1 A number of preliminary results

1.0.1 Zorn’s Lemma

Let X be a set with an order relation <. A totally ordered subset C' (i.e. each two elements
of C are comparable for <) of X is called a chain. We say that X is inductive if any chain
C of X has an upper bound in X, that is there exists a z € X with y < z for all y € C. If
C'is a chain and z € C we set P(C,z) :={y € C : y < x}. A set B is an initial segment of
a chain C if B = P(C, z) for some z € C.

The following will play a repeated role in the sequel. The proof will be based on the
Axiom of Choice.

Lemma 1.1 (Zorn’s Lemma). Every nonempty ordered set that is inductive has a maximal
element.

Proof. Suppose that the statement is false. Then for any x € X there is a y with z < y.
Now we claim that for any chain C' there exists x € X with y < x for all y € C: indeed,
just take an upper bound z of the chain (z( exists because X is inductive) and then, since
g is not maximal in X, there exists a new element with zo < x.

Using the axiom of choice, we define for every chain C' such an element f(C) := z.

Given C' C X we say that C' is conforming if the following three properties hold:

1. C is a chain;
2. C does not contain an infinite strictly decreasing sequence;
3. for any z € C we have z = f (P(C, z)).

By convention, ) is conforming. Furthermore, if C is conforming, also C' U {f(C)} is
conforming,.
We claim now the following.

Claim 1.2. Given two conforming sets A and B in X, if A # B then one of the two is an
initial segment of the other.

Proof. Let C = {¢ € ANB : P(A,c) = P(B,c)}. We claim that either C = A or
C = P(A,a) for some a € A. If C # A, here exists an a € A\C which is minimal (otherwise
there would be an infinite strictly decreasing sequence in A). We claim that P(A,a) C C.
If P(A,a) G C, there exists c € C\P(A,a). We have a # ¢, since ¢ € C' and a ¢ C. Then,
since ¢ € A and A is a chain, we have a < ¢. However, from the definition of C' it is possible
to see that if ¢ € C' then P(A,c) C C. So, since a € P(A,c) C C, we conclude a € C, which
is a contradiction. So P(A,a) = C. Similarly, either C' = B or C = P(B,b) for some b € B.
What is left to consider is the case A # C and B # C. Then C = P(A,a) = P(B,b). We
have a = f(P(A,a)) = f(P(B,b)) = b. But then, by the definition of C, we have a € C,
giving a contradiction, because C' = P(A,a) Z a.

O



Let E be the union of all conforming subsets of X and let a € E. Let A be a conforming
set containing a. Then we claim that P(A,a) = P(E,a). Indeed P(A,a) C P(E,a) is
obvious. On the other hand, if x € P(F,a) and B is a conforming set containing z, if B is
equal to A or is an initial set of A, obviously = € A, while, if A = P(B,b), then x < a < b
and = € B implies z € P(B,b) = A. That is, P(4,a) = P(E,a).

Then, it can be shown that F itself is conforming, and obviously the largest conforming
subset of X. However also EU{f(E)} £ E is conforming and strictly larger, and so we get
a contradiction.

O

1.0.2 An application of Zorn’s lemma: existence of bases in a vector space
Zorn’s lemma is used to prove that all vector spaces have bases (or Hamel bases).

Definition 1.3 (Hamel bases). Let V' be a vector space. A set {v;}ier of elements of V'
is called a (Hamel) basis of V' if for any v € V there is a unique finite subset J C I and a
unique family {A;};es in R such that

U:Z)\j’l}j. (1.1)

jed

We say that a set {v;}ier of elements of V' is linearly independent if for any finite subset
JCI

0="> XNv; =X =0. (1.2)
jed
The span span ({v;}ier) of a set {v;}icr of elements of V' is the set (it is a vector space)
formed by the vectors v which can be expressed in the form (1.1) for finite J C I and
We have the following.

Theorem 1.4. Any vector space V' has a Hamel basis.

