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Nobel prize in Physics 2024

John J. Hopfield Geoffrey Hinton

“for foundational discoveries and inventions “for foundational discoveries and inventions
that enable machine learning with artificial that enable machine learning with artificial
neural networks” neural networks”
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Nobel prize in Chemistry 2024

David Baker Demis Hassabis John Jumper

“for computational protein design” “for protein structure prediction” “for protein structure prediction”
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Artificial intelligence

@ Computer systems able of mimicking decision-making and
problem-solving tasks of a human mind
@ Machine learning:

e Pathway to Al that uses statistical models and training
algorithms

e Learns insights and patterns in the data
e Makes new predictions without additional input/programming

@ Large amount of data available
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Machine learning in a nutshell

ML algorithmes:

@ Estimate relationships without any instruction of how to analyze or
draw conclusions from the data

@ Can recover mappings between a set of inputs/outputs or from
the inputs alone

@ Can discover structure in the data
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Machine learning in a nutshell

ML algorithmes:

@ Estimate relationships without any instruction of how to analyze or
draw conclusions from the data

@ Can recover mappings between a set of inputs/outputs or from
the inputs alone

@ Can discover structure in the data

@ Use universal approximators

E. Coccia (DSCF) 5/34



Types of Machine Learning

@ Supervised Learning: Learn from labeled data (regression,
classification)

@ Unsupervised Learning: Find patterns in unlabeled data
(e.g., clustering, dimensionality reduction)

@ Reinforcement Learning: Learn through reward-based
inferaction with the environment
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Types of Machine Learning
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Supervised Learning

@ Input and output pairs (labeled data)
@ Train model to learn mapping: f(x) =y

@ Examples: from structure to spectrum, acid or base

SUPERVISED LEARNING

Supervised machine learning is a branch of artificial intelligence that focuses on
training models to make predictions or decisions based on labeled training data.
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Unsupervised Learning

@ No labeled output
@ Aim: discover structure in data
@ Examples: clustering from a MD trajectory

UNSUPERVISED LEARNING

Unsupervised learning is a type of machine learning where the algorithm learns
from unlabeled data without any predefined outputs or target variables.
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Reinforcement Learning

@ Agent interacts with environment
@ Learns to maximize cumulative reward
@ Examples: game playing, robotics
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Common Algorithms

@ Linear Regression

@ Decision Trees

@ k-Nearest Neighbors

@ Support Vector Machines
@ Neural Networks
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What is a Neural Network?

@ A neural network is a set of algorithms modeled after the
human brain
@ [t is designed to recognize patterns from input data
@ It consists of layers of inferconnected neurons
o Artificial neurons (nodes)
o Weighted connections between neurons
e Activation functions

Q
O
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Basic Structure

@ Input layer: Receives data

@ Hidden layers: Process the data through weighted
connections and activation functions

@ Output layer: Produces final prediction or classification
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Artificial Neuron

Each neuron performs:
@ Inputs: xq, X, ..., Xn
@ Weights: wy, wy, ..., Wy
@ A weighted sum of its inputs: >~ w;x; + b
@ Output: y = f(>_ wix; + b)
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Activation Functions

@ Add non-linearity to the model
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Activation Functions

@ Add non-linearity to the model
@ Sigmoid: o(X) = 5=

@ RelU: f(x) = max(0, x)

@ Tanh: tanh(x) = £75=
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Training a Neural Network

@ Forward Propagation: Compute outputs layer by layer

@ Loss Calculation: Measure prediction error

© Backward Propagation: Use gradients to adjust weights

© Optimization: Apply updates using algorithms like gradient
descent

@ Common loss functions L:

e Mean Squared Error
o Cross-Entropy Loss

@ Weight update rule:

where 7 is the learning rate
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Typical ML workflow

@ Gathering and preparing data
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Typical ML workflow

@ Gathering and preparing data
@ Choosing a representation
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Typical ML workflow

@ Gathering and preparing data

@ Choosing a representation
@ Training the model

e Train model candidates
e Evaluate model accuracy
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Typical ML workflow

