Chimica Computazionale Geometry optimization and reaction profile

Emanuele Coccia

PhotoInduced Quantum Dynamics (PIQD) Group

< ロ > < 同 > < 三 >

Characterizing a PES

イロン イボン イヨン イヨン

Stationary points in a PES

Characterizing a PES

Brute-force approach

Search of stationary points

イロト イヨト イヨト イヨト

Computing a PES

• Unimolecular reactions

æ

Computing a PES

Unimolecular reactions

Bimolecular reactions (atom- or radical-recombination process)

Computing a PES

• Bimolecular reactions (bond breaking)

 $\begin{array}{rcl} \mathsf{CH}_4 + \mathsf{OH} & \rightarrow & \mathsf{H}_2\mathsf{O} + \mathsf{CH}_3\\ \mathsf{CH}_2 = \mathsf{CH}_2 + \mathsf{CH}_2 & \rightarrow & \mathsf{CH}_2 = \mathsf{CH} - \mathsf{CH} = \mathsf{CH}_2 \rightarrow \mathsf{cyclohexene} \end{array}$

E. Coccia (DSCF)

Computing the PES

Scan on the coordinate for small molecules:
 HF molecule: 13 structures from 0.5 to 4 Å)

イロト イヨト イヨト イヨト

Computing the PES

Scan on the coordinate for small molecules:
 HF molecule: 13 structures from 0.5 to 4 Å)

Computing the PES

Scan on the coordinate for small molecules:
 HF molecule: 13 structures from 0.5 to 4 Å)

Impractical approach for large molecules (10ⁿ points!)

E. Coccia (DSCF)

- Goal: find stationary points of a PES
- Stationary points = first derivative is zero
- Minimum = second derivatives are positive
- Saddle point = second derivative negative along one direction

æ

- Energy as a function of nuclear coordinates:
 - Minima
 - Transition-state structures (saddle points)

イロト イポト イヨト イヨト

- Energy as a function of nuclear coordinates:
 - Minima
 - Transition-state structures (saddle points)
- Energy as a function of variational wavefunction parameters:
 - Molecular orbital coefficients
 - Slater determinant coefficients
 - Basis function exponents

イロト イポト イヨト イヨト

Minimum search

æ

- Goal: determine the nearest stationary point
- Many local minima

イロト イヨト イヨト イヨト

- Goal: determine the nearest stationary point
- Many local minima
- At least, the first derivative of the energy *E*(**q**₁, **q**₂, ...) with respect to all variables is needed (gradient **g**)

$$\mathbf{g} = \nabla E = \left(\frac{\partial E}{\partial \mathbf{q}_1}; \frac{\partial E}{\partial \mathbf{q}_2}; \ldots\right)$$

イロト イポト イヨト イヨト

- Goal: determine the nearest stationary point
- Many local minima
- At least, the first derivative of the energy *E*(**q**₁, **q**₂, ...) with respect to all variables is needed (gradient **g**)

$$\mathbf{g} = \nabla E = \left(\frac{\partial E}{\partial \mathbf{q}_1}; \frac{\partial E}{\partial \mathbf{q}_2}; \ldots\right)$$

• Convergence achieved:

- g reduced below a threshold
- $\Delta E = E(\mathbf{q}_1^{i+1}, \mathbf{q}_2^{i+1}, ...) E(\mathbf{q}_1^i, \mathbf{q}_2^i, ...) < \epsilon$

Steepest descent method

• Exploring the configurational space along a direction d

 $\mathbf{d} = -\mathbf{g}$

- Finding a minimum is guaranteed
- Simple algorithm

- Slow convergence
- Hard to converge for narrow valleys

E. Coccia (DSCF)

・ロト ・回ト ・ヨト

Newton-Raphson method

- Second-order expansion of *E* around the current point \mathbf{q}^0
- $\mathbf{q}^0 = \mathbf{q}_1^0, \mathbf{q}_2^0, \mathbf{q}_3^0...$ $\mathbf{q} = \mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3...$

$$E(\mathbf{q}) \sim E(\mathbf{q}^{0}) + \mathbf{g}^{T}(\mathbf{q} - \mathbf{q}^{0}) + \frac{1}{2}(\mathbf{q} - \mathbf{q}^{0})^{T}\mathbf{H}(\mathbf{q} - \mathbf{q}^{0})$$
$$\mathbf{H}_{ij} = \frac{\partial^{2}E}{\partial \mathbf{q}_{i}\partial \mathbf{q}_{j}}$$

