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BAYESIAN AND FREQUENTIST STATISTICS

e Probability as frequency:
The classical approach to statistics defines the probability of an event as
“the number of times the event occurs over the total number of trials, in the
limit of an infinite series of equiprobable repetitions.”

e Probability as degree of belief:
The Bayesian viewpoint is based on the simple and intuitive tenet that:
“probability is a measure of the degree of belief about a proposition”.



BAYESIAN AND FREQUENTIST STATISTICS

+  Bayesian: data are fixed, model is repeatable

* Frequentist: model is fixed, data are repeatable

Say Ho = (72 + 8) km/s/Mpc. Then:

Bayesian: the posterior distribution for Ho has 68% if its integral between
64 and 80 km/s/Mpc. The posterior can be used as a prior on a new
application of Bayes' theorem.

Frequentist: Performing the same procedure will cover the real value of HO
within the limits 68% of the time. But how do I repeat the same procedure
(generate a new Ho) if I only have one Universe?

Good references:

Bayesian: R. Trotta, “Bayes in the Sky”, https://arxiv.org/abs/0803.4089

Frequentist: Feldman & Cousins, “A Unified Approach to the Classical
Statistical Analysis of Small Signals”, https://arxiv.org/abs/physics/9711021

Example of one cosmology inference done both Bayesian and frequentist way: G. Efstathiou, “The
Statistical Significance of the Low CMB Multipoles”, https://arxiv.org/abs/astro-ph/0306431

Or “Robust constraints on tensor perturbations from cosmological data: a comparative analysis from
Bayesian and frequentist perspectives” https://arxiv.org/pdf/2405.04455



https://arxiv.org/pdf/2405.04455

BAYESIAN AND FREQUENTIST STATISTICS

- Bayesian:
*can given probabilities for models
* depends on both prior and likelihood (of data)
*currently the dominant method in cosmology

* Frequentist:
*doesn’t give probabilities of models, only of hypotheses
*doesn’t depend on prior, just likelihood
*currently the dominant method i1n particle physics



BAYES’ THEOREM

P(d|pM)P(p| M)
P(d[M)

Likelihood x P(d|pM)P

What you learn from
the experiment /
I\/Iodel

Observed data Parameters

P(p|dM) =

Note: P(A|B) reads “the probability of A given B”



PRIORS

e Priors quantify what you knew about the parameters before you
start

e Theoretical limits, preferences, things that must be true from
simpler data

* |n regions where your likelihood is zero your prior doesn’t matter for
parameter estimation, but can for more advanced model selection

* |t is common practice in cosmology to use uniform priors for most
parameters

The rationale is that we should assign equal probability to equal states of knowledge. However,
flat priors are not always as harmless as they appear. One reason is that a flat prior on a
parameter 0 does not correspond to a flat prior on a non-linear function of that parameter, y(8).
The two priors are related by:

p(6) = 0(0) | 7



PRIORS
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POSTERIOR ESTIMATION

The challenge: map out a posterior
in multi-dimensional parameter space.

Example: say there are just 10 parameters.

Lets say calculation takes just 1 second/model.
Say you want a grid with 20 values in each par.

Then
N = 2010 = 1013
= 1t would take 300,000 years to do it!

= Totally impossible, ever!!
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POSTERIOR ESTIMATION

Over the past years many sampling techniques have been
developed to overcome this issue (See this for a review).
The general idea is to sample the parameter space in a
clever way in order to map out the high-probability
volumes. The methods can be divided in:

- Monte Carlo Markov Chains methods: e.g.
Metropolis-Hastings (Metropolis+1953), Emcee
(Foreman-Mackey+2010)

Markov Chain

Target

- Nested sampling methods: e.g. Multinest
(Feroz+2009,2013), Polychord (Handley+2015)

In both case the density of the sampled points is
proportional to the parameter posterior we seek to
estimate
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https://arxiv.org/abs/1701.01467

MCMC: METROPOLIS-HASTING ALGORITHM

» at step t, at some parameters p+ ﬁﬂﬁﬂ?m
» propose move to p:'=pt+dp: (randomly draw Ap:)