Proof. Let us denote by P the set of linearly independent subsets of V. It is endowed with
the C order relation. We claim thay P is inductive, that is, any totally ordered subset QQ of
P has an upper bound. Just take for Q = {S;}4eq, the set S = UqgeqSq- If {v;}ics is any
finite subset of S , by the total order, there must be a S, containing {v;}ics. Then, since
S, is linearly independent, (1.2) is true. Since we have obtained that (1.2) is true for any
finite subset {v;}ics of S, then S is linearly independent. Furthermore, any R € P with
Sy € R for all g, must satisfy SCR. So & is an upper bound. By Zorn’s Lemma, there
exists in P a maximal element {v;};c;. We claim this gives a basis. First of all, {v;};cs is
linearly independent.

If span ({vi}ier) =V, then {v;}ier is a Hamel basis. Suppose now that span ({v;}ier) =
U S V. Then there exists v € V\U for which (1.1) is not true for all choices of J and



{\j}jes. This implies that {v;}ier U {v} 2 {vi}icr is linear independent. This implies
that {v;};cs is not a maximal element of P, and we get a contradiction. So we must have
Sp ({vitier) = V. O
1.0.3 Complete metric spaces

Definition 1.5. A metric space is a set X and a function d : X x X — R such that the
following properties hold:

1. d(z,y) =0 <= x =y;
2. d(z,y) = d(y,x) for any pair z,y € X;
3. d(z,y) < d(z,z) + d(z,y) for any choice of z,y,z € X.

A sequence {zp }nen in a metric space (X, d) is Cauchy if for any € > 0 there exists a n. € N
such that n,m > n¢ implies d(zy, ) < €.

A metric space (X,d) is complete if any Cauchy sequence in (X,d) is convergent in
(X,d).

Two distinct metrics d; and ds on a set X are equivalent if there exists a constant
C > 1 such that

1
5d1($,y) < dQ(CU,y) < Cdl(l‘ay) for all T,y € X.

Definition 1.6. A completion of a metric space (X,d) is a pair consisting ¢ of a complete
metric space (X, d) and an isometry j : X — X such that j(X) is dense in X.

Theorem 1.7. Every metric space has a completion. The completion is unique, up to an
isometric one to one and onto map.

Proof. Consider the set M of Cauchy sequences in (X, d). Let us introduce a map d : M x
M — R defined by

d({oa} {g}) = lm_d(wn, yo). (13

Notice that the above limit exists and is finite. Indeed, for ¢ > 0 consider n. € N such that
n,m > n, implies d(zp, ;) < € and d(yn, ym) < €. Then, for n,m > n.

|d(xmyn) - d(SUmym) + d($mym) —d (xma ym) ‘ < ’d (xn,yn) - d(xnaym) | + ‘d(ﬂjna ym) - d(xm’ym) |
Now we check that

d (T, yn) — d(Tn, Ym) | < d (Yns Ym) - (1.4)
Indeed d(l’n, yn) < d($n7ym) + d(ymym) implies

d(ajnayn) - d(l‘nvym) < d(yn’ym) .



Similarly, d (zpn, Ym) < d (2, Yn) + d (Yn, Ym) implies
d (T, ym) = d (T, yn) < d (Yn, Ym) -
Hence we obtain (1.4). For the same reasons we obtain
|d (€0, ym) = d (Tm, ym) | < d (20, Tm) -
We conclude that
|d (20, yn) = d (@m, Ym) | < d (20, Tm) + d (Yn, ym) < 2¢.

So the sequence {d (x,,y,)} is a Cauchy sequence in R, and hence the limit in (1.7) exists
and is finite.

