Applications of enzymes in industry for bulk productions: Oleochemistry

Major biotransformations at industrial scale 1.

Production scale [tpy]	Product	Enzyme	Reactor	Сотрапү	Fine-pharma chemistry
> 1 000 000	high-fructose corn syrup (HFCS)	glucose isomerase	fixed-bed, IME	various	-
> 100 000	lactose-free milk	lactase	fixed-bed, IME	various	
> 10 000	acrylamide	nitrilase	batch reactor	Nitto Co.	
	cocoa butter*	lipase (CRL)	fixed-bed, IME	Fuji Oil	
> 1,000					
	nicotinamide	nitrilase	3-stage batch	Lonza Guangzhou	
	D-pantothenic acid	aldonolactonase		Fuji Pharma- ceuticals	•
	(S)-chloropropionic acid	lipase		Dow Chemical	←
	6-aminopenillanic acid	penicillin amidase	fixed-bed, IME	various	←
	7-aminocephalo- sporanic acid	glutaryl amidase	Kundl/Hoechst		~
	aspartame®	thermolysin	soluble enzyme	Tosoh/DSM	
	L-aspartate	aspartase	fixed-bed, IME	various	
	D-phenylglycine	hydantoinase/ (carbamoylase)	resting cells	Kanegafuchi	
	D-p-OH-phenyl- glycine	hydantoinase/ carbamoylase	resting cells	Recordati	←

Enzymatic bioprocessing of oils and fats **Determining the**

sustainability of enzyme processes with Life Cycle Assessment

David Cowan, Karen Margrethe Oxenbøll, and Hans Christian Holm

April 2008 inform

210

۲

The industrial revolution, which started in Europe, has long since spread to much of the rest of the world and has raised living standards and brought prosperity to millions of people. However, 1 without consequences, not the least of whic industrialization to climate change. That this edged by a majority of climate change resea munity.

ronmental impact. In the case presented CA is applied to three processwithin the oils and fats industry nthesis, degumming, and interation) to compare the environmpact of the conventional and ic alternatives of each. In all the outs and outputs have been quand the potential conince in the

Oleochemistry

Lipases in the synthesis of esters:

- Food ingredients
- Surfactants
- Emollients
- Biodiesel

Lipases and phospholipases for the transformation of Fats and Oils

The basic oleochemicals are:

fatty acids (ca. 52%), the respective methyl esters (ca. 11%), amines (ca. 9%), and alcohols (ca. 25%).

Besides food applications, these are used for the production of important chemical products: **surfactants, lubricants and coatings** but also **biofuels**.

Figure 1. Production of oils and fats that are important as feedstock for the oleochemical industry in 1999/2000 and 2009/2010.^{08,39}

≻palm kernel oil>palm oil

African oil palm *Elaeis guaineensis*

Palm kernel oil:

- semi-solid at room T, more saturated than palm oil and comparable to coconut oil. Used in commercial cooking because of its low cost, and because it remains stable at high cooking temperatures and can be stored longer than other vegetable oils.(fewer C=C)
- is high in lauric acid which has been shown to raise blood cholesterol levels. Highly saturated vegetable fats

\succ palm kernel oil, \succ palm oil,

African oil palm

Elaeis guaineensis Palm oil: tens of millions of tons of palm oil is produced annually, accounting for over 30% of the world's vegetable oil production. This single vegetable oil is found in approximately 40-50% of household products in many developed countries. Palm oil can be present in a wide variety of products, including baked goods, shampoo, cosmetics, washing detergents and toothpaste.

Mesocar

Palm Oil

Saturated fatty acids

palm mesocarp oil is 49% , palm kernel oil 81% coconut 86%

Fatty acid content of palm kernel oil

Type of fatty acid

Lauric saturated C12 Myristic saturated C14 Palmitic saturated C16 Capric saturated C10 Caprilic saturated C8 Stearic saturated C18 Oleic monounsaturated C18:1 Linoleic polyunsaturated C18:2 other

<mark>48.2</mark> %
16.2%
<mark>8.4</mark> %
3.4%
3.3%
2.5%
15.3%
2.3%
<mark>0.4</mark> %

Fatty acid content of palm oil

Type of fatty acid

Mirystic saturated C14 Palmitic saturated C16 Stearic saturated C18 Oleic monounsaturated C18 Linoleic polyunsaturated C18 Other/Unknown

1.0%
43.5%
4.3%
36.6%
9.1%
5.5%

Phospholipases: enzymatic method as an alternative to the conventional method of alkaline degumming.

Enzymatic degumming of vegetable oils.

This process is used in oils and fats production to remove phosphatide gums from oil, which have an adverse effect on oil quality and stability.

The affinity for water of the ester group determines the overall affinity for water of the phospholipid: the higher the water affinity, the higher the emulsification power. The relative affinity of phospholipids for water is usually called "hydratability."

https://www.youtube.com/watch?v=sEGKA XIX9WM

https://www.youtube.com/watch?v=vq2Ge7 hdMys

Figura 26.11

In un acido fosfatidico, il glicerolo, è esterificato con due molecole di acido grasso e una molecola di acido fosforico. L'ulteriore esterificazione dell'acido fosforico con un alcol a basso peso molecolare dà un fosfolipide.

