OBSERVATIONAL COSMOLOGY:

INTRODUCTION TO MACHINE LEARNING

Credit: A.Asperti (Unibo); F. Villaescusa (Simon Foundation)

A.A. 2024/2025 | Matteo Costanzi - University of Trieste / INAF



Why Machine Learning?

There are problems that are difficult to address with traditional programming
techniques:
e classify a document according to some criteria (e.g. spam, sentiment analysis,
...)
e compute the probability that a credit card transaction is fraudulent
e recognize an object in some image (possibly from an unusual point of view, in
new lighting conditions, in a cluttered scene)

Typically the result depends on a non-linear combination of a large number of
parameters, each one contributing to the solution in a small degree



The Machine Learning approach:

Suppose to have a set of input-output pairs (training set):

{z,y}

the problem consists in understanding the map between x and y

The M.L. approach:
e describe the problem with a model depending on some parameters O (i.e.
choose a parametric class of functions)
e define a loss function to compare the results of the model with the expected
(experimental) values
e optimize (fit) the parameters O to reduce the loss to a minimum



The Machine Learning approach:

e Machine Learning problems are in fact optimization problems! So, why talking
about learning?

e The point is that the solution to the optimization problem is not given in an
analytical form (we don’t have a theoretical/analytical model to explain the
data, and often there is no closed form solution).

e S0, we use iterative techniques (typically, gradient descent) to progressively
approximate the result.

e This form of iteration over data can be understood as a way of progressive
learning of the objective function based on the experience of past
observations.



Different types of learning tasks

Y

: = OO\\\ S

inputs + outputs (labels) oa.

- classification < ;

- regression supervised

. . & OO ®)

Just inputs 5

- clustering OO 0o

- component analysis

- autoencoding unsupervised
L

actions and rewards
- learning long-term gains
- planning

reinforcement



Classification vs. Regression

Two forms of supervised learning: {(x;, yi)}

Expected
value

classification

i New input

regression

y is discete: y € {eo,+} y is (conceptually) continuous



Many different techniques

e Different ways to

define the models:

- decision trees Suany Owlw R

- linear models

- neural networks ek Nema sy Vo ——

_ _\-‘,/ \\“ .\n/ \\c\ s hidden layer 1 hidden layer 2
decision tree neural net

e Different error

- rati : wx+b=0
(‘) Gitpod Veolon Separating Hyperplane: wx

(loss) functions: Py
* 2 {)/M.rgln of Separation
o0, ® e
- mean squared errors °o0@ .~
. . s s /6) k-]
- logistic loss *® ko.o
e .

cross entropy
cosine distance

Iesmun, adrgin mean squared errors maximum margin



Neural Networks

put layer

input layer
hidden layer 1 hidden layer 2



Artificial neuron

Each neuron takes multiple inputs and
produces a single output (that can be
passed as input to many other neurons):

output layer
input layer
hidden layer 1 hidden layer 2

Activation Function
——

The purpose of the activation function is
to introduce a thresholding mechanism

(similar to the axon-hillock of cortical
neurons).

inputs

activation
function

output




Artificial neuron

£

‘ output layer
input layer

hidden layer 1 hidden layer 2

7
{
o0

®
e

f
W
K
X\

\4
X
@

Activation Function

The purpose of the activation function is
to introduce a thresholding mechanism
(similar to the axon-hillock of cortical
neurons).

NOTE: Composing linear transformations
does not increase the complexity of your
model, since we still get a linear
transformation!

The activation function provides the
source of NON LINEARTY in the neural
networks



f(x)
Activation Functlons

Sigmoid Leaky ReLU )
o max(0.1z, z)

O'(LE) — 14e— T —
tanh Maxout

tanh(x) - ° max(wi x + by, w3 x + bs)
ReLU / ELU J

& )
maX(07 CE) N ) {a(e‘” . 1) <0 - ~ -



Dense Feed-Forward NN

Input

X190 = f(xoWoo + x1Wyo + bgo)

Layer 1

xzo = f(x10Wgo +

“11W1g + X12Wpo + byp)

§><y>xzowoo + x51W10 + bao

g@é/

X175 = f(xoWoz + x1Wy2 + bg2)

Layer 2

f(x) = Activation Function

Output

The most typical feed-forward
network is a dense (i.e. w/ more than
1 hidden layer) network where each
neuron at layer k — 1 is connected to
each neuron at layer k.