It is easy to see that d : M x M — [0, +00) is symmetric and satisfies the triangular
inequality: we skip the proof of these two facts.
We define the relation

{zn} ~{yn} = d({zn}, {ya}) = 0. (1.5)
It is easy to see that it is an equivalence relation. The following is elementary to prove:
if {wn} ~ {27,} and {yn} ~ {9} then d ({zn}, {yn}) =d ({2} {vn}) . (1.6)

Indeed, by the triangular inequality we get

Since analogously we have d ({z/,},{v.,}) <d ({zn},{yn}), proposition (1.6) follows.
Let M := M/ ~ with natural projection 7 : M — M. It remains defined a metric
dygj : M x M — [0, +00) by simply setting

dyr ({zn}], Hyn}l) := d ({zn}, {yn})

having chosen to arbitrary representatives of the equivalence classes in the left. By (1.6) as
a function dg; is well defined. The fact that it is a metric is easy to check and is left as an
exercise.

There is a natural immersion j : X < M given by j(z) = {z,z,z,....} such that d(z,y) =
d(j(z),j(y)) = dgj(moj(x),moj(y)). It is also easy to see that 7o j(X) is dense in M since

nog—o0

for any given w ({z,}) € M, we have 7 o J(@n,) —— 7 ({zn}) in (]\/4\, dz;)- Indeed, since
we know that
for any € > 0 there is N(¢) s.t. n,m > N(€) = |zp, — | <€,

we obtain that for any ng > N(e) we have

d ({Zng, Tngs Tngs - 1 {Tn}) = ngrfoo (X, Tny) < € (1.7)



which implies d ({Zny, Zng, Tngs - }» {20 }) —~—— 0, which, in turn, implies 70 (2, ) ———s

7 ({zn}) in (M, dgp).
Next, (M,dg;) is complete. Indeed, if N > m — 7 ({Znm}nen) is a Cauchy sequence
in (]\/4\, dy;), then for any € > 0 there is N(e) > L 5.t. m1, mo > N(e) implies

d ({xn,ml }nENa {xn,mg}neN) = ngrfoo d(xn,ml s xn,mz) <e

Set y1 := x1,1 and for any m > 1 choose N(m) € N s.t. d(Zn(m),m,Tnm) < 1/m for any
n > N(m) and set yn := Tn(n) - Let us see, first of all, that {y,} is a Cauchy sequence.
We have for any j > min (N(m), N(n)) and for n,m > N(e)

A (TN ) TN (mym) < A (EN(n)ns Tjn) + d (T, Tjm) + d (Tjm: TN (m)m)
<1/n+1/m+d(zjn,xjm) (for j > min(N(m),N(n)))
<1/n+1/m+¢€ (for n,m > N(e) and j > 1)
< 3¢ (for n,m > 1) .

(1.8)

The above shows that {z N(n),n}neN is a Cauchy sequence in X and so an element in M.
Next, we prove the following, which shows that the equivalence class of {Z ;) n}nen of the
Cauchy sequence N 3 m — 7 ({&pm tnen)-

lim d ({xN(n),n}neNa {mmm}neN) =0. (19)

m——+00

Now, for any € > 0,

d ({mN(n),n}nEN; {xn,m}neN) - ngr—lr—loo d(xN(n),na xn,m)

< lim sup d(z §(n),ns TN (m),m) + HMSUP d(Z N (m)ms Tnm)
n—-+o0o n—+00

< lim sup d(Z x(n)ns TN (m),m) + 1/m < de
n——+0oo
for n and m sufficiently large using (1.8). This yields (1.9). To complete the proof of
Theorem 1.7 see Exercise 1.8 below. O

Exercise 1.8. Show that if (X,dx) and (Y,dy) are two complete metric spaces, if Z is a
dense subspace of X and if T': Z — Y is a continuous map, which is uniformly continuous
on bounded subsets of Z, then there is, and is unique, a continuous extension T : X — Y
of T.

Remark 1.9. Notice that the notion of uniform space, see [3], is intermediate between that
of topological space and that of metric space. A set X is a uniform space if it is endowed
with a system X of subsets of the product X x X, called a uniformity or a system of
entourages of the diagonal Ax = {(x,z) : x € X}, satisfying the following conditions:

i Ax CUforal U e X,



iiifU,VeX, thenUNVeX, andif U e X and U CW C X x X, then one has W € X;
iii if U € X, then U™ := {(y,2) : (z,y) €U} € X;

iv for every U € X, there exists V € X such that, whenever (z,y) € V and (y,z) € V for
some z,¥, z, then (z,2) € U.

