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1 The model

We consider a system of N coupled oscillators, originally introduced by Sak-
aguchi [1], described by the Langevin equation

φ̇i(t) = fi −
K

N

∑

j

sin(φi(t)− φj(t)) + ηi(t), (1)

where fi is an external constant force, and the Gaussian noise ηi obeys the
fluctuation–dissipation relation

〈ηi(t)ηj(t
′)〉 = 2Tδijδ(t− t′). (2)

Notice that we have chosen the system units such that the external force fi
has dimension of frequency, which corresponds to taking the friction coeffi-
cient in eq. (2) equal to one.

By introducing the complex order parameter

σ(t) exp(iψ(t)) =
1

N

∑

j

exp(iφj(t)), (3)

where 0 ≤ σ(t) ≤ 1 measures the system coherence and ψ(t) is the common
average phase, equation (1) becomes

φ̇i(t) = fi −Kσ(t) sin(φi(t)− ψ(t)) + ηi(t), (4)

this set of equations if formally equivalent to the set of equations (1). Let f0
be the mean deterministic force, calculated over the N oscillator sample f0 =
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∑

j fj/N , we expect that the center of mass will oscillate with the frequency
f0, so we can use the mean field approximation ψ(t) = f0t + ψ0 in eq. (4)
and thus we can redefine the dynamical variables as θi(t) = φi(t) − ψ(t), so
as eq. (4) reads

θ̇i(t) = ωi −Kσ sin(θi(t)) + ηi(t), (5)

where we have redefined the external force as ωi = fi− f0, and σ(t) has been
replaced with its mean field value σ.

Eq. (5) represents now a set of N uncoupled equations for the variables
θi, and the mean field values of σ and ψ0 can be obtained self consistently
as discussed below. Eq. (5) corresponds to a Brownian particle moving in
a periodic potential under the effect of a constant drift force ωi. Here and
in the following we assume that the system reaches a steady state in the
long time limit. In the course of this paper, we will discuss this assumption
where relevant. The Langevin equation can be reformulated in terms of a
Fokker-Planck (FP) equation for the probability distribution function (PDF)
of finding the particle i at position θ at time t

∂tp(θ, ωi, t) = ∂θ [(Kσ sin θ − ωi)p+ T∂θp] . (6)

Thus, the stationary probability distribution function (PDF) of the position
of such a particle reads

p(θ, ωi) = Nβeβ(Kσ cos θ+ωiθ)

[

I(2π)

1− exp (−β2πωi)
− I(θ)

]

, (7)

where I(x) =
∫ x

0
dy exp [−β(Kσ cos y + ωiy)], and N is a normalization con-

stant depending implicitly on β = 1/T , K · σ and ωi. The steady–state
probability current thus reads Jss = N , and the particle steady–state veloc-
ity reads

vθ(Kσ, ωi, T ) = 2πN

= 2π

{

β

∫ 2π

0

dθ eβ(Kσ cos θ+ωiθ)

[

I(2π)

1− exp (−β2πωi)
− I(θ)

]}−1

. (8)

As N → ∞, we can adopt a continuous description, where the constant
forces acting on the oscillators are distributed according to the probability
distribution g(f) with mean value f0. By introducing the shifted force dis-
tribution

g0(ω) = g(f0 + ω), (9)
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the self-consistent equation for the modulus σ of the complex order param-
eter, characterizing the degree of order or coherence in the configuration of
the variables θi is then given by

σeiψ0 =

∫

dω g0(ω)

∫ 2π

0

dθ p(θ, ω) exp(iθ) (10)

which can be decomposed into its real and imaginary part

σ cos(ψ0) =

∫

dω g0(ω)

∫ 2π

0

dθ p(θ, ω) cos θ , (11)

σ sin(ψ0) =

∫

dω g0(ω)

∫ 2π

0

dθ p(θ, ω) sin θ . (12)

By assuming that the force distribution g(f) is symmetric around f0, and
noticing that p(θ,−ω) = p(−θ, ω), the imaginary part on the right–hand side
of eq.(10) vanishes, and so one is left with

σ =

∫

dω g0(ω)

∫ 2π

0

dθ p(θ, ω) cos(θ), (13)

whose solution provides the mean field value for σ.
As discussed in [1], for N → ∞ this model exhibits a critical coupling

strength Kc, such that for K > Kc the systems exhibits a dynamical phase
transition with synchronization σ > 0, while the system is incoherent for
K < Kc, and each particle described by the coordinate θi oscillates with its
proper frequency ωi. Thus, for K & Kc we expect σ to be positive but small,
and we can expand eq. (13) in powers of ǫ = Kσ/T , obtaining