The network is defined by a matrix of
parameters (weights) wX for each
layer (+ biases). The matrix w* has
dimension L x L, . where L, isthe
number of neurons at layer k.

The weights w* and biases are the
parameters of the model: they are
learned during the training phase.



the NN

Ining

Tra

tune the value of the network

Goal

parameters to get the most accurate

the parameters

IoNS on

t

IC

pred

- s g P
G L G GF 1 €F LF GF &2 Bl Ll X

tion
2

d in the loss func

ine
N

U=
(O]

©
>
o
©
|
=
o
o

<

sainjeay Induj

“learn” the

In other words we want to

the loss
blem!)

1Zze

Im

in
ion pro

parameters which m

function (opt

imizat




Gradient Descent The objective is to minimize the loss function over (fixed) training

samples by suitably adjusting the parameters ¥, .

To do so we compute the of the loss function w.r.t. the

N model parameters ., V L. The gradient is the vector pointing
L(e) in the direction of steepest ascent.

We can reach a minimal configuration for

L(7) by iteratively taking small steps in

the direction opposite to the gradient
[nitial weighfg (gradient descent).

Oi+1 = 0; — AVylL

Global minimum /

learning rate
parameter

7



Stochastic Gradient Descent

Compute
Compute : Update ¢
radient of L(¢
[ Hoxy) ] { ° w.r.t. 9 ) ] [ P =0 _AV’?L}

e Compute L and the derivative using all available data”
Derivative will be smooth. Fast convergence but you may end up in a local
minima

e Compute L and the derivative using a single data point?
Derivative will be noisy. Will help escaping local minima, but hard to get
convergence

e Compute L and the derivative using a random batch of point?
Good trade between fast convergence and escape saddle points; also
efficient for memory usage



Training, validation and test data:

e Training Dataset: The actual dataset that we use to train the model (weights and
biases in the case of a Neural Network). The model sees and learns from this data.

e Validation Dataset: The sample of data used to provide an unbiased evaluation of a
model fit on the training dataset. The model see this data but doesn’t learn from it.

e Test Dataset: The sample of data used to provide an unbiased evaluation of a final
model fit on the training dataset. The model doesn’t see or learn from this data.

Train Validation Test

{ Y N\ f R

~70% ~19%8 ~15%




: e : N
NN FLOW CHART. T;am the Neural Netwm;k Neural Network components:
4 — A e Model: y(x,#)
u e |Loss Function
I‘(ﬁilxtrain’ytrain) Y - Optimizer
I 3
2
Compute 8
gradient of L(9) |&
4 N\ L w.rt. 9 g
Create data sets: I .
Split your data (x,y) in .‘cg Test the network:
(XainYirain) 2 Update @ Compute y(,__Ix,..,) and
o 9 =9 -1V L best’” "test
z‘vand’yvano)l % § i+1 i 9 ) compare it with y,
xtest’ytest i
\ / g— - v ; g\
Compute 2|8
I‘(ﬁi+1 IXvalid’yvalid)g %
\_ | /3
'
- A
If I‘valid(ﬂi+1) < rmn(l‘valid
) update model:
L ﬂbest = ﬁi+1 J




Price

How many parameters?

s | A &
Size Size Size‘

9() + 0137 90 + 91.1' - 921_.'2 0() -+ 01;’1‘ + 02.’[‘2 -+ 93.‘1‘3 -+ 94.1‘4
High bias “Just right” High variance
(underfit) d=2 (overfit)

3! A &



Regularization

Weight decay

Dropout

N
1
L= NZ(HNN - HTrue)z + nZWiZ
i=1




Pytorch library

To install follow the instruction here

NOTE: Latest PyTorch requires Python 3.9 or later.

PyTorch Build Stable (2.5.1) Preview (Nightly)
Your OS Linux Mac Windows

Package Conda i LibTorch Source

Language Python C++/Java

CUDA CUDA CUDA
Compute Platform 121 124 ROCm 6.2 CPU

conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch
-c nvidia

Run this Command:


https://pytorch.org/

Convolutional Neural Networks (CNN)

— CAR
— TRUCK
— VAN

LT TR EE]

JEEE S

JEEEFEEDE

NN

' //
e
/

’ -/\ 222
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN CO;UP:.éZTED SOFTMAX

i i kA

FEATURE LEARNING CLASSIFICATION

»
I
o
)
<
(2]
b




Convolutional Neural Networks (CNN)

Input: n x n X ¢ matrix
E.g. RGBimage:n__ _ xn

pixel pixel

7 Neural Network
4 o CAR
g — TRUCK

— VAN

\!!

