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4.7 Punti singolari di una conica

Esempio 4.7.1. Vogliamo determinare la retta tangente (se esiste) alla
conica degenere C' : (x 4+ y)(z — y) = 0 nel suo punto (1,1). Proviamo a
utilizzare la formula (4.25). Poiché

<8f(w,y)> _ 5 <3f(x,y)> _ 9
Or Jay Ay )y

si ottiene la retta
2 -1)—-2(y—-1)=0 = z—-y=0

che e proprio la retta, componente di C, cui appartiene il punto in questione.
Si vede che, per ogni punto P # O appartenente alla retta z —y = 0, la
formula (4.25) fornisce la retta stessa; lo stesso accade per i punti della retta
x + y = 0 diversi dall’origine.

Se invece si applica tale formula nel punto O = (0,0) (che ¢ il punto di in-
tersezione delle due rette componenti di C), si vede che entrambe le derivate
parziali si annullano; dunque bisogna procedere al calcolo in modo alterna-
tivo. Ad esempio, si consideri la generica retta per l'origine (z,y) = A(m, n)
e si intersechi con C: si ottiene I'equazione

M (m? —n?) =0.

Quindi quasi ogni retta per O interseca C' con molteplicita due. Si noti che
per [m,n] = [1, £1], le rette corrispondenti (cioe le componenti della conica)
intersecano C' con molteplicita di intersezione “infinita”. Cid accade (con
un calcolo analogo) per ogni punto P # O della conica: la molteplicita di
intersezione tra C' e la retta componente contenente P ¢ “infinita”.

Occorre quindi estendere la definizione di retta tangente in modo da
includere le coniche degeneri.

Definizione 4.7.1. Diciamo che una retta r & tangente a una conica C in
un suo punto Fy se
mp,(C,r) > 2.

Si osservi che, se C & non degenere, allora in ogni suo punto esiste un’u-
nica retta tangente (vedi Teorema 4.6.4), che abbiamo denotato con T, (C)
e mp,(C,Tp,(C)) = 2 (vedi Proposizione 4.6.1).

Definizione 4.7.2. Diremo che un punto P = (2o, yo) di una conica C' di
equazione f(x,y) =0 & singolare per C' se

Of (v,y) Of(x,y) _
( or " Oy )(xo,yo)_(()’()).

Altrimenti il punto P € C si dira semplice o non singolare.
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Proposizione 4.7.1. Sia C' C Af{ una conica degenere.
a) Se C ¢é unione di due rette distinte passanti per un punto Py, allora:

— Py é il solo punto singolare di C;
— ogni retta per Py é tangente a C' in tale punto;

— se P # Py, la retta tangente a C in P ¢é la retta componente di
C passante per P.

b) Se C ¢é unione di due rette parallele e distinte allora C' non ha punti
singolari.

c) Se C e doppiamente degenere allora ogni punto di C é singolare e ogni
retta per esso & tangente a C'.

Dimostrazione. a) Possiamo assumere (a meno di rototraslazione) che Py
sia l'origine O = (0,0) e che C' abbia equazione

f(x,y) == z(az +by) =0

con b # 0, in quanto per ipotesi C' ¢ costituita da due rette distinte.
-) Sia P = (Z,7) € C; allora

(afgg’ y)) = 2aT + by, <af(;’ y)> = bT.
r (7.7) Y (&)

Il punto P & singolare se e solo se (Z,7) ¢ una una soluzione del sistema

2ax +by =10
bx =0

quindi se e solo se P = (0,0).
-) Se rmn: (z,y) = A(m, n) & una qualunque retta per l'origine,

T =Am
TmaNC: Cy=An = Xm(am +bn) =0.
z(ax +by) =0

Quindi, per ogni [m,n] # [0,1] e [m,n] # [b, —a] si ha
mo(C, rmn) = 2

e le ro,1 € 75 —q, che sono esattamente le due componenti di C, intersecano
C' in O infinite volte. Pertanto ogni retta per O e tangente a C' in O.

-) Per concludere, calcoliamo Tp(C) dove P # Py. Ora, invece, supponiamo
che P = (0,0) e che C abbia equazione:

flz,y) =z(ax+by+¢)=0
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con ¢ # 0, in quanto P ¢ non singolare, per ipotesi.
Una retta r : (z,y) = A(m,n) & tangente a C' se e solo se A = 0 ¢ soluzione
(almeno) doppia dell’equazione:

dm(Aam +Xbn+¢) =0 = (am® +bmn)A\* +meh =0

e cio accade se e solo se mc = 0; tenendo conto che ¢ # 0, deve essere m = 0
e quindi r e la retta x = 0, da cui la tesi.

b) Analoga all’ultima parte del caso (a).

¢) Sia ora C l'unione di due rette coincidenti. Possiamo supporre che C
abbia equazione

fz,y) =2 =0.
Poiché o5 ) o )
flz,y) flx,y)
0w 2z, 78y =0

le due derivate parziali sono entrambe nulle in tutti i punti della retta z = 0
e quindi in tutti i punti di C, che risultano dunque singolari. Infine si verifica
facilmente che ogni retta che incontra C & tangente a C. O

Valgono anche i viceversa della prima e della terza proprieta enunciate
nella precedente proposizione.