• **g** = 0 if

$$(\mathbf{q} - \mathbf{q}^0) = -\mathbf{H}^{-1}\mathbf{g}$$

Newton-Raphson method

- Second-order expansion of *E* around the current point \mathbf{q}^0
- $\mathbf{q}^0 = \mathbf{q}_1^0, \mathbf{q}_2^0, \mathbf{q}_3^0...$ $\mathbf{q} = \mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3...$

$$E(\mathbf{q}) \sim E(\mathbf{q}^{0}) + \mathbf{g}^{T}(\mathbf{q} - \mathbf{q}^{0}) + \frac{1}{2}(\mathbf{q} - \mathbf{q}^{0})^{T}\mathbf{H}(\mathbf{q} - \mathbf{q}^{0})$$
$$\mathbf{H}_{ij} = \frac{\partial^{2}E}{\partial \mathbf{q}_{i}\partial \mathbf{q}_{j}}$$

● **g** = 0 if

$$(\mathbf{q} - \mathbf{q}^0) = -\mathbf{H}^{-1}\mathbf{g}$$

Method converges to a stationary point (minimum or saddle point)

Newton-Raphson method

- Second-order expansion of *E* around the current point \mathbf{q}^0
- $\mathbf{q}^0 = \mathbf{q}_1^0, \mathbf{q}_2^0, \mathbf{q}_3^0...$ $\mathbf{q} = \mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3...$

$$E(\mathbf{q}) \sim E(\mathbf{q}^{0}) + \mathbf{g}^{T}(\mathbf{q} - \mathbf{q}^{0}) + \frac{1}{2}(\mathbf{q} - \mathbf{q}^{0})^{T}\mathbf{H}(\mathbf{q} - \mathbf{q}^{0})$$
$$\mathbf{H}_{ij} = \frac{\partial^{2}E}{\partial \mathbf{q}_{i}\partial \mathbf{q}_{j}}$$

• **g** = 0 if

$$(\mathbf{q} - \mathbf{q}^0) = -\mathbf{H}^{-1}\mathbf{g}$$

- Method converges to a stationary point (minimum or saddle point)
- Computing the Hessian demanding or impossible
- Storage issue

E. Coccia (DSCF)

< ロ > < 同 > < 回 > < 回 > .

Computing the Hessian

- One order of magnitude more demanding than the gradient
- Approximation for computing the Hessian:
 - 🚺 Initial guess
 - Pirst step: steepest descent
 - Iterative estimation of the Hessian

 Methods applied to any level of theory (focus here on quantum chemistry)

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Methods applied to any level of theory (focus here on quantum chemistry)
- Approximated Hessian for molecules up to few hundred atoms

- Methods applied to any level of theory (focus here on quantum chemistry)
- Approximated Hessian for molecules up to few hundred atoms
- Convergence improved with choice of the set of coordinates **q**:
 - Cartesian coordinates: simple algorithms, possible slow convergence

(日) (同) (目) (日) (日)

- Methods applied to any level of theory (focus here on quantum chemistry)
- Approximated Hessian for molecules up to few hundred atoms
- Convergence improved with choice of the set of coordinates q:
 - Cartesian coordinates: simple algorithms, possible slow convergence
 - Internal coordinates: bond lengths and angles..., "natural" set, redundant

(日) (同) (目) (日) (日)

- Tetrahydrofuran (THF): 39 Cartesian and 71 internal coordinates
- Optimization with Hartree-Fock and 6-31G basis set
 - First method (1): initial structure optimized with MM
 - Second method (2): "random" initial structure

H₂O ground-state geometry

HF

$L_{\rm max}$	Basis	$R_{ m OH}({ m \AA})$	$ heta_{ m HOH}$ (°)		
1					
2	cc-pVDZ	0.9463	104.61		
3	cc-pVTZ	0.9406	106.00		
4	cc-pVQZ	0.9396	106.22		
5	cc-pV5Z	0.9396	106.33		
6	cc-pV6Z	0.9396	106.33		

æ

▲口> ▲圖> ▲理> ▲理> --

H₂O ground-state geometry

HF

L_{\max}	Basis	$R_{ m OH}({ m \AA})$	$ heta_{ m HOH}$ (°)		
1					
2	cc-pVDZ	0.9463	104.61		
3	cc-pVTZ	0.9406	106.00		
4	cc-pVQZ	0.9396	106.22		
5	cc-pV5Z	0.9396	106.33		
6	cc-pV6Z	0.9396	106.33		