From a uniform structure it is possible to define a topology on X by choosing as a base of
neighborhoods of a generic point = for any U € X the set U(z) = {y € X : (z,y) € U}.
Given two uniform spaces (X, X) and (Y,)) a function f : X — Y is uniformly continuous
if for any V' € )Y there exists U € X such that if (x1,22) € U then (f(x1), f(z2)) € V.
Uniform continuity implies continuity for the related topological structures.

There is a notion of complete uniform space and an analogue of the statement in Exercise
1.8.

1.0.4 Tychonov’s Theorem
Definition 1.10. Let {X,},ca be a family of sets. We consider the product

H Xo = {(%a)gen : Ta € Xq for all a € A}
acA

Suppose now that each X, is a topological space. Then the product topology is the weakest
topology containing as open sets, products of the form [],. 4 Us, where U, C X, is open
for any a € A and where U, C X, for at most finitely many a.

=

Theorem 1.11 (Tychonov’s Theorem). The Cartesian product [],. 4 Xa with the product
topology is compact if and only if all the X, are compact.

The fact that if the product is compact all the X, are compact follows easily from the
fact that the projection function m,, : X := H Xq — X, is continuous for all agp € A and

acA
that the continuous image of a compact space is compact. So the interesting part is showing

that the product is compact. Consider a cover X = Upcp.Ap with open sets. We need to
show that there exists a finite subset By of B such that X = Uyep f.Ab. An equivalent
statement is that if NpepCy = 0, where the C, are closed sets, then there exists a finite
subset By of B such that Nyep,Cy = 0.

Definition 1.12. A collection € = {C} : b € B} of distinct sets is said to have the finite
collection property if for any finite subset By of B we have Myep,Ch # 0.

Notice that the following is elementary.

Exercise 1.13. A topological space X is compact if an only if any collection of closed
subsets of X which has the finite collection property has non—-empty intersection.



Given two collections like in Definition 1.13, € = {C, : b € B} and © = {Dy : b’ € B'},
of subsets of X, we can write that € < ® if for any Cp, there exists Dy = Cp. The set formed
by collections enjoying the finite collection property satisfies the inductive property, that is,
if {€; : j € J} is a totally ordered family of such collections, it has an upper bound, that
is, a collection which is larger than all the €;. Indeed just consider the collection €, which
is formed by all the sets of all the collections €;. Notice that it has the finite collection
property, because if Cy,...,C, € €, they belong C; € €;,..., C, € €, and since one of the
<., €, is the largest, for example €, is the largest, then Cy,...,C, € €, and since €},
has the finite intersection property, then Ci()...[)Cn # 0. So we conclude that € has the
finite intersection property.

Now, we apply Zorn’s lemma and conclude that there exists a collection ® = {D,; : d € D}
of distinct sets with the finite collection property and maximal. The following lemma is
true.

Lemma 1.14. Let X be a set and let © = {Dy : d € D} be a collection of distinct subsets
with the finite intersection property and mazximal. Then the following holds:

1. every finite intersections of elements in O is in D;
2. if Y is a subset of X with non empty intersection with all elements of D, it is in D.

Proof. Let Dy, N....N Dy, be a finite intersection of elements in ®. It is elementary that if
it is not an element of ©, then ® U{Dy, N....N Dy, } satisfies the finite intersection property
and, since ® is a maximal collection with this property and ©® U{Dy, N....N Dy, } 2 D, we
get a contradiction. So Dy, N....N Dy, € D.

Since the 1st claim in the statement is true, moving to the 2nd statement, it is elemen-
tary to see that © U {Y} satisfies the finite intersection property. By the maximality of ©,
it follows that the 2nd statement is true.

