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Stationary points in a PES
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Characterizing a PES

Scan of the 
relevant 

coordinates

Brute-force approach

Geometry 
optimization 
(minimum)

Reaction profile 
(transition state)

Search of stationary points
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Computing a PES

Unimolecular reactions

Bimolecular reactions (atom- or radical-recombination
process)

H + F → HF
CH3 + OH → CH3OH
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Computing a PES

Bimolecular reactions (bond breaking)

CH4 + OH → H2O + CH3

CH2 = CH2 + CH2 → CH2 = CH−CH = CH2 → cyclohexene
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Computing the PES
Scan on the coordinate for small molecules:

HF molecule: 13 structures from 0.5 to 4 Å)

H2O: 11x11 = 121 structures at frozen angle

Impractical approach for large molecules (10n points!)
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Optimization problem

Goal: find stationary points of a PES
Stationary points = first derivative is zero
Minimum = second derivatives are positive
Saddle point = second derivative negative along one
direction
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Optimization problem

Global and local minima

Energy as a function of nuclear coordinates:
Minima
Transition-state structures (saddle points)

Energy as a function of variational wavefunction
parameters:

Molecular orbital coefficients
Slater determinant coefficients
Basis function exponents
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Minimum search
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Finding a minimum

Goal: determine the nearest stationary point
Many local minima

At least, the first derivative of the energy E(q1,q2, ...) with
respect to all variables is needed (gradient g)

g = ∇E =

(
∂E
∂q1

;
∂E
∂q2

; ...

)

Convergence achieved:
g reduced below a threshold
∆E = E(qi+1

1 ,qi+1
2 , ...)− E(qi

1,q
i
2, ...) < ε
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Steepest descent method

Exploring the configurational space along a direction d

d = −g

Finding a minimum is guaranteed
Simple algorithm

Slow convergence
Hard to converge for narrow valleys
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Newton-Raphson method

Second-order expansion of E around the current point q0

q0 = q0
1,q

0
2,q

0
3...

q = q1,q2,q3...

E(q) ∼ E(q0) + gT (q− q0) +
1
2

(q− q0)T H(q− q0)

Hij =
∂2E

∂qi∂qj

g = 0 if
(q− q0) = −H−1g

Method converges to a stationary point (minimum or saddle
point)
Computing the Hessian demanding or impossible
Storage issue
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Computing the Hessian
One order of magnitude more demanding than the gradient
Approximation for computing the Hessian:

1 Initial guess
2 First step: steepest descent
3 Iterative estimation of the Hessian

Hn = Hn−1 + ∆H

∆H =
∆g∆gT

∆gT ∆q
− H∆q∆qT H

∆qT H∆q
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Geometry optimization with quantum chemistry

Methods applied to any level of theory (focus here on
quantum chemistry)

Approximated Hessian for molecules up to few hundred
atoms
Convergence improved with choice of the set of
coordinates q:

Cartesian coordinates: simple algorithms, possible slow
convergence
Internal coordinates: bond lengths and angles..., ”natural”
set, redundant
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Geometry optimization: examples
Tetrahydrofuran (THF): 39 Cartesian and 71 internal coordinates
Optimization with Hartree-Fock and 6-31G basis set

First method (1): initial structure optimized with MM
Second method (2): ”random” initial structure

E(1) E(2)

g(2)
g(1)

En
er

gy
  (

H
ar

tre
e)
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Geometry optimization: examples

H2O ground-state geometry
HF

DFT
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Geometry optimization: examples

H2O dissociation energy at HF level
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Transiton state search
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Transition-state theory

Born-Oppenheimer approximation: chemical reaction as nuclei
moving on a PES

From reactant to products: path with lowest energy, minimum
energy path (MEP)

The highest point in energy is the transition state
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Transition-state theory

Unimolecular reaction A
k1

k−1
B
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Transition-state theory

Semi-classical theory:
Classical dynamics along the reaction coordinate
Quantization of vibrational and rotational degrees of freedom