σ =
KσT

2

∫ +∞

−∞

dω
g0(ω)

(T 2 + ω2)

[

1−
K2σ2 (T 2 − 2ω2)

2 (T 2 + ω2) (4T 2 + ω2)

]

+O
(

ǫ5
)

(14)

while expanding eq. (8) the average velocity of the dynamical variable θ reads

vθ(ω) = ω

[

1−
K2σ2

2(T 2 + ω2)
+O

(

ǫ4
)

]

. (15)

Inspection of eq. (14) provides the critical coupling strength for which a
non-vanishing solution to that equation appears

Kc = 2

[
∫ +∞

−∞

dω g0(ω)
T

(T 2 + ω2)

]−1

. (16)
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The value of the order parameter σ as a function of K and T , for K > Kc

can be obtained by solving eq. (14), which gives

σ ≃

√

K −Kc

KcK3I3
≃

√

K −Kc

K4
c I3

, (17)

where

I3 =

∫ +∞

−∞

dω
g0(ω)T (T 2 − 2ω2)

4 (T 2 + ω2)2 (4T 2 + ω2)
, (18)

(19)

Notice that the equations (6), (7), (8) are exact for any value ofKσ, and in
general the value of σ as a function of K can be evaluated by solving the self-
consistent equation (14) numerically. A few comments on the velocity vθ(ω)
are now in order. Such a quantity represents the velocity of the dynamical
variable θ and is thus the velocity deviation of a particle under the effect of
a force ω with respect to the center of mass velocity f0. Inspection of eq. (5)
suggests that for K < Kc (thus for σ = 0) vθ(ω) = ω. On the other hand
vθ(ω) goes to zero as K increases above Kc: the higher K the higher are the
barriers of the periodic force in eq. (5), while σ is also an increasing function
of K.

Figure 1: Phase diagram with the critical curve as given by eq. (16) for a
gaussian force distribution g0(ω) with variance s2. In the shaded area the
model exhibits an ordered phase with σ > 0.
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2 Stochastic Thermodynamics of the micro-

scopic model

In section 1 we have discussed the dynamical properties of the model system
we will use in the present paper. We can now turn our attention to its
thermodynamic properties, namely the input and delivered power, and the
system efficiency as a global motor.

One can consider two possible scenarios as far as the forces applied on
each single particle are concerned.

In the first case the forces acting on the motor system can be either
positive or negative, thus resembling the macroscopic power grids of power
plants and consumers considered, e.g., in [4, 5, 6, 7]. Differently from those
works, we consider here microscopic oscillators, in the over-damped regime,
and with white noise acting on them. In this scenario, taking inspiration from
the macroscopic realm, one may call users those oscillators with a negative
force acting on them fi < 0, and producers those oscillators with a positive
force fi > 0, and a single force distribution characterizes the system.

The second possible scenario resembles the case of molecular motors,
where both a negative (f−

i < 0) and a positive force (f+
i > 0) are applied on

the same particle i. This is the case in, e.g., biological molecular motors such
as kinesin and myosin [8, 9] where the energy extracted by ATP hydrolysis
drives the motor forward (corresponding to f+

i > 0) while the motor does
work to carry a cargo, modelled by a negative load (corresponding to f−

i < 0)
In this case one deals with two different distributions of forces, g+(f+) and
g−(f−).

In both scenarios, in order for the system to behave globally as a motor,
and to perform work against the negative forces, we must require the center
of mass to have an average positive velocity, and thus f0 > 0.

In the following, we will consider only the first scenario and study the
delivered power Pout and the input power Pin, and, where possible, optimize
Pout wrt different parameters. We will also discuss the efficiency at maximum
power (EMP) η∗ = P ∗

out/P
∗

in.