+NH₃

CH₂

0

 $\dot{C} = 0$

Un fosfolipide

Alcoli presenti nei fosfoli	pidi	
Formula di struttura	Nome	Nome del fosfolipide
HOCH ₂ CH ₂ NH ₂	Etanolammina	Fosfatidiletanolammina (Cefalina)
$HOCH_2CH_2N(CH_3)_3$	Colina	Fosfatidilcolina (Lecitina)
HOCH ₂ CHCOO-	Serina	Fosfatidilserina
HO OH OH OH OH OH	Inositolo	Fosfatidilinositolo

Those phospholipids responsible for higher oil losses due to oil emulsion, , i.e. PC and PI, are usually designated as hydratable phospholipids (HP), while PA and PE salts of calcium (Ca), magnesium (Mg) and iron (Fe) are usually called nonhydratable phospholipids (NHP).

Relative rates of phospholipid hydration

Phospholipid	Relative rate of hydration
Phosphatidylcholine	100
Phosphatidylinositol	44
Phosphatidylinositol (calcium salt)	24
Phosphatidylethanolamine	16
Phosphatidic acid	8.5
Phosphatidylethanolamine (calcium salt)	0.9
Phosphatidic acid (calcium salt)	0.6

Compared with chemical processes, enzyme-catalyzed reactions are very selective, greatly reducing or eliminating the formation of undesired by-products. The enzymes active on phospholipids are called **phospholipases**.

The enzymes able to **remove fatty acids from the phospholipids** are conventionally named phospholipase A (PLA) (1 or 2, according to the position of the fatty acid removed from the glycerol backbone).

Phospholipase C (PLC) is able to remove the "phospho-ester" group and generate a diglyceride for each phospholipid molecule reacted.

Commercially available phospholipases for enzyme degumming					
Supplier	Brand	Activity	Organism of origin		
AB Enzymes	Rohalase®MPL	PLA2	Trichoderma reesei [20]		
Danisco	Lysomax®	PLA2	<i>Streptomyces</i> <i>violaceoruber</i> [21]		
DSM	Gumzyme®	PLA2	Aspergillus niger[22]		
Novozymes	Lecitase®10L	PLA2	Porcine pancreas [21]		
Novozymes	Lecitase® Novo	PLA1	<i>Fusarium</i> <i>oxysporum</i> [15]		
Novozymes	Lecitase® Ultra	PLA1	<i>Thermomyces</i> <i>lanuginosa Fusarium</i> <i>oxysporum</i> [15]		
Verenium	Purifine™ PLC	PLC	Pichia pastoris[23]		

1: Use of Phospholipase A

•Adjusting the temperature the enzyme reaction;

•Adding citric acid and retention of the oil with acid for a period of time;

•Adding caustic soda to optimal pH for the enzyme

•Adding enzyme and water to the oil, via mixers- gums re-circulated here when using the enzyme;

•Reacting in the reaction tank (up to six hours);

•Heating the oil to the optimal temperature for separation in the centrifuge; and

•Separating lyso-phosphatides from the oil in the centrifuge

https://www.youtube.com/watch?v=9hO72 4frVWc

https://www.youtube.com/watch?v=mcC9F RcUNV4

https://www.youtube.com/watch?v=f3Yx6Z 0YRsk

FIG. 2. Environmental savings when using an enzymatic process for degumming of vegetable oil (per metric ton of refined soybean oil).

0

Used

Saved

TABLE I. Identification of savings in enzymatic degumming					
	Global warming	Acidification	Nutrient enrichment	Smog formation	Fossil energy
Vegetable oil savings	50%	50%	90%	80%	35%
NaOH savings	20%	10%		10%	25%
Phosphoric acid savings Byprod. treatment	—	10%	10%	—	5%
(incl. heat production)	20%	30%	—	10%	35%

Saved

0

Т

Used

Lipases for hydrolysis, esterification/transesterification:

Burkholderia cepacia (Ps. cepacia) (33 kDa)

Candida rugosa (o cylindracea) (57 kDa)

Pseudomonas aeruginosa (33 kDa)

Candida antarctica B (33 kDa)

Rhizopus niveus (30 kDa)

Geotrichum candidum (60 kDa)

Humicola lanuginosa (60 kDa)

Lipase hydrolyze (digest) triglycerides at mild conditions

Advantages of industrial applications (coco nuts oil, olive oil...):

