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BAYESIAN AND FREQUENTIST STATISTICS

● Probability as frequency:
The classical approach to statistics defines the probability of an event as 
“the number of times the event occurs over the total number of trials, in the 
limit of an infinite series of equiprobable repetitions.”

● Probability as degree of belief:
The Bayesian viewpoint is based on the simple and intuitive tenet that: 
“probability is a measure of the degree of belief about a proposition”.



BAYESIAN AND FREQUENTIST STATISTICS

Or “Robust constraints on tensor perturbations from cosmological data: a comparative analysis from 
Bayesian and frequentist perspectives” https://arxiv.org/pdf/2405.04455

https://arxiv.org/pdf/2405.04455


BAYESIAN AND FREQUENTIST STATISTICS
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BAYES’ THEOREM

O

Note: P(A|B) reads “the probability of A given B”
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PRIORS

The rationale is that we should assign equal probability to equal states of knowledge. However, 
flat priors are not always as harmless as they appear. One reason is that a flat prior on a 
parameter θ does not correspond to a flat prior on a non–linear function of that parameter, ψ(θ). 
The two priors are related by:



PRIORS

E.g. The parameter actually 
constrained by CMB data



POSTERIOR ESTIMATION



POSTERIOR ESTIMATION

Over the past years many sampling techniques have been 
developed to overcome this issue (See this for a review). 
The general idea is to sample the parameter space in a 
clever way in order to map out the high-probability 
volumes. The methods can be divided in: 

- Monte Carlo Markov Chains methods: e.g. 
Metropolis-Hastings (Metropolis+1953), Emcee 
(Foreman-Mackey+2010)

- Nested sampling methods: e.g. Multinest 
(Feroz+2009,2013), Polychord (Handley+2015)

In both case the density of the sampled points is 
proportional to the parameter posterior we seek to 
estimate

From
 Feroz+13

Markov Chain

Target 
distribution

https://arxiv.org/abs/1701.01467


MCMC: METROPOLIS-HASTING ALGORITHM

https://docs.google.com/file/d/1sbe8khrnf1sJCMToiirzleNOP6cMaRgn/preview


NESTED SAMPLING METHODS
From

 Lem
os+22 (nice paper) to understand and 

com
pare sam

pler

CORE IDEA: Instead of sampling the entire prior space 
(like MCMC), NS sequentially shrinks the sampling 
region by discarding low-likelihood points, concentrating 
on high-probability regions.

Algorithm:
1. Sample N point from the prior distribution
2. At each step i-th:

a. Find the point with the lowest likelihood Li
b. Replace it with a new point having L>Li 
c. Record the “dead point” and its likelihood

3. Stop when the remaining live point contribute 
negligibly to the evidence

Output:
1.  Posterior samples
2. Evidence estimate

https://arxiv.org/pdf/2202.08233.pdf


SAMPLING THE PARAMETER SPACE



BURN-IN



CHECKING CONVERGENCE



INTERPRETING THE OUTPUT



GOODNESS OF FIT

The goodness of fit is often estimated from the best-fit parameter values using a 𝜒2 statistic (which is 
formally correct only for Gaussian distributions):

 
 

where C is the data covariance matrix. This method does not account for the uncertainties on the 
estimated parameters 𝜗. 

To assess the goodness of fit from the  𝜒2
best-fit one computes p( 𝜒2 > 𝜒2

BF| 𝜈  )  the probability to 
exceed the 𝜒2

BF, assuming a 𝜒2-distribution with 𝜈 degree of freedom: 𝜈 =N. Data points - N. effective 
parameters. The number of effective parameters, for correlated parameters and/or for a 
prior-informed analysis, is smaller than the total number of  free parameters.



EFFECTIVE NUMBER OF D.O.F.

Distribution of the best-fit 𝜒2values recovered 
from 100 mock data realizations generated from 
the best-fit model of the data. The red histogram 
in the inset plot shows the posterior distribution 
for the effective number of degrees of freedom 
obtained by fitting a  𝜒2  to the histogram. (DES 
Collaboration 20)

Effective number of constrained parameters:

From Joachimi et al 2021



GOODNESS OF FIT

A more rigorous way to assess the goodness of fit which 
account for both the data and model uncertainty rely on 
the Posterior Predictive Distribution:

The method consists of drawing simulated values from the 
posterior predictive distribution of replicated data and 
comparing these mock samples to the real data to assess 
their likelihood to be observed (see e.g. Doux+2021)

Parameter posteriors

Likelihood

Observed value

PPD for different models
3𝜎 limits of the PPDs

PPD for the observed cluster count in the 
highest 𝜆/z bin of the DES Y1 data for 4 
different model (Costanzi+21)



TENSION BETWEEN DATA SETS

Asses the level of tension (or agreement) between posteriors derived from different data sets might 
not be trivial in a multi-dimensional parameter space.

