Algorithms, Randomness and Big Data

Francesco Silvestri

Department of Information Engineering University of Padova silvestri@dei.unipd.it

Who am I? Francesco Silvestri

Experience:

- PhD University of Padova in Computer Engineering
- Visiting scholar University of Texas at Austin
- Post-doc University of Padova and IT University of Copenhagen
- Now: associate professor at University of Padova

Research:

- Big data algorithms: how to efficiently extract information from big-data?
- High performance algorithms: how to exploit modern computer architecture for big-data?

Outline of the talk

- Introduction to the Big Data phenomenon
- Data stream: counting and randomness
- Research in algorithm design

Big data

Source: Data Never Sleeps Project

From: Hinrich Foundation - The Age of Data 2024

How big is 221 ZB?:

- 1 ZettaByte (ZB) = 1 trillion $GB = 10^{12} GB$.
- Downloading 221 ZB at 1Gb/s takes > 54 million years.
- Streaming UltraHD resolution for entire EU population for 7 years.

The world continuously collects huge amounts of:

- Physical data: from sensors, telescopes, particle physics experiments.
- Biological/medical data: from genetic studies, patient monitoring, epidemic evolution analyses.
- Human activity data: from social networks, mobile devices, internet/web traffic, IoT systems.
- Business data: from online stores, customer profiling, bank/credit-card/financial services, quality-of-service monitoring.

Why is DATA has been growing so much?

- Technological progress:
 - Growth of storage capacity
 - Growth of comunication bandwith
 - Growth of computing capacity
- Reduction of ICT costs
- Pervasiveness of digital technologies: scientific research, health, business, politics, social interactions, ...

Computing Challenges

Sources: McKinsey Global Institute, Teitter, Cisco, Gartner, EMC, SAS, IBM, MEPTEC, QAS

IBM.

Source: IBM Big Data & Analytics Hub

Computational Challenges

- **Volume:** processing huge datasets poses several challenges and requires a data-centric perspective.
- **Velocity:** sometimes, the data arrive at such a high rate that they cannot be stored and processed offline. Hence stream processing is needed.
- **Veracity:** large datasets coming from real-world applications are likely to contain *noisy, uncertain data*, hence accuracy of solutions must be reconsidered.
- Variety: large datasets arise in *very different scenarios*. More effective processing is achieved by adapting to the actual characteristics of data.

Computational Challenges

The above issues require a

paradigm shift w.r.t. traditional computing.

To tackle the above challenges effectively, one needs:

- Modern computational frameworks, for instance
 - Parallel programming frameworks for dealing with volume
 - Data streaming frameworks for dealing with velocity
- Advanced algorithmic ideas:
 - Give up with exact and deterministic solutions.
 - Data are noisy: why spending time on exact solutions?
 - Leverage on approximation and randomized techniques.

Data stream and randomness

Dealing with volume and velocity

Typical scenario:

- The data to be processed arrive as a continuous stream
 - because they are generated by some evolving (possibly endless) process;
 - or because their massive volume discourages random accesses.
- Therefore: data analysis must happen on the fly using limited memory, without storing all data for subsequent offline processing.

Some applications

Network management:

- Stream: packets routed through a router.
- Task: gather traffic statistics (e.g., average number of connections/second to same IP address)

Internet of Things:

- Stream: data generated by thousands/millions of sensors.
- Tasks: learn from data, outlier detection, gather statistics,...

Streaming Model

- Sequential machine with limited amount of working memory.
- Input provided as a continuous (one-way) stream.

Streaming Model

Let $\Sigma = x_1, x_2, \dots, x_n \dots$ denote the input stream received sequentially, where x_i is the i-th element received. Upon receiving x_n :

- Suitable data structures stored in the working memory are updated (UPDATE task)
- If required, a solution for the problem at hand, relative to the input set x_1, x_2, \ldots, x_n is computed from the data stored in the working memory (**QUERY task**)

The following Key Performance Indicators are usually considered

- KPI 1: Size s of the working memory (aim: $s \ll |\Sigma|$)
- KPI 2: Number p of sequential passes over Σ (aim: p = 1)
- KPI 3: Update time T_u per item (aim: $T_u = O(1)$)
- KPI 4: Query time T_q to return a solution after seeing x₁,..., x_n (aim: T_q independent of n)

Streaming Model

Algorithm Design Techniques

- Approximate solutions (exact ones may require excessive space)
- Maintain lossy summary of Σ via a synopsis data structure (e.g., random sample, hash-based sketch)

Typical data analysis tasks

- Identification of frequent items (or frequent patterns).
- Useful statistics: e.g., frequency moments, quantiles, histograms
- Optimization and graph problems: e.g., clustering, triangle counting

Goal: suitable tradeoffs between accuracy, working memory, update/query time (i.e., *throughput*).