- a) reduction of wastes and side products
- b) mild and neutral reaction conditions leading to highest quality products

c) higher purity of the glycerol obtained as secondary product

	-			
Origin	Code ^[4]	M [kDa]	Specificity	Applications
		(rounded)	(remarks)	
of mammalian origin				
human pancreatic lipase	HPL	50	sn-1,3	
human gastric lipase	HGL	50	sn-3 (acid-stable)	
porcine pancreatic lipase	PPL	50	sn-1,3	organic synthesis, digestive aid
guinea pig pancreatic lipase	GPL-RP2	48	sn-1,3 (phospholipase A1 activity)	
of fungal origin				
Candida rugosa	CRL	60	nonspecific	organic synthesis
Candida antarctica B	CAL	60	sn-1,3	organic synthesis
Geotrichum candidum	GCL	60	cis-A ⁹	oleochemistry
			(unsaturated fatty acids)	-
Humicola lanuginosa	HLL	30	nonspecific	detergents
Rhizomucor miehei	RML	30	sn-1,3	cheese manufacturing
Aspergillus oryzae	AOL			cheese manufacturing
Penicillium camembertii	PEL	30	sn-1,3	monoglycerides
Rhizopus delemar	RDL	41	sn-1,3	oleochemistry
			(phospholipase A1 activity)	-
Rhizopus oryzae	ROL	41	m-1,3	oleochemistry
			(phospholipase A1 activity)	-
Rhizopus arrhizus	RAL	41	m-1,3	oleochemistry
			(phospholipase A1 activity)	-
of bacterial origin				
Pseudomonas glumae	PGL	33	nonspecific	detergent enzyme, organic synthesis
Burkholderia cepacia	PCL/BCL	33	nonspecific	organic synthesis
Pseudomonas pseudoalcaligenes	PPL	33	sn-1,3	detergents
Pseudomonas mendocina	PML	33	m-1,3	detergents
Chromobacterium viscosum	CVL	33	m-1,3	organic synthesis
Bacillus thermocatenulatus	BTL-2	43	m-1,3	2 2
			(therm oalkalophilic)	
Fusarium solani	FSL	22		detergents
(hydrolyzes cutin)				-

Table 3. Important commercially available lipases.

[a] Other appreviations for lipases used in this article: PSL (Pseudomonas species lipase), PFL (Pseudomonas flourescens lipase), HLL (human lipoprotein lipase), LPL (lipoprotein lipase). Lipases can be obtained commercially from many suppliers. Important original producers are Novo-Nordisk (Baegsvard, Denmark), Genencor International B. V. (Delft, The Netherlands), Boehringer-Mannheim (Mannheim, Germany), and Amano Co. (Nagoya, Japan).

- Lipases are proteins with wide hydrophobic areas on the surface \geq
- Lipases have evolved to be active on insoluble and hydrophobic \geq substrates

A lipase: large hydrophobic surface

A general hydrolytic enzyme (amidase): hydrophylic surface

hydrophobic

hydrophilic

Triglyceride

Use of lipases in the transformation of fats and oils: Hydrolysis

This process employs the ability of lipases to hydrolyze, in the presence of water, the lipids so as to obtain fatty acids and glycerol, molecules that both have important industrial applications. For example, fatty acids are used for soap production. Lipases used for this purpose are those from *Candida rugosa*, from castor seed and *Pseudomonas fluorescens*.

Enzymatic hydrolysis can be used to obtain unstable fatty acids from oils containing unsaturated fatty acids. This is generally difficult to achieve by conventional means because of the high temperatures (200-240 ° C) and pressures used, which could lead to undesired lipid oxidation. This is demonstrated by the production of ricinoleic acid, a valuable starting material for the production of a wide variety of technical products: ricinoleic acid can not be obtained from castor oil with conventional processes due to side reactions, such as dehydration, interesterification, etc. These can be avoided by using a lipase present in castor seeds and used for the hydrolysis of castor oil.

ricinoleic acid

In contrast, the enzymatic cleavage of triglycerides is carried out at a pressure and ambient temperature (40-60 ° C), allowing a lower energy cost. The overall cost of the enzymatic process determines an economic advantage due to the fact that the reaction plants do not have to be very resistant to corrosion nor resist very aggressive reaction conditions.

Products that derive from enzymatic bioprocesses also have a better odor and color and are usually more pure, because secondary reactions with respect to conventional processes are avoided thanks to the selectivity of lipases and to the mild environmental conditions. This has the advantage of further reducing costs, thanks to the reduction in the number of extraction and purification procedures, furthermore the lower reaction temperatures guarantee less thermal degradation. Lipases in organic media are generally used immobilized in order to prevent protein aggregation and to maximize dispersion/accessible surface Lipases modify their conformations while approaching the triglycerides.