Proposizione 4.7.2. Se C ¢é una conica con un punto singolare allora é
degenere. In particolare,

a) se C ha un solo punto singolare Py, allora C é semplicemente degenere
e precisamente ¢ l'unione di due rette passanti per Py (eventualmente
complesse e coniugate);

b) se C ha due punti singolari, allora ogni suo punto é singolare e in tal
caso C e doppiamente degenere.

Dimostrazione. Proviamo dapprima che, se C' & una conica con (almeno)
un punto singolare, allora C & degenere. Possiamo supporre (a meno di
una traslazione) che C, avente equazione (4.23), sia singolare in Py = (0,0).
Allora, per definizione, entrambe le derivate parziali si annullano in Py, cioe
il sistema

0
M = 2anzr+2a2y+2a13 = 0
ox
(4.26)
0
M = 2apr+2axy+2a3 = 0

Jy
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ha per soluzione (z,yo) = (0,0); pertanto a;3 = agss = 0. Sostituendo tali
relazioni nell’equazione (4.23) di C e tenendo conto del fatto che aszs = 0, in
quanto la conica passa per l'origine, si ha:

C: a11z2+2a12zy+a22y2:0.

Chiaramente tale equazione rappresenta 'unione delle due rette

. _ /.2
roooany = <—a12 + 4/ ajy — a11a22> T

. _ 2
siooany = (-au —\/ @12 — a11a22> Zz.

a) Se Porigine ¢ il solo punto singolare di C, allora il sistema (4.26) ha come
unica soluzione (0,0), dunque il determinante della matrice dei coefficienti
a11azs — a3y & non nullo. Pertanto le rette r ed s, determinate prima, sono
distinte.

b) Se C ha due punti singolari, & degenere per quanto visto sopra, ma non puo
essere semplicemente degenere per la Proposizione 4.7.1-(a) — (b); pertanto
deve essere doppiamente degenere e quindi ogni suo punto & singolare per la
Proposizione 4.7.1-(c). O

I risultati della Proposizione 4.7.1 e Proposizione 4.7.2 si possono rias-
sumere immediatamente nel seguente:

Teorema 4.7.3. Sia C C A% una conica. Valgono i sequenti fatti:
a) se C é non degenere allora non ha punti singolari;

b) C ¢é unione di due rette incidenti se e solo se ha un solo punto singo-
lare;

¢) C ¢ doppiamente degenere se e solo se ha due (o, equivalentemente,
infinti) punti singolari.

Vedremo che nel piano proiettivo vale anche il viceversa dell’implicazione
(a) e che il caso (b) comprendera anche la configurazione di due rette parallele
(e quindi descrivera tutte le coniche semplicemente degeneri).

Concludiamo questo paragrafo tornando nel piano euclideo per risolve-
re una questione posta alla fine del Paragrafo 4.5, cioé determinare asse e
vertice di una parabola.

Precedentemente abbiamo osservato come e possibile determinare la di-
rezione dell’asse di una parabola in forma generale (vedi Proposizione 4.5.6).
Per determinare il vertice di una parabola e necessario tuttavia applicare la
nozione di retta tangente, osservando preliminarmente che una parabola e
una conica non degenere e quindi ammette un’unica retta tangente in ogni
suo punto (vedi Teorema 4.7.3 e Teorema 4.6.4).
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Lemma 4.7.4. Si consideri una parabola C C E? di vertice V. Allora
V' é lunico punto di C in cui la retta tangente e ortogonale all’asse della
parabola.

Dimostrazione. Poiché si tratta di provare proprieta geometriche (euclidee),
come al solito possiamo dimostrarle per una parabola in forma canonica.
Sia dunque

C: flx,y):=2>—2py=0.

E chiaro che il vertice di C' ¢ V = (0,0) e che 2 = 0 & asse.
La retta tangente a C' in un suo punto Py = (xg,y0) ¢ parallela al vettore

Of(x,y) 0f(x,y)
tPo(C) = <_ Ay " Ox )po = (2]97 2330).

Ovviamente (2p, 2zg) & ortogonale all’asse x = 0 se e solo se

((2p, 220), (0,1)) = 0 <= 2 =0 <= Py = (0,0) = V.
O

Osservazione 4.7.1 (Metodo per la determinazione dell’asse e del vertice
di una parabola).

Sia C' una parabola e siano B ed A le matrici ad essa associate in un sistema
di riferimento (O;z,y).

Ricordiamo che la matrice A ha un autovalore nullo e ’altro non nullo; sia
questo a. Denotando i rispettivi autospazi con Wy e W, essi sono ortogo-
nali in quanto A & simmetrica reale.

Abbiamo visto che lasse di C' ha per giacitura Wy (per la Proposizio-
ne 4.5.6), dunque W, & la giacitura della retta tangente a C nel vertice,
per il Lemma 4.7.4.

PROCEDURA
1) Si determinano gli autospazi Wy e Wy;
i) sia rp, la generica retta di giacitura W, con
ry: ax +by+h=0.