DFT

Basis	LSDA	BLYP	PBE	HCTH	B3LYP	PBE0	Basis	LSDA	BLYP	PBE	HCTH	B3LYP	Р
pc-0	0.9878	0.9962	0.9936	0.9854	0.9841	0.9806	pc-0	111.82	109.27	109.40	109.43	110.72	11
oc-1	0.9764	0.9791	0.9763	0.9656	0.9683	0.9645	pc-1	104.15	103.24	103.09	103.22	104.06	10
pc-2	0.9696	0.9706	0.9689	0.9589	0.9604	0.9574	pc-2	105.10	104.56	104.27	104.52	105.19	10
pc-3	0.9700	0.9704	0.9689	0.9589	0.9604	0.9576	pc-3	104.98	104.52	104.21	104.44	105.13	10
pc-4	0.9700	0.9704	0.9689	0.9590	0.9604	0.9576	pc-4	104.98	104.52	104.21	104.42	105.13	10

◆□ → ◆□ → ◆三 → ◆三 → ● ◆ ● ◆ ●

H₂O dissociation energy at HF level

イロン イボン イヨン

Transiton state search

(日) (同) (目) (日) (日)

Born-Oppenheimer approximation: chemical reaction as nuclei moving on a PES

イロン イボン イヨン イヨン

- Born-Oppenheimer approximation: chemical reaction as nuclei moving on a PES
- From reactant to products: path with lowest energy, minimum energy path (MEP)

ヘロト ヘ回ト ヘヨト ヘヨト

- Born-Oppenheimer approximation: chemical reaction as nuclei moving on a PES
- From reactant to products: path with lowest energy, minimum energy path (MEP)
- The highest point in energy is the transition state

• Unimolecular reaction A $\underset{k_{-1}}{\overset{k_1}{\longleftarrow}}$ B

2
- Semi-classical theory:
 - Classical dynamics along the reaction coordinate
 - Quantization of vibrational and rotational degrees of freedom

< ロ > < 同 > < 三 >

- Semi-classical theory:
 - Classical dynamics along the reaction coordinate
 - Quantization of vibrational and rotational degrees of freedom
- Boltzmann distribution $e^{-\Delta E/k_BT}$
- Equilibrium between reactant and TS

イロン イ理シ イヨン イヨン

- Semi-classical theory:
 - Classical dynamics along the reaction coordinate
 - Quantization of vibrational and rotational degrees of freedom
- Boltzmann distribution $e^{-\Delta E/k_B T}$
- Equilibrium between reactant and TS
- Production B rate

$$k_{1} = \frac{k_{B}T}{h}e^{-\Delta G_{\ddagger}/k_{B}T}$$
$$\Delta G_{\ddagger} = G_{\ddagger} - G_{A}$$

• ΔG_{\ddagger} : activation free energy

- Semi-classical theory:
 - Classical dynamics along the reaction coordinate
 - Quantization of vibrational and rotational degrees of freedom
- Boltzmann distribution $e^{-\Delta E/k_B T}$
- Equilibrium between reactant and TS
- Production B rate

$$k_{1} = \frac{k_{B}T}{h}e^{-\Delta G_{\ddagger}/k_{B}T}$$
$$\Delta G_{\ddagger} = G_{\ddagger} - G_{A}$$

- ΔG_{\ddagger} : activation free energy
- No re-crossing assumed in the model

- Semi-classical theory:
 - Classical dynamics along the reaction coordinate
 - Quantization of vibrational and rotational degrees of freedom
- Boltzmann distribution $e^{-\Delta E/k_B T}$
- Equilibrium between reactant and TS
- Production B rate

$$k_{1} = \frac{k_{B}T}{h}e^{-\Delta G_{\ddagger}/k_{B}T}$$
$$\Delta G_{\ddagger} = G_{\ddagger} - G_{A}$$

- ΔG_{\ddagger} : activation free energy
- No re-crossing assumed in the model
- Single PES, i.e. thermal reaction

Finding transition-state structures

- Two main approaches for locating transition-state (TS) structures:
 - Interpolation methods
 - Local methods

Finding transition-state structures

- Two main approaches for locating transition-state (TS) structures:
 - Interpolation methods
 - Local methods
- Interpolation: TS located in between two end-points (minima)

ヘロン ヘアン ヘビン ヘビン

Finding transition-state structures

- Two main approaches for locating transition-state (TS) structures:
 - Interpolation methods
 - Local methods
- Interpolation: TS located in between two end-points (minima)
- Local: propagating from an optimized geometry, gradient and (possibly) Hessian known

イロン イ理 とくほ とくほ とう

Computing energy barriers

æ

Minimum energy path

- Path lying on the PES between the reactants (R) and products (P), offering least resistance to the atomic motion
- Going through the saddle point, i.e. the TS
- From the TS, MEP is the union of steepest descent paths to the minima
- MEP is a smooth curve ϕ satisfying