The hydrophobic active site becomes exposed and accessible

10 nm movement in about 3 ns

HYDROPHILIC AREA HYDROPHOBIC AREA

OPEN CONFORMATION CLOSED CONFORMATION

10 nm movement in about 3 ns **\$**59

Lipases are active at the interface oil/water: the hydrophobic surface points towards the hydrophobic phase

Simulation of Water-Octanol Interface

GROMACS (MARTINI)

Martini FF - Protein

Pseudomonas cepacia lipase

Molecular dynamics simulations of a lipase in a water-oil biphasic system (Martini software)

Mechanism and conformational modification (Lipases activation)

> LID Stabilization in hydrophobic environment – open conformation

Humicola lanuginosa LIPASE

The Comprehensive Enzyme Information System

EC-Number	Enzyme Name	Organism	Protein	Full text	Advanced Search
[Search	Display 10	entries		

New BRENDA release online since July, 5th 2011

Nomenclature	Reaction & Specificity	Functional Parameters
Enzyme Names EC Number Common/ Recommended Name Systematic Name Synonyms CAS Registry Number	Pathway Catalysed Reaction Reaction Type Natural Substrates and Products Substrates and Products Substrates Natural Substrate Products Natural Product	Km Value kcat/Km Value NEW Ki Value IC50 Value pl Value Turnover Number Specific Activity pH Optimum pH Range
Isolation & Preparation	Inhibitors Cofactors	Temperature Optimum Temperature Range
Purification	Metals/lons Activating Compounds	Organism-related information
Expression NEW Renatured Crystallization	Ligands Biochemicals Reactions Aligned NEW	Organism Source Tissue Localization Protein-Specific Search

EARLING CONTRACTOR	1.12
In \$4 544 disk hope 21 in fam iden 21 af Dan	
 Ale Construction and the construction of the construction	T Bad See Se Re- and See See Se See F I - Cop Cop I - I - I - See Second Second
X	100.0
Oleochemistry

Lipases in the synthesis of esters:

- Food ingredients
- Surfactants
- Emollients
- Biodiesel

Surfactants

(i.e. surface-active agents with an amphiphilic structure) are mandatory ingredients of almost all cosmetic products for emulsification and alteration of foaming properties.

Ester-based surfactants, consisting of a medium to long chain fatty acid and a hydrophilic head group.

Depending on the length and saturation degree of the fatty tail and the choice and size of the hydrophilic head (typically glycerol, sorbitol or glucosides) employment for stabilisation of water-in-oil (W/O) lotions or oil-in-water (O/W) emulsions is possible.

The specific performance in this regard is described as the hydrophile-lipophile balance (HLB) value.

Of particular importance are **partial glycerol esters** (e.g. glycerol mono or dilaurate, which represents one of the oldest industrially produced emulsifiers for cosmetic application), inter alia because of their unique property of interacting with polysaccharides and polypeptides changing the rheological properties of the emulsion, and sugar esters, (e.g. sorbitan monostearate) due to their excellent surface-active properties.

Sugar esters based on short chain alkyl glucosides and fatty acids have been intensively investigated as targets for lipase catalysis due to the overall low (regio-)selectivity of chemical methods towards the numerous hydroxy groups in sugars .

Mainly two strategies for the lipase-catalysed synthesis of sugar esters can be distinguished. The first was based on the use of organic solvents suitable for the solubilisation of both substrates (typically dimethylsulphoxide, dimethyl formamide or pyridine), while the second relied on modification of the sugar moiety followed by solvent-free esterification with molten fatty acids. Although the first procedure is more straightforward, the reaction kinetics are such that the overall productivity is poor. Furthermore, use of solvents is highly unwanted in the cosmetics industry. For these reasons, the second methodology is more attractive.

Fig. 4 Schematic of glycoside esters described by Björkling et al.;⁶³ R = short alkyl chain.

The world market for **cosmetics and toiletries** accounts to about 200 billion Euro

(source: Euromonitor International Database)

In 2010,

- -cosmetics market within the EU-27: 67 bn €
- US 38 bn €
- Japan 30 bn €

(source: Colipa Annual report 2010).

Most cosmetic products have a **lifespan of less than five years** and manufacturers reformulate 25% of their products every year. They need to **improve products constantly** in order to stay ahead in a highly competitive market where more choice and ever greater efficacy are expected by the consumer.