2.1 Single force distribution

We consider here the stochastic thermodynamics of a system with either neg-
ative or positive forces applied on each oscillators, and distributed according
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to the single PDF g(f).
We can thus introduce the relevant thermodynamic quantities, namely

the average input power, absorbed by the producers, and the average output
power released by the users. Recalling that vθ as given by eq. (8) gives
the deviation of the i-th particle’s average velocity from the center of mass
velocity f0, the average output and input power read

Pout = −

∫ 0

−∞

df g(f) [vθ(f − f0) + f0] f

= −

∫

−f0

−∞

dω g0(ω) [vθ(ω) + f0] (ω + f0) , (20)

Pin =

∫ +∞

0

df g(f) [vθ(f − f0) + f0] f

=

∫ +∞

−f0

dω g0(ω) [vθ(ω) + f0] (ω + f0) . (21)

while the thermodynamic efficiency of the system reads

η =
Pout

Pin

. (22)

Substituting eqs. (15) and (17) into (20) and (21) the output and input
power becomes, up to the first order in K −Kc,

Pout = P<
0 +

K −Kc

K2
c I3

I<2 , (23)

Pin = P>
0 +

K −Kc

K2
c I3

I>2 , (24)

where

P<
0 = −

∫

−f0

−∞

dωg0(ω)(ω + f0)
2 < 0, (25)

I<2 =

∫

−f0

−∞

dωg0(ω)
(ω + f0)ω

2(T 2 + ω2)
≥ 0, (26)

with analogous definitions for P>
0 , I>2 . We notice that, in absence of partial

synchronization (K < Kc, σ = 0), i.e., when the users and the producers
are decoupled, eq. (20), (23), and (25) predict that the delivered power is
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negative. Since vθ(ω) = ω for K < Kc, the users oscillates with their proper
frequency (force) which is negative, and so the product of the applied forces
times the average velocity is positive. The term vθ(ω) in eq. (20) is always
negative, as the integration variable runs over negative value. Thus by in-
creasing K above Kc the modulus of vθ(ω) decreases and tends to zero for
very large K. This implies that for some value of K the rhs of eq. (20) be-
comes positive, such values depending on f0 and T , and on the details of the
distribution g0(ω), e.g. its width.

2.1.1 Optimization

Here we aim at optimizing the delivered power eq. (20) wrt some of the
relevant parameters.

Optimization wrt the coupling strength ∂Pout/∂K = 0 gives:

∂Pout

∂K
= −

∫

−f0

−∞

dω g0(ω)ω∂Kvθ(K,ω, T ). (27)

Recalling that the average velocity vθ goes to zero as K increases above Kc,
we find that, for ω < 0, vθ(ω,K) is an increasing function of K, ranging
from ω for K < Kc and approaching zero as K → ∞. Similarly, for ω > 0,
vθ(ω,K) is a decreasing function of K, ranging from ω for K < Kc and zero
as K → ∞. Thus, from eq. (27) it follows

∂Pout

∂K
=

{

0, ifK < Kc,

≥ 0 ifK ≥ Kc.
(28)

Similarly one finds

∂Pin

∂K
=

{

0, ifK < Kc,

≤ 0 ifK ≥ Kc.
(29)

In order to prove the last inequality we notice that

∂Pin

∂K
=

∫ +∞

−f0

dω g0(ω)(ω + f0)∂Kvθ =

∫ +f0

−f0

· · ·+

∫ +∞

f0

. . . (30)
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The second integral is negative, while for the first integral we have

∫ +f0

−f0

dω g0(ω)(ω + f0)∂Kvθ = ∂K

∫ +f0

−f0

dω g0(ω)(ω + f0)vθ

= ∂K

∫ +f0

−f0

dω g0(ω)ωvθ = 2∂K

∫ +f0

0

dω g0(ω)ωvθ

= 2

∫ +f0

0

dω g0(ω)ω∂Kvθ ≤ 0 (31)

Thus, if K is the free parameter, the optimal delivered power is achieved
for K → ∞, corresponding to the limit of strong coupling between users
and producers, with an EMP η∗ = −〈f−〉 / 〈f+〉 as obtained by eqs. (20)
and (21), where 〈f−〉 and 〈f+〉 are the average negative and positive forces,
respectively, with f0 = 〈f−〉+ 〈f+〉.

No similar inequalities can be found when one tries to maximize Pout with
respect to other parameters, for example f0. So one should consider specific
cases for the force distribution in order to study the relevant thermodynamic
quantities.

Finally, it is worth to note that the maximal possible efficiency is also
achieved for K → ∞. Indeed we have

∂Kη =
(∂KPout)Pin − Pout (∂KPin)

P 2
in

. (32)

inspection of eqs. (28) and (29) suggest that ∂Kη > 0, indeed Pin is positive
for any K, and we are interested in the regime where K is sufficiently large
such that Pout > 0. In the limit of large K, η can be evaluated from eqs. (20)
and (21), and we find η → −〈f−〉 / 〈f+〉 = 1− f0/ 〈f+〉.

