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oo Cox Regression Model

The scale on which linearity is assumed is the log-hazard scale:

h(t|X) = ho(t)eXP(X1,31 + X6, + X3f3 + -+ + Xpﬁp)

l h(t|X)
o9 ( ho(t)

) = X1B1 + X562 + X3p3 + -+ X, B

e hy(t) is the baseline hazard function

e the exponential function represents the effect of the linear combination of
the covariates X on the hazard

The aim is to determine the joint effect of the covariates on the hazard or fo

focus on a specific effect. /SREy  UNTADI BIOSTATISTIcA
(‘) Dipmimente Univestaric Sties



Block 4.3

Proportional hazards (PH)

The hazard at any given time for an individual in one group is proportional to the hazard at any given
time for an individual in the other group. If the hazard functions are proportional -> survival functions do
not cross one another...
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Block 4.3

Cox model assumes proportional hazards (PH). Covariates X have always the
same relative effect along time:

h(t]X )= hy (t)exp(X, B, + X, 8, +...+ X, B, )= hy (t)exp(Xp)
The function exp(XB) does not depend on't

Hazard Rafio between two subjects, with covariates X and X* does not depend on t:

hy (t)exp(XB)
hy (t)exp(X*p

If PH assumption does not hold, standard Cox model could be no longer valid
[we could check for this] [fthere are extensions]

= exp((X —X*)B)
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h;(t]1X;) = ho()exp(X;f)

* [ is the difference in the log-hazard function comparing two subpopulations differing in x;
by “1-unit” and that are similar with respect to all other covariates in the model

« the effect expressed by gy is adjusted for all other covariates in the model, so it has the
interpretation of a log-relative hazard associated with a change in x;, holding other
covariates constant at some fixed value

« sit possible to compare hypothetical patients with different covariates values and check
how their estimated survival curves appear; [remind: the baseline hazard depends on the
study cohort...]

« the Cox PH modelis a model for the hazard more than a model for survival fime, although
they are related one-to-one if no competing risks exists
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Block 4.3

Survival function derived from the Cox regression model
(no competing risks, no time-dependent variables)

Once the p are estimated, we can obtain the corresponding survival function:
S(t|x) = So(t)exp(Bx)

So(t) is derived from an estimate of the cumulative baseline hazard
(a derivation in the non-parametric form, similar to the Nelson-Aalen formulation)

The estimate of S,(t) and a fixed set of values for the explanatory variables produce an
estimate of the survival function for a specific person or group.

The expression for S(t|x) shows that proportional hazard functions dictate that the estimated
survival functions do not intersect.
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Block 4.3

Table 3 Univariable and multivariable analysis (primary analysis Cox)

Ovutcome: Death or CV hosp

Variables Univariable analysis

Multivariable analysis

Cardiac rehabilitation 0.601 (0.476-0.758)
NSTEMI 1.361 (1.043-1.774)
Male 1.168 (0.898-1.517)
STEMI 0.908 (0.701-1.176)
PCI 1.343 (1.036-1.742)
CABG 0.621 (0.465-0.828)
Ejection fraction 0.979 (0.967-0.991)
Diabetes 1.548 (1.219-1.966)
Hypertension 1.161 (0.887-1.520)
Smoking 1.121 (0.860-1.463)
Dyslipidaemia 0.897 (0.708-1.138)
Beta-blockers 1. 244 (0.910-1.701)
ACE-inhibitors/ARBs 1.367 (1.005-1.859)
Statins/ezetimibe 0.607 (0.426-0.865)
ASA 0.932 (0.510-1.703)
DAPT 1.245 (0.968-1.601)
Chronic kidney disease 2.409 (/1.823-3.182)
Previous ACS 1.443 (1.111-1.873)
Previous PCI 1.718 (1.299-2.272)
Previous CABG 1.884 (1.240-2.861)

0.578 (0.432-0.773)

0.639 (0.466-0.876)
0.986 (0.973-0.999)
1.460 (1.107-1.926)

0.518 (0.345-0.776)

2.441 (1.775-3.358)

0.005
0.035
0.007

0.001

<0.001

ACE-inhibitors, angiotensin-converting enzyme inhibitor; ACS, acute coronary syndrome; ARBs, angiotensin receptor blockers; ASA, acetylsalicylic acid; CABG, coronary TATISTICA

artery bypass graft; Cl, confidence interval; DAPT, dual antiplatelet therapy; NSTEMI, non-ST-elevation myocardial infarction; PCl, percutaneous coronary intervention;

STEMI, ST-elevation myocardial infarction.

itario Clinico di
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Estimated Survival Free from CV Hosp
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Estimated survival curves from the Cox
model.