Cosmetica

Il volto della chimica in Italia

I principali Gruppi chimici italiani – Anno 2020

		Vei mo	ndite ndiali	Produzione in Italia	Addetti mondiali	Addetti in Italia		Vendite P mondiali	roduzione in Italia	Addetti mondiali	Addetti in Italia
	_		(milion	ni di euro)				(milion	i di euro)		
	1.	Versalis	3.381	2.545	5.295	4.304	27. Gruppo Metlac	216	216	188	180
	2.	Gruppo Mapei	2.772	837	10.495	2.357	28. 3V Partecipaz. Indu	istriali 208	140	594	398
	3.	Gruppo Bracco	1.199	656	2.726	600	29. Alfa Parf Group	204	33	2.088	473
	4.	Radici Group	1.019	621	3.100	1.562	30. Sabo	173	173	148	148
	5.	Gruppo SOL	974	420	4.613	1.248	31. Sadepan Chimica	170	122	183	138
	6.	P & R Group	864	792	3.751	2.927	32. Mirato Group	167	167	457	411
IIIa	7.	COIM Group	780	399	1.032	480	33. Gruppo Silvateam	156	111	697	277
	8.	Gruppo SIAD	692	507	1.980	1.214	34. Davines	153	153	597	384
ore	9.	Polynt Group	671	488	1.282	944	35. Gruppo Coswell	152	152	405	324
ante	10	Gruppo Sapio	629	532	2.268	1.405	36. Gr. Durante/TLD H	ldg 152	150	392	375
di	11.	Gruppo Intercos	604	355	5.191	1.697	37. Istituto Ganassini	152	85	390	145
ilioni	12	Gruppo Sodalis	585	350	891	696	38. Gruppo Bozzetto	152	56	509	191
morn vto	13	Gruppo Colorobbia	526	200	2.031	679	39. AGF88 Holding	135	135	520	520
rto.	14	Italmatch Chemicals	518	141	928	241	40. Paglieri	135	135	134	134
	15	FIS	516	500	1.849	1.849	41. Lechler	127	110	565	370
	16.	Gruppo Zobele	509	78	5.451	273	42. Dipharma Francis	126	119	495	457
	17	. Gr. Sipcam-Oxon	461	279	946	446	43. Renner	125	125	409	381
tato	18.	Esseco Group	439	241	1.352	680	44. Gruppo Biolchim	125	118	414	286
 I	19.	Gruppo Aquafil	437	170	2.695	798	45. Adriatica	114	91	222	162
Sİ İ	20.	Gruppo Lamberti	421	206	1.269	733	46. Gruppo Isagro	110	110	329	253
	21.	Gruppo Desa	326	324	436	417	47. Gruppo SOL.MAR.	108	104	164	164
	22.	Fluorsid Group	325	183	360	231	48. Sacco System	108	101	376	348
	23.	Novamont	286	286	479	466	49. ICAP-SIRA	104	102	266	256
	24.	FACI Group	237	94	464	198	50. Madel	104	98	140	140
	25.	Reagens	235	102	387	173	51. Index	100	100	165	165
to.	26.	Indena/Gr. IdB Holdin	g 217	177	875	565					

Note: imprese con capitale a maggioranza italiano o controllate da entità finanziarie estere ma con nazionalità italiana della gestione strategica e operativa; i valori si riferiscono ai prodotti chimici esclusi i farmaci

Fonte: Federchimica sui dati forniti dalle imprese - associate e non - che hanno aderito all'indagine

р

alore

to.

a

е dei

el

Chem Soc Rev

REVIEW ARTICLE

RSCPublishing

View Article Online View Journal | View Issue

Immobilised lipases in the cosmetics industry

Marion B. Ansorge-Schumacher*^a and Oliver Thum*^b

Commercial products for personal care, generally perceived as cosmetics, have an important impact on everyday life worldwide. Accordingly, the market for both consumer products and specialty chemicals comprising their ingredients is considerable. Lipases have started to play a minor role as active ingredients in so-called 'functional cosmetics' as well as a major role as catalysts for the industrial production of various specialty esters, aroma compounds and active agents. Interestingly, both applications almost always require preparation by appropriate immobilisation techniques. In addition, for catalytic use special reactor concepts often have to be employed due to the mostly limited stability of these preparations. Nevertheless, these processes show distinct advantages based on process simplification, product quality and environmental footprint and are therefore apt to more and more replace traditional chemical processes. Here, for the first time a review on the various aspects of using immobilised lipases in the cosmetics industry is given.

Cite this: Chem. Soc. Rev., 2013, 42, 6475

Received 28th November 2012

DOI: 10.1039/c3c35484a

www.rsc.org/csr

Lipases in cosmetic sectors

Sustainability That Gets Under the

DR. OLIVER THUM

Evonik Industries is the only company worldwide that offers biotechnologically produced emollient esters for the cosmetics industry. Compared to the chemical production process, the biotechnological variant boasts extraordinarily good

selectivity, mild reaction conditions, and high product pu For the first time, researchers at Evonik have used a life c quantitatively record and evaluate the advantages of bioc of myristyl myristate production.

Myristyl miristate: emollient

PLASTIC IN CSSMETICS

Skin

Life cycle analysis - LCA

Results of the life cycle assessment

5 ton scale

		Conventional	Enzy matic	Savings %
Energy	GJ	22.5	8.63	62
Global warming	kg CO2 eq.	1,518	582	62
Additication	kg SO ₂ eq.	10.58	1.31	88
Nutrientenrichment	kg PO4 eq.	0.86	0.24	74
Smog formation	kg C2H4 eq.	0.49	0.12	76

Main contributors to environmental impact						
	Fossil	Global	Acidification	Nutrient	Smog	
	energy	warming		enrichment	formation	
	%	%	%	%	%	
Tin	15	15	70	55	45	
Heating energy	70	70	20	35	40	
NaOCI	5	5	5	5	5	
Sodium formiate	<1	<1	<1	<1	1	
Filteraid	2	<1	<1	5	1	

Lipase B from Candida antarctica: the lid is very small. There is no evidenti conformational modification nor interfacial activation in the presence of hydrophobic phases (esterase like enzyme)