Warm-up: finding the majority element in a stream

Warm-up: finding the majority element

Majority problem

Given a stream $\Sigma = x_1, x_2, \dots, x_n$, return the element x (if any) that occurs > n/2 times in Σ .

Examples:

- In stream $\Sigma = A, B, A, C, A, D, A, A$, the majority element is A.
- In stream $\Sigma = A, B, C, D, D, E, E$, a majority element does not exist.

Standard off-line setting. Easily solved using linear space in $O(n \log n)$ time, through sorting, or O(n) expected time, through hashing.

Streaming setting. Need 1 or 2 passes, depending on goals

- First pass (Boyer-Moore algorithm): find an element x which is the majority element, if one exists.
- Second pass: check whether x is indeed the majority element.

Boyer-Moore algorithm

The Boyer-Moore algorithm maintains 2 integers cand and count:

- *cand* contains a candidate majority element (*the true majority element, if one exists*);
- count is a counter;

```
Initialization: cand \leftarrow null and count \leftarrow 0.
```

```
For each x_t in \Sigma do

if count = 0 then \{cand \leftarrow x_t; count \leftarrow 1;\}

else \{

if cand = x_t then count \leftarrow count + 1

else count \leftarrow count - 1

\}
```

At the end: return cand

	Example	$\Sigma = A$, A , A	I , C ,	<i>C</i> , <i>E</i>	З, В ,	, A , A	
STEP	Cand	Count						
1								
2								
3								
4								
5								
6								
7								
8								
9								

	Example	$\Sigma = A, A, A, C, C, C, B, B, B$	
STEP	Cand	Count	
1			
2			
3			
4			
5			
6			
7			
8			
9			
-			

Marm up: finding the majority element

Theorem

Given a stream Σ which contains a majority element m, the Boyer-Moore algorithm returns m using:

- working memory of size O(1);
- 1 pass;
- *O*(1) update and query times.

To check if the returned element is the majority, we need to read the stream again and count its number of occurrences.

Estimating frequencies

Frequency Moments

Consider a stream $\Sigma = x_1, x_2, \dots, x_n$, whose elements belong to a universe U. For each $u \in U$ occurring in Σ define its *frequency*

$$f_u = |\{j : x_j = u, 1 \le j \le n\}|,$$

i.e., the number of occurrences of u in Σ

Estimating individual frequencies for $\boldsymbol{\Sigma}$

OBJECTIVE: in one pass over Σ we want to compute a small data structure that enables to derive estimates of

• f_u for any given $u \in U$ (*individual frequencies*)

with provable space-accuracy tradeoffs

Observation: the exact computation of all f_u 's require space proportional to $|\Sigma|$ using a standard dictionary.

Randomness to the rescue

Randomized algorithm: an algorithm where some decisions depend on random choices.

- Better running time.
- Usually much easier to design and implement (but harder to analyze).

A randimized algorithm has probabilistic behaviors:

- Las Vegas algorithms: the running time is a random variable.
- Montecarlo algorithms: the quality of solution is a random variable.
- We can have both randomized running times and quality of solution.

Randomized algorithms can sometime fail, but we can usually make this probability very small.

Hash functions

Hash function $h: U \to \{0, 1, \dots, w-1\}$: *h* is a function that maps each element of *U* into an integer value in $\{0, 1, \dots, w-1\}$.

Function h is fixed: an element in U will be always mapped onto the same integer!

However, h is randomly selected from a large set H of hash functions.

The probability that $x \in U$ is mapped on an integer *i* is over this random selection:

• Uniform probability Pr[h(x) = i] = 1/w: over all possible functions in *H*, we have probability 1/w to select a function mapping x onto *i*.

Count-min sketch

The first approach we consider is based on the count-min sketch invented by [Cormode,Muthukrishnan 2003].