Si impone che 7, sia tangente a C' e si determina il valore hg per cui
cio accade.

i7i) Per il Lemma 4.7.4, la retta 7, € la tangente a C' nel vertice. Dunque
V= CnNry, eil vertice di C.

iw) Lasse di C' ¢ dunque la retta L =V + W,
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Osservazione 4.7.2 (Metodo alternativo).
i) Come 17).
i1") Si calcola il vettore tangente tp(C) a C in un suo generico punto P.

i71') Si impone che tp(C) sia ortogonale a Wy; in tal modo si determina il
punto in cui cio accade: tale punto ¢ il vertice.

iv’) Infine si determina ’asse come prima.

Esempio 4.7.2. Vogliamo determinare ’asse e il vertice della parabola
C: 4x?+dey+y? —20+4y—1=0.

Poiché le matrici associate a C' sono
4 2 -1

B=|2 1 2], A_@f)
-1 2 -1

si ha: det(B) = —25 # 0 e det(A) = 0; quindi C & proprio una parabola.
Calcoliamo 'autospazio Wy di A, cioe lo spazio delle soluzioni del sistema
AX = 0; poiché tale sistema ha rango 1, in quanto det(A) = 0, esso risulta
equivalente ad una sola delle due equazioni, ad esempio: 2x+y = 0. Pertanto
Wy = ((1,-2)). Consideriamo la generica retta ortogonale a (1,—2) (e
quindi parallela alla tangente nel vertice):

rn: x—2y+h=0.

La retta 7, € tangente a C se e solo se i due punti che costituiscono r, N C
coincidono se e solo se il sistema
x=2y—nh
NncC:
" {4(2y—h)2+4(2y—h)y+y2—2(2y—h)+4y—1=0
ha due soluzioni coincidenti. Si impone tale condizione alla seconda equa-
zione (in y):
25y — 20hy +4h®> +2h—1=0 = A/4=25(1—2h).

Quindi A = 0 se e solo se hy = 1/2; otteniamo dunque la retta tangente nel

vertice:
Thy 1 T =2y —1/2.

Pertanto il vertice V' ¢ dato da

x=2y—1/2 x=2y—1/2
252 — 10y +1=0 (5y—1)2=0

e quindi il vertice ¢ il punto V = (-1/10,1/5).
Infine lasse ¢ la retta per V parallela all’autospazio Wy = ((1, —2)):

V=rpnC: {

2 4+y=0.
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Esempio 4.7.3. Vogliamo determinare ’asse e il vertice della parabola
nell’esempio precedente

C: 4 4+4zy+y? —20+4y—1=0

usando il secondo metodo proposto nell’Osservazione 4.7.1. Come prima, si
determina Wy = ((1,—2)). Si calcola poi il vettore tangente a C' nel suo
generico punto Py = (xg,yo):

tr,(C) = (af(;y’y), 6f(8:';y)>Po -

=(—4z—2y—4,8c+4y —2)p, =
= 2(—21’0 — Yo — 2,4x0 + 2y — 1).

Imponiamo la condizione tp, (C) L Wy, cioe
((=2z0 —yo — 2,4w0 + 290 — 1),(1,-2)) =0 = 2o +yo = 0.

Inoltre Py deve appartenere a C, quindi essere soluzione del sistema:

2x9 +1yo =0
4x8+4x0y0+y3—2m0+4y0—1:0
da cui
Yo = —2 _ _
{1030010 = x9=-1/10, yo=1/5.

L’asse si determina come nell’esempio precedente.
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4.8 Classificazione delle coniche affini

Al fine di classificare le coniche del piano affine (reale o complesso), dob-
biamo usare alcuni risultati analoghi a quelli visti per le coniche del piano
euclideo. Qui denotiamo con A2 il piano affine A%(, dove K =R o C.

Ricordiamo brevemente il Teorema 1.10.1, Capitolo 1, dove viene de-
scritta la variazione delle coordinate di un punto di A2 rispetto a 2 sistemi
di riferimento (O, B) e (O',B'). Se X = Y(z,y), X' =(z,y/), P = M§ e
C = (c1,c2) ¢ la colonna delle coordinate di O rispetto a (O', B'), allora si
ha

X' =PX +C.

Si osservi che, in questo caso, P non & necessariamente una matrice orto-
gonale (come nel caso del piano euclideo E?) ma semplicemente invertibile.
Denotiamo i suoi elementi con P = (p;;).

Utilizzando la notazione — introdotta in (1.10), Capitolo 1 — si ponga

- b1 P12 G
Q:=|pa p2 c
0 0 1

Come ricordato, P € GL(2,K) e quindi Q € GL(3, K).

Con tali notazioni, vale I’analogo del Teorema 4.3.1, dove veniva descritto
come varia ’equazione di una conica rispetto a 2 riferimenti cartesiani di E2.
Omettiamo la dimostrazione in quanto identica a quella del teorema citato.