E.g. 1d marginalized 
posteriors which seem to 
be in agreement ...

Credit A. Saro



TENSION BETWEEN DATA SETS

Asses the level of tension (or agreement) between posteriors derived from different data sets might 
not be trivial in a multi-dimensional parameter space.

E.g. 1d marginalized 
posteriors which seem to 
be in agreement ...

… might hide tensions in 
higher dimension space 
due to “projection effects”

Credit A. Saro



TENSION METRICS 

There is no a unique “metric” to assess the level of tension/agreement between data sets, and 
there exist a number of technique which can be roughly splitted in:

(Lemos+2020; see also e.g. Grandis+16, Charnock+17, 
Raveri+20)

Require the computation of the 
evidence:

In general can be computed 
directly from the parameter 
posteriors.
Require good sampling of the tails 
of the distributions



TENSION METRICS 

In that expression, zD is the Bayesian Evidence, L is 
the likelihood of observing the data given model M and 
parameter values Θ, and π is the prior probability of 
those parameters given the model.  R can be viewed 
as a hypothesis test assessing the odds of both 
datasets being described with a single set of 
parameters (ZAB) as opposed to two independent sets 
of parameters (ZAZB)

Jeffrey’s scale

ln R < -2.3 Strong Tension (10:1 
odds)

-2.3< ln R <-1.2 Substantial tension 
(3:1 odds)

ln R>-1.2 Agreement

Bayes Ratio

Caveat:  the value of ln R depends 
strongly on the choice of parameter prior 
ranges

Smaller values of R indicate stronger 
evidence of tension between 

measurements from datasets A and B



Parameter difference technique:

i) Compute the parameter difference probability 
distribution: 

ii) Determine posterior mass above the 
iso-probability contour for no shift, Δ𝜃 = 0

The advantage of this technique is that it can be 
readily computed directly from the MCMC chains 
of experiment A and B

TENSION METRICS 

Toy model for a two parameter difference 
distribution. Credit M. Raveri

Iso-probability contour for Δ𝜃 = 0



Deviance Information Criterion:

The model with the lower DIC either fits better the 
data - lower 〈𝜒2〉- or has a lower level of complexity 
- lower〈𝜒2〉 -𝜒2

MaxP. It can be easily computed 
directly from the parameter posteriors 

MODEL SELECTION

To determine which model is preferred by a given data set a simple comparison of 𝜒2s might not be 
sufficient (e.g. if the two models have a different number of parameters, or different priors )  
Two widely used techniques for model selection are the evidence ratio and deviance information 
criterion:

Bayes Evidence Ratio:

The evidence is larger for a model if more of its 
parameter space is likely and smaller for a model 
with large areas in its parameter space having 
low likelihood values, even if the likelihood 
function is sharply peaked.



PRIOR VOLUME EFFECTS

The high-dimensionality of parameter spaces reduces the interpretability of posteriors to their one- 
and two-dimensional marginal distributions, when more information is available in the full 
dimensional distributions.

E.g.: Assume a highly-non Gaussian posterior. If 
we only have access to the 1D marginalized 
posterior of θTarget, we would hardly estimate the 
fiducial value with our point estimators (e.g. using 
the BF point, or the mean/median of the 
distribution). In other words, even if the posterior 
in the entire parameter space is centered around 
the correct parameters, the posterior marginalized 
over the nuisance parameters can be off of the 
correct target parameters. This bias error is called 
the prior volume or projection effect.

See e.g.: https://arxiv.org/pdf/2405.00261

https://arxiv.org/pdf/2405.00261


PRIOR VOLUME EFFECTS

The high-dimensionality of parameter spaces reduces the interpretability of posteriors to their one- 
and two-dimensional marginal distributions, when more information is available in the full 
dimensional distributions.

Another example is a poorly constrained, 
prior-limited, parameters, which are projected 
over significant anisotropic volumes.

→ Posterior profiles do not suffer from projection 
effects as they are essentially insensitive to the 
volume of the parameter space. Using a simple 
metaphor, profiling can be thought of as observing 
the outline of the posterior landscape, whereas 
marginalization can be seen as measuring its 
column density.

https://arxiv.org/pdf/2409.09101

Difference 
between 
likelihood profile 
and marginal 
distribution for 
increasingly 
tighter posterior 
distributions

https://arxiv.org/pdf/2409.09101

