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Who am I? Francesco Silvestri

Experience:

• PhD University of Padova in Computer Engineering

• Visiting scholar University of Texas at Austin

• Post-doc University of Padova and IT University of Copenhagen

• Now: associate professor at University of Padova

Research:

• Big data algorithms: how to efficiently extract information from big-data?

• High performance algorithms: how to exploit modern computer architecture for
big-data?
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Outline of the talk

• Introduction to the Big Data phenomenon

• Data stream: counting and randomness

• Research in algorithm design
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Big data
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Big Data Phenomenon

Source: Data Never Sleeps Project
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Big Data Phenomenon

From: Hinrich Foundation - The Age of Data 2024

How big is 221 ZB?:

• 1 ZettaByte (ZB) = 1 trillion GB = 1012 GB.

• Downloading 221 ZB at 1Gb/s takes > 54 million years.

• Streaming UltraHD resolution for entire EU population for 7 years.
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Big Data Phenomenon

The world continuously collects huge amounts of:

• Physical data: from sensors, telescopes, particle physics experiments.

• Biological/medical data: from genetic studies, patient monitoring, epidemic
evolution analyses.

• Human activity data: from social networks, mobile devices, internet/web
traffic, IoT systems.

• Business data: from online stores, customer profiling,
bank/credit-card/financial services, quality-of-service monitoring.
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Big Data Phenomenon

Why is DATA has been growing so much?

• Technological progress:

• Growth of storage capacity

• Growth of comunication bandwith

• Growth of computing capacity

• Reduction of ICT costs

• Pervasiveness of digital technologies: scientific research, health, business,
politics, social interactions, ...
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Computing Challenges

Source: IBM Big Data & Analytics Hub
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Computational Challenges

• Volume: processing huge datasets poses several challenges and requires a
data-centric perspective.

• Velocity: sometimes, the data arrive at such a high rate that they cannot be
stored and processed offline. Hence stream processing is needed.

• Veracity: large datasets coming from real-world applications are likely to contain
noisy, uncertain data, hence accuracy of solutions must be reconsidered.

• Variety: large datasets arise in very different scenarios. More effective processing
is achieved by adapting to the actual characteristics of data.
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Computational Challenges

The above issues require a

paradigm shift w.r.t. traditional computing.

To tackle the above challenges effectively, one needs:

• Modern computational frameworks, for instance
• Parallel programming frameworks for dealing with volume
• Data streaming frameworks for dealing with velocity

• Advanced algorithmic ideas:
• Give up with exact and deterministic solutions.
• Data are noisy: why spending time on exact solutions?
• Leverage on approximation and randomized techniques.

11



Data stream and randomness
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Dealing with volume and velocity

Typical scenario:

• The data to be processed arrive as a continuous stream
• because they are generated by some evolving (possibly endless) process;
• or because their massive volume discourages random accesses.

• Therefore: data analysis must happen on the fly using limited memory, without
storing all data for subsequent offline processing.
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Some applications

Network management:

• Stream: packets routed through a router.

• Task: gather traffic statistics (e.g., average number of connections/second to
same IP address)

Internet of Things:

• Stream: data generated by thousands/millions of sensors.

• Tasks: learn from data, outlier detection, gather statistics,. . .
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Streaming Model

• Sequential machine with limited amount of working memory.

• Input provided as a continuous (one-way) stream.
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Streaming Model

Let Σ = x1, x2, . . . xn . . . denote the input stream received sequentially, where xi is the i-th
element received. Upon receiving xn:

• Suitable data structures stored in the working memory are updated (UPDATE task)

• If required, a solution for the problem at hand, relative to the input set x1, x2, . . . , xn is computed
from the data stored in the working memory (QUERY task)

The following Key Performance Indicators are usually considered

• KPI 1: Size s of the working memory (aim: s ≪ |Σ|)
• KPI 2: Number p of sequential passes over Σ (aim: p = 1)

• KPI 3: Update time Tu per item (aim: Tu = O(1))

• KPI 4: Query time Tq to return a solution after seeing x1, . . . , xn
(aim: Tq independent of n)
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Streaming Model

Algorithm Design Techniques

• Approximate solutions (exact ones may require excessive space)

• Maintain lossy summary of Σ via a synopsis data structure (e.g., random sample,
hash-based sketch)

Typical data analysis tasks

• Identification of frequent items (or frequent patterns).