Teorema 4.8.1. Siano (O;x,y) e (O';2',%y) due riferimenti affini di A% e

siano P e @ come sopra. Sia C C A? una conica e siano B e A le matrici
di C nel riferimento (O;x,y). Poste

B :='QBQ e A :='PAP

allora B' e A’ sono matrici associate a C' nel riferimento (O'; 2, y).
In particolare A e A’ sono congruenti e B e B’ sono congruenti.

Corollario 4.8.2. Il rango della matrice completa B di una conica é un

invariante affine. Se K = R, anche il segno di det(A) é un’invariante
affine.
Dimostrazione. Immediata conseguenza della Proposizione 4.2.2. O

Possiamo dimostrare il risultato fondamentale di questa sezione.
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Teorema 4.8.3 (Classificazione delle coniche nel piano affine reale).
Ogni conica del piano affine reale Aﬁ (costituita da almeno un punto) é
affinemente equivalente a una delle sequenti:

1r 2=y parabola

2R 2=1 parabola degenere

3R 2?4yt = ellisse

4dr 22 4+9y%2 =0 ellisse degenere

SR 22 —y? =1 iperbole

6r x? —y? = iperbole degenere

TR 22 =0 conica doppiamente degenere

Inoltre le precedenti coniche sono, a due a due, non affinemente equivalenti.

Dimostrazione. Utilizziamo il Teorema 4.4.3 di classificazione delle coniche
in E]% e mostriamo che le famiglie ivi elencate sono equivalenti a una delle
coniche di questo enunciato. Come al solito, denoteremo con B la matrice
associata a una conica della lista del Teorema 4.4.3. Per ognuna di esse,
individueremo una matrice @ € GL(3,R) tale che t@B@ risulti la matrice
associata a una conica nella lista 1g, ..., 7g.

(P) Vediamo in dettaglio la prima famiglia parabolica cioe

?=qy, q#0

la cui matrice associata e

1 0 0
B=10 0 —gq/2
0 —q/2 0
Sia
B 1 0 O
Q=1{0 1/q 0
0 0 1
Ovviamente
o 1 0 0
‘QBQ=(0 0 1/2
0 1/2 0

che ¢ associata alla conica z2 = y.

Per le prossime famiglie, citiamo solo la matrice Q.
La seconda famiglia parabolica & 22 = ¢2; qui occorre considerare la matrice

Q:=

o o

0 0
10
01
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Con un semplice calcolo si vede che ‘QBQ ¢ associata alla conica 2% = 1.

(F) La prima famiglia ellittica & 22 + p?y? = ¢?. Usando la matrice

_ qg 0 O
Q=10 g/p O
0 0 1

si vede che t@B@ ¢ associata alla conica 22 4+ y% = 1.
La seconda famiglia ellittica & 22 + p?y? = 0. Usando la matrice

N 1 0 0
Q=10 1/p 0
0 0 1

si vede che t@BQ ¢ associata alla conica 22 + 3% = 0.

(I) Le matrici Q necessarie sono le stesse del caso (E) e trasformano le
coniche delle famiglie 22 — p?y? = ¢° e 22 — p?y?® = 0, rispettivamente, nelle
coniche 5 e 6R.

(D) La conica doppiamente degenere ¢ esattamente 7g.

Per provare che le coniche dell’enunciato sono a due a due non affinemente
equivalenti, consideriamo la seguente tabella

tk(B)  det(A)

1r 2=y 3 0
QR 1‘2 =1 2 0
3R 2 +y?=1 3 +
4R 2?2 4+9y2=0 2 +
5R 1’2 - y2 =1 3 -
6r 22—y =0 2 -
TR 22=0 1 0
Per il Corollario 4.8.2 si ha la tesi. O

Vediamo I’analogo risultato nel caso complesso.

Teorema 4.8.4 (Classificazione delle coniche nel piano affine complesso).
Ogni conica del piano A% ¢ affinemente equivalente a una delle sequenti:

Ic 2=y parabola

Ic 22=1 parabola degenere

Ill¢ 24+yt=1 conica a centro

IVe 224942 =0 conica a centro degenere

Ve 22 =0 conica doppiamente degenere

Inoltre le precedenti coniche sono, a due a due, non affinemente equivalents.
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Dimostrazione. Basta mostrare che le seguenti coniche sono affinemente
equivalenti a una di questo enunciato:

(a) quelle elencate nel Teorema 4.8.3: 1, ..., Tg;

(b) quelle considerate nell’Osservazione 4.4.2; cioé le famiglie

x
t=n, <0 e —+53=-1
a

(a) Chiaramente basta esaminare le coniche 5g e 6g. La prima ha equazione

22 — y? = 1 e sia B la matrice associata. Basta scegliere come matrice

Q € GL(3,C) la seguente

100
Q=10 i 0
00 1

In tal modo, t@B@ ¢ associata alla conica z2 4+ y? = 1.
Del tutto analogo il caso della conica 6.