2.1.2 A specific distribution

In order to exemplify the results discussed in this section, here we consider
the specific distribution

g(f) =
1

2
[δ(f − (f0 + s)) + δ(f − (f0 − s))] , (33)

where s2 is the variance of the distribution, with s > f0 > 0, i.e., there are
just two types of oscillator, the users with an applied force f0 − s < 0 and
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the producers with an applied force f0+ s > 0. The shifted force distribution
thus reads

g0(ω) =
1

2
[δ(ω − s) + δ(ω + s)] . (34)

For such a distribution the critical coupling strength reads

Kc = 2
(s2 + T 2)

T
. (35)

This corresponds to the bimodal distribution considered in [10], where the
linear stability of the incoherent solution p(θ, ω) = 1/2π of the FP equa-
tion (6) was studied, corresponding to the non-synchronized phase σ = 0.
Equations (23)-(24) thus become

Pout =
1

2
(s− f0)(f0 − vθ(s)), (36)

Pin =
1

2
(s+ f0)(f0 + vθ(s)), (37)

We recall that for K < Kc (i.e. for σ = 0), vθ(s) = s, and because of the
condition s > f0 we have Pout < 0, i.e. when the producers and users are not
coupled, the users oscillates with their proper frequency f0 − s resulting in
a negative Pout . The delivered power will become positive for some value of
K > Kc, when vθ(s) in eq. (36) becomes smaller than f0.

2.1.3 Optimization

Here we optimize the delivered power for the force distribution (34), which
corresponds to a system where on each oscillator there is either a positive
f0+s or a negative f0−s force with probability 1/2. From eq. (15) we easily
obtain the expression for the velocity deviation from the center of mass up
to the fourth order in σ

vθ(s) = s

[

1−
K2σ2

2(s2 + T 2)

]

(38)

while the order parameter, as given by eq. (17), becomes

σ =

√

∆KT (s2 + 4T 2)

K2
c (T

2 − 2s2)
(39)
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up to the leading order in ∆K.
We can now optimize Pout, as given by eq. (36), wrt to different parame-

ters:
i) By optimizing wrt to K at fixed f0 and s: ∂KPout = 0, one obtains

∂Pout

∂K
= −1/2(s− f0)

∂vθ(s)

∂K
> 0, (40)

since vθ(s) is a decreasing function of K, as already discussed above for a
general force distribution g0(ω).

ii) By optimizing Pout wrt the average force, at fixedK and s, ∂f0Pout = 0,
one obtains

f ∗

0 (s,K) =
vθ(s) + s

2
(41)

and since the condition s ≥ vθ(s) > 0 holds for any K > 0, we have s >
f ∗

0 (s,K) > s/2.
We can thus calculate the delivered and the input power, and the effi-

ciency at the maximum

P ∗

out =
1

8
(s− vθ(s))

2 (42)

P ∗

in =
1

8
(3s+ vθ(s))(s+ 3vθ(s)) (43)

η∗ =
(s− vθ(s))

2

(3s+ vθ(s))(s+ 3vθ(s))
(44)

≃
∆K2 (s2 + 4T 2)

2

16K2
c (T

2 − 2s2)2
(45)

where we have used (38) and (39) to expand η∗ up to the lowest order in ∆K
and s/T . Plots of η∗ as a function of K for different values of s are shown in
fig. 2. Inspection of this figure, as well as of eqs. (42), (43) and (44) suggests
that, for fixed s, when K increases above Kc, the optimal output power
(42) increases, the optimal input power (43) decreases, and this results in an
increase of the EMP (44). This is a consequence of the fact that vθ(s) → 0
in the limit K → ∞, where η∗ = 1/3.

Inspection of figure 2, as well as of eq. (45), suggests that a higher degree
of quenched disorder, as parametrized by s, leads to a larger EMP close to
the dynamical phase transition.
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Figure 2: Top: EMP η∗ as obtained by maximizing Pout wrt f0, as a function
of the coupling strength K and of the quenched disorder standard deviation
s (eq. (44)), with T = 1. Bottom: Plot of η∗ as a function of K for three
specific values of the quenched disorder standard deviation s. The dashed
lines correspond to the approximated expression (45).
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