O

Completion of the proof of Tychonov’s Theorem. By contradiction assume that X is
not compact. Then there exists a collection € = {C, : b € B} formed by closed sets
of X which has the finite collection property but which satisfies (,c5Cy = 0. We can
consider a maximal collection © = {Dy : d € D} with € < ®. If we consider finitely many
elements Dy, ..., D,, € D, by the finite collection property of ® the intersection Dy ) ...\ Dn
is nonempty and has, by the definiotion of function, a nonempty image 7, (D1 ()...[)Dn) =
7o (D1) (- 7a (Dp) for any a € A. So also the family of sets D,y := {7, (Dg) : d € D}
has the finite collection property in X, for any a € A. By the compactness of X,, we have

m 7o (Da) # 0,

deD

so in particular this intersection contains an z, € X,. Consider X 3 x = (24)qca. We
claim that x € C for any b € B. This will contradict (,c5Cp = 0.

An open neighborhood of x is of the form U = [[,c4 Ua, where U, C X, is open for any
a € A and where U, C X, for at most finitely many a. Let U,,, ..., U,, be the only factors

=



which are are not equal to the corresponding X,’s. Then U, N Ta, (Dyg) # 0 for any d € D.
So ;! (Ua ) N Dy # 0 for any d € D. But then 7Ta_j1 (Uaj) is an element of ® by Lemma

aj J

any b € B and for any neighborhood U of x. This implies that x € Cp for any b € B,
completing the proof of Tychonov’s Theorem. But then we get a contradiction, since now
X € (pen Cp = 0, where the last equality was by hypothesis.

O

1.0.5 Normal topological spaces

Recall that a topological space X is Hausdorff if given two distinct points x,y € X there
exist a neighborhood U of x and a neighborhood V of y such that U NV = ().

Definition 1.15. A topological space X is regular if for any x € X and for any closed
subspace B of X with z ¢ B, there exist a neighborhood U of x and a neighborhood V' of
B such that UNV = (.

A topological space X is normal if for any pair A and B of disjoint closed subspaces
of X there exist a neighborhood U of A and a neighborhood V of B such that U NV = ().

Theorem 1.16. Every metric space X is normal.

Proof. Let A and B be two disjoint closed subspaces of X. For any a € A consider a ball
of center a and radius €, > 0 such that Dx/(a,e,) N B = ) and for any b € B consider a ball
of center b and radius €, > 0 such that Dx (b,e) N A ={. Set

_ € _ @y
U UDX(a,2>andV bgBDX(bQ)

a€A

If now there exists z € UNV, then for somea € Aand b € Bwehave z € Dy (a, %a) N Dx (b, %’)
Then, by the triangular inequality, d(a,b) < % It is not restrictive to assume €, < €.
Then d(a,b) < €, contradicting Dx (b,e,) N A = (). This implies that U NV = (), proving
the statement. O

Theorem 1.17. Every compact and Hausdorff space X is normal.

Proof. First of all we prove that X is regular. Consider x € X and B closed subspace of X
with x € B. Notice that B is compact. By the Hausdorff property, for any b € B there are
a neighborhood U® of = and V;, of b with U® NV, = 0. Since B is compact, it is possible
to find a cover of B C Vj, U...UV, which is disjoint from Ul A nU®) | which is a
neighborhood of .
Give now any pair A and B of disjoint closed subspaces of X, by the previous part of
the proof, for any a € A there exist a neighborhood U, of a and a neighborhood V(@ of B
so that V(@ N U, = 0. Tt is possible to find a cover of A C Ug, U ... UU,, which is disjoint
from V(@) 0 ... N V(@) which is a neighborhood of B.
O



Theorem 1.18 (Urysohn’s Lemma). Let X be a normal space, A and B be two disjoint
closed subspaces of X and [a,b] C R a compact interval. Then there exists f € C(X, [a,b])
with f=a in A and f =0b in B.