(b) La famiglia 22 = v, ~ < 0 va trattata come la seconda famiglia (P)
nella dimostrazione del Teorema 4.8.3: basta scegliere la matrice

(VAo
Q=0 1 0]ecLs0)
0 0 1

e si prova che ¢ affinemente equivalente alla conica I1c.
Infine l'ellisse immaginaria ¢ affinemente equivalente alla conica I1l¢
attraverso la matrice

B ia 0 0
Q:=[0 i 0] eGL(3,0C).
0 0 1

L’ultima affermazione si prova come nel Teorema 4.8.3: qui e sufficiente
esaminare il rango di B e la nullita di det(A). O

Dallo studio precedente, si ha il seguente risultato che caratterizza le
coniche affini degeneri e non degeneri e che ¢ analogo a quello visto per le
coniche euclidee (Teorema 4.4.2).

Corollario 4.8.5. Sia C C A% con K =R o C. Allora
- C' ¢ non degenere se e solo se rk(B) = 3;

- C ¢ semplicemente degenere se e solo se tk(B) = 2;

- C ¢ doppiamente degenere se e solo se rk(B) = 1.
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Dimostrazione. Per il Corollario 4.8.2, il rango di B € un invariante affine.
Quindi basta provare la tesi per le coniche dell’enunciato del Teorema 4.8.3
(nel caso reale) o del Teorema 4.8.4 (nel caso complesso). La tesi segue
immediatamente dal calcolo dei ranghi nella parte finale delle rispettive
dimostrazioni dei due teoremi citati. g

In analogia a quanto visto nel Capitolo 3 sulla chiusura proiettiva di un
sottospazio affine di A™, introduciamo ’analoga nozione per le coniche del
piano affine.

Definizione 4.8.1. Si consideri un polinomio in due variabili a coefficienti
in un campo K e di grado d:

f(x,y) € Klz,y].

Diciamo polinomio omogeneizzato di f rispetto a xg, € lo denotiamo con
F ="f. quello definito da

F(xg,x1,22) = ng (zl 12) .

£C07 i)

Esempio 4.8.1. Se f(z,y) =22 +y—1e F ="f, allora

o (2% | w2 2 2
F(zo,71,72) = x5 | —5 + — — 1| = 27 + zor2 — (.
o Zo

Ricordiamo 'immersione del piano affine nel piano proiettivo (vedi Pa-

ragrafo 3.5)
jo: A2 — P?
definita da
X1 o X9

(may) = [Ll‘,g} = [:Eval;:EQ]a dove z = —H Y=
Zo Zo

E chiaro dunque che, se C C A? & una conica di equazione f(z,y) = 0, allora

Jo(C) = {[330,5817332] | " f(zo, @1, 22) = 23 f (ajl xQ) =0, 29 # 0}.

o ’ Zo
Se togliamo la limitazione g # 0, otteniamo il seguente sottoinsieme di P2.

Definizione 4.8.2. Se C C A? & una conica di equazione f(x,y) = 0,
diciamo chiusura proiettiva di C, e la indichiamo con C, il sottoinsieme di

P? definito da
2 1 T2
F(xo,x1,22) = x(f (, ) =0.
o X0
Inoltre, diciamo punti impropri di C' i punti del piano proiettivo dati da
C N {xo =0}, cioe quelli le cui coordinate omogenee soddisfano il sistema

F(LL'07(E1,£L'2) =0
Xo =0 ’
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Come vedremo nel prossimo risultato, i punti impropri di una conica
affine sono utili per classificarla facilmente. Prima di procedere, cambiamo
la notazione (vedi (4.23)) usata fino ad ora per la generica conica affine.

Definizione 4.8.3. La generica conica di Aﬁ( e data da
fz,y) = a1 2® + 2a10 2y + azy® + 2a01 ¢ + 2a02y +ago =0 (4.27)

dove a;; € K, e dunque la sua matrice completa e la sua matrice della forma
quadratica risultano, rispettivamente,

ago Go1 Qo2 4 ar
B=1{an a1 a2, AZ( )

a12  a22
ap2 G12 G22

Teorema 4.8.6 (Classificazione delle coniche affini via i punti impropri).
Sia C C A% una conica non degenere. Allora

- C ¢ una parabola <= ha 2 punti impropri reali e coincidenti;

- C e un’ellisse <= ha 2 punti impropri complessi e coniugati;

- C ¢ una iperbole <= ha 2 punti impropri reali e distinti.

Dimostrazione. Per definizione, i punti impropri di C' sono soluzioni del
sistema

a11 22 + 2 aj9 T1Te + a9 T2 + 2 ap1 Tox1 + 2 age xoTa + agor =0
1 2 0
9 =0

0, equivalentemente, del sistema

a1 (E% + 2a12 122 + a9 x% =0
(E():O ’

Poiche la prima equazione ha come discriminante — det(A), si conclude con
il Teorema 4.4.2. d

Concludiamo con una nota nozione sulle iperboli nel piano euclideo.

Definizione 4.8.4. Sia C' C E? un’iperbole. Si dicono asintoti di C' le due
rette (reali e distinte) passanti per il centro di C' e per i suoi punti impropri.

Osservazione 4.8.1. Se l'iperbole C ¢ data in forma canonica
2 2 72 2

— = y—Q =1 cioe in coordinate omogenee —; — —22 = 2
a b a b
i suoi punti impropri sono Py = [0,a,b] € Qs = [0,a,—b] e il centro &

Porigine ovvero [1,0,0]. Pertanto gli asintoti sono
rpy 1 bx1 —ara =0, 7o :br1+axy=0.

