Gauss and Ricci Equations in Riemannian Geometry

Introduction

- Gauss and Ricci equations describe how a submanifold is curved inside a Riemannian manifold.
- They connect intrinsic and extrinsic geometry:
 - **Intrinsic:** Curvature within the submanifold.
 - **Extrinsic:** How the submanifold bends in the ambient space.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Gauss Equation

Let:

- $M \subset \tilde{M}$: Submanifold of Riemannian manifold.
- R, \tilde{R} : Riemann curvature tensors of M, \tilde{M} .
- B: bilinear and symmetric econd fundamental form.Gauss Equation:

$$\langle \tilde{R}(X,Y)Z,W \rangle - \langle R(X,Y)Z,W \rangle = \langle B(X,W),B(Y,Z) \rangle + \\ - \langle B(X,Z),B(Y,W) \rangle$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Ricci Equation

Let:

- ξ, η : Normal vector fields.
- ► S_{η} : Weingarten map.

Ricci Equation:

$$\langle \widetilde{R}(X,Y)\eta,\xi
angle - R^{\perp}(X,Y)\eta,\xi
angle = \langle [S_{\eta},S_{\xi}]X,Y
angle$$

where

$$R^{\perp}(X,Y)\eta =
abla_Y^{\perp}
abla_X^{\perp}\eta -
abla_X^{\perp}
abla_Y^{\perp}\eta +
abla_{[X,Y]}^{\perp}\eta$$

and

$$\nabla_X^{\perp}\eta = \tilde{\nabla}_X\eta + S_\eta(X)$$

(ロ)、(型)、(E)、(E)、 E) の(()

Ricci Equation

Let:

- ξ, η : Normal vector fields.
- ► S_{η} : Weingarten map.

Ricci Equation:

$$\langle \tilde{R}(X,Y)\eta,\xi
angle - R^{\perp}(X,Y)\eta,\xi
angle = \langle [S_{\eta},S_{\xi}]X,Y
angle$$

where

$$R^{\perp}(X,Y)\eta =
abla^{\perp}_{Y}
abla^{\perp}_{X}\eta -
abla^{\perp}_{X}
abla^{\perp}_{Y}\eta +
abla^{\perp}_{[X,Y]}\eta$$

and

$$abla^{\perp}_{X}\eta = \tilde{
abla}_{X}\eta + S_{\eta}(X)$$

This equation describes the curvature of the normal bundle in terms of the Weingarten maps.

Codazzi Equation

Codazzi Equation:

$$(\tilde{\nabla}_Y B)(X, Z, \eta) - (\tilde{\nabla}_X B)(Y, Z, \eta) = \langle \tilde{R}(X, Y)Z, \eta \rangle$$

- Describes how the second fundamental form changes.
- Involves the ambient curvature and the covariant derivative of B.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Summary Table

Equation	Relates	Purpose
Gauss	R, \tilde{R}, B	Intrinsic curvature via extrinsic data
Ricci	$ ilde{R}, S_{\eta}$	Normal curvature and shape operators
Codazzi	$\nabla B, \tilde{R}$	Derivatives of the second fundamental form