» evaluate r = L(pt’)/L(pt) e
» MH step: 2]
» if r > 1 accept move ]
» if r < 1 generate a random number a« € [0, 1] T A
» if a < r, accept move i 1D illustration of MH step
»1if a>r ’ I"ej ect move Markov chains Posterior density
0.8 q
» t=t+1 ©
.é - Accept o
3 £ 7
One can prove that, = 041 3 o
with this rule, Accept oo
one asymptotically recovers the 021 Rec}rect -4 IIte{rationI 1I |
true posterior ARG YA S G
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https://docs.google.com/file/d/1sbe8khrnf1sJCMToiirzleNOP6cMaRgn/preview

o T
NESTED SAMPLING METHODS 58
Y
23
CORE IDEA: Instead of sampling the entire prior space %%
(like MCMC), NS sequentially shrinks the sampling S ;
region by discarding low-likelihood points, concentrating == g ]
on high-probability regions. E
Algorithm: 2’
1.  Sample N point from the prior distribution §
2. At each step i-th: a
a. Find the point with the lowest likelihood L, T il s Vo pmded e | @
b. Replace it with a new point having L>L. 5
c. Record the “dead point” and its likelihood
3. Stop when the remaining live point contribute
negligibly to the evidence
Output: Wigure . cxnmyie o et ilipooiiaisopyling i oy can el e ikcn teylng o syl s covt oo o el s

randomly generates some points (top right). It then uses the covariance matrix obtained from those points point to calculate an ellipsoid enclosing all existing

1 Poste ri o r Sa m p I eS live points (bottom left, dashed line). That ellipsoid is expanded in volume by a factor inversely proportional to the efficiency, and samples are drawn from that
" ellipsoid (bottom right, dot-dashed line). As the latter plot shows in the light blue regions, if the magnification factor is not big enough (i.e. the efficiency is too

high), this can lead to a bias in the estimation of the evidence.


https://arxiv.org/pdf/2202.08233.pdf

SAMPLING THE PARAMETER SPACE

Underlying

» Efficiency of MH depends Distribution

dramatically on how good the

proposal is
e A bad proposal will not converge

iIn any practical length of time
e The ideal proposal matches the

shape of the underlying Bad

distribution propossl

Good
proposal

e We don’t know this, but can
look for best approximation



e Unless you’re doing a
simulation where you
know the truth, unlikely
to start at the best-fit
value

e Will take some
iterations to get near
this point

e Need to exclude these

Plot

-340
1

'
—350 4

|
W
N
o

Posterior

—370 A

—380 A

0 200 400 600 800 1000
Parameter

Burn-in - exclude from sampling




CHECKING CONVERGENCE

e Good MH chains look like white noise if you plot one
parameters values throughout the chain
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Looks reasonable - could be a bit longer



INTERPRETING THE OUTPUT
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To get the posterior probability,

simply histogram the parameter values vs weights -

this is your posterior!

Want to look at posterior in ps marginalized over all other parameters?
Simply plot histogram of p3 values vs weight (eaaasy!)



GOODNESS OF FIT

The goodness of fit is often estimated from the best-fit parameter values using a y? statistic (which is
formally correct only for Gaussian distributions):

X s = (d — M(05r))TC 1 (d — 7 (br))

where C is the data covariance matrix. This method does not account for the uncertainties on the
estimated parameters #.

To assess the goodness of fit from the y? best.it ONE COMputes p( x2 >X el v ) the probability to
exceed the y? ppr assuming a y 2_distribution with v degree of freedom: v -N Data points - N. effective
parameters. The number of effective parameters, for correlated parameters and/or for a
prior-informed analysis, is smaller than the total number of free parameters.

Interpreting Reduced Chi-Square

(Xged ~ 1): The model is a good fit for the data. (Residuals are of the same order as the uncertainties.)
o Xred > 1): The model might not fit well.

. (Xred >> 1): Indicates systematic errors, underestimation of uncertainties, or a poor model.
» (Xred < 1): The model may be overfitting or uncertainties might be overestimated.




EFFECTIVE NUMBER OF D.O.F.

Effective number of constrained parameters:
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Distribution of the best-fit xzvalues recovered
from 100 mock data realizations generated from
the best-fit model of the data. The red histogram
in the inset plot shows the posterior distribution
for the effective number of degrees of freedom

obtained by fitting a xz to the histogram. (DES
Collaboration 20)



GOODNESS OF FIT

A more rigorous way to assess the goodness of fit which
account for both the data and model uncertainty rely on

the Posterior Predictive Distribution:

P(y*Ply) = [dOP(y?|0)P(0]y)

Likelihood

The method consists of drawing simulated values from the
posterior predictive distribution of replicated data and
comparing these mock samples to the real data to assess
their likelihood to be observed (see e.g. Doux+2021)

3o limits of the PPDs

: PPD for different models
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TENSION BETWEEN DATA SETS

Asses the level of tension (or agreement) between posteriors derived from different data sets might
not be trivial in a multi-dimensional parameter space.

E.g. 1d marginalized
posteriors which seem to

be in agreement ...
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TENSION BETWEEN DATA SETS

Asses the level of tension (or agreement) between posteriors derived from different data sets might
not be trivial in a multi-dimensional parameter space.

