

Biotecnologie applicate

Transactiva:

Company history and technology overview

Trieste, 29th April, 2025 Sara Raccovelli, PhD, MBA

Transactiva srl

Biotech R&D company - Innovative SME

Transactiva srl

Biotech R&D company - Innovative SME

Vision: sustainable biopharmaceuticals

How? With Plant Molecular Farming

A multidisciplinary, sustainable technology leveraging whole plants and vegetal tissues as bioreactors to obtain recombinant therapeutic proteins

X

Synergy of complementary expertise

Bruno Bembi, MD Founder, PresMedicine Expert in rare diseases Scientific direction

Bruno Loureiro, MSc, MBA Plant molecular Blangy In vitro cult**bietechnology** Agronomic techniques

> Piero Cristin, PhD PharinaeonaceOlicoalistry Protein pheficistry Downstream Processing

TOR VERGATA

Sara Raccovelli, PhD, MBA Medical Bigtechnology Corporate communication Diotechnology Business development

> Caterina Deganutti, PhD Molecular biology Pharmasiology biochemistry Cell cultures and fermenters

Serena Valent, PhD Instatituationalations relationscretariat Administration

UNIVERSITÀ DEGLI STUDI DI TRIESTE

BioHighTech Net 4 n

FRM

International Centre for Genetic Engineering and Biotechnology

Farming Revolutionary Modules

35+ year-old technology

Plant Molecular Biology 6:347-357, 194 © Martinus Nijhoff Publishers, Dordrecht – Printed in the Netherland The expression of a nopaline synthase – human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue Andrea Barta ¹ , Karin Sommergruber ¹ , Diana Thompson ¹ , Klaus Hartmuth ¹ , Marjori A. Matzke ² & Antionius J. M. Matzke ² ¹ Institut für Biochemie, Universität Wien, Währingerstraße 17, A-1090 Wien, Austria ² Institut für Molekularbiologie, Akademie der Wissenschaften, Billrothstraße 11, A-5020 Salzburg, Austria Keywords: human growth hormone gene, plant transformation, polyadenylation signal, pre-mRNA	Production of antibodies in transgenic plants		
	nce an hat	Andrew Hiatt, Robert Cafferkey & Katherine Bowdish Department of Molecular Biology, The Research Institute of Scripps Clinic, 10666 North Torrey Pines Road, La Jolla, California 92037, USA COMPLEMENTARY DNAs derived from a mouse hybridom:	
		NATURE · VOL 342 · 2 NOVEMBER	
Why isn't it a go	de	en standard vet?	

Molecular Farming

«The use of *heterologous expression systems* for the production of *non-food, non-feed, non-fibre* commodities like therapeutic molecules, fuels, biodegradable plastics, industrial and commercial proteins»

Biopharmaceuticals / Biologics

Therapeutic molecules whose production:

- cannot be achieved by simple chemical synthesis
- require *living organisms* and innovative technologies

Proteins Complex / multimeric Biotechnology needed Orphan drugs Enzymes Antibodies Vaccines Hormones

...

Extreme flexibility

Transformation methods

Recombinant proteins

Examples of PMF-derived biologics

with the around circle. The insurpost circle the Primaries, the second the Secondarias in and white are not colours, i tents. White adds be htens its hur, black of prismatic d of all the prima ice of colour; in eans an absence of nce of all the colour odern three-colour p all effects are produc colours superimposed, printing of the three | of the other, generally in Red, and Blue. ald not, however, he very pri pictures with the three primaries ess would be too tedious and in so several intermediate pigmen the admisture of varying proportion

evaluomating with these of the first circles the

three equal parts, the division lines similarly

transactiva

MOLECULAR FARMING

Orange, Gr

barbaric tribes in general. Lastly, by Japa most freely employed, i.e. by in its widest, deepest sense. Therefore, what the child to maturity, let it cultivate fi means of grathic expression.

freely drawn with the rubbed one direction, or in directions Mere flat massing with sketched in, is a poor imitation Young children cannot evolve