@ Gathering and preparing data

@ Choosing a representation
@ Training the model

e Train model candidates
e Evaluate model accuracy

@ Testing the model out of sample
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Typical ML workflow

@ Gathering and preparing data

@ Choosing a representation
@ Training the model

e Train model candidates
e Evaluate model accuracy

@ Testing the model out of sample
@ Deploy and monitor
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Challenges in Machine Learning

@ Quality and quantity of data
@ Overfitting and underfitting
@ Model interpretability

@ Ethical and societal impacts
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Machine learning in a nutshell
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Machine learning in chemistry: overview

Machine learning
models

h 4

» Transformative impact on chemical sciences

* Dramatic acceleration of computations

* Amplifying insights available from chemistry methods

« Coaction of expertise in computer and physical/chemical sciences
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Machine learning in chemistry: overview

*ML = machine learning
+CC = computational chemistry
*CPI = chemical and physical intuition

e

+» Well suited for nonlinear relationships « High-quality data « Selecting appropriate methods
*Need robust data sets *Robust data sets « Limited understanding
|
|
Catalyst accelerating data-driven hypotheses
generation
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Machine learning in chemistry: overview

Occurrence of any ML term in American Chemical Society journals
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@ ML models as sophisticated parametrizations of data sets
@ Data set must be representative

@ Quality of data set determines the model effectiveness

@ Avoid/reduce biases or artifacts

@ CPIto reduce the function space

@ A priori removing of unphysical solutions

Comprehensive Robust
data sets ML models
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CC databases for ML

database description location
si0

AFLOWLIB databases containing calculated properties of over 625k materials http://www.aflowlib.org

ANL1 large computational DFT database, which consists of more than 20 M off equilibrium  https://github.com/isayev/ANTI_dataset
conformations for 57.5k small organic molecules’ '
ANLIx/ANI-  ANI-Ix contains multiple QM properties from 5 M DFT calculations, while ANI-1cc https://github.com/aigm/ANI1x_datasets
leex contains 500k data points obtained with an accurate CCSD(T)/CBS extr 1pol1tlo|\
BindingDB measured binding affinities focusing on interactions of proteins considered to be http://www.bindingdb.org

candidates as drugtargets; 1200 000 binding data for 5500 proteins and over 520000
drug-like molecules®

Clean Energy contains ~10000 000 molecular motifs of potential interest which cover small molecule ~ http://cepdb.molecularspace.org
Project organic photovoltaics and oligomer sequences for polymeric materials’
CoRE MOF database containing over 4700 porous structures of metal—organic frameworks with 10.11578/1118280
publicly available atomic coordinates; includes important physical and chemical
properties®'®
FreeSoly experimental and calculated hydration free energies for neutral molecules in water®"” http://www.escholarship.org/uc/item/6sd403pz
GDB GDB-11, GDB-13, and GDB-17; together these databases contain billions of small organic  hitp://gdb.unibe.ch/downloads/
‘molectles fcllowmg simple chemical stability and synthetic feasibility rules®"
Hypothetical contains approximately 1 M zeolite structures®® http://www.hypotheticalzeolites.net/
Zeolites
Materials contains computed structural, electronic, and energetic data for over 500k comp 520 https://ww i or,
Project
MD17 data sets in this package range in size from 150k to nearly 1 M conformational geometries; http://www.sgdml.org
all trajectories are calculated at a temperature of 500 K and a resolution of 0.5 fs”
MoleculeNet  contains data on the properties of over 700k compounds™" http://moleculenctai

Open Catalyst 1.2 M molecular relaxanons wnh results from over 250 M DFT calculations relevant for https://opencatalystproject.org/indexhtml
Project renewable energy storage’

0QMD

f DFT pud-ctcd crystallographic parameters and formation energies for over  http://oqmd.org
zook expenmemal]y observed crystal structures®
PubChemQC  provides 221 million molecular structures optimized with the PM6 method and several  http://pubchemq.riken.jp/pmé_datasets.html
PM6 electronic properties computed at the same level of theory*
PubChemQC provides ~3 million molecular structures optimized by DFT and excited states for over 2 http://pubchemqc.riken.jp/
million molecules using TD-] DET™