Native lipases available on the market

Aspergillus niger lipaseLipase ASAmanoCandida antarctica lipase BLipozyme CALB LNovozymesCandida cylindraceaLipase OFMeyto Sangyo C	Co. Ltd.	
Candida antarctica lipase BLipozyme CALB LNovozymesCandida cylindraceaLipase OFMeyto Sangyo C	Co. Ltd.	
Candida cylindraceaLipase OFMeyto Sangyo (Co. Ltd.	
Candida lipolytica - Amano		
Candida rugosa Lipase AY "Amano" 30 Amano		
Candida rugosa - Sigma	Sigma	
Candida rugosa - Meyto Sangyo (Co. Ltd.	
Chromobacterium viscosum - Asahi Chemical	I Industry	
Geotrichum candidum Amano GC-4 Amano		
Humicola insolensLipozyme TL 100LNovozyme		
Papaya latex lipaseCarica papaya latexSigma		
Penicillium camembertiiLipase GAmano		
Penicillium expansum - Shenzhen Leve	eking	
Penicillium roquefortiLipase R "Amano"Amano		
Porcine pancreas - Sigma		
Type II		
Pseudomonas cepacia lipaseLipase PS "Amano" SDAmano		
Pseudomonas fluorescens Pseudomonas Amano		
lipase fluorescens (AK)		
Rhizomucor mieheiPalatase 20000Novozyme		
Rhizopus delemar-Seikagaku Kogy	yo Co.	
Rhizopus japonicusLipase A-10FGNagase Biocher	m., Ltd.	
Rhizopus niveusNewlase FAmano		
Rhizopus oryzaeAmano F-AP15Amano		
Thermomyces lanauginosusLipolase 100LNovozymes		

Some examples of immobilized lipases reported in the literature

Source	Product and Supplier	Method	Support	
C. antarctica	Novozym [®] 435 Sprin-CALB Lipobond	Adsorption	Acrylic resin	
Porcine pancreas	- (Sigma)	lonic interaction	Ionic resin	
P. cepacia	Lipase PS IM (Amano)	Deposition	Celite	
P. cepacia	Lipase PS-C (Amano)	Deposition	Ceramic	
R. miehei	Lipozyme [®] RM-IM (Novozymes)	lonic interaction	Duolite A568	
T.lanuginosus	Lipozyme®TL IM (Novozymes)	Granulate with binder	Silica	

Immobilization of lipases on organic hydrophobic resins + aqueous buffer: the active site will point towards the carrier. Wrong orientation!

Structural comparison of lipases: Lys on surface

Arrows indicate crucial Lys residues on the surface (space-filling representation)

Structural comparison of lipases: Lys on surface

Enzymatic synthesis of biodiesel: advantages

Demonstration plants only

- a) possibility of using waste oils and oils containing fatty acids
- b) use of steichiometric amounts of the alcohols
- c) reduction of wastes
- d) mild and neutral reaction conditions
- e) higher purity of the glycerol obtained as secondary product

Lipases in food industry

Specialty esters

-Structured triglycerides containing long chain fatty acids are an important class of raw materials for emulsions since their sensory properties vary with the fatty acid composition (content, position and saturation degree of fatty acids).

Replacement of a fatty acid with a different one to confer different properties

Fig. 2 Representative reaction scheme for the preparation of structured triglycerides. Here, an oleic acid moiety is replaced by a linoleic acid moiety.

Lipases in the synthesis of structured esters

The possibility of using lipases in low-water environments has made possible their application for the production of structured triacylglycerols by enzymatic inter- and transesterifications.

This mild and selective approach has been utilized for producing

- cocoa-butter equivalent
- infant-formula substitutes.

triacylglycerols containing polyunsaturated fatty acids (PUFA)

Synthesis of cocoa butter analogues

Cocoa butter has a melting point close to 37° C. It is mainly composed of SOP and SOS triacylglycerols (where S = stearic and O = oleic, P = palmitic).

Palm oil mid-fraction is liquid at room temperature an rich of POP triacylglycerol (where P = palmitic acid) and can be converted into cocoa butter by chemo- and regiospecific lipases able to introduce stearic acid in position sn_1 and sn_3 . The biotransformation can be carried out in solvent-free medium, where palm oil is used in large excess.

Unsaturated fatty acids have lower melting point

The chemical alternative: hydrogenated fatty acids

Hydrogen and a metal catalyst operating at about 100°C and under vacuum.