Product	Disease	Plant/expression system	Clinical trial stage	Company/Consortium
Antibodies				
Chimeric mAb (CaroRX)	Dental caries	Tobacco/ stable transformation	Phase 2	Planet Biotechnology
Idiotype IgG Based vaccine	Non-Hodgkin's lymphoma	N. benthamiana/ Agroinfiltration	Phase 1	Icon Genetics
Anti-HIV IgG	Prevention of HIV infection	Tobacco/ stable transformation	Phase 1	Pharma- Planta Consortium
Anti-Ebola IgG cocktail (ZMApp	Treatment of Ebola virus infection	N. benthamiana/ Agroinfiltration	Phase 2/3	Mapp Biopharmaceutical
IgG (ICAM1)	Common cold	Tobacco/ stable transformation	Phase 1	Planet Biotechnology
Radiolabeled anti-Ep- CAM IgG	Cancer treatment	Maize/ stable transformation	Phase 2	NeoRx Corporation
Vaccine antigens				
VLP-based Vaccine	Seasonal flu	N. benthamiana/ Agroinfiltration	Phase 3	Medicago
VLP-based vaccine (H5N1)	Pandemic flu	N. benthamiana/ Agroinfiltration	Phase 2	Medicago
Enzymes				
Glucocerebrosidase enzyme (ELELYSO)	Therapy of Gaucher's disease	Carrot/cell suspension culture	FDA Approved	Protalix Biotherapeutics
Alpha-galactosidase-A (Fabrazyme)	Therapy of Fabry disease	Tobacco/cell suspension culture	Phase 2	Protalix Biotherapeutics
Alpha-galactosidase-A (moss-aGal)	Therapy of Fabry disease	Moss cultures	Phase 1	Greenovation Biopharmaceuticals
Human deoxyribonuclease I (Alidornase alfa)	Treatment of cystic fibrosis	Tobacco/cell suspension culture	Phase 2	Protalix Biotherapeutics
			I	Donini, Marusic, 2019

a pity that a parallel series of er more frequently carried on right Senior departments. It is a logical a reliable sequence. Two other jura the production of "pencil" lines on white paper; making v processes altogether. ALKS RECEIPT

↑ Safety

due to contamination

No batch loss

rans**activa**

↑ Sustainability

Natural carbon-fixating source, waste valorization, circular economy approach

↓ Spending

Reduce the upstream costs for biopharmaceuticals

↑ Scalability

Intrinsically modular and scalable technology

Technologies leveraged by Transactiva

STABLE expression in **RICE**

TRANSIENT expression in **TOBACCO**

3.

STABLE expression in cultured **CELLS**

Molecular Farming: specific advantages

Stable transformation (e.g. rice seeds)

✓ **Stability** Natural reserve organ

✓ Seed banking

Stable, fully characterized line (analogous to a cell banking system)

\checkmark Easy purification

Low content of lipids and phenolic compounds

Transient transformation (e.g. tobacco leaves)

Quickness

Production set-up in weeks, very suitable in case of emergency / crisis scenarios

✓ FlexibilityEasy to switch to other proteins

No GMO

Transient transformation technology

Plant cell cultures (green fermenters)

"Standard" bioreactor More similar to current CHO-

Aore similar to current CHC based production technologies

✓ cGMP-aligned

Cells grow in a sterile and controlled environment

Plant Molecular Farming at a glance

Examples of industrial applications (pharma)

From idea to prototype: the pipeline

Definition of target protein

DNA optimization and handling

Plant biomass transformation

Bioreactor cultivation and expansion

Preliminary purification and characterization

Proof of concept Scalable prototype

Prototype is ready to be out-licensed to client pharma

The pipeline Definition of target protein

Recombinant protein

Strong industrial and therapeutic interest

Goal: selected by / together with pharmaceutical partners

DNA optimization and handling

- Plant expression vector
- Gene optimization strategy for high recombinant protein expression

Plant biomass transformation

dehulling

disinfection

isolation of scutella

culture on SMI

rooting

callogenesis

culture on SMII

hardening and growth

shoot differentiation

embryoids selection

culture on PRM

regeneration

Bioreactor cultivation and expansion

- Plants regeneration and selection
- Growth in confined environment
- Harvesting and primary processing of the raw material
- Creation of a stable, homozygous line and a seed banking system

Preliminary purification and characterization

Setup of a scalable purification process

Biochemical characterization of the target molecule

Development of **preclinical characterization** strategies

Course overview

Definition of target protein

DNA optimization and handling

Plant biomass transformation

Bioreactor cultivation and expansion

29/4/25

Preliminary purification and characterization

Next steps - out of the lab / **other applications** / exam simulation

Biotecnologie applicate

Company history and technology overview

Q&A

Sara Raccovelli, PhD, MBA *sraccovelli@transactiva.it*