The curves are estimated for patients
having the median ejection fraction
(56%) of the population.

CABG : coronary artery bypass graft;
CRF: chronic renal failure;

Diab: diabetes;

EZE: ezetimibe;

Rehab: cardiac rehabilitation.

This study demonstrated the

positive effects of CR program in the
real world showing a decreased risk of
CV hospitalizations and mortality
during a long-term follow-up.
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Block 4.3

The Cox model assumes that the hazards are proportional (PH), which means that the hazard ratio is
constant over time with different predictor or covariate levels.

This PH assumption in any covariate is quite a strong assumption. Considering the complexity of biological
and physiological responses and associations, this assumption has rarely a solid justification.

If PH doesn’t exactly hold for a particular covariate but we fit the PH model anyway, then what we are
getting is sort of an average HR, averaged over the event times.

The two most common ways to assess the PH assumption are:
« Visual assessment by means of the log-cumulative hazard plot

» Testing of scaled Schoenfeld residuals

Eventually, if the non-PH variable is a categorical one, it could make sense using a stratified approach

UNITA DI BIOSTATISTICA
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Block 4.3

If the estimated log-cumulative hazards for individuals with
different values of X (categorical) are plotted against fime, the
curves will be parallel if the PH assumption is valid.

h;(t|X;) = ho(t)exp(X;p)

~ A |
t t . .
J h;(uw)du = exp(Xi,B)f ho(uw)du 2 o
0 0 b
g —
:
H;(t|X;) = exp(X;B)H(t) 57
\ / E} T — Karnofsky<40
—— 40<=Karnofsky<70
<+ Karnofsky>=70
Cumulative hazard functions L | | | ; ; !
1 5 10 50 100 500 1000
Days
log (Hi(t|Xi)) = X;B + log (Ho (t)) « Values of X need to be categorical/grouped

« Just a visual appreciation
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Block 4.3
Just a note about Schoenfeld residuals

Time-varying residuals from the model are added to the corresponding time-invariant coefficient

estimate f and smoothed. The result is a plot of an estimate of the regression coefficient for the
covariate over time. If the plot is reasonably flat (there is here a formal test), the PH assumption holds.

Sk,j E(sk ;) + Bj =~ B;(tx)

Schoenfeld residual for covariate Xj at time tk

0.020
|

The Schoenfeld residuals are the differences
between that individual's covariate values at
the event time k and the corresponding risk-
weighted average of covariate values among
all those at risk at that time.

0.010
|

Beta(t) for glut_score

0.000
|

The word "residual” thus makes sense, as it's the
difference between an observed covariate
value and what you might have expected

-0.010
|

based on all those at risk at that time.

Time
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The Siratified Cox Model

Suppose a confounder C has k levels on which we would like to stratify when
comparing h(t|E) and h(f|not E) where E is an indicator of “exposure”.

h, (t|E) = hy; (t)exp(ES)
=1k

1. A [non-parametric] baseline hazard is estimated within each stratum (solve ev. non PH
hazard)

2. If the confounder is confrolled using stratification, there is no way to estimate an hazard
ratio comparing two levels of the confounder.

3. Stratification generally requires more data 1o obtain the same precision in coefficient
estimates

UNITA DI BIOSTATISTICA
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Block 4.3

Example of application @ ESC

SCORE2 risk prediction algorithms 75 et

1. Model development

Sex-specific, competing risk-
adjusted risk models derived in 45
prospective cohorts in 13 countries

(~680,000 individuals, and
~30,000 CVD events)

!

