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Why Machine Learning? 

There are problems that are difficult to address with traditional programming 
techniques: 
● classify a document according to some criteria (e.g. spam, sentiment analysis, 

...) 
● compute the probability that a credit card transaction is fraudulent
● recognize an object in some image (possibly from an unusual point of view, in 

new lighting conditions, in a cluttered scene) 
● ... 

Typically the result depends on a non-linear combination of a large number of 
parameters, each one contributing to the solution in a small degree



The Machine Learning approach:

Suppose to have a set of input-output pairs (training set):

the problem consists in understanding the map between x and y  

The M.L. approach:
● describe the problem with a model depending on some parameters Θ (i.e. 

choose a parametric class of functions) 
● define a loss function to compare the results of the model with the expected 

(experimental) values 
● optimize (fit) the parameters Θ to reduce the loss to a minimum



The Machine Learning approach:

● Machine Learning problems are in fact optimization problems! So, why talking 
about learning? 

● The point is that the solution to the optimization problem is not given in an 
analytical form (we don’t have a theoretical/analytical model to explain the 
data, and often there is no closed form solution). 

● So, we use iterative techniques (typically, gradient descent) to progressively 
approximate the result. 

● This form of iteration over data can be understood as a way of progressive 
learning of the objective function based on the experience of past 
observations.



Different types of learning tasks 



Classification vs. Regression 



Many different techniques 





Each  neuron takes multiple inputs and 
produces a single output (that can be 
passed as input to many other neurons):

The purpose of the activation function is 
to introduce a thresholding mechanism 
(similar to the axon-hillock of cortical 
neurons).



The purpose of the activation function is 
to introduce a thresholding mechanism 
(similar to the axon-hillock of cortical 
neurons).

NOTE: Composing linear transformations 
does not increase the complexity of your 
model, since we still get a linear 
transformation!

The activation function provides the 
source of NON LINEARTY in the neural 
networks



f(x)



Dense Feed-Forward NN

The most typical feed-forward 
network is a dense (i.e. w/ more than 
1 hidden layer) network where each 
neuron at layer k − 1 is connected to 
each neuron at layer k.

The network is defined by a matrix of 
parameters (weights) wk  for each 
layer (+ biases). The matrix wk has 
dimension Lk × Lk+1 where Lk is the 
number of neurons at layer k.

The weights wk  and biases are the 
parameters of the model: they are 
learned during the training phase.

Layer 1 Layer 2Input Output

Activation Function



Training the NN
Goal: tune the value of the network 
parameters to get the most accurate 
predictions on the parameters.

Accuracy defined in the loss function
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In other words we want to “learn” the 
parameters which minimize the loss 
function (optimization problem!)



Gradient Descent

learning rate 
parameter

θ

L(θ)

The objective is to minimize the loss function over (fixed) training 
samples by suitably adjusting the parameters 𝜗i .

To do so we compute the gradient of the loss function w.r.t. the 
model parameters 𝜗i , ∇𝜗 L . The gradient is the vector pointing 
in the direction of steepest ascent.

We can reach a minimal configuration for 
L(𝜗) by iteratively taking small steps in 
the direction opposite to the gradient 
(gradient descent).



● Compute L and the derivative using all available data?
Derivative will be smooth. Fast convergence but you may end up in a local 
minima

● Compute L and the derivative using a single data point?
Derivative will be noisy. Will help escaping local minima, but hard to get 
convergence

● Compute L and the derivative using a random batch of point?
Good trade between fast convergence and escape saddle points; also 
efficient for memory usage 

Stochastic Gradient Descent
Compute 

gradient of L(𝜗) 
w.r.t. 𝜗 

Update 𝜗
𝜗i+1 = 𝜗i - 𝜆 𝛻𝜗 L  

Compute 
L(𝜗|x,y) 



● Training Dataset: The actual dataset that we use to train the model (weights and 
biases in the case of a Neural Network). The model sees and learns from this data.

● Validation Dataset: The sample of data used to provide an unbiased evaluation of a 
model fit on the training dataset. The model see this data but doesn’t learn from it.

● Test Dataset: The sample of data used to provide an unbiased evaluation of a final 
model fit on the training dataset. The model doesn’t see or learn from this data.

~70% ~15% ~15%

Training, validation and test data:



NN FLOW CHART:

Compute 
gradient of L(𝜗) 

w.r.t. 𝜗 

Update 𝜗
𝜗i+1 = 𝜗i - 𝜆 𝛻𝜗 L  

Compute 
L(𝜗i|xtrain,ytrain) 

Compute 
L(𝜗i+1|xvalid,yvalid) 
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If Lvalid(𝜗i+1) < min(Lvalid 
) update model:

𝜗best = 𝜗i+1

Create data sets:
Split your data (x,y) in

(xtrain,ytrain)
(xvalid,yvalid)
(xtest,ytest) 

Test the network:
Compute y(𝜗best|xtest) and 

compare it with ytest 

Loop over 
batches

Loop over batches

Train the Neural Network Neural Network components:
● Model: y(x,𝜗)
● Loss Function
● Optimizer 



How many parameters?



Weight decay Dropout

Regularization



Pytorch library

To install follow the instruction here

https://pytorch.org/


Convolutional Neural Networks (CNN)



Convolutional Neural Networks (CNN)
Input: n x n x c matrix
E.g. RGB image: npixel x npixel x 
3

Neural Network



1*GcI7G-JLAQiEoCON7xFbhg.gif

Convolution Layer
Input: 6x6x1 Output: 4x4x1Kernel: 3x3x1

https://miro.medium.com/max/4800/1*GcI7G-JLAQiEoCON7xFbhg.gif


Convolution Layer
Feature extraction by filtering the image:



Convolution Layer: 2

A n⨉n⨉c input image can be 
convolved with nf f⨉f⨉c filters

The output size is 
(n-f+1)⨉(n-f+1)⨉nf

Add bias and apply activation 
function



Padding

1*1VJDP6qDY9-ExTuQVEOlVg.gif

https://miro.medium.com/max/790/1*1VJDP6qDY9-ExTuQVEOlVg.gif


Strides
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Pooling

https://miro.medium.com/max/792/1*uoWYsCV5vBU8SHFPAPao-w.gif


BatchNorm
Purpose:

● Normalize Inputs: BatchNorm normalizes the inputs to 
each layer to have zero mean and unit variance within 
a mini-batch.

● Mitigate Internal Covariate Shift: It reduces the 
changes in the distribution of layer inputs during 
training, allowing the network to learn more efficiently.