Proof. Tt is enough to consider [a,b] = [0, 1]. Let P be the set of rational numbers in [0, 1].
We will define a family of open sets {Up}pep with

U, CU,if g <p, with A C U and Uy = X\B. (1.10)

Suppose for the moment that we have defined {U,},cp. We can extend this to a family
{Up}peq setting U, = 0 for p < 0 and U, = X for p > 1. Notice that (1.10) continues to
hold. For any z € X set Q(z) = {p € Q:z € Uy} and define f : X — R by

f(z) = inf Q(x)

Notice that f =0 in A (since A C Uy and ANU, =0 for any p < 0) and f =1 in B (since
B C U, for any p > 1 and BN U; = (). Before proving the continuity of f, we prove the
following two statements:

exclU,= f(z)<r;
o : U, = f(z)>r.

Indeed, x € U, by (1.10) implies Q(z) 2 QN (r,+00) and so f(x) <inf (QN (r,+00)) =7
and this show the first claim. If z ¢ U, with f(z) < r then there exists p € Q(x) with
p < r, which implies z € U, C U, G Uy, yielding a contradiction with (1.11).

Let us now prove the continuity of f, fixing g € X and an € > 0. Fix two rational
numbers p < g with f(zg) — € < p < f(x9) < ¢ < f(xop) + €. We will show that there
exists an open neighborhood U of zg such that f(U) C (f(zo) — €, f(xo) + €). We can
choose the open set U := U,\U,. Notice z ¢ U, = f(z) > p > f(z0) — € and that
reU,= f(x) < q< f(xo)+e, so it is true that f(U) C (f(zo)—¢, f(z0)+€). Furthermore,
p < f(z0) implies zg € U, and f(zo) < q implies zg € Uy, so zg € U = U,\U,.

To complete the proof, we need to define the family of open sets {Up}pep. Recall
that A C Uy we have U; = X\ B with Uy ; U;. We can arrange P as a sequence, which
starts with 0 and 1. Let P, the set formed by the first n terms and suppose that (1.10)
holds for elements of P,. Consider now P,+1 = P, U {r}. Here 0 < r < 1, and there are
p <r <gq, p € P, the immediate predecessor and ¢ € P, the immediate successor of r in
Pp41. Consider the pair of closed sets A := U, and B = X\U,, which are disjoint because
of (1.11). Since X is normal, there exist open neighborhoods U of A and V of ~§ with
UNV ={. Let now U, := U. Then U, C U, by definition and U, C X\V C X\B = U,,.
Hence (1.10) is true also in P,41. By induction {Up}pep remains defined.

O

Corollary 1.19 (Urysohn’s Lemma). Let X be locally compact and Hausdorff and let K C
V with K a compact subset of X and V' an open subset of X with K C V. Then there exists
feC%X,[0,1]) with f =1 in K and f =0 in X\V.



Proof. Suppose we know that
there exists an open set U with K C U C U C V with U compact. (1.11)

Then consider f € C°(U,[0,1]) with f = 1in K and f = 0 in U\U which is obtained by
the previous Lemma 1.18 (after f ~ 1 — f). Then set f = 0 in X\U. In this way we obtain
the desired function.

We need to prove the statement in (1.11). Notice that there exists an open set G with
G compact with K € G. If V = X we are in the previous situation with U = G. So
assume V' # X and consider the closed set B = X\V. Now, for any b € B there exist
an open neighborhood Vj of b and a relatively compact open neighborhood U® of K with

U® NV, = 0. Notice that U® C X\Vj, implies o C X\W, because X\V} is closed.
So, in particular, b & U(b). Then {BNGN U(b) : b € B} is a collection of compact sets

with empty intersection. It follows that there exists {B NG N o) . j =1,..,n} with
empty intersection. Then set U = GNU®) N ... NnU®: it is a relatively compact open

neighborhood of K whose closure G N T is contained in X \B=V.
O
1.0.6 Weierstrass Approximation Theorem

Theorem 1.20 (Weierstrass Approximation Theorem). The set of real valued polynomials
is dense in C°([a,b],R) for any interval [a,b].