Recalibration to four risk regions in
Europe using age-, sex-, and region-
specific risk factor values and CVD
incidence rates (derived using data
on ~10.8 million individuals)

2. Model validation

External validation in 25 prospective
cohorts in 15 European countries
(~1.1 million individuals, and
~43,000 CVD events)

l

C-indices ranged from 0.67 (95%
confidence interval [Cl] 0.65-0.68)
to 0.81 (95% Cl 0.76-0.86)

SCORE?2 risk prediction algorithms key features

" Sex-specific risk prediction models

S

t *  Estimate 10-year risk of fatal and non-fatal CVD

Calibrated to the most contemporary and representative CVD rates

et
n. Can be rapidly updated to reflect future CVD incidence and risk
% factor profiles

Available for four distinct European risk regions

E

& g

‘ Individual example .
Patient risk factors:
50 years old
Smoker
SBP: 140 mmHg
Cholesterol: 5.5 mmol/L
HDL-c: 1.3 mmol/L

l | 101-year risk ]depending oln risk regilon | ]

Low Moderate High Veryhigh Low Moderate High Veryhigh
risk risk risk risk risk risk risk risk

4.2% 5.1% 6.9% 13.7% 5.9% 7.5% 8.1% 14.0%
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Block 4.3

The SCORE2 (OP) algorithms are used to estimate 10-year cardiovascular risk in individuals aged 40-69
and 70+, respectively. These algorithms, developed by the European Society of Cardiology (ESC), are
designed for use across various regions in Europe, including those with low, moderate, high, and very
high risk profiles (different baseline hazard).

Countries were grouped into
four risk regions according to
their most recently reported
WHO age- and sex-
standardized overall CVD
mortality rates per 100,000
population

* lowrisk (<100 CVD deaths
per 100,000)

 moderate risk (100 to <150
CVD deaths per 100,000)

* highrisk (150 to <300 CVD
deaths per 100,000)

« very high risk (=300 CVD
deaths per 100,000)

Risk regions
Low risk
Moderate risk
| High risk
[l Very high risk

-
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- ——— |

no status days ulc thick

1 89 = 10 1 =7 o Z

Worked Example In R : 2] o I :

<1 1 = 99 Z 290 1

. S5 21 1 185 1 1208 Z

> ||brOrY(|SWR) o 459 1 204 1 484 Z

> dOTO(me|Oﬂom) 7 585 1 210 1 516 2

8 i 1 232 1 1288 =

b= Q32 = 232 1 322 1

status: indicator of the patient’s status by the 10 944 1 279 1 741 1

end Of -I-he S-I-Udy: 11 %58 1 295 1 4719 1

— ki . 'R 12 al2 = 355 1 15 1

1="dead from malignant melanoma

o . - 13 2 1 FEG 1 FIBT 1

2_ Gllve 14 233 1 426 1 484 2

3= "dead from other causes” 15 418 1 469 1 242 1

1& a5 = 493 1 1256 Z

days: observation time in days 17 77 ! 529 ! 580 2

ule: 1=present (fumor ulcerated) 2 = absent ' o : == : o8 °

N . . 19 =7 1 =29 1 5418 =

thick: tumor thickness o e1s : ces : S ,

sex: 1 for women and 2 for men 21 10 1 667 1 1285 1
22 15 1 18 1 2324 Z [

N
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Block 4.3

R code for the Cox Model

Consider a model with the single regressor sex:

ft coef exp(coef) se(coef)  z Pr(>|z])
#t sex 0.6622  1.9390 0.2651 2.498 0.0125 *
-

## Signif. codes: @ '***' 9,001 "**' @.01 '*' 0.05 '.' 0.1 ' ' 1

H

##  exp(coef) exp(-coef) lower .95 upper .95

Ht sex 1.939 0.5157 1.153 3.26

H

## Concordance= 0.59 (se = 0.033 )

## Rsquare= 0.03  (max possible= 0,937 )

## Likelihood ratio test= 6.15 on 1 df, p=0.01314
## Wald test =6.24 on1ldf, p=0.01251
## Score (logrank) test = 6.47 on 1 df, p=0.01098

mod.sex <- coxph(Surv(days,status==1)~sex)
summary(mod.sex)

‘Males (=2) have an
> ‘hazard nearly ’rvwce
than women (=1)

These tests are all _
equwclen’r in large samples
but may differ somewhat i |n
smoll -sample cases '

UNITA DI BIOSTATISTICA
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Block 4.3

