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Artificial intelligence

Computer systems able of mimicking decision-making and
problem-solving tasks of a human mind
Machine learning:

Pathway to AI that uses statistical models and training
algorithms
Learns insights and patterns in the data
Makes new predictions without additional input/programming

Large amount of data available
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Machine learning in a nutshell

ML algorithms:

Estimate relationships without any instruction of how to analyze or
draw conclusions from the data

Can recover mappings between a set of inputs/outputs or from
the inputs alone

Can discover structure in the data

Use universal approximators
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Types of Machine Learning

Supervised Learning: Learn from labeled data (regression,
classification)
Unsupervised Learning: Find patterns in unlabeled data
(e.g., clustering, dimensionality reduction)
Reinforcement Learning: Learn through reward-based
interaction with the environment
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Types of Machine Learning
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Supervised Learning

Input and output pairs (labeled data)
Train model to learn mapping: f (x) = y

Examples: from structure to spectrum, acid or base
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Unsupervised Learning

No labeled output
Aim: discover structure in data
Examples: clustering from a MD trajectory
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Reinforcement Learning

Agent interacts with environment
Learns to maximize cumulative reward
Examples: game playing, robotics
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Common Algorithms

Linear Regression
Decision Trees
k-Nearest Neighbors
Support Vector Machines
Neural Networks
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What is a Neural Network?

A neural network is a set of algorithms modeled after the
human brain
It is designed to recognize patterns from input data
It consists of layers of interconnected neurons

Artificial neurons (nodes)
Weighted connections between neurons
Activation functions
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Basic Structure

Input layer: Receives data
Hidden layers: Process the data through weighted
connections and activation functions
Output layer: Produces final prediction or classification
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Artificial Neuron

Each neuron performs:
Inputs: x1, x2, ..., xn

Weights: w1,w2, ...,wn

A weighted sum of its inputs:
∑

wixi + b

Output: y = f (
∑

wixi + b)
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Activation Functions

Add non-linearity to the model

Sigmoid: σ(x) = 1
1+e−x

ReLU: f (x) = max(0, x)

Tanh: tanh(x) = ex−e−x

ex+e−x
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Training a Neural Network

1 Forward Propagation: Compute outputs layer by layer
2 Loss Calculation: Measure prediction error
3 Backward Propagation: Use gradients to adjust weights
4 Optimization: Apply updates using algorithms like gradient

descent

Common loss functions L:
Mean Squared Error
Cross-Entropy Loss

Weight update rule:

w := w − η · ∂L
∂w

where η is the learning rate
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Typical ML workflow

Gathering and preparing data

Choosing a representation
Training the model

Train model candidates
Evaluate model accuracy

Testing the model out of sample
Deploy and monitor

E. Coccia (DSCF) 17 / 34



Typical ML workflow

Gathering and preparing data
Choosing a representation

Training the model
Train model candidates
Evaluate model accuracy

Testing the model out of sample
Deploy and monitor

E. Coccia (DSCF) 17 / 34



Typical ML workflow

Gathering and preparing data
Choosing a representation
Training the model

Train model candidates
Evaluate model accuracy

Testing the model out of sample
Deploy and monitor

E. Coccia (DSCF) 17 / 34



Typical ML workflow

Gathering and preparing data
Choosing a representation
Training the model

Train model candidates
Evaluate model accuracy

Testing the model out of sample

Deploy and monitor

E. Coccia (DSCF) 17 / 34



Typical ML workflow

Gathering and preparing data
Choosing a representation
Training the model

Train model candidates
Evaluate model accuracy

Testing the model out of sample
Deploy and monitor

E. Coccia (DSCF) 17 / 34



Challenges in Machine Learning

Quality and quantity of data
Overfitting and underfitting
Model interpretability
Ethical and societal impacts
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Machine learning in a nutshell
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Machine learning in chemistry: overview

Machine learning 
models

• Transformative impact on chemical sciences 
• Dramatic acceleration of computations 
• Amplifying insights available from chemistry methods 
• Coaction of expertise in computer and physical/chemical sciences  
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Machine learning in chemistry: overview

•ML = machine learning 
•CC = computational chemistry 
•CPI = chemical and physical intuition

ML CC CPI
•High-quality data 
•Robust data sets

•Selecting appropriate methods 
•Limited understanding 

•Well suited for nonlinear relationships 
•Need robust data sets

+ +
=

Catalyst accelerating data-driven hypotheses 
generation

E. Coccia (DSCF) 21 / 34



Machine learning in chemistry: overview

Occurrence of any ML term in American Chemical Society journals

E. Coccia (DSCF) 22 / 34



Data sets

ML models as sophisticated parametrizations of data sets
Data set must be representative
Quality of data set determines the model effectiveness
Avoid/reduce biases or artifacts
CPI to reduce the function space
A priori removing of unphysical solutions
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CC databases for ML
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Benchmarking data sets

Learning curves (QM9 database, 134K organic molecules)

Target and DFT/B3LYP accuracy
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Applications

Searching stationary points of a PES
Generating force fields for MM and MD
Use in metadynamics (collective variables)
Chemometrics
Text mining for extracting scientific information
Structure/property relationship in spectroscopies
Retrosynthesis
Materials
Drug design
...
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Applications: vibrational spectroscopy

One-to-one spectrum-structure relationships
Conventionally with CC

Machine-learning protocol to correlate spectral fingerprints
with local molecular structures

Quick and accurate prediction of infrared (IR) and Raman
spectra
Structure recognition of functional groups from vibrational
spectral features
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IR and Raman with quantum chemistry

Vibrational modes
Diagonalization of the mass-weighted Hessian matrix
Eigenvectors: normal modes q
Eigenvalues: frequencies
Harmonic approximation

IR
Change in the dipole moment µ

IR intensity ∝
(
∂µ

∂q

)2

Raman
Change in the polarizability α

Raman intensity ∝
(
∂α

∂q

)2
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Applications: vibrational spectroscopy

Hydroxyl (OH, 3000-4000 cm−1) and carbonyl (C=O, 1400-2000
cm−1) groups
Dataset with around 21,000 molecules
Spectra with DFT/ B3LYP/6-31G(2df,p)

MAE = 1
n
∑

i |xi − xref,i|
MRE = 1

n
∑

i |xi − xref,i|/|xref|
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Applications: vibrational spectroscopy

Histidine
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Applications: molecular and material design
Identify compounds with desired properties (high-throughput
screening)

OLED emitters (kTADF delayed fluorescence rate constant)

ML comparable to CC calculations, at a fraction of the
computational cost
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Applications: retrosynthesis

Design of chemical steps
SCScore: data-driven
metric specific for reactions
Monotonic increase in
complexity with SCScore
ML to overcome the
generalization issues of
rule-based algorithms
Synthesis of a precursor to
lenvatinib
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Applications: catalysis

Accelerated discovery of CO2 electrocatalysts using ML

E. Coccia (DSCF) 33 / 34



Applications: drug design
Discoidin domain receptor 1 (DDR1)
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