Main ingredients

- $d \times w$ array C of counters $(O(\log n) \text{ bits each})$
- *d* hash functions: $h_0, h_1, \ldots, h_{d-1}$, with

$$h_j : U \to \{0, 1, \dots, w - 1\},$$

for every *j*.

Note that d and w are design parameters that regulate the space/time-accuracy tradeoff.

Count-min sketch: algorithm

Initialization: C[j, k] = 0, for every $0 \le j < d$ and $0 \le k < w$.

For each x_t in Σ do For $0 \le j \le d-1$ do $C[j, h_j(x_t)] \leftarrow C[j, h_j(x_t)] + 1;$

At the end of the stream: for any $u \in U$, its frequency f_u can be estimated as:

$$\tilde{f}_u = \min_{0 \le j \le d-1} C[j, h_j(u)].$$

Example: n = 15, d = 3, w = 3

 $\Sigma = A, B, C, B, D, A, C, D, A, B, D, C, A, A, B$

u, f_u	h_0	h_1	h_2
A, 5	0	1	1
B, 4	1	2	1
C, 3	0	0	2
D, 3	1	1	2

Array C				

•
$$\tilde{f}_A =$$

•
$$\tilde{f}_B =$$

•
$$\tilde{f}_C =$$

•
$$\tilde{f_D} =$$

Count-min sketch: analysis

We assume that:

- For each $j \in [0, d-1]$ and each $u, v \in U$ with $u \neq v$, $h_j(u)$ and $h_j(v)$ are independent random variables uniformly distributed in [0, w 1].
- The *d* hash functions h_1, h_2, \ldots, h_d are mutually independent.

Theorem

Consider a $d \times w$ count-min sketch for a stream Σ of length n, where $d = \log_2(1/\delta)$ and $w = 2/\epsilon$, for some $\delta, \epsilon \in (0, 1)$. The sketch ensures that for any given $u \in U$ occurring in Σ

$$\tilde{f}_u - f_u \leq \epsilon \cdot n,$$

with probability $\geq 1 - \delta$.

Research in algorithms

Doing research (in algorithm design)

Research in algorithm design

- Find a computational problem with no known algorithm or with an inefficient algorithm.
- 2 Design a new algorithm.
- S Provide rigorous guarantees (means "theorems")
- Implement your algorithm and perform some experiments (means "code").
- 6 Are you happy about the theoretical/experimental results?
 - No: repeat from step 1;
 - Yes: write paper and move to the next problem.

My research

- Hardware-software co-design
- Algorithms for high-dimensional data
- Algorithms with prediction

Hardware-software co-design

Memory hierarchy: it reduced memory bottleneck

Google TPU: fast matrix multiplication in hardware

UPmem memory: a memory with a processor.

Google TPU and UPmem leverage on theoretical ideas developed in '70-'80. Theory matters!

Hardware-software co-design

Hardware is continuously evolving to support high computational demand (LLM, big data, \ldots)

To even reduce resources requirements (less time, less energy, \dots), we need a joint hardware-software approach.

From an algorithmic point of view: we need algorithms that know how to use underline hardware.

Algorithms for high-dimensional data

'of' -> 9 -> [-0.6732, 8.6976, -8.6286, ...] 'a' -> 18 -> [-0.6734, 8.6976, -8.6286, ...] Graph data from interactions, like in social networks

Trajectories from mobility data

Time series from IoT, industrial processes

Vectors from transformers in LLMs

Algorithms for high-dimensional data

Big data usually have high-dimensions:

- Black-box in cars record data every second (>1K points for just a 20-min ride)
- GPT-4 uses 16K dimensional embeddings

Curse of dimensionality: The running times of standard algorithms are usually *exponential* in the dimension

Randomnized algorithms can break the curse!

Algorithms with predictions

We can construct several predictors using big data and machine learning:

- Predictors exploit hidden properties of data
- Predictions are usually good
- Sometimes, predictions can be very bad!

Algorithms with predictions: can we exploit predictors to speed up computations?

- If the prediction is good, we can speed up the computation.
- If the prediction is bad, we can still provide the guarantees provided by standard algorithm.

Algorithms with predictions

An example with binary search:

Standard binary search in $O(\log n)$ time:

Binary search with prediction in O(log error):

Research in algorithms

There are many more open problems in algorithm design.

But first, learn the foundations in algorithms and data structures!

