- Lennard-Jones term for O

• $\epsilon = 0.1521 \text{ kcal mol}^{-1}, \sigma_{OO} = 3.15061 \text{ Å}$

- NVT conditions, thermostat at 298 K
- Equilibration phase
- 50 ps simulated

Example: liquid water

- Radial distribution function $g(r_{OO})$
- Peak at 3 Å due to hydrogen bonding (coordination number of water, 4)
- Secondary peaks as next-nearest-neighbour effects

How to compute $g(r_{AB})$

• g from X-ray or neutron diffraction measurements

E. Coccia (DSCF)

・ロン ・聞と ・ 語と ・ 語とう

How to compute $g(r_{AB})$

g from X-ray or neutron diffraction measurements
 g from MD
 I / N_A N_B

$$\frac{1}{V}g(r_{AB}) = \frac{1}{N_A N_B} \left\langle \sum_{i}^{N_A} \sum_{j}^{N_B} \delta[r_{AB} - r_{A_i B_j}] \right\rangle$$
$$P\{A, B, r_{AB}, \Delta r\} = \frac{4\pi r_{AB}^2}{V} g(r_{AB}) \Delta r$$

æ

١

・ロン ・聞と ・ 聞と ・ 聞と

How to compute $g(r_{AB})$

g from X-ray or neutron diffraction measurements
 g from MD
 I NA NB

$$\frac{1}{V}g(r_{AB}) = \frac{1}{N_A N_B} \left\langle \sum_{i}^{N_A} \sum_{j}^{N_B} \delta[r_{AB} - r_{A_i B_j}] \right\rangle$$
$$P\{A, B, r_{AB}, \Delta r\} = \frac{4\pi r_{AB}^2}{V} g(r_{AB}) \Delta r$$

- In practice:
 - All A-B distances computed at each time snapshot
 - Each occurrence added to a bin of the histogram

١

Dynamical properties

• Autocorrelation function C(t) or $\tilde{C}(t)$ for property A

 $C(t) = \langle A(t_0)A(t_0+t)\rangle_{t_0}$

2

イロト イポト イヨト イヨト

Dynamical properties

• Autocorrelation function C(t) or $\tilde{C}(t)$ for property A

$$C(t) = \langle A(t_0)A(t_0+t) \rangle_{t_0}$$

$$\tilde{C}(t) = \frac{\langle [A(t_0) - \langle A \rangle] [\langle [A(t_0+t) - \langle A \rangle] \rangle_{t_0}}{\langle A^2 \rangle - \langle A \rangle^2}$$

- Used for:
 - Determining diffusion coefficients
 - Computing vibrational infrared spectra

Reducing simulation complexity

3

ヘロン 人間 とくほ とくほ とう

- Molecular deterministic dynamics: accurate estimation of thermodynamic information
- Stochastic dynamics:
 - Dynamical evolution of a system embedded in a larger one (solute in a solvent)
 - Larger system modelled stochastically
 - Computational saving
- Langevin dynamics

$$\mathbf{a}(t) = \zeta \mathbf{p}(t) + \frac{1}{m} [\mathbf{F}_{\text{intra}}(t) + \mathbf{F}_{\text{continuum}}(t)]$$

- Continuum interacting with the smaller system
 - Microscopic friction coefficient ζ
 - Fintra with usual force fields
 - **F**_{continuum} for modelling the effect of the larger system

ヘロン 人間 とくほ とくほ とう

Coarse-grained methods

- Computational expense unaffordable for atomistic MM and MD
- Building blocks larger than single atoms
- Advantages:
 - Computational saving by reducing the number of degrees of freedom
 - Larger time steps in time propagation

イロン イ理シ イヨン イヨン

Coarse-grained methods

- Computational expense unaffordable for atomistic MM and MD
- Building blocks larger than single atoms
- Advantages:
 - Computational saving by reducing the number of degrees of freedom
 - Larger time steps in time propagation
- Disadvantage:
 - Atomic resolution lost

Statistical thermodynamics

< 三→ ---

Image: A mathematical states and the states and

æ

・ロン ・回 と ・ ヨ と ・ ヨ と

• Bridge between microscopic and macroscopic world

- Bridge between microscopic and macroscopic world
- Partition function used to compute thermodynamic properties
- Chemical equilibrium

$$\Delta_r^0 G = -RT \ln K$$

(日) (同) (目) (日) (日)

- Bridge between microscopic and macroscopic world
- Partition function used to compute thermodynamic properties
- Chemical equilibrium

$$\Delta_r^0 G = -RT \ln K$$

 Free energy of a mole of ideal gas at pressure P and temperature T

4

$$G(P,T) = G(T = 0 K) - RT \ln \left[\frac{q(P,T)}{N_A}\right]$$

イロト イポト イヨト イヨト

- Bridge between microscopic and macroscopic world
- Partition function used to compute thermodynamic properties
- Chemical equilibrium

$$\Delta_r^0 G = -RT \ln K$$

 Free energy of a mole of ideal gas at pressure P and temperature T

4

$$G(P,T) = G(T = 0 K) - RT \ln \left[\frac{q(P,T)}{N_A}\right]$$

$$q = \int \int e^{-\epsilon(\mathbf{q},\mathbf{p})/k_{B}T} d\mathbf{q} d\mathbf{p}$$

