FROM THEORY TO OBSERVATION

e Masses are not directly observable. Galaxy clusters are selected according to some observable,
in general related to the observational technique, which correlate with the mass.

From theory .
From observation
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FROM THEORY TO OBSERVATION

¢ Individual mass measurements are expensive and not feasible for cluster survey. We need to rely
on mass proxies which are tightly correlated with the halo mass.

From theory .
From observation
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LIMITATIONS FOR CLUSTER COSMOLOGY STUDIES
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FROM THEORY TO OBSERVATION: CONSTRAINTS
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CLUSTER DETECTION: PHOTOMETRIC SURVEY

e Detection:
. . z-4 distribution of redMaPPer clusters
- Overdensity of (red-sequence) galaxies in DES Y1

- Lensing effect

e Observable/Mass proxy:
- Richness (# member galaxies)
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CLUSTER DETECTION: X-RAY SURVEY

L, z distribution of X-ray selected

e Detection: X-ray images of clusters from eROSITA catalogs
- Extended x-ray sources N R v W T — t T Gt [ T
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e X-ray emissivity from bremsstrahlung radiation of the ICM:
Flux limited sample
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CLUSTER DETECTION: SZ SURVEY

e Detection:

Thermal Sunyaev-Zel’dovich effect

(mm-wavelength)

e Observable/Mass proxy:

SZ signal

Thermal Sunyaev-Zel’dovich effect
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CLUSTER CATALOGS

Figure 1: Left: redMaPPer DES Y1 cluster
catalog detection probability as a function of
mass: systems down to ~5-10" M _ have a
non-negligible chance to be included in the

B o o - -

- = 3 optical catalog (2>20), while clusters
£ U.or = selected at different wavelength (X-ray, mm)
& X-ray have masses typically above 5-10™ M_
&S 0.4F = mm (gray area; adapted from [Ab20]). Right:

= Ruclid Mass and redshift ranges probed by current

optical (SDSS, DES Y1) and millimeter

(Planck-SZ, SPT-SZ 2500) cluster surveys.

The green shaded area marks the mass
\ and redshift range to be covered by the
’ Euclid cluster sample.
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Photometric catalogs capable of detecting system down to group mass scale but have a much
less cleaner selection function which hamper they cosmological exploitation



MASS MEASUREMENTS FROM X-ray DATA

From hydrostatic equilibrium:

r kgT(r) (dInpgas(r) . dInT(r)
dinr dInr

Assumptions:

Hydrostatic equilibrium (Negligible non-thermal pressure
support)

Spherical symmetry

Temperature profiles from XMM-Newton
observations (Pratt+06)
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MASS MEASUREMENTS FROM SPECTROSCOPIC

Dynamical mass estimates (Jeans equation):
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Caustic method (projected phase-space distribution):

vy [km s7']

6000 -
4000 -

2000

-2000

-4000F .

—-6000

[km s7]

los

number density [Mpc~%]

L.o.s. velocity dispersion and
member galaxy density profiles
from VLT/VIMOS (Biviano+13)

2500 F
2000
1500

1000

500

R [Mpc]



MASS MEASUREMENTS FROM IMAGING

e Strong and Weak Lensing mass measurements:

Projected density profilé from strong lensing
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Assumption:

- Parametric form for the halo density profile (e.g. NFW,
Einasto profiles; Navarro+97, Einasto 1965) and
correlated structures (2-halo term)



CMB CLUSTER LENSING

e Lensing by GC induces a dipole-like distortion in the CMB:

Last scattering surface What we see

GALAXY
CLUSTER

+— 0.1 degrees ——*

Credit: Lewis & Challinor, Phys. Rept. 2006

The distortion is quite small (~10uK for 1015MO halo) but
can be used to calibrate the mass of high redshift clusters.

The lensing signal can also be detected in polarization data
(see e.g. Raghunathan+19).
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FROM THEORY TO OBSERVATION: SCALING RELATIONS

Detection
observable
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Different detection techniques imply different
mass proxies, mass calibration data and
systematics.