A more elaborate example, involving also a continuous
covariate:

mod.cov <- coxph(Surv(days,status==1)~sex+log(thick))
summary(mod.cov)

‘thick’ is the tumor thickness; we use logarithm since
the distribution is asymmetric:

Histogram of thick Histogram of log(thick)

40

80 100
| |

Frequency
40 60
Frequency
10 20
|

20

b IR

| T T 1 T T T T T 1
0 500 1000 1500 2 3 4 5 ] 7

thick log(thick)

'. ) R code for the Cox Model

HR of log(thick)=2.18

each 1 point change in log(thick)
IS associated with a 2.2-fold
Increase in a patient’s risk

i coef exp(coef) se(coef)  z Pr(>|z|)

## sex 0.4580  1.5809 0.2687 1.705 ©0.0883 .

## log(thick) 0.7809  2.1834  0.1573 4.963 6.94e-07 ***

i ---

## Signif. codes: @ "***' 9,001 "**' @.01 *' 0.05'.' 0.1 "' "1
#

it exp(coef) exp(-coef) lower .95 upper .95

# sex 1,581 0.6326  0.9337 2.677

## log(thick) 2,183 0.4580  1.6040 2.972

Note that taking into account log(thick)
the effect of sex is reduced...

UNITA DI BIOSTATISTICA
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Block 4.3

Assessing the PH Assumption (I)

Adjusting for log(thick) does the
effect of gender follow a PH
model¢

If the PH assumption holds,
the log cumulative hazards
for the two groups, adjusting
for log(thick), should be
roughly parallel...

Conclusion: not strong evidence
of non-PH.

This is a good look at gross
departures, but it is far from a
formal test...

Log-Cumulative Hazard Function

fit1

<- coxph( Surv(days,status==1) ~ log(thick)+ strata(sex))

Females
—— Males

100 200 500 1000 2000 5000

Days rCA

lico di
T 1 . e T 1 g e v aens SAIUTE



Block 4.3

Assessing the PH Assumption (ll)

Adjusting for gender, does
the effect of log(thick)
follow a proportional
hazards modele

check.ph <- cox.zph(mod.cov, transform="km", glolbbal=TRUE)

If the PH assumption
holds, then the plot
of g(t) vs time should

be on a horizontal

line.
HH rho chisq p

## sex -0.102 0.587 0.4436 %
## log(thick) -0.352 5.485 0.0192 &
## GLOBAL NA 6.813 0.0332 £

Cox model’s
estimate for «overally
log thick effect

The effect of log(thick) is o
gradually decreasing with -
time. R

280 660 870 1100 1500 1900 2300 2900

Days

*P. Grambsch and T. Therneau (1994) Proportional hazards tests and diagnostics based on weighted residuals. Biometrika, 81, 515-26. UNITA DI BIOSTATISTICA
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Block 4.3

Possible solutions to nhon-proportionality (1):

- Stratification: covariates with non PH effects may be used as
strata

- no direct test of association with survival;

- ok for categorical covariates, discretization for continuous ones
(could be problematic)

- less efficient analyses (usually larger sample size needed)

* Partition of the time axis;: the PH could be valid in some time
intervals (landmark analysis)

|||||||||||||||||||||||||||||||||

S e Mediche Chirurgiche e della Salut
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Block 4.3

Alternative methods...(ll)

« Cox model with time-varying coefficients: model the dependence of beta on time (not easy to find the appropriate function...

interpretation more complex)

« Use a different approach: Flexible Parametric Survival and Multi-State Models

Accelerated Failure Time (AFT) Models:

- The survreg function in package survival can fit an accelerated failure time

model.

- A modified version of survreg is implemented in the rms package

(psm function).

- The eha package also proposes an implementation of the AFT model

(function aftreg).

- The NADA package proposes the front end of the survreg function for left-

censored data.

« The simexaft package implements the Simulation-Extrapolation algorithm for

the AFT model, that can be used when covariates are subject to
measurement error.

« A robust version of the accelerated failure fime model can be found

in RobustAFT.

- The coarseDataTools package fits AFT models for interval censored data.

- An alternative weighting scheme for parameter estimation in the AFT model

is proposed in the imputeYn package.

- The AdapEnetClass package implements elastic net regularisation for the
AFT model.