—
—

-~
o

L L e ]

JERE BN
IHEEIEEEE

ﬁ
P

p 2
A .
e L [l [] — BicYCLE
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN Co;”h}ész SOFTMAX

FEATURE LEARNING CLASSIFICATION




Convolution Layer

Input: 6x6x1 Kernel: 3x3x1 Output: 4x4x1
1{of1]o|1]o0 1(0[1 123 31
-
o|l1|1]o |11 o|1|(1]|k|4|[5[6|—p
1|lo|l1]o|1]o0 1101 71819
1{0j1j1]|1]0 Image patch Kernel
ol1l1lol 12 (Local receptive field) (filter) Output
1/o0|l1|o0|1]o0
Input 113, 1 [ROSEE
0, 1, 1 SN 4
Qtl oxO 1x1 1 1
1*Gcl7G-JLAQIEOCON7xFbhg.qif (6 9| L2 [ 19 0 e
0|1(1|0(0
Convolved
Image

Feature


https://miro.medium.com/max/4800/1*GcI7G-JLAQiEoCON7xFbhg.gif

Convolution Layer

Feature extraction by filtering the image:

Operation Filter Convolved Operation Filter Convolved
Image Image
0 0 0 0 0 0
Identity 010 Identity 01 0
0 0 0 0 0 0
1 0 -1 0 =1 :0
00 0 Sharpen -1 5 -1
U s | o -1 0
: B SR
0 1 0 Box blur 1 101 1
Edge detection 1 —-4 1 {normalized) 9
0 1 0 1 1]
: TR0 S |
-1 -1 -1 Gaussian blur 1
-1 8 -1 — 12 4 2
(approximation) 16
-1 =1 =1 x: 2. 1




Convolution Layer: 2

A Convolution Layer

Filter 1

= 4x4x3

— Filter 2

4x4x3

Add bias and apply activation

function \
Output
3x3
==
3x3x2 3x3x2

The output size is
(n-f+1)x(n-f+1)xn, o
A nxnxc input image can be
convolved with n_fxfxc filters



i i i
1 ] 1
o
o|lo|o X
o
— i i
*

A
@IeIeI01019010] O]
b--- ‘ -==d
i) o
e P o)
1 1
=) o
Fmmm S
1 1
{9 '
| T s
1
)
1

0{0:0:0

S

6X6 - 8%X8

if

1*1VJDP69DY9-ExTuQVEOIVQ.


https://miro.medium.com/max/790/1*1VJDP6qDY9-ExTuQVEOlVg.gif

Strides

1" 12 13 14 15 16 | 17

Convolve with 3x3

21 | 22 23 24| 25 26 | 27 filters filled with ones

108 | 126

31 [ 32 33 34|35 36| 37
41 | 42 43 44 | 45 46 | 47 :> 288 | 306

S1 | S2 | S3 | 54 | S5 | 56 | 57

61 | 62 | 63 | 64 | 65 | 66 | 67

71 72 | 73 | 74 | 75 | 76 | 77

Sin + 2Padding — Kernel size — 2

Sou — .
‘ Stride



Pooling

20
112

1*uoWYsCV5vBU8SHFPAPao-w.qif

max pooling

30
37

average pooling


https://miro.medium.com/max/792/1*uoWYsCV5vBU8SHFPAPao-w.gif

BatchNorm

Purpose:

e Normalize Inputs: BatchNorm normalizes the inputs to

each layer to have zero mean and unit variance within T — E [.’E]
a mini-batch. Yy = * 7Y 4 3
e Mitigate Internal Covariate Shift: It reduces the \/Varfa:] T ¢ |

changes in the distribution of layer inputs during
training, allowing the network to learn more efficiently.

Input Output

Feature Map Feature Map
— mean( ) e
’ -y . .

(s + T
Y/

sqrt(std(

HXWX5

) + €)
HXWXx5