 $(\nabla E)^{\perp}(\phi)=0$

Minimum energy path

ъ

イロン イボン イヨン イヨン

- Chain method: a string of replicas (images) of the system between R and P is created
- Images are connected with springs
- Optimization algorithm is applied to relax the images down towards the MEP
- Interpolation between images to get TS

(Numerical) NEB convergence to the MEP

NEB method: initialization

- Reactant \vec{R} and product \vec{P} structures known
- Possible guess of intermediates and/or TS (not needed)

path =
$$\begin{bmatrix} \vec{R}_0, \vec{R}_1, \vec{R}_2, ..., \vec{R}_N \end{bmatrix}$$

 $\vec{R}_0 = \vec{R}$
 $\vec{R}_N = \vec{P}$

• Linear interpolation for initial chain

NEB method: forces

• Intermediate images $[..., \vec{R}_{i-1}, \vec{R}_i, \vec{R}_{i+1}, ...]$ with a NEB force

$$ec{F}_i^{NEB} = ec{F}_i^{\perp} + ec{F}_i^{S\parallel}$$

- Parallel spring force $(\vec{F}_i^{S\parallel})$
- Perpendicular component of the true force (\vec{F}_i^{\perp})

Image: A matrix and a matrix

• Perpendicular force \vec{F}_i^{\perp}

$$ec{F}_i^{\perp} = -
abla V(ec{R}_i)|_{\perp} = -
abla V(ec{R}_i) +
abla V(ec{R}_i) \cdot \widehat{ au}_i \widehat{ au}_i$$

æ

・ロン ・聞と ・ 聞と ・ 聞と

• Perpendicular force \vec{F}_i^{\perp}

$$\vec{F}_{i}^{\perp} = -\nabla V(\vec{R}_{i})|_{\perp} = -\nabla V(\vec{R}_{i}) + \nabla V(\vec{R}_{i}) \cdot \hat{\vec{\tau}}_{i} \hat{\vec{\tau}}_{i}$$
• Spring force $\vec{F}_{i}^{S\parallel}$

$$\vec{F}_{i}^{S\parallel} = k \left(|\vec{R}_{i+1} - \vec{R}_{i}| - |\vec{R}_{i} - \vec{R}_{i-1}| \right) \hat{\vec{\tau}}_{i}$$

• k is a parameter given by input

< ⊇ > -

< ロ > < 同 > < 三 >

Climbing-image NEB method

 After a few iterations, the spring force is not applied to the highest energy image I

(日) (同) (目) (日) (日)

Climbing-image NEB method

- After a few iterations, the spring force is not applied to the highest energy image I
- Climbs to the saddle point via a reflection of the true force

$$\vec{F}_{l}^{Cl} = \vec{F}_{l} - 2\vec{F}_{l}\cdot\hat{\vec{\tau}_{l}}\hat{\vec{\tau}_{l}}$$

Climbing-image NEB method

- After a few iterations, the spring force is not applied to the highest energy image I
- Climbs to the saddle point via a reflection of the true force

$$ec{F}_l^{Cl} = ec{F}_l - 2ec{F}_l\cdot \widehat{ec{ au}}_l\widehat{ec{ au}}_l$$

• $\hat{\tau}_l$ is the tangent vector to the path, referred to the image *l*

NEB method: convergence

- Spring force on each image fully determined
- Minimization algorithm to compute energy and gradients (true force)
- Iterate until absolute value of the maximum component of the NEB force at every image is less than a given threshold

$$|\vec{F}_{\max,i}^{NEB}| < \varepsilon \quad \forall i$$

Image: A matrix and a matrix

NEB method: interpolation

1. Set \vec{R} and \vec{P}

・・

E. Coccia (DSCF)

- 1. Set \vec{R} and \vec{P}
- 2. Construct an initial path between \vec{R} and \vec{P} . Chosen by linear interpolation or according to the user's strategy

- 1. Set \vec{R} and \vec{P}
- 2. Construct an initial path between \vec{R} and \vec{P} . Chosen by linear interpolation or according to the user's strategy
- 3. Compute the energy $E(\vec{R}_i)$, and the force on each image defined by the gradient of PES $\vec{F}_i = -\nabla E(\vec{R}_i)$

- 1. Set \vec{R} and \vec{P}
- 2. Construct an initial path between \vec{R} and \vec{P} . Chosen by linear interpolation or according to the user's strategy
- 3. Compute the energy $E(\vec{R}_i)$, and the force on each image defined by the gradient of PES $\vec{F}_i = -\nabla E(\vec{R}_i)$
- 4. Compute the tangent $\hat{\tau}_i$ to the pathway at each image

