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Hybrid multiscale methods

Physical and chemical properties in large systems (104-106

atoms)→ quantum (QM) methods not applicable
Quantum meets classical:

QM for a (small) subregion of the system
Classical for the rest of it (environment)

CLASSICAL
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Hybrid multiscale methods

Biological/biochemical applications

ENZYMATIC CATALYSIS

ION CHANNELS
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Hybrid multiscale methods

Materials applications

METAL-ENHANCED SPECTROSCOPIES
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Nobel prize in Chemistry 2013
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Hybrid multiscale methods
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Hybrid multiscale methods

How the classical part is modelled?
How partition is done?
How QM and classical subregions interact?
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Modelling the classical environment

Atomistic: use force fields from molecular mechanics (MM)
Continuum: the environment is a polarizable medium
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Partitioning the system

Local character of most chemical reactions in condensed
phases
Distinction between a ”reaction center” and a ”spectator”
Expensive but accurate QM for the small ”reaction center”
Cheaper classical methods for the ”spectator” region

Try to avoid to cut bonds at the boundaries
But this too is covered by the models (see next slides)
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QM/MM methods
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QM/MM

Three types of interaction:

Among atoms in the QM region
Among atoms in the MM region (electrons ignored in the MM
region!)
Among QM and MM atoms←
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QM/MM

EQM/MM(QM/MM): coupling energy between QM and MM
subregions

Subtractive QM/MM coupling

EQM/MM(QM/MM) = EMM(full) + EQM(QM)− EMM(QM)

Advantage:
Straightforward implementation (no QM/MM communication)

Drawbacks:
Required force field for QM subregion
No polarization of the QM electron density by MM
environment
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QM/MM

Additive QM/MM coupling

Ĥfull(full) = ĤQM(QM) + ĤMM(MM) + ĤQM/MM(QM/MM)

MM region only at classical level
EQM/MM(QM/MM) explicitly computed

Mechanical embedding
Electrostatic embedding

EQM/MM = Eb + Enb

Eb = Ebond + Eangle + Edihe

Enb = EVdW + Eel
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QM/MM

Mechanical embedding
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QM/MM

ĤQM/MM = Ĥb + Ĥnb

Ĥb =
QM atoms∑

k

MM atoms∑
m

Ebond(rkm)

+
at least one QM∑

k,m,l

Eangle(θkml)

+
at least one QM∑

k,m,l,p

Edihe(θkmlp)

Ĥnb =
QM atoms∑

k

MM atoms∑
m

[
Zkqm

rkm
+ 4εkm

(
σ12

km

r12
km

−
σ6

km

r6
km

)]
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QM/MM

Electrostatic embedding: polarization included

Ĥnb,el = Ĥnb −
electrons∑

i

MM atoms∑
m

qm

rim

Electrons see MM atoms as special nuclei with non-integer
and possibly negative charges
Risk of overpolarization at boundaries (electron spill-out)
Smeared charges

Ωm(r) =

√
qm

πα3 exp

[
(r − rm)2

2α2

]
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QM/MM
Capping bonds at the QM/MM boundary

Monovalent link atom at an appropriate position along the bond
vector between the QM and MM atoms

Link atom only present in the QM calculation

Link atom frozen at a given position

Do not cut double or triple bonds
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QM/MM

〈Ψ|Ĥfull|Ψ〉 = 〈Ψ|ĤQM|Ψ〉+ 〈Ψ|ĤMM|Ψ〉+ 〈Ψ|ĤQM/MM|Ψ〉

= 〈Ψ| −
N∑
i

1
2
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i −
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i

K∑
k

Zk

rik
+
∑
i<j

1
rij

+
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k<l

ZkZl

rkl
|Ψ〉

+ 〈Ψ|Ψ〉EMM + 〈Ψ| −
N∑
i

M∑
m

qm

rim
|Ψ〉+ 〈Ψ|Ψ〉 (Eb + Enb)
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−
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+
∑
i<j

1
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+
∑
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ZkZl

rkl
|Ψ〉

+ EMM + Eb + Enb

SCF calculation affected by the MM charges
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= 〈Ψ| −
N∑
i

1
2
∇2

i −
N∑
i

K∑
k

Zk

rik
+
∑
i<j

1
rij

+
∑
k<l

ZkZl

rkl
|Ψ〉

+ 〈Ψ|Ψ〉EMM + 〈Ψ| −
N∑
i

M∑
m

qm

rim
|Ψ〉+ 〈Ψ|Ψ〉 (Eb + Enb)

= 〈Ψ| −
N∑
i

1
2
∇2

i −
N∑
i

K∑
k

Zk

rik
−

N∑
i

M∑
m

qm

rim
+
∑
i<j

1
rij

+
∑
k<l

ZkZl

rkl
|Ψ〉

+ EMM + Eb + Enb

SCF calculation affected by the MM charges

E. Coccia (DSCF) 18 / 26



Polarizable continuum models
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QM/continuum

Continuum models for solutions
QM solute(s), solvent as a polarizable medium

Medium with a dielectric constant ε
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QM/continuum

∆Gsolv = ∆Gcavity + ∆Gdispersion + ∆Gelec

Models differ:
how size and shape of the hole are defined
how the cavity dispersion term is computed
how the charge distribution of the solute is described
how the dielectric medium is given

ε fully describes the solvent
Also spatial and frequency dependencies are used, i.e. ε(r)
and ε(ω)
Sphere or ellipsoid allow for an analytical electrostatic
interaction
Interlocking spheres on each nucleus (vdW surface)
Born model

∆Gsolv = −1
2

(
1− 1

ε

)
q2

r
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QM/continuum

Self-consistent reaction field (SCRF)
Poisson equation (electrostatic potential φ, solute charge
distribution ρ)

∇ · (ε(r)∇φ(r)) = −4πρ(r)

∇2φ(r) = −4π
ε
ρ(r)

4πεσ(rs) = (ε− 1)F(rs)

Extra term in the Hamiltonian

ĤSCRF = Ĥ + φσ

φσ(r) =

∫
σ(rs)

|r− rs|
drs
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QM/continuum

Mixed solvent models
First solvation shell explicitly modelled

Configurations sampling issue
Parametrization of the continuum model against
experimental data
Mixed models may yield substantially better results than pure
continuum models, at the price of an increased
computational cost
Solvation energy from few (neutral solute) to hundreds of
kcal/mol (ions) in water
Inclusion of solvent effects may change the geometry,
charge distribution and conformational preferences
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Example: Reactivity of charged species

SN2 substitution

Cl− + CH3Br→ Br− + CH3Cl

Kinetics
k = 1.3× 1010 M−1s−1 (gas phase)
k = 3.3 M−1s−1 (acetone)
k = 5.0× 10−6 M−1s−1 (water)
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Example: Reactivity of charged species

DFT calculations (ωB97X-D functional, 6-31+G(d) basis set)
SMD model for solvation (screening model based on density)

Computed kinetics
k = 2.85× 1010 M−1s−1 (gas phase, 2.3 times larger than exp)
k = 1.4× 10−5 M−1s−1 (acetone, 2.4×10−5 smaller)

Inaccuracy due to approximations in SMD
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Example: acid-base equilibria

Dissociation of a weak acid HA in solvent (water)

HA + H2O 
 A− + H3O+

KA =
[H3O+][A−]

[HA][H2O]

Thermodynamic cycle

∆G0
(aq) = ∆G0

(g) + ∆Gsolv(A−) + ∆Gsolv(H3O+)

− {∆Gsolv(HA) + ∆Gsolv(H2O)}

pKA = − log10 KA =
−∆G0

(aq)

RT ln 10
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