Unsaturated fatty acids are converted in saturated fatty acids

Transesterification catalyzed by lipase from Mucor mihei

Palm oil

Cocoa butter analogue

- P: palmitic saturated 16Carbon atoms
- O: oleic unsaturated
- S: stearic saturated 18 Carbon atoms

Origin	Code ^[4]	M[kDa] (rounded)	Specificity (remarks)	Applications
of mammalian origin				
human pancreatic lipase	HPL	50	sn-1,3	
human gastric lipase	HGL	50	sn-3 (acid-stable)	
porcine pancreatic lipase	PPL	50	sn-1,3	organic synthesis, digestive aid
guinea pig pancreatic lipase	GPL-RP2	48	sn-1,3 (phospholipase A1 activity)	
of fungal origin				
Candida rugosa	CRL	60	nonspecific	organic synthesis
Candida antarctica B	CAL	60	sn-1,3	organic synthesis
Geotrichum candidum	GCL	60	cis-A ⁹	oleochemistry
			(unsaturated fatty acids)	-
Humicola lanuginosa	HLL	30	nonspecific	detergents
Rhizomucor miehei	RML	30	sn-1,3	cheese manufacturing
Aspergillus ory zae	AOL			cheese manufacturing
Penicillium camen bertii	PEL	30	sn-1,3	monoglycerides
Rhizopus delemar	RDL	41	sn-1,3	oleochemistry
-			(phospholipase A1 activity)	-
Rhizopus oryzae	ROL	41	m-1,3	oleochemistry
			(phospholipase A1 activity)	-
Rhizopus arrhizus	RAL	41	m-1,3	oleochemistry
			(phospholipase A1 activity)	-
of bacterial origin				
Pseudomonas glumae	PGL	33	nonspecific	detergent enzyme, organic synthesis
Burkholderia cepacia	PCL/BCL	33	nonspecific	organic synthesis
Pseudomonas pseudoalcaligenes	PPL	33	sn-1,3	detergents
Pseudomonas mendocina	PML	33	sn-1,3	detergents
Chromobacterium viscosum	CVL	33	sn-1,3	organic synthesis
Bacillus thermocatenulatus	BTL-2	43	sn-1,3	
			(thermoalkalophilic)	
Fusarium solani	FSL	22	- •	detergents
(hydrolyzes cutin)				~

Table 3. Important commercially available lipases.

[a] Other appreviations for lipases used in this article: PSL (Pseudomonas species lipase), PFL (Pseudomonas flourescens lipase), HLL (human lipoprotein lipase), LPL (lipoprotein lipase). Lipases can be obtained commercially from many suppliers. Important original producers are Novo-Nordisk (Baegsvard, Denmark), Genencor International B. V. (Delft, The Netherlands), Boehringer-Mannheim (Mannheim, Germany), and Amano Co. (Nagoya, Japan).

The observation that lipases selectively catalyze both hydrolysis and esterifications has been further exploited for the obtainment of Betapol[®] from tripalmitin (palm oil). Betapol[®] consists of triglyceride fatty acids commonly found in vegetable and animal fats. A similarity to human milk fat indicated a potential use in **infant formulae** as well as for food use in general.

Tripalmitin is firstly hydrolysed with a lipase from Rhizopus oryzae able to remove only the fatty acids in position 1 and 3. The resulting 2-mono-palmitin has been esterified with oleic acid using the Rhizomucor miehei lipase in organic solvent

P: palmitic – saturated 16Carbon atoms O: oleic – unsaturated

The biotransformation at industrial level

The lipase is immobilized onto porous silica granulates which are insoluble in oil. (see immobilized enzymes)

The immobilized lipase Lipozyme® TL IM viewed through a light microscope. The enzyme is bound to a silica carrier

Lipases have been extensively used for the hydrolysis and transesterification of triacylglycerols. Chemoand regio-selective hydrolysis of triacylglycerols has been exploited for enrichment of specific fatty acids, such as **polyunsaturated fatty acids (PUFA) from fish oils**.

PUFAs are increasingly used as food additives, pharmaceuticals and nutraceuticals because of their metabolic benefits. Many PUFAs are essential for normal synthesis of lipid membranes and prostaglandins.

Omega-6 Fatty Acids Omega-3 Fatty Acids HOOC HOOC H30 H₃C Linoleic Acid (18:2n-6) a-Linolenic Acid (18:3n-3) HOOD HOOC H₃C H₃C y-Linolenic Acid (18:3n-6) Eicosapentaenoic Acid (20:5n-3) HOOC HOOC H₃C H₃C Arachidonic Acid (20:4n-6) Docosahexaenoic Acid (22:6n-3)

Esters synthesised by lipases used as aromas in food and pharma sector

ottil etanoato (ottil acetato)

arancia

etil butanoato (etil butirrato)

ananas

3-metilbutil etanoato (isopentil acetato, isoamil acetato)

banana

metil 2-idrossibenzoato (metil salicilato)

menta

The International Organization of Flavor Industries defines the **natural** flavoring ingredients such as "those obtained through appropriate physical, enzymatic or microbiological transformations from a material of plant or animal origin, in the natural state or prior transformation for human consumption". Therefore compounds obtained from the synthesis of natural, biological substrates are considered as natural, while the same chemically produced materials are not. The production of a variety of products from natural processes takes on great significance for the final consumer who attributes to the "natural" product greater safety and genuineness, whether they are food consumption products or cosmetic products (for example creams). These products substantially determine price increases. Thus, the manufacture of various products by means of lipase catalysis turns out to be profitable for the industry

Partial hydrolysis of triglyceride to obtain emulsifiers

The partial hydrolysis of triglycerides to increase the monoglyceride content is obtained by adding lipases to the bread dough: this leads to a delay of the refining.