QM7-X comprehensive data set of 42 physicochemical properties for ~4.2 M equilibrium and  https://zenodo.org/record /42886774
nonequilibrium structures of small organic molecules with up to seven non-hydrogen (C, ~ X9JHNC2ZNTY
N, O, S, Cl) atoms™*
Qv9 geometric, energetic, electronic, and, thermodynamic properties for 134k stable small https://figshare.com/collections/Quantum
organic molecules out of GDB-17"" chemistry_structures_and_properties_of 134 _
kilo_molecules/978904
Synthesis collection of aggregated synthesis parameters computed using the text contained within  www.synthesisproject.org
Project over 640000 journal articles®
uantum- a repository of diverse data sets, including valence electron densities, chemical reactions, http://quantum-machine.org/datasets/
machine.org solvated protein fragments, and molecular Hamiltonians
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Benchmarking data sets

@ Learning curves (QM9 database, 134K organic molecules)
@ Target and DFT/B3LYP accuracy
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Applications

@ Searching stationary points of a PES

@ Generating force fields for MM and MD

@ Use in metadynamics (collective variables)

@ Chemometrics

@ Text mining for extracting scientific information

@ Structure/property relationship in spectroscopies
@ Refrosynthesis

@ Materials

@ Drug design

° ..
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Applications: vibrational spectroscopy

@ One-to-one spectrum-structure relationships
@ Conventionally with CC
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Applications: vibrational spectroscopy

@ One-to-one spectrum-structure relationships
@ Conventionally with CC

@ Machine-learning protocol to correlate spectral fingerprints
with local molecular structures
@ Quick and accurate prediction of infrared (IR) and Raman
spectra
e Structure recognition of functional groups from vibrational
spectral features
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IR and Raman with quantum chemistry

@ Vibrational modes

Diagonalization of the mass-weighted Hessian matrix
Eigenvectors: normal modes q

Eigenvalues: frequencies

Harmonic approximation
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IR and Raman with quantum chemistry

@ Vibrational modes

e Diagonalization of the mass-weighted Hessian matrix
e Eigenvectors: normal modes q
e Eigenvalues: frequencies
e Harmonic approximation
@ IR

e Change in the dipole moment u

ou 2
IR infensity o« (8q)
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IR and Raman with quantum chemistry

@ Vibrational modes

e Diagonalization of the mass-weighted Hessian matrix
e Eigenvectors: normal modes q

e Eigenvalues: frequencies

e Harmonic approximation

@ IR
e Change in the dipole moment u

ou 2
IR infensity o« (é?q)

@ Raman
e Change in the polarizability a

, . da\?
Raman intensity o« (6q>

E. Coccia (DSCF) 28/34



Applications: vibrational spectroscopy

@ Hydroxyl (OH, 3000-4000 cm~") and carbonyl (C=0, 1400-2000
cm~") groups

@ Dataset with around 21,000 molecules
@ Spectra with DFT/ B3LYP/6-31G(2df,p)
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Histidine

Applications: vibrational spectroscopy
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Applications: molecular and material design

@ |dentify compounds with desired properties (high-throughput
screening)

@ OLED emitters (kiapr delayed fluorescence rate constant)

@ ML comparable to CC calculations, at a fraction of the
computational cost
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Applications: retrosynthesis

@ Design of chemical steps
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Applications: catalysis

Accelerated discovery of CO, electrocatalysts using ML

a 05

o
5

CO adsorption energy (eV)

AuCu
el ‘“ ™ AlCu, (211)
C“Ge .CuZn , AICu, @11
Al,Cu Alcu (11-2)
@19 Gypg
Cupt

0.5

CO adsorption energy (eV)

-0.4 0.0 0.4 0.8

H adsorption energy (eV)

c
o, T
0.l N
b
. :
4
(s
& 0
E '
3 O,
3
P ] .
: -
(ONENOH
CuAl .

E. Coccia (DSCF) 33/34

Latent dimension 1
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Applications: drug design
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