• Useful statistics: e.g., frequency moments, quantiles, histograms

• Optimization and graph problems: e.g., clustering, triangle counting

Goal: suitable tradeoffs between accuracy, working memory, update/query time (i.e.,
throughput).

17



Warm-up:

finding the majority element in a stream
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Warm-up: finding the majority element

Majority problem

Given a stream Σ = x1, x2, . . . , xn, return the element x (if any) that occurs > n/2 times in Σ.

Examples:

• In stream Σ = A,B,A,C ,A,D,A,A, the majority element is A.

• In stream Σ = A,B,C ,D,D,E ,E , a majority element does not exist.

Standard off-line setting. Easily solved using linear space in O (n log n) time, through
sorting, or O (n) expected time, through hashing.

Streaming setting. Need 1 or 2 passes, depending on goals

• First pass (Boyer-Moore algorithm): find an element x which is the majority element, if
one exists.

• Second pass: check whether x is indeed the majority element.
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Boyer-Moore algorithm

The Boyer-Moore algorithm maintains 2 integers cand and count:

• cand contains a candidate majority element
(the true majority element, if one exists);

• count is a counter;

Initialization: cand ← null and count ← 0.

For each xt in Σ do
if count = 0 then {cand ← xt ; count ← 1;}
else {

if cand = xt then count ← count + 1
else count ← count − 1

}

At the end: return cand
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Example: Σ = A,A,A,C ,C ,B ,B ,A,A

STEP Cand Count

1
2
3
4
5
6
7
8
9
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Example: Σ = A,A,A,C ,C ,C ,B ,B ,B

STEP Cand Count

1
2
3
4
5
6
7
8
9
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Warm-up: finding the majority element
Theorem

Given a stream Σ which contains a majority element m, the Boyer-Moore algorithm
returns m using:

• working memory of size O (1);

• 1 pass;

• O (1) update and query times.

To check if the returned element is the majority, we need to read the stream again and
count its number of occurrences.
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Estimating frequencies
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Frequency Moments

Consider a stream Σ = x1, x2, . . . , xn, whose elements belong to a universe U.

For each u ∈ U occurring in Σ define its frequency

fu = |{j : xj = u, 1 ≤ j ≤ n}| ,

i.e., the number of occurrences of u in Σ
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Estimating individual frequencies for Σ

OBJECTIVE: in one pass over Σ we want to compute a small data structure that
enables to derive estimates of

• fu for any given u ∈ U (individual frequencies)

with provable space-accuracy tradeoffs

Observation: the exact computation of all fu’s require space proportional to |Σ| using
a standard dictionary.
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Randomness to the rescue

Randomized algorithm: an algorithm where some decisions depend on random choices.

• Better running time.

• Usually much easier to design and implement (but harder to analyze).

A randimized algorithm has probabilistic behaviors:

• Las Vegas algorithms: the running time is a random variable.

• Montecarlo algorithms: the quality of solution is a random variable.

• We can have both randomized running times and quality of solution.

Randomized algorithms can sometime fail, but we can usually make this probability
very small.
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Hash functions

Hash function h : U → {0, 1, . . . ,w − 1}: h is a function that maps each element of U
into an integer value in {0, 1, . . . ,w − 1}.

Function h is fixed: an element in U will be always mapped onto the same integer!

However, h is randomly selected from a large set H of hash functions.

The probability that x ∈ U is mapped on an integer i is over this random selection:

• Uniform probability Pr[h(x) = i ] = 1/w : over all possible functions in H, we have
probability 1/w to select a function mapping x onto i .
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Count-min sketch

The first approach we consider is based on the count-min sketch invented by
[Cormode,Muthukrishnan 2003].