Proof. Tt is not restrictive to consider only case [a,b] = [0, 1]. We recall

(z+y)" = En: (Z) ahynk. (1.12)

k=0

n

. n _
Setting 74 (z) := (k) zF(1 — )" % we have kZ_OTk($) =1L
Applying zd, to (1.12) we obtain

nx(x+y)" = (Z) kakyn =k, (1.13)
k=0

and so

nr = kri(z). (1.14)

Applying 7202 to (1.12) we obtain

n(n — Da?(z 4+ y)" 2 . <”> k(k — 1)akyn, (1.15)



and so

n(n—1)a® =) k(k - )ry(x (1.16)
k=0

The proof given here of this theorem is based on the following formula

n

Z (k —nx)*r = n?z? Z rp(z) — 2nx Z krg(x) + Z E*ry,(z)
k=0

k=0

=n’z —2nxn:€+2k — D)rg(z —i—Zkrk
k=0

2y (n — 1)a? + nz = —na? —|—nx:m:(1—:r).

—n‘xr"+n

Given now f € C°([0,1],R), for any given € > 0 we know that there exists 6 > 0 such that
for any integral I C [0, 1] of length |I| < 6 we have osc;(f) < € where

oscrf :=sup f(I) —inf f(I). (1.17)

Now we write

n

10-321 () o

=0

| ¥ (1o -1 (5))n@|+| T (s -1 (5) )t =111

‘1‘—;’<5

The first term is bounded by

r<| ¥ (r@-1(5))nw

k _k
’x ;’<6 ’a:

(]

while, for osc 1)(f) < M, the 2nd term can be bounded by

”S|Z| f(x)—f(ﬁ) <M|Z s% > (m—k)zm(x)
z—E|>5

O o E[2s
M k M M M noioo
S(sz::()(:r_n) *5—2 na — k)? r(x) = 52,2 nx(l—xz) < — 0.

From this we derive that there exists an n such that I + I] < 2e.
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Remark 1.21. Notice that the main steps in the above proof have probabilistic interpre-
tation. If we consider n independent random variables X; with P[X; = 1] = z and
P[X; =0] =1—xz, then E[X;] =z, Var[X;] = z(1 — z).
For S, = X1 + ... + X, we have P[S,, = k] = ri(z), E[S,] = nz, Var[S,] = nz(1 — z)
and this equality corresponds to the last one in the proof of Theorem 1.20. Notice that in
general, given n independent random variables X; with E[X;] = m, Var[X;] = 02, then it
is simple to prove
P[X1+...+Xn _m‘ 25] Si'
n no2

This inequality generalizes the inequality

o E[s
proved above, see Varadhan Sect. 3.2 [15].

1.0.7 Ascoli Arzela Theorem

Definition 1.22. Let X be a compact topological space and consider the set of continuous
functions from X to R, which we denote by C°(X,R). Notice that we can introduce in
C%(X,R) the distance d(f, g) := supgex |f(z) — g(z)|.

Exercise 1.23. Show that in Definition 1.22 is a metric that makes C(X,R) a complete
metric space.

Theorem 1.24 (Ascoli Arzeld). Let X be a compact metric space and let S C CY%(X,R).
Then S is compact if and only if:

15 is bounded

2 S is equicontinuous

Proof. Suppose S is relatively compact. If S is not bounded and equicontinuous then either
there is a sequence f, € S such that (1) does not hold in the sense that |sup f,(X)| +
linf f,(X)] 2= oo, or there is a sequence f,, € S such that (2) does not hold in the sense
that there is an e > 0 such that for any n there are x,,y, € X such that dist(z,,y,) < 1/n
and |fn () — fn(yn)| > €. In either case, it is impossible to extract a subsequence of {f,}
convergent in CY(X, R).

Suppose now S is bounded and equicontinuous. Since X is a compact metric space,
there is a sequence x,, € X such that Ve > 0 there is k(e) > 1 such that

su inf dist(z,z;) <e.
R 1<Zk(e (. 25) <

12



By a diagonal process and by Bolzano Weierstrass (thanks to (1)), we obtain a subsequence
fn such that for any z,,, {fn(Zm) }nen converges. Let us show now that f,(x) converges for
any x.