- Distribution of the dihedral angle of *n*-butane at 273 K
- 50 *n*-butane molecules, 120 ps simulated
- Sampling every 100 fs (1200 snapshots)
- 50 × 1200 = 60000 structures

• Anti conformer ($\theta = 180^\circ$, most stable)

• Enantiomeric gauche conformers ($\theta = 60^{\circ}$ and 300°)

イロト イポト イヨト イヨト

- Anti conformer ($\theta = 180^\circ$, most stable)
- Enantiomeric gauche conformers ($\theta = 60^{\circ}$ and 300°)
- *a* conformers with $\theta \in [120^\circ : 240^\circ]$ (*n*(*a*) = 38,637)
- g^+ conformers with $\theta \in [0^\circ : 120^\circ]$ ($n(g^+) = 11,599$)
- g^- conformers with $\theta \in [240^\circ : 360^\circ]$ ($n(g^-) = 9,764$)

- Anti conformer ($\theta = 180^\circ$, most stable)
- Enantiomeric gauche conformers ($\theta = 60^{\circ}$ and 300°)
- *a* conformers with $\theta \in [120^\circ : 240^\circ]$ (*n*(*a*) = 38,637)
- g^+ conformers with $\theta \in [0^\circ : 120^\circ]$ ($n(g^+) = 11,599$)
- g^- conformers with $\theta \in [240^\circ : 360^\circ]$ ($n(g^-) = 9,764$)
- $n(a/g^+/g^-) \propto$ partition function of the conformers
- Anti conformer as reference $\rightarrow \Delta G(a) = 0$

$$\Delta G(g^{+}) = -RT \ln \frac{n(g^{+})}{n(a)} = 2.73 \text{ kJ mol}^{-1}$$

$$\Delta G(g^{-}) = -RT \ln \frac{n(g^{-})}{n(a)} = 3.12 \text{ kJ mol}^{-1}$$

- Combining quantum mechanics and statistical thermodynamics
- ϵ as a discrete quantity
- Single-particle partition function and probability

$$q = \sum_{i} g_{i} \exp \left[-\frac{\epsilon_{i}}{k_{B}T}\right]$$
$$p_{i} = \frac{1}{q} g_{i} \exp \left[-\frac{\epsilon_{i}}{k_{B}T}\right]$$

イロン イ理シ イヨン イヨン

- Combining quantum mechanics and statistical thermodynamics
- ϵ as a discrete quantity
- Single-particle partition function and probability

$$q = \sum_{i} g_{i} \exp\left[-\frac{\epsilon_{i}}{k_{B}T}\right]$$

$$p_{i} = \frac{1}{q} g_{i} \exp\left[-\frac{\epsilon_{i}}{k_{B}T}\right]$$

$$\epsilon_{i} = \epsilon_{\text{tr},i} + \epsilon_{\text{vib},i} + \epsilon_{\text{rot},i} + \epsilon_{\Theta l,i}$$

$$q = q_{\text{tr}} q_{\text{vib}} q_{\text{rot}} q_{\text{el}}$$

• For a generic $aA + bB \Rightarrow cC + dD$ reaction:

$$\Delta_r G^0 = \Delta_r G^0(0 \text{ K}) - RT \ln \frac{(q_C^0/N_A)^c (q_D^0/N_A)^d}{(q_A^0/N_A)^a (q_B^0/N_A)^b}$$

イロト イヨト イヨト イヨト

• For a generic $aA + bB \Rightarrow cC + dD$ reaction:

$$\Delta_r G^0 = \Delta_r G^0(0 \ K) - RT \ln \frac{(q_C^0/N_A)^c (q_D^0/N_A)^d}{(q_A^0/N_A)^a (q_B^0/N_A)^b}$$

In practice

Compute with quantum chemistry

$$\Delta_r G^0(T = 0 K) = cG^0(T = 0 K, C) + dG^0(T = 0 K, D) - (aG^0(T = 0 K, A) + bG^0(T = 0 K, B))$$

2 Compute $\Delta_r G^0(P, T)$ with q for A, B, C and D moieties

イロン イ理シ イヨン イヨン

Example: N₂ + $3H_2 \rightleftharpoons 2 NH_3$

Computing the equilibrium constant

$$\Delta_r G^0 = -RT \ln \left(\frac{P_{\rm NH_3}^2 (P^0)^2}{P_{\rm N_2} P_{\rm H_2}^3} \right)$$

• Using the protocol of the previous slide

		E(H ₂)	E(N ₂)	E(NH ₃)	$\Delta_r E$ (/kJ mol ⁻¹)
	HF	-1.13345	-108.98980	-56.22326	-61.2
	MP2	-1.16671	-109.39363	-56.47757	-74.4
	CCSD(T)	-1.17387	-109.40718	-56.49563	-77.2
At 800	K				
	Species		H ₂	N ₂	NH_3
	In (q/N _A)		15.63	23.02	23.30
	G - G(0)/	'kJ mol ⁻¹	-104.0	-153.1	-155.0
$\Delta_r G^0(8)$	300 <i>K</i>)	= -77.2	$2 + (2 \times -18)$	55.0 - (-1	$53.1 + 3 \times$
		= 77.94	(J mol ⁻¹		
	Kρ	= 8.2 ×	10 ⁻⁶		
	K_p^{ref}	= 9.0 ×	10 ⁻⁶ (refe	erence)	