Esercizio C2. Gli asintoti sono le rette tangenti all’iperbole nei suoi punti
impropri (estendendo in modo naturale la Definizione 4.6.1 di retta tangente
a una conica in un suo punto al piano proiettivo...).
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4.9 Coniche proiettive
Quanto visto alla fine del precedente paragrafo induce a introdurre la se-

guente nozione.

Definizione 4.9.1. Si dice conica del piano proiettivo IP’%( il luogo C dei
punti le cui coordinate omogenee soddisfano un’equazione di secondo grado
omogenea del tipo

C: a x% + 2a12 122 + a9 x% + 2 ap1 Tox1 + 2 ap2 Tox2 + aoox% =0

dove a;; € K o, sinteticamente,

2
C: E Qi T;T5 = 0, A5 = Qji, V’L,]
1,j=0

Si dice matrice associata a C
app aop1r aop2

B=[an a1 a2
ap2 Al a2

e quindi si dice equazione matriciale di C' quella espressa come

Zo
(.ZE() X1 :L‘Q) B 1 =0.
T2

In analogia con quanto visto per le coniche affini, si prova in modo del
tutto simile il seguente risultato.

Teorema 4.9.1. Siano [xg,z1, 2] e [z, 2}, xh] due sistemi di coordinate
omogenee di IP’%( e sia a : ]P)%( — P%( il cambio di coordinate omogenee
associato a una matrice Q@ € GL(3,K) dove

xo x|,

/
21 | =Q [ x)
T2 xh

Sia C C IP’%( una conica di matrice B rispetto alle coordinate [xo,x1,x2] e
matrice B' rispetto alle coordinate [z, ), xh]. Allora

B' ='QBQ.

Definizione 4.9.2. Due coniche C e C’ di IP’%( si dicono proiettivamente
equivalenti se esiste una proiettivita a : P2 — P2 tale che a(C) = C".
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Corollario 4.9.2. Le matrici associate a due coniche proiettivamente equi-
valenti sono congruenti.

Ricordando che matrici congruenti hanno lo stesso rango (vedi Proposi-
zione 4.2.2), si ottiene immediatamente il seguente fatto.

Corollario 4.9.3. Il rango di una matrice associata a una conica € un
mvariante proiettivo.

Per questo, se C' &€ una conica proiettiva di matrice B, denoteremo il
rango di B anche con rk(C').

Definizione 4.9.3. Una conica C' C IP’%( si dice semplicemente degenere se €
unione di due rette distinte e doppiamente degenere se € unione di due rette
coincidenti. Altrimenti, diremo che C & non degenere.

Il seguente risultato, che caratterizza le coniche proiettive degeneri e non
degeneri, & analogo a quello visto per le coniche euclidee (Teorema 4.4.2) e
a quello relativo alle coniche affini (Corollario 4.8.5).

Partiamo da un semplice fatto.

Osservazione 4.9.1. La matrice completa B di una conica C' C A%(, con
la notazione introdotta in (4.27), & esattamente la stessa della sua chiusura
proiettiva C' C ]P’%(.

Teorema 4.9.4. Sia C C P% una conica di matrice associata B. Allora:
1. tk(B) =3 <= C ¢ non degenere;
2. tk(B) =2 < C ¢ semplicemente degenere;
3. tk(B) =1 < C ¢ doppiamente degenere.
Dimostrazione. Ci sono due possibilita: o C ¢ la chiusura proiettiva di una
conica affine o C & degenere e una sua componente ¢ la retta impropria.
Nel primo caso, per 1’Osservazione precedente, si conclude con il Corolla-

rio 4.8.5 che stabilisce ’analogo risultato per le coniche affini.
Nel secondo caso, la conica C' C IF’%( deve essere di uno dei seguenti tipi:

xolaxo+bx1 +cxa) =0 o x% =0.

Con un calcolo immediato, si vede che nel primo caso rk(B) = 2 e nel
secondo rk(B) = 1. O

Ricordiamo il seguente importante risultato di Algebra lineare.
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Teorema 4.9.5 (Teorema di Sylvester).
Sia K il campo complesso o quello reale e si consideri una forma bilineare

simmetrica
B:K"x K" — K.

Allora esiste una base C di K™ tale che la matrice Mcc(B) é diagonale.
Equivalentemente, ogni matrice simmetrica ¢ congruente a una diagonale.

Vediamo le conseguenze nei casi complesso e reale, rispettivamente.

Teorema 4.9.6 (Trasformazione ad assi principali su C).
Si consideri una forma bilineare simmetrica

Bg:C"xC" — C.

Allora esiste una base B di C" tale che la matrice M p(B) é

I, 0
0 0
(dove gli zeri rappresentano matrici nulle di ordini opportuni).