, Bl reference
X B in tension
B consistent

E.g. 1d marginalized ... might hide tensions in
posteriors which seem to higher dimension space
be in agreement ... e G ’ due to “projection effects”
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TENSION METRICS

There is no a unique “metric” to assess the level of tension/agreement between data sets, and
there exist a number of technique which can be roughly splitted in:

¢ Evidence-based methods seek to answer the question:

Given hypothesis Hy: ‘The assumed model is capable of generating
the data observed by both experiments’, and hypothesis H,: ‘The
assumed model is not capable of generating the data observed by
both experiments’, which hypothesis is preferred by the data under
the assumed model’?

e Parameter-space methods seek to answer the question:
What is the statistical significance of the differences between the
posteriors for experiments A and B, within the parameter space
analyzed by both experiments?

(Lemos+2020; see also e.g. Grandis+16, Charnock+17,
Raveri+20)

—

Require the computation of the
evidence:

- —

P(d) = [d0L(d|6)P ()

J

In general can be computed
directly from the parameter
posteriors.

Require good sampling of the tails
of the distributions



TENSION METRICS

Bayes Ratio The Bayes ratio R is defined
for independent datasets A and B and for their combinatior;osl
AB as [210]: |

Z
R= 4B

= : El
ZAZB G

where 3091

Zp = P(D|IM) = /(1(-9 L(D|®, M)r(®|M). (E2)

In that expression, z is the Bayesian Evidence, L is
the likelihood of observing the data given model M and
parameter values O, and 1t is the prior probability of
those parameters given the model. R can be viewed
as a hypothesis test assessing the odds of both
datasets being described with a single set of
parameters (Z,;) as opposed to two independent sets
of parameters (£,Z,)

Smaller values of R indicate stronger
evidence of tension between
measurements from datasets A and B

Jeffrey’s scale

Strong Tension (10:1

InR<-2.3 odds)
Substantial tension
-2.3<InR<-1.2 (3:1 odds)
In R>-1.2 Agreement

Caveat: the value of In R depends
strongly on the choice of parameter prior
ranges



TENSION METRICS

Parameter difference technique:

Iso-probébility contour for A6 =0

i) Compute the parameter difference probability 5 |
distribution: /

P(AG) = / PA(0)Pg (0 — AG)dO

Vp )
ii) Determine posterior mass above the —27
iso-probability contour for no shift, A6 =0
—4
A= / P(AG) dAO . . .
P(A6)>P(0) -4 -2 0 2
Apo
The advantage of this technique is that it can be Toy model for a two parameter difference

readily computed directly from the MCMC chains distribution. Credit M. Raveri

of experiment A and B



MODEL SELECTION

To determine which model is preferred by a given data set a simple comparison of y?s might not be
sufficient (e.g. if the two models have a different number of parameters, or different priors )

Two widely used techniques for model selection are the evidence ratio and deviance information
criterion:

r

Bayes Evidence Ratio: Deviance Information Criterion:

P(M;|d) _ P(d| M) P(M;) OO 2 (s
P(Ms|d) P(d|M,) P(M2) (M) (X*) M = Xypaxp (M)

The evidence is larger for a model if more of its The model with the lower DIC either fits better the
parameter space is likely and smaller for a model | data - lower {x*)- or has a lower level of complexity
with large areas in its parameter space having - lower{y?) %*,..p- It can be easily computed

low likelihood values, even if the likelihood directly from the parameter posteriors

function is sharply peaked.




PRIOR VOLUME EFFECTS

The high-dimensionality of parameter spaces reduces the interpretability of posteriors to their one-
and two-dimensional marginal distributions, when more information is available in the full
dimensional distributions.

E.g.: Assume a highly-non Gaussian posterior. If
we only have access to the 1D marginalized
posterior of 6, ., we would hardly estimate the
fiducial value with our point estimators (e.g. using
the BF point, or the mean/median of the
distribution). In other words, even if the posterior
in the entire parameter space is centered around
the correct parameters, the posterior marginalized
over the nuisance parameters can be off of the
correct target parameters. This bias error is called

the prior volume or projection effect.

HNlliH'rHI(‘(‘

See e.g.: https://arxiv.org/pdf/2405.00261



https://arxiv.org/pdf/2405.00261

PRIOR VOLUME EFFECTS

The high-dimensionality of parameter spaces reduces the interpretability of posteriors to their one-
and two-dimensional marginal distributions, when more information is available in the full
dimensional distributions.

a)

Eéftfi;eennce Another example is a poorly constrained,
likelihood profile < 05 g prior-limited, parameters, which are projected
and marginal . | g over significant anisotropic volumes.

distribution  for "o o

increasingly 10

10 — Posterior profiles do not suffer from projection
effects as they are essentially insensitive to the
Los & volume of the parameter space. Using a simple
metaphor, profiling can be thought of as observing
the outline of the posterior landscape, whereas
marginalization can be seen as measuring its
column density.

tighter posterior
distributions
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https://arxiv.org/pdf/2409.09101