- 1. Set \vec{R} and \vec{P}
- 2. Construct an initial path between \vec{R} and \vec{P} . Chosen by linear interpolation or according to the user's strategy
- 3. Compute the energy $E(\vec{R}_i)$, and the force on each image defined by the gradient of PES $\vec{F}_i = -\nabla E(\vec{R}_i)$
- 4. Compute the tangent $\hat{\vec{\tau}}_i$ to the pathway at each image
- 5. Connect each pair of images with a spring, yielding a force on each image of

$$\vec{F}_i^{S\parallel} = k \left(|\vec{R}_{i+1} - \vec{R}_i| - |\vec{R}_i - \vec{R}_{i-1}| \right) \hat{\tau}_i$$

- 1. Set \vec{R} and \vec{P}
- 2. Construct an initial path between \vec{R} and \vec{P} . Chosen by linear interpolation or according to the user's strategy
- 3. Compute the energy $E(\vec{R}_i)$, and the force on each image defined by the gradient of PES $\vec{F}_i = -\nabla E(\vec{R}_i)$
- 4. Compute the tangent $\hat{\vec{\tau}}_i$ to the pathway at each image
- 5. Connect each pair of images with a spring, yielding a force on each image of

$$\vec{F}_i^{S\parallel} = k\left(|\vec{R}_{i+1} - \vec{R}_i| - |\vec{R}_i - \vec{R}_{i-1}|\right)\hat{\tau}_i$$

6. Project out the component of the interatomic force parallel to the tangent at each image i, $\vec{F}_i^{\perp} = -\nabla E(\vec{R}_i) + \nabla E(\vec{R}_i) \cdot \hat{\vec{\tau}}_i \hat{\vec{\tau}}_i$

ヘロン 人間 とくほ とくほ とう

- 1. Set \vec{R} and \vec{P}
- 2. Construct an initial path between \vec{R} and \vec{P} . Chosen by linear interpolation or according to the user's strategy
- 3. Compute the energy $E(\vec{R}_i)$, and the force on each image defined by the gradient of PES $\vec{F}_i = -\nabla E(\vec{R}_i)$
- 4. Compute the tangent $\hat{\vec{\tau}}_i$ to the pathway at each image
- 5. Connect each pair of images with a spring, yielding a force on each image of

$$\vec{F}_i^{S\parallel} = k \left(|\vec{R}_{i+1} - \vec{R}_i| - |\vec{R}_i - \vec{R}_{i-1}| \right) \hat{\tau}_i$$

- 6. Project out the component of the interatomic force parallel to the tangent at each image i, $\vec{F}_i^{\perp} = -\nabla E(\vec{R}_i) + \nabla E(\vec{R}_i) \cdot \hat{\vec{\tau}}_i \hat{\vec{\tau}}_i$
- 7. Minimize the energy for each image using $\vec{F}_i^{\text{NEB}} = \vec{F}_i^{\perp} + \vec{F}_i^{S\parallel}$

Steps from 3 to 7 will be repeated until getting a NEB force smaller than a tolerance

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

- 1. Set \vec{R} and \vec{P}
- 2. Construct an initial path between \vec{R} and \vec{P} . Chosen by linear interpolation or according to the user's strategy
- 3. Compute the energy $E(\vec{R}_i)$, and the force on each image defined by the gradient of PES $\vec{F}_i = -\nabla E(\vec{R}_i)$
- 4. Compute the tangent $\hat{\vec{\tau}}_i$ to the pathway at each image
- 5. Connect each pair of images with a spring, yielding a force on each image of

$$\vec{F}_i^{S\parallel} = k \left(|\vec{R}_{i+1} - \vec{R}_i| - |\vec{R}_i - \vec{R}_{i-1}| \right) \hat{\tau}_i$$

- 6. Project out the component of the interatomic force parallel to the tangent at each image i, $\vec{F}_i^{\perp} = -\nabla E(\vec{R}_i) + \nabla E(\vec{R}_i) \cdot \hat{\vec{\tau}}_i \hat{\vec{\tau}}_i$
- 7. Minimize the energy for each image using $\vec{F}_i^{NEB} = \vec{F}_i^{\perp} + \vec{F}_i^{S\parallel}$ Steps from 3 to 7 will be repeated until getting a NEB force smaller than a tolerance
- 8. Cubic polynomial piecewise interpolation of the final images

NEB method: example

Hydrolysis of methyl-acetate into acetic acid and methanol

NEB method: example

- Level of theory: DFT with B3LYP functional and DEF2-SVP basis set
- Eight intermediate images
- Final interpolation

