
INTRODUCTION TO MACHINE LEARNING

A.A. 2024/2025 | Matteo Costanzi - University of Trieste / INAF

OBSERVATIONAL COSMOLOGY:

Credit: A.Asperti (Unibo); F. Villaescusa (Simon Foundation)

Why Machine Learning?

There are problems that are difficult to address with traditional programming
techniques:
● classify a document according to some criteria (e.g. spam, sentiment analysis,

...)
● compute the probability that a credit card transaction is fraudulent
● recognize an object in some image (possibly from an unusual point of view, in

new lighting conditions, in a cluttered scene)
● ...

Typically the result depends on a non-linear combination of a large number of
parameters, each one contributing to the solution in a small degree

The Machine Learning approach:

Suppose to have a set of input-output pairs (training set):

the problem consists in understanding the map between x and y

The M.L. approach:
● describe the problem with a model depending on some parameters Θ (i.e.

choose a parametric class of functions)
● define a loss function to compare the results of the model with the expected

(experimental) values
● optimize (fit) the parameters Θ to reduce the loss to a minimum

The Machine Learning approach:

● Machine Learning problems are in fact optimization problems! So, why talking
about learning?

● The point is that the solution to the optimization problem is not given in an
analytical form (we don’t have a theoretical/analytical model to explain the
data, and often there is no closed form solution).

● So, we use iterative techniques (typically, gradient descent) to progressively
approximate the result.

● This form of iteration over data can be understood as a way of progressive
learning of the objective function based on the experience of past
observations.

Different types of learning tasks

Classification vs. Regression

Many different techniques

Each neuron takes multiple inputs and
produces a single output (that can be
passed as input to many other neurons):

The purpose of the activation function is
to introduce a thresholding mechanism
(similar to the axon-hillock of cortical
neurons).

The purpose of the activation function is
to introduce a thresholding mechanism
(similar to the axon-hillock of cortical
neurons).

NOTE: Composing linear transformations
does not increase the complexity of your
model, since we still get a linear
transformation!

The activation function provides the
source of NON LINEARTY in the neural
networks

f(x)

Dense Feed-Forward NN

The most typical feed-forward
network is a dense (i.e. w/ more than
1 hidden layer) network where each
neuron at layer k − 1 is connected to
each neuron at layer k.

The network is defined by a matrix of
parameters (weights) wk for each
layer (+ biases). The matrix wk has
dimension Lk × Lk+1 where Lk is the
number of neurons at layer k.

The weights wk and biases are the
parameters of the model: they are
learned during the training phase.

Layer 1 Layer 2Input Output

Activation Function

Training the NN
Goal: tune the value of the network
parameters to get the most accurate
predictions on the parameters.

Accuracy defined in the loss function

In
pu

t f
ea

tu
re

s

In other words we want to “learn” the
parameters which minimize the loss
function (optimization problem!)

Gradient Descent

learning rate
parameter

θ

L(θ)

The objective is to minimize the loss function over (fixed) training
samples by suitably adjusting the parameters 𝜗i .

To do so we compute the gradient of the loss function w.r.t. the
model parameters 𝜗i , ∇𝜗 L . The gradient is the vector pointing
in the direction of steepest ascent.

We can reach a minimal configuration for
L(𝜗) by iteratively taking small steps in
the direction opposite to the gradient
(gradient descent).

● Compute L and the derivative using all available data?
Derivative will be smooth. Fast convergence but you may end up in a local
minima

● Compute L and the derivative using a single data point?
Derivative will be noisy. Will help escaping local minima, but hard to get
convergence

● Compute L and the derivative using a random batch of point?
Good trade between fast convergence and escape saddle points; also
efficient for memory usage

Stochastic Gradient Descent
Compute

gradient of L(𝜗)
w.r.t. 𝜗

Update 𝜗
𝜗i+1 = 𝜗i - 𝜆 𝛻𝜗 L

Compute
L(𝜗|x,y)

● Training Dataset: The actual dataset that we use to train the model (weights and
biases in the case of a Neural Network). The model sees and learns from this data.

● Validation Dataset: The sample of data used to provide an unbiased evaluation of a
model fit on the training dataset. The model see this data but doesn’t learn from it.

● Test Dataset: The sample of data used to provide an unbiased evaluation of a final
model fit on the training dataset. The model doesn’t see or learn from this data.

~70% ~15% ~15%

Training, validation and test data:

NN FLOW CHART:

Compute
gradient of L(𝜗)

w.r.t. 𝜗

Update 𝜗
𝜗i+1 = 𝜗i - 𝜆 𝛻𝜗 L

Compute
L(𝜗i|xtrain,ytrain)

Compute
L(𝜗i+1|xvalid,yvalid)

Lo
op

 o
ve

r e
po

ch
s

If Lvalid(𝜗i+1) < min(Lvalid
) update model:

𝜗best = 𝜗i+1

Create data sets:
Split your data (x,y) in

(xtrain,ytrain)
(xvalid,yvalid)
(xtest,ytest)

Test the network:
Compute y(𝜗best|xtest) and

compare it with ytest

Loop over
batches

Loop over batches

Train the Neural Network Neural Network components:
● Model: y(x,𝜗)
● Loss Function
● Optimizer

How many parameters?

Weight decay Dropout

Regularization

Pytorch library

To install follow the instruction here

https://pytorch.org/

Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN)
Input: n x n x c matrix
E.g. RGB image: npixel x npixel x
3

Neural Network

1*GcI7G-JLAQiEoCON7xFbhg.gif

Convolution Layer
Input: 6x6x1 Output: 4x4x1Kernel: 3x3x1

https://miro.medium.com/max/4800/1*GcI7G-JLAQiEoCON7xFbhg.gif

Convolution Layer
Feature extraction by filtering the image:

Convolution Layer: 2

A n⨉n⨉c input image can be
convolved with nf f⨉f⨉c filters

The output size is
(n-f+1)⨉(n-f+1)⨉nf

Add bias and apply activation
function

Padding

1*1VJDP6qDY9-ExTuQVEOlVg.gif

https://miro.medium.com/max/790/1*1VJDP6qDY9-ExTuQVEOlVg.gif

Strides

1*uoWYsCV5vBU8SHFPAPao-w.gif

Pooling

https://miro.medium.com/max/792/1*uoWYsCV5vBU8SHFPAPao-w.gif

BatchNorm
Purpose:

● Normalize Inputs: BatchNorm normalizes the inputs to
each layer to have zero mean and unit variance within
a mini-batch.

● Mitigate Internal Covariate Shift: It reduces the
changes in the distribution of layer inputs during
training, allowing the network to learn more efficiently.