Additive Models:

Both survival and timereg fit the additive hazards model of Aalen
in functions aareg and aalen, respectively.

- fimereg also proposes an implementation of the Cox-Aalen model

(that can also be used to perform the Lin, Wei and Ying (1994)
goodness-of-fit for Cox regression models) and the partly
parametric additive risk model of McKeague and Sasieni.

- A version of the Cox-Aalen model for interval censored data is

available in the coxinterval package.

- The uniah package fits shape-restricted additive hazards models.

- The addhazard package contains tools to fit additive hazards

model to random sampling, two-phase sampling and two-phase
sampling with auxiliary information.

Flexible survival models:
flexsurv: Flexible parametric models for fime-to-event data

rstpm2: Smooth Survival Models, Including Generalized Survival
Models


https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/rms/index.html
https://cran.r-project.org/web/packages/eha/index.html
https://cran.r-project.org/web/packages/NADA/index.html
https://cran.r-project.org/web/packages/simexaft/index.html
https://cran.r-project.org/web/packages/RobustAFT/index.html
https://cran.r-project.org/web/packages/coarseDataTools/index.html
https://cran.r-project.org/web/packages/imputeYn/index.html
https://cran.r-project.org/web/packages/AdapEnetClass/index.html
https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/timereg/index.html
https://cran.r-project.org/web/packages/timereg/index.html
https://cran.r-project.org/web/packages/coxinterval/index.html
https://cran.r-project.org/web/packages/uniah/index.html
https://cran.r-project.org/web/packages/addhazard/index.html

Block 4.3

@ R code for the Cox Model

A more elaborate example: binary factor + continuous covariate + stratification variable:

mod.cov.strat <- coxph(Surv(days,status==1)~sex+log(thick)+strata(ulc))
summary(mod.cov.strat)

HH#
HH#
it
HH#
HH#
Ht
i
Ht
Ht
H#
H#
H#
H#
HH#
HH#

coef exp(coef) se(coef) z Pr(>|z])

sex 0.3600 1.4333 0.2702 1.332 0.1828
log(thick) ©.5599 1.7505 0.1784 3.139 0.0017 **
Signif. codes: © '***' @.,001 '**' 9.01 '*' ©0.05 '.' 0.1 ' ' 1

exp(coef) exp(-coef) lower .95 upper .95
sex 1.433 0.6977 0.844 2.434
log(thick) 1.750 9.5713 1.234 2.483
Concordance= 0.673 (se = 0.058 )
Rsquare= 0.063 (max possible= 0.9 )
Likelihood ratio test= 13.3 on 2 df, p=0.001296
Wald test = 12.88 on 2 df, p=0.001598
Score (logrank) test = 12.98 on 2 df, p=0.00152

Stratifying by the presence
or absence of ulcer,
significance of the log(thick)
has been reduced and sex is
no longer significant.

UNITA DI BIOSTATISTICA
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Block 4.3

We can plot survival curves estimated for
each strata by using survfit on the output of
coxph:

(]

—

— Ulcerated Tumor
g _ — Not Ulcerated Tumor

© _
O

Survival
0.7

0.6

0.5

I I l I I
0 1000 2000 3000 4000 5000

Days

The default for surviit is to generate
curves for a pseudoindividual for
which the covariates are at their
mean values.

In the present case, that would
correspond to a tumor thickness of
1.86 mm and a gender of 1.39 (!)...

... we have been sloppy in not defining
sex as a factor variable, but that would
not actually give a different result (HR):
coxph subtracts the means of the
regressors before fitting, so a 1/2 coding
Is the same as 0/1, which is what a factor
with treatment contrasts usually gives.