Chemoenzymatic epoxidation of C=C bonds of thiglycerides and unsaturated fatty acids

1.Enzimatic formation of perossiacid

Chemoenzymatic epoxidation of C=C bonds of thiglycerides and unsaturated fatty acids

The obtained epoxidized oils are used as bio-lubricants or bio-plasticizers.
Enzymatic synthesis of biobased oil derived biolubricants, plasticizers and poliesters

Article Understanding Marine Biodegradation of Bio-Based Oligoesters and Plasticizers

Federico Zappaterra ^{1,†}^(b), Monia Renzi ²^(b), Manuela Piccardo ²^(b), Mariachiara Spennato ¹^(b), Fioretta Asaro ¹^(b), Martino Di Serio ³^(c), Rosa Vitiello ³^(b), Rosa Turco ^{3,4}^(b), Anamaria Todea ^{1,*}^(b) and Lucia Gardossi ¹^(b)

Figure 4. Structures of the products obtained from the enzymatically catalyzed epoxidation of oleic, linoleic, and linolenic acids. Codes refer to marine biodegradation tests.

Figure 2. A schematic representation of the structure of an unsaturated triglyceride (triolein) and the corresponding epoxidized products. The cardoon seed oil is actually composed of a variety of saturated and unsaturated fatty acids, as reported above. The figure aims at illustrating the transformation of a triglyceride in a simplified way. Codes refer to marine biodegradation tests.

Lipases for the enzymatic synthesis of bio-based poliesters

The process: enzymatic solvent-free polycondensation of bio-based monomers

Advantages:

•Selective catalysis (OK for multifunctional

monomers)

•Mild reaction conditions (~70°C) (OK for

labile monomers)

• Control of molecular weight and structure

(Low molecular weight)

M_n<2000 g/mol when using recyclabl e enzymes in solvent-free systems

•Solvent-free reactions feasible

Enzyme recyclability

A. Guarneri et al. Adv. Synth. Cat., 2019, 361, 2559-2573

Optimization of solvent-free enzymatic polycondensation: immobilization of the enzyme

	contribution of enzyme (€/kg)	for immobilized enzymes
Pharma	10	50-100 kg product / kg biocatalyst
Bulk chemical	0.05	2000-10000-kg product / kg biocatalyst

Biocatalyst must be recycled efficiently!

Robust, cheap, immobilized enzymes
Prevent enzyme leaching
<u>Enable recycling</u>

Scalable?

Solvent-free

Synthesis of short oligomers

- High viscosity
- No mechanical/magnetic stirring Mechanical damage of carrier prevented
- Thin film

Optimal mass and heat transfer, carrier preserved

HO OH Lipase

glycerol-azelaic acid ol

azelaic acid

ChemSusChem, 2022, 15 (9), e202102657

Two step polycondensation in turbo-reactor: catalyst-free elongation

Cutinases as alternatives to lipases

Cutin

The cutin is the hydrophobic waxy substance present in greater quantity inside the protective cuticle that covers the outer parts of the plant tegumentary tissues preventing their drying out.

Dipartimento di Scienze Chimiche e Farmaceutiche

Cutinases are biosynthesized by pathogenic fungi to hydrolyze plant cutin

Cutinase Thermob. cellulosilytica

Hydrophobicity

Comparison: cutinases and lipase from *Candida antarctica* (CALB)

Superficial and accessible active sites

Cutinase vs lipase: MD simulations

Green Chem., 2017, 2017, 19, 490-502

Cutinases: enzymes for polymer degradation and re-synthesis

bulky hydrophobic polyester

Lucia Gardossi

Pellis A. et al Green Chem., 2017, 19, 490-502. Pellis A. et al. Catalysts 2016, 6, 205.

MODULE: Sustainability Unit: Eco-design and circularity

Hydrolysis of PET catalyzed by Cutinase 1 from *Thermobifida cellulosilytica*

Nicola Piovesan, 2016, Thesis, Master in Chemistry, Univ. Trieste

Enzyme-catalyzed functionalization of poly(L-lactic acid)

Pellis A. et al., *Process Biochem.*, 59, 77-83, 2017.

Alessandro

Pellis

Cutinase hydrolysis of PLA preserves bulk properties

Start PLA

CTRL 48h

Hydro 24h

Hydro 48h

Pellis A. et al., Process Biochem., 59, 77-83, 2017.

Hydro 72h

UNIVERSITÀ DECLI STUDI DI TRIESTE Dipartimento di Scienze Chimiche e Farmaceutiche

Photometric and FT-IR analysis of Doxorubicin adsorbed on PLA films

Adsorbed Doxo

Released Doxo

Pellis A. et al., *Process Biochem.*, 59, 77-83, 2017.

Biodegradazione, recupero e riciclo chimico dei monomeri (poliesteri)

Carbios, L'Oréal, Nestlé Waters, PepsiCo and Suntory Beverage & Food Europe