The calibration of the observable-mass
relation(s) requires:

Well defined selection function(s)

A model to describe the parent
distribution as a function of mass (halo
mass function)

A model to describe the PDF of the
multivariate observable space: P(X,0| ¥ )



FROM THEORY TO OBSERVATION: SCALING RELATIONS

Idealized sample
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Different detection techniques imply different
mass proxies, mass calibration data and
systematics.

The calibration of the observable-mass
relation(s) requires:

- Well defined selection function(s)

- A model to describe the parent
distribution as a function of mass (halo
mass function)

- A model to describe the PDF of the
multivariate observable space: P(X,0| ¥ )



RECENT CONSTRAINTS FROM CLUSTER NC
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RECENT CONSTRAINTS FROM CLUSTER NC
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LIMITATIONS FOR CLUSTER COSMOLOGY STUDIES

X-ray SZ
Cluster Cluster

Planck CMB

DES Collaboration 2020

0.68 0.76 0.84 0.92

0.60

Cosmological constraints independent and
competitive with other cosmological
probes

Slight to moderate tension between
different cluster studies

Currently limited by the mass (i.e. scaling
relation) calibration

T

B - CMB

—— SZ+Lensing PS

I CMB+BAO
SZa+BAO (WiG)
SZa+BAO (CCCP) |
SZa+BAO (CMBlens)

Planck-SZ results assuming
3 different mass calibrations
(Planck Collaboration 2015)

1 L |

025 030 0.35 0.40 0.45 0.50 0.55
Q

m



RECENT CONSTRAINTS FROM CLUSTER NC
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OTHER COSMOLOGICAL TESTS WITH GALAXY CLUSTERS




OTHER COSMOLOGICAL TESTS WITH GALAXY CLUSTERS

Real vs simulated Bullet-like shock
(Keshet+21)
e The Bullet Cluster (DM nature) Nk

EM Emission from ICM (baryon)
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. 4 shape of the shock wave, provide
% ks BT 7 25 ” : compelling evidence for the
»_- . : - ' - . presence of dark matter;
i ' T : moreover it allows to place
. . - : : ® A ; : constraints on the dark matter
cross-section




OTHER COSMOLOGICAL TESTS WITH GALAXY CLUSTERS

Mass estimates from accretion shocks
https://arxiv.org/abs/2407.01660: Utilizing a
sample of simulated galaxy clusters the analysis
reveals that these clusters lie on a well-defined
plane within the three-dimensional space defined
by mass (M), shock radius (R,), and Mach
number _# (indicating shock strength). This
planar relationship suggests a predictable
correlation among these parameters.
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OTHER COSMOLOGICAL TESTS WITH GALAXY CLUSTERS

Gas mass fraction (2 _,2,, w):
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OTHER COSMOLOGICAL TESTS WITH GALAXY CLUSTERS

H, from X-ray and SZ distance measurements:
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THE HALO PROFILE

From n-body/hydro simulations we
can predict the dark matter/gas
(spherically averaged) halo
profiles. For LCDM models E.g.
Navarro+97 and Einasto 1965:
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Observationally, cluster profiles
can be inferred from strong and
weak lensing, galaxy dynamics,
and ICM (X-ray,SZ) measurements
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OTHER COSMOLOGICAL TESTS WITH GALAXY CLUSTERS

_ iR e Wl Halo profile:]
e Galaxy cluster mass profile: 2T e | S DM EoS parameter
KA ol (Pizzuti+17)]
The shape/slope of the halo g 15 -
profile, especially in the inner o § e —
regions, can be used to test ~ Hato b romier 02} N 10 —
several fundamental physics o GR test - HER o ——
: P 04 F BUR, =0 ——
(Pizzuti+16)
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Halo profile: f(R) constraints (Butt+25)
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STATISTICAL PROPERTIES OF THE LARGE SCALE STRUCTURES:

CLUSTERING

For a review on structure formation:
https://sites.astro.caltech.edu/~george/ay127/kamionkowski-perturbations-notes.pdf
https://people.ast.cam.ac.uk/~pettini/intro%20Cosmology/Lecture14.pdf

For a review on BAO: https://arxiv.org/pdf/0910.5224.pdf

For a review on RSD: https://arxiv.org/pdf/astro-ph/9708102.pdf




EVOLUTION OF DENSITY PERTURBATIONS

Inflation generates primordial perturbations through
the amplification of quantum fluctuations, which are
stretched to astrophysical scales by the rapid
expansion.