Equivalentemente, per ogni matrice simmetrica B € M™"(C) esiste una
matrice Q € GL,(C) tale che

I, 0
'QBQ = (0 0) '

Dimostrazione. Per il Teorema 4.9.5, sia C = {v1,...,v,} una base di C"
tale che M¢c(B) ¢ diagonale. A meno di riordinare i vettori di C, possiamo
supporre

A 0 ... 0 ... 0
0O X ... 0 ... 0
Mee@B)=10 0 ... A ... O
0 O 0 0
o o0 ... 0 0

dove \; #O0 peri=1,...,r.
Si considerino ora gli scalari (che esistono in C)

aig,...,qp tali che a?:)\i, Vi=1,...,7

e i vettori

U1 (%3
Wy = — ooy Wy 1= —5 Wr4l ‘= Up4ly +ovy Wy 1= Up.
(651 (679
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E’ immediato calcolare, per i =1,...,7:
(o7 Ne7} Qg

Mentre, per ¢t =r +1,...,n si ha
B(wi, w;) = B(vi,v;) = 0.

Dunque, posta B = {wi,...,w,}, si ha che Mg p(B) & come richiesta nell’e-
nunciato. O

Teorema 4.9.7 (Trasformazione ad assi principali su R).
Si consideri una forma bilineare simmetrica

B:R" xR — R.
Allora esiste una base B di R™ tale che la matrice M p(B) é
0 O
~I, 0
0 O

o o5

(dove gli zeri rappresentano matrici nulle di ordini opportuni).
Equivalentemente, per ogni matrice simmetrica B € M™™(R) esiste una
matrice Q € GLy(R) tale che

0 0
~I, 0
0 0

'QBQ =

o o5

Dimostrazione. Analoga alla precedente, ma in questo caso si riordinano gli
elementi della diagonale A1, ..., A\p, Apr1, ..., Aptq,0,...,0 in modo che

Ai>0, i=1,...,p; A <0, i=p+1,....,p+q.

Infine, si scelgono gli «; in modo che a? =)\,peri=1,...,p, e af = -\,

peri=p+1,...,p+q. O

Definizione 4.9.4. Se B € M™"(R) & una matrice simmetrica congruente
alla matrice

0 0
~I, 0
0 0

o o5

diciamo che la coppia di interi (p, q) ¢ la segnatura di B.
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Definizione 4.9.5. Diciamo segnatura di una conica C C IP’]%g la segnatura
(p, q) di una sua matrice associata B, supponendo p > ¢ (non & restrittivo,
in quanto anche —B & associata alla stessa conica).

Osservazione 4.9.2. Per il Teorema 4.9.7, la segnatura (p, ¢) di una conica
C C P2 & un invariante proiettivo (con p > q). Inoltre p + g = rk(C).

Osservazione 4.9.3. Si noti che un cambio di nome delle coordinate omo-
genee nell’equazione di una conica C corrisponde ad applicare un cambio
di riferimento proiettivo, e quindi non si influenza né il rango né la segnatura
di C. Ad esempio, lo scambio xg <+ x5 corrisponde alla matrice

00 1
Q=[0 1 0] e GL3(R).
100

Osservazione 4.9.4. Il Corollario 4.9.3 e i Teoremi 4.9.6 (nel caso com-
plesso) e 4.9.7 (nel caso reale) di Trasformazione ad assi principali fornisco-
no immediatamente la lista delle possibili equazioni delle coniche del piano
proiettivo e quindi la classificazione delle coniche proiettive.

Tuttavia, nelle dimostrazioni dei prossimi teoremi, si costruiscono espli-
citamente i cambi di coordinate proiettive che “unificano” alcuni tipi di
coniche affini. Le dimostrazioni risultano in tal modo costruttive (anche
se ridondanti). Inoltre si verifica, nel caso reale, che due coniche sono
proiettivamente equivalenti se e solo se hanno la stessa segnatura.

Teorema 4.9.8 (Classificazione delle coniche proiettive reali).
Ogni conica di ]P)]%@ e proiettivamente equivalente a una delle sequenti:

(Dr w2 +a2+22=0
(IDr w3 +a?—22=0
(I11)g 22 +a23 =0
IV)r r3—23 =0
Vr x5=0

Dimostrazione. Utilizziamo la tabella compilata alla fine della dimostrazio-
ne del Teorema 4.8.3 sulla classificazione delle coniche di A%, riscrivendo (i
polinomi che definiscono) le coniche in coordinate omogenee e aggiungendo
due coniche degeneri (che denotiamo con S e D, semplicemente e doppia-
mente) aventi la retta impropria come componente. Inoltre aggiungiamo
Dellisse immaginaria (che denotiamo con E) che si era omessa nella classifi-
cazione affine in quanto priva di punti reali.
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Invece della colonna che riportava il determinante di A, consideriamo la
colonna della segnatura (p, q), avendo osservato che p + g =rk(C) e p > q.

tk(C)  (p,q)
1r T3 — 2070 3 (2,1)
2R z3 — 23 2 (1,1)
3R x3 + 23 — 2} 3 (2,1)
4p 22 + 23 2 (2,0)
SR 2? — 2% — 22 3 (2,1)
6r x? — 22 2 (1,1)
TR z? 1 (1)
E 2% + 23 + 22 3 (3,0)
D z2 1 (1)
S ToT1 2 (1,1)

Proviamo ora che le seguenti coniche sono proiettivamente equivalenti:

-) 1g ~ 3g ~ 5 ~ (I1)r

Cambiando segno e nome alle variabili (zg <> 1), 5g diventa 3g. A sua
volta, quest’ultima & congruente a (II)g, cambiando nome alle variabili.
Infine, il cambio di coordinate () applicato alla conica 1g, dove

1 01 0 0 -1/2
Q=10 1 0], B= 0 1 0
-1 0 1 -1/2 0 0
si ottiene la matrice
1 0 0
‘QBQ=10 1 0
0 0 —1

associata alla conica (II)g.