Main ingredients

• d × w array C of counters (O (log n) bits each)

• d hash functions: h0, h1, . . . , hd−1, with

hj : U → {0, 1, . . . ,w − 1},

for every j .

Note that d and w are design parameters that regulate the space/time-accuracy tradeoff.
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Count-min sketch: algorithm

Initialization: C [j , k] = 0, for every 0 ≤ j < d and 0 ≤ k < w .

For each xt in Σ do

For 0 ≤ j ≤ d − 1 do C [j , hj(xt)]← C [j , hj(xt)] + 1;

At the end of the stream: for any u ∈ U, its frequency fu can be estimated as:

f̃u = min
0≤j≤d−1

C [j , hj(u)].
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Example: n = 15, d = 3,w = 3
Σ = A,B ,C ,B ,D,A,C ,D,A,B ,D,C ,A,A,B

u, fu h0 h1 h2
A, 5 0 1 1
B, 4 1 2 1
C, 3 0 0 2
D, 3 1 1 2

Array C

• f̃A =

• f̃B =

• f̃C =

• f̃D =
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Count-min sketch: analysis

We assume that:

• For each j ∈ [0, d − 1] and each u, v ∈ U with u ̸= v , hj(u) and hj(v) are independent
random variables uniformly distributed in [0,w − 1].

• The d hash functions h1, h2, . . . , hd are mutually independent.

Theorem

Consider a d × w count-min sketch for a stream Σ of length n, where d = log2(1/δ) and
w = 2/ϵ, for some δ, ϵ ∈ (0, 1). The sketch ensures that for any given u ∈ U occurring in Σ

f̃u − fu ≤ ϵ · n,

with probability ≥ 1− δ.
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Research in algorithms
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Doing research (in algorithm design)
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Research in algorithm design

1 Find a computational problem with
no known algorithm or with an
inefficient algorithm.

2 Design a new algorithm.

3 Provide rigorous guarantees (means
”theorems”)

4 Implement your algorithm and
perform some experiments (means
”code”).

5 Are you happy about the
theoretical/experimental results?
• No: repeat from step 1;
• Yes: write paper and move to the

next problem.
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My research

• Hardware-software co-design

• Algorithms for high-dimensional data

• Algorithms with prediction
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Hardware-software co-design

Memory hierarchy: it reduced memory bottleneck

Google TPU: fast matrix multiplication in
hardware

UPmem memory: a memory with a processor.

Google TPU and UPmem leverage on theoretical ideas developed in ’70-’80. Theory
matters!
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Hardware-software co-design

Hardware is continuously evolving to support high computational demand (LLM, big
data, . . . )

To even reduce resources requirements (less time, less energy, . . . ), we need a joint
hardware-software approach.

From an algorithmic point of view: we need algorithms that know how to use underline
hardware.
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Algorithms for high-dimensional data

Graph data from interactions, like in social
networks

Trajectories from mobility data

Time series from IoT, industrial processes

Vectors from transformers in LLMs
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Algorithms for high-dimensional data

Big data usually have high-dimensions:

• Black-box in cars record data every second (>1K points for just a 20-min ride)

• GPT-4 uses 16K dimensional embeddings

Curse of dimensionality: The running times of standard algorithms are usually
exponential in the dimension

Randomnized algorithms can break the curse!
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Algorithms with predictions

We can construct several predictors using big data and machine learning:

• Predictors exploit hidden properties of data

• Predictions are usually good

• Sometimes, predictions can be very bad!

Algorithms with predictions: can we exploit predictors to speed up computations?

• If the prediction is good, we can speed up the computation.

• If the prediction is bad, we can still provide the guarantees provided by standard
algorithm.
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Algorithms with predictions

An example with binary search:

Standard binary search in
O(log n) time:

Binary search with prediction
in O(log error):
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Research in algorithms

There are many more open problems in algorithm design.

But first, learn the foundations in algorithms and data structures!
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