The simplest models of inflation predict that the initial
fluctuations constitute a Gaussian random field, with
an almost purely adiabatic primordial perturbations
with a near scale-invariant power spectrum. In these
models the primordial power spectrum is often
described in terms of a spectral index n_ and an
amplitude of the perturbations A_ as (kp = 0.05 Mpc™' =

pivot scale ):
Ns

;Mpc:)

Ak) (h

10°

104

10°

102

V
,
’ “ 6
N e
(\%// ’ ” 3 /09
I’,I v (\%
........ L %
.................. ”,, ’
piL P
,9’ [~
A
E
S

- n,=00906

- =1

- Ak) at recomb.

}" i
1-‘;:\»
1073 107 10! 10°
k (h/Mpc)

Large scale Small scale




EVOLUTION OF DENSITY PERTURBATIONS

After the perturbations are created in the early
Universe, they undergo a complex evolution which
depends on the theory of gravity (GR), and the
expansion history of the Universe.

e Gravity is the dominant force that moves matter
on the largest scales.

e The dark matter, which constitutes ~ 5/6 of the
nonrelativistic matter in the Universe, is
composed of “cold dark matter”, pressureless
matter that interacts with everything else only
gravitationally.

Universe 6.0 billion years old Universe 13.7 billion years old



EVOLUTION OF DENSITY PERTURBATIONS

e Overdensity field:

For CDM model:
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EVOLUTION OF DENSITY PERTURBATIONS
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The evolution of adiabatic
perturbations in a CDM universe
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EVOLUTION OF DENSITY PERTURBATIONS

The primordial power spectrum of density
fluctuations gets “processed” by the growth of
density perturbations:

P(:ZC, Z) = Pprimordial(k)TQ(ka Z)

where the transfer function T(k) takes into account
the effects of gravitational amplification of density
perturbation mode of wavelength k
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EVOLUTION OF DENSITY PERTURBATIONS

The primordial power spectrum of density
fluctuations gets “processed” by the growth of
density perturbations:

P(:ZC, Z) = Pprimordial(k)TQ(ka Z)

where the transfer function T(k) takes into account
the effects of gravitational amplification of density
perturbation mode of wavelength k

Transfer function for different components
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Note: The thermal velocity of DM particles
determines the free streaming length below
which structure formation is suppressed
(free-streaming damping)



SIDE NOTE: HOT, WARM AND COLD DARK MATTER

Free-streaming cut-off scale:

h MWwWDM 4/3 0.12
T O vy
o S0 MpC 1keV (QDMh2

(Cosmic Relics)

WDM 4 kel

CNon-thermaI Relics) CThermaI Relics) I

not produced in thermal equilibrium are held in TE with other components of S

(TE) with rest of Universe. Universe until they ‘decouple’, which happens
e.g., axions (FDM), monopoles, when interaction rate ' = n(owv) drops below
cosmic strings expansion rate H (a)

P(K) ypr/P(K) scom

C Hot Dark Matter ) (Cold Dark Matter)

particles are still relativistic at particles are non-relativistic

k (WMpc)

decoupling, i.e., 3kpTy > mxc? at decoupling i.e., 3kpTy < mxc”

e.g., massive neutrinos e.g., WIMPS

(Warm Dark Matter]

E.g. keV sterile neutrino




EVOLUTION OF DENSITY PERTURBATIONS

Transfer function (CDM): 106
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EVOLUTION OF DENSITY PERTURBATIONS

Baryonic Acoustic Oscillations:

In the early, high-temperature Universe, baryons and
photons were tightly coupled by Compton scattering,
in a so-called photon-baryon fluid; the competing
forces of radiation pressure and gravity set up
oscillations in the photon-baryon fluid. As the
Universe expands and cools down, atoms form
(Recombination) and the interaction rate between
baryons and photons decreases: photons begin to
free-stream, leaving baryons in a shell with a radius
approximately equal to the sound horizon at the time
of decoupling. From that moment on, only the
gravitational interaction between dark matter and
baryonic matter remains. This characteristic radius is
therefore imprinted as an overdensity and the power
spectrum have an excess of power on this scale.
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