[But, defining the factor we can define
“hypothetical” pts with certain values for .,
the covariates] i



Block 4.3 @
{

sex.f <- as.factor(sex) @m Converting sex into a factor

mod.cov.strat.f <- coxph(Surv(days,status==1)~sex.f+log(thick)+strata(ulc))
summary(mod.cov.strat.f)

mod.cov.strat.f <- coxph(Surv(days,status==1)~sex.f+log(thick)+strata(ulc))

summary(mod.cov.strat.f) NOW SeX.f2

S indicates that HR

## coxph(formula = Surv(days, status == 1) ~ sex.f + log(thick) + refers to the

Hit strata(ulc)) contrast

##

## n= 205, number of events= 57 of level “2"

it TRRL

#Hit coef exp(coef) se(coef) z Pr(>|z]) versus level ™|

## sex.f2 0.3600  1.4333 0.2702 1.332 0.1828 for the factor

## log(thick) ©.5599 1.7505 0.1784 3.139 0.0017 ** VCII’iCIb|e sex

it - - - ’

## Signif. codes: © '**¥*' 9,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [the same HR
value as before]
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Block 4.3

To estimate survival curves for subjects with certain values of the covariates, we could use the

option newdata in survfit:

Male, tumor thickness=194
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Block 4.3
Summary: basic assumpﬁons (all standard methods, KM, log rank & basic Cox):

1. Events of the individuals occur independently of one another

Acceptable in «time to the first eventy analyses

2. Hazard of event at any given fime for an individual in one group is
proportional to the hazard at that time for an individual in the other group...

hazard functions do not cross one another
3. Hazard ratios are independent of time

Hazard rate

what if the ‘treatment’ effect
changes with time* ¢

Placebo *...or we have repeated measures of a covariate ???




Block 4.3
Last (but not least!):

4. Censoring mechanism is independent of the event
[conditional on covariates in Cox]:

Those still atf risk at fime t are a random sample of the population at risk at time

t, forallt...
...Is that always true???

Primary and Secondary end point:

|- T T T e m == 1
a |
Table 2. ficacy Outcomes. ' Are patients that |
L] I
Apixaban Group Warfarin Group Hazard Ratio I
Outcome [N=9120) [N="5081) (95% ) P Value I d e befo re :
I L ] L]
Patients with  Event  Patientswith  Event I |
Event Rate Event Rate I experlenC|ng The I
oo K m % ' primary outcome |
Primary outcome: stroke or systemic embolism 213 127 265 1.60 0.79 [0.66-0.95) 0.01 : . . I
Stroke 109 119 250 151  079(0.65-095) 0.0l | similar to the :
schemic or uncertain type of stroke e 162 0.97 175 1.05 0.92 (0.74-1.13) .42 : I
Hemaorrhagic stroke 40 0.24 73 0.47 051 {0.35-075)  <0.001 . _'
Systemic embalism 15 0.09 17 0.10 0.ET (0.44-1.75) .70
Key secondary efficacy cutcome: death from any 603 152 6ED 304 0.89 (0.80-0.998) 0.047 UNITA DI BIOSTATISTICA
ause Dipartimente Universitario Clinico di

Scienze Mediche Chirurgiche e della Salute



Block 4.3 Edward L. Kaplan (1920-2006)

Regression Models and Life-Tables

By D. R. Cox
Imperial College, London

[Read before the ROYAL STATISTICAL SOCIETY, at a meeting organized by the
Research Section, on Wednesday, March 8th, 1972, Mr M. J. R. HEALY in the Chair]

SUMMARY

Paul Meier (1924-2011)

The analysis of censored failure times is considered. It is assumed that on
each individual are available values of one or more explanatory variables.
The hazard function (age-specific failure rate) is taken to be a function of
the explanatory variables and unknown regression coefficients multiplied
by an arbitrary and unknown function of time. A conditional likelihood is
obtained, leading to inferences about the unknown regression coefficients.
Some generalizations are outlined.

NONPARAMETRIC ESTIMATION FROM
INCOMPLETE OBSERVATIONS*

E. L. KarLAN
Unaversity of California Radiation Laboratory
AND
Pavr MEier

Sir David Cox and me
(London, sept. 2016)

University of Chicago

Remembering Sir David Cox,
192/4-2022

Sir David Cox died on 18 January 2022 at the age of 97. News of his passing was met with
an outpourm@% of tributes. To the Royal Statistical Society, he was “one of the most
important statisticians of the past century”. At Nuffield College, Oxford, he was hailed as
“a pioneering statistician”. The MRC Biostatistics Unit at Cambridge called him “a giantin |
the field”, while at St John’s College, Cambridge, he was celebrated as “an '\nspiringD "
scholar” In this special collection of articles, friends and colleagues remember Sir David 5
in their own way, while also reflecting on his immense contributions to statistics Y




