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Why Machine Learning?

There are problems that are difficult to address with traditional programming
techniques:
e classify a document according to some criteria (e.g. spam, sentiment analysis,
...)
e compute the probability that a credit card transaction is fraudulent
e recognize an object in some image (possibly from an unusual point of view, in
new lighting conditions, in a cluttered scene)

Typically the result depends on a non-linear combination of a large number of
parameters, each one contributing to the solution in a small degree



The Machine Learning approach:

Suppose to have a set of input-output pairs (training set):

{z,y}

the problem consists in understanding the map between x and y

The M.L. approach:
e describe the problem with a model depending on some parameters O (i.e.
choose a parametric class of functions)
e define a loss function to compare the results of the model with the expected
(experimental) values
e optimize (fit) the parameters O to reduce the loss to a minimum



The Machine Learning approach:

e Machine Learning problems are in fact optimization problems! So, why talking
about learning?

e The point is that the solution to the optimization problem is not given in an
analytical form (we don’t have a theoretical/analytical model to explain the
data, and often there is no closed form solution).

e S0, we use iterative techniques (typically, gradient descent) to progressively
approximate the result.

e This form of iteration over data can be understood as a way of progressive
learning of the objective function based on the experience of past
observations.



Different types of learning tasks
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Classification vs. Regression

Two forms of supervised learning: {(x;, yi)}

Expected
value

classification

i New input

regression

y is discete: y € {eo,+} y is (conceptually) continuous



Many different techniques

e Different ways to

define the models:
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Neural Networks

put layer

input layer
hidden layer 1 hidden layer 2



Artificial neuron

Each neuron takes multiple inputs and
produces a single output (that can be
passed as input to many other neurons):

output layer
input layer
hidden layer 1 hidden layer 2

Activation Function
——

The purpose of the activation function is
to introduce a thresholding mechanism

(similar to the axon-hillock of cortical
neurons).

inputs
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output




Artificial neuron
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Activation Function

The purpose of the activation function is
to introduce a thresholding mechanism
(similar to the axon-hillock of cortical
neurons).

NOTE: Composing linear transformations
does not increase the complexity of your
model, since we still get a linear
transformation!

The activation function provides the
source of NON LINEARTY in the neural
networks
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Dense Feed-Forward NN

Input

X190 = f(xoWoo + x1Wyo + bgo)

Layer 1
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X175 = f(xoWoz + x1Wy2 + bg2)

Layer 2

f(x) = Activation Function

Output

The most typical feed-forward
network is a dense (i.e. w/ more than
1 hidden layer) network where each
neuron at layer k — 1 is connected to
each neuron at layer k.

The network is defined by a matrix of
parameters (weights) wX for each
layer (+ biases). The matrix w* has
dimension L x L, . where L, isthe
number of neurons at layer k.

The weights w* and biases are the
parameters of the model: they are
learned during the training phase.



the NN
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Gradient Descent The objective is to minimize the loss function over (fixed) training

samples by suitably adjusting the parameters ¥, .

To do so we compute the of the loss function w.r.t. the

N model parameters ., V L. The gradient is the vector pointing
L(e) in the direction of steepest ascent.

We can reach a minimal configuration for

L(7) by iteratively taking small steps in

the direction opposite to the gradient
[nitial weighfg (gradient descent).

Oi+1 = 0; — AVylL

Global minimum /

learning rate
parameter
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Stochastic Gradient Descent

Compute
Compute : Update ¢
radient of L(¢
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e Compute L and the derivative using all available data”
Derivative will be smooth. Fast convergence but you may end up in a local
minima

e Compute L and the derivative using a single data point?
Derivative will be noisy. Will help escaping local minima, but hard to get
convergence

e Compute L and the derivative using a random batch of point?
Good trade between fast convergence and escape saddle points; also
efficient for memory usage



Training, validation and test data:

e Training Dataset: The actual dataset that we use to train the model (weights and
biases in the case of a Neural Network). The model sees and learns from this data.

e Validation Dataset: The sample of data used to provide an unbiased evaluation of a
model fit on the training dataset. The model see this data but doesn’t learn from it.

e Test Dataset: The sample of data used to provide an unbiased evaluation of a final
model fit on the training dataset. The model doesn’t see or learn from this data.

Train Validation Test
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Price

How many parameters?
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Regularization

Weight decay

Dropout

N
1
L= NZ(HNN - HTrue)z + nZWiZ
i=1




Pytorch library

To install follow the instruction here

NOTE: Latest PyTorch requires Python 3.9 or later.

PyTorch Build Stable (2.5.1) Preview (Nightly)
Your OS Linux Mac Windows

Package Conda i LibTorch Source

Language Python C++/Java

CUDA CUDA CUDA
Compute Platform 121 124 ROCm 6.2 CPU

conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch
-c nvidia

Run this Command:


https://pytorch.org/

Convolutional Neural Networks (CNN)
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Convolutional Neural Networks (CNN)

Input: n x n X ¢ matrix
E.g. RGBimage:n__ _ xn

pixel pixel
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Convolution Layer

Input: 6x6x1 Kernel: 3x3x1 Output: 4x4x1
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Convolution Layer

Feature extraction by filtering the image:

Operation Filter Convolved Operation Filter Convolved
Image Image
0 0 0 0 0 0
Identity 010 Identity 01 0
0 0 0 0 0 0
1 0 -1 0 =1 :0
00 0 Sharpen -1 5 -1
U s | o -1 0
: B SR
0 1 0 Box blur 1 101 1
Edge detection 1 —-4 1 {normalized) 9
0 1 0 1 1]
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-1 -1 -1 Gaussian blur 1
-1 8 -1 — 12 4 2
(approximation) 16
-1 =1 =1 x: 2. 1




Convolution Layer: 2

A Convolution Layer

Filter 1

= 4x4x3

— Filter 2

4x4x3

Add bias and apply activation

function \
Output
3x3
==
3x3x2 3x3x2

The output size is
(n-f+1)x(n-f+1)xn, o
A nxnxc input image can be
convolved with n_fxfxc filters
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Strides
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Convolve with 3x3
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Pooling
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BatchNorm

Purpose:

e Normalize Inputs: BatchNorm normalizes the inputs to

each layer to have zero mean and unit variance within T — E [.’E]
a mini-batch. Yy = * 7Y 4 3
e Mitigate Internal Covariate Shift: It reduces the \/Varfa:] T ¢ |

changes in the distribution of layer inputs during
training, allowing the network to learn more efficiently.
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