-) 2gr ~ 6gr ~ S ~ (IV)gr: analogo.

-) TR ~ D ~ (V)R: ovvio.

-) Infine si osservi che E ¢ la conica (I)g e che 4g ~ (I1I)g con un semplice
cambio di variabili. O

Teorema 4.9.9 (Classificazione delle coniche proiettive complesse).
Ogni conica di IF% e proiettivamente equivalente a una delle sequenti:

(ND)c B+t +23=0
(SD)c w2+a23=0
(DD)c ag =0

dove le precedenti sigle significano, rispettivamente, non degenere, semplice-
mente degenere, doppiamente degenere.
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Dimostrazione. Per il Teorema 4.9.8, ¢ sufficiente mostrare che:
-) (I)r ~ (II)gr attraverso una matrice Q € GL(3,C);
-) (III)g ~ (IV)g attraverso una matrice Q' € GL(3,C).
Immediatamente si verifica che

1 00 1 00
=10 10 e =104 0
0 0 ¢ 0 01
soddisfano i precedenti requisiti. O

Concludiamo questo paragrafo sulle coniche nel piano proiettivo studian-
do le intersezioni di una conica e una retta in ]P’%(, quando K =R o K =C,
completando e generalizzando i risultati riguardo alle coniche affini (vedi
Proposizione 4.6.1, Proposizione 4.6.2 e Definizione 4.6.1).

Proposizione 4.9.10. Una conica non degenere e una retta hanno esatta-
mente due punti di intersezione in ]P’(%, eventualmente coincidenti.

Dimostrazione. Siano C' la generica conica e r la generica retta di P? di
equazioni

2
C: Z A TiTj = 0, 7: boxo+ bix1 + boxo = 0.

i,j=0
Non & restrittivo supporre by # 0; posti ¢1 := —b1 /by e ca := —ba/by, si ha
r: xg = c1r1 + coxe. Quindi
ZQ A iTiT; = 0
Crr: {2ig=o BTt =
Zo = c171 + C2T2
e sostituendo si ottiene, con opportuno cambio di nomi dei coefficienti,
2 9 2 0
cnr- Q1177 + 200127122 + Qipox; =
’ x0 = (121 + Cox2

Se la prima equazione e di secondo grado, avendo i coefficienti complessi ed
essendo omogenea, ammette 2 radici in C? (e tutte quelle proporzionali), che
denotiamo con (y1,y2) e (z1,22). Ovviamente tali soluzioni possono essere
coincidenti.

Sostituendole, rispettivamente, nella seconda equazione, otteniamo i due
punti di intersezione di C' e 7:

[ciy1 + cayo, y1,42],  [e121 + cazo, 21, 20].

Altrimenti I'equazione suddetta diventa l'identita 0 = 0 e quindi sono so-
luzioni del sistema tutti i punti tali che xg = c121 4+ cox2. In altre parole,
CNr=r, quindi C sarebbe degenere, contro l'ipotesi. (I



176 CAPITOLO 4. CONICHE

Definizione 4.9.6. In ]P’% siano C una conica non degenere, r una retta e
Cnr={P,Q} Se P # Q, diciamo che C e r sono secanti in P e Q e
che la molteplicita di intersezione di C e r in P (rispettivamente, in Q) & 1;
scriveremo mp(C,r) = 1 (rispettivamente, mg(C,r) = 1).

Invece, se P = (@, diciamo che C' e r sono tangenti in P e scriveremo
mp(C,r) =2 o anche C Nr = {P?}.

Osservazione 4.9.5. Si puo provare che, se P € C sono una conica non
degenere e un suo punto del piano affine A% e t = Tp(C) & la retta tangente a
C in P, allora (attraverso 'immersione jo : A% — P?) la chiusura proiettiva
t & la retta tangente a C in P, nel senso della definizione precedente.

Esempio 4.9.1. Nel piano euclideo complesso una parabola e il suo asse si
incontrano in un solo punto (il vertice). Nel piano proiettivo, hanno invece
due punti in comune, secondo quanto visto nella precedente Proposizione.
Vediamo un caso numerico.

Siano C': y = 2% e r: 2 = 0. La loro intersezione in P? ¢ data da
2
Jai—xox2 = 0 1 = 0 [0,0,1] = reo
Cm'{ 1 -0 = {xm =0 7 [L00=V"

Ovviamente il primo dei due ¢ un punto improprio (non rilevabile in E?), e
precisamente ¢ il punto improprio dell’asse r.