Boltzmann distribution e−∆E/kBT

Equilibrium between reactant and TS
Production B rate

k1 =
kBT
h

e−∆G‡/kBT

∆G‡ = G‡ −GA

∆G‡: activation free energy
No re-crossing assumed in the model
Single PES, i.e. thermal reaction
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Finding transition-state structures

Two main approaches for locating transition-state (TS)
structures:

Interpolation methods
Local methods

Interpolation: TS located in between two end-points
(minima)
Local: propagating from an optimized geometry, gradient
and (possibly) Hessian known
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Computing energy barriers
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Minimum energy path
Path lying on the PES between the reactants (R) and products (P),
offering least resistance to the atomic motion

Going through the saddle point, i.e. the TS

From the TS, MEP is the union of steepest descent paths to the
minima

MEP is a smooth curve φ satisfying

(∇E)⊥(φ) = 0

E. Coccia (DSCF) 25 / 37



Minimum energy path
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Nudged elastic band (NEB) method

Chain method: a string of replicas (images) of the system
between R and P is created
Images are connected with springs
Optimization algorithm is applied to relax the images down
towards the MEP
Interpolation between images to get TS
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NEB method

(Numerical) NEB convergence to the MEP
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NEB method: initialization

Reactant ~R and product ~P structures known
Possible guess of intermediates and/or TS (not needed)

path =
[
~R0,

~R1,
~R2, ....,

~RN

]
~R0 = ~R
~RN = ~P

Linear interpolation for initial chain
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NEB method: forces

Intermediate images [..., ~Ri−1,
~Ri ,
~Ri+1, ...] with a NEB force

~FNEB
i = ~F⊥i + ~FS‖

i

Parallel spring force (~FS‖
i )

Perpendicular component of the true force (~F⊥i )
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NEB method: forces

Perpendicular force ~F⊥i

~F⊥i = −∇V (~Ri)|⊥ = −∇V (~Ri) +∇V (~Ri) · ~̂τ i~̂τi

Spring force ~FS‖
i

~FS‖
i = k

(
|~Ri+1 − ~Ri | − |~Ri − ~Ri−1|

)
~̂τ i

k is a parameter given by input
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Climbing-image NEB method

After a few iterations, the spring force is not applied to the
highest energy image l

Climbs to the saddle point via a reflection of the true force
~FCI

l = ~Fl − 2~Fl · ~̂τI~̂τ I

~̂τI is the tangent vector to the path, referred to the image I
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NEB method: convergence

Spring force on each image fully determined
Minimization algorithm to compute energy and gradients
(true force)
Iterate until absolute value of the maximum component of
the NEB force at every image is less than a given threshold

|~FNEB
max ,i | < ε ∀i
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NEB method: interpolation
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NEB method: algorithm

1. Set ~R and ~P

2. Construct an initial path between ~R and ~P. Chosen by linear
interpolation or according to the user’s strategy

3. Compute the energy E(~Ri), and the force on each image defined
by the gradient of PES
~Fi = −∇E(~Ri)

4. Compute the tangent ~̂τ i to the pathway at each image

5. Connect each pair of images with a spring, yielding a force on
each image of

~FS‖
i = k

(
|~Ri+1 − ~Ri | − |~Ri − ~Ri−1|

)
τ̂i

6. Project out the component of the interatomic force parallel to the
tangent at each image i, ~F⊥i = −∇E(~Ri) +∇E(~Ri) · ~̂τ i ~̂τi

7. Minimize the energy for each image using ~FNEB
i = ~F⊥i + ~FS‖

i

Steps from 3 to 7 will be repeated until getting a NEB force smaller than a tolerance

8. Cubic polynomial piecewise interpolation of the final images
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NEB method: example

Hydrolysis of methyl-acetate into acetic acid and methanol

REACTANTS PRODUCTS
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NEB method: example

Level of theory: DFT with B3LYP functional and DEF2-SVP
basis set
Eight intermediate images
Final interpolation
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