For any € > 0 and for any § > 0 and any j < k(J), we have

[fn(@) = fm(@)] < | fn(@) = fulzi)| + [fm(25) = fol@i)] + [fm(@) = fin ()]
By equicontinuity, for § > 0 small we have
|fn(x) = f(xj)] + | fm(x) — fi(x;)| < 2€ for all j < k(5) with dist(x,z;) <6 and m in N.

For m,n > N(€), |fm(xj) — fu(z;)] < € for any j < k(e). Then we have proved that
m,n > N(e) = |fu(x) — fm(z)| < 3¢ for any x € X. Hence we have proved that {f,} is a
Cauchy sequence in C°(X, R). It is easy to conclude that there is an f(z) := lim,, o0 fn(2)

pointwise well defined, and f, UimAN f uniformly. O

1.0.8 Reisz representation theorem

In this section, we will consider X, a locally compact and Hausdorff topological space. We
will denote by C%(X)(= CY(X,R)) the space of continuous maps from X to R which have
compact support. Just for this section, if K is a compact subspace of X and f € C?(X, [0, 1])
is such that f =1 in K, we will write K < f; if V is an open subspace s.t. f € C2(X,[0,1])
is such that supp f is a compact subspace of V', we will write f < V.

Theorem 1.25. Let X be a locally compact and Hausdorff space. Let A be a positive linear
operator on C2(X,R). Then there exists a o algebra M containing the Borelian sets, and
a unique positive measure i on M such that:

1Af= [y fdu for any f € C2(X,R).
2 w(K) < oo for any compact K.
3VE € M we have p(E) = inf{u(V): V open V 2 E}.

4 We have p(E) = sup{u(K) : K compact K C E} VE € M open and for all VE € M s.t.
w(E) < oco.
5VE € M with u(E) =0 and for any A with A C E we have A € M and u(A) = 0.

Ezample 1.26. If X = N, then any A : CO(N,R) — R like above can be identified with the
sequence {Aep tnen in [0, 400), where e,(m) = dpm, with the Kronecker delta.

Now, let f : N — R where supp f is compact. Obviously f is just a sequence of real
numbers, thus we have an identification f = {a,}nen. We have also

[e's)
f=2_ anen
n=1

13



where the sum is finite, since supp f is compact. By linearity

Af = io: ane,

n=1

For any compact set K C N, obviously 15 € C2(N,R) we also have that K is open and so
it is easy to see that (1.18) below yields

w(K):=Alg = Z Ae,.
nekK

Proof. For any open set V set

p(V)=sup{Af: f<V} (1.18)

Hence for V7 C Vo we have u(V7) < p(V2). As a consequence, for any open subset £ C X
the following is true

p(E) =inf{u(V): E CV with V open}. (1.19)

Formula (1.19) makes sense for any subset £ C X, and we use it to define y(F) for any E.
Notice that Ey C Fs implies u(E7) < u(E?).
Let Mp be the set of the E such that u(E) < oo and such that

u(E) = sup{u(K) : E O K compact}. (1.20)

We define M to be the set of the £ C X such that EN K € Mp for any compact K.

Claim 1.27. M contains any compact set K.

Proof. Tt is enough to show p(K) < co. Pick K < f and let V. = {f > 1/2}. Then K C V
and g < 2f for any g < V. Then

p(K) < p(V) =sup{Ag: g < V} < A(2f) < oo.

O
Notice that the above claim implies also that any compact K belongs to M.
Suppose now that u(E) = 0. Then, it follows from by monotonicity that u(K) = 0 for
any compact K C F, so that (1.20) is true. Hence E € Mp. And since any subset of F,
for the same reasons, belongs to Mg, it follows that £ € M. This proves claim 5 in the
statement.

Claim 1.28. Every open set satisfies (1.20). Hence My contains every open set V with
uw(V) < oo.

14



Proof. Let aw < u(V'). Then there exists f < V such that o < Af. Given any open set W D
supp f, we have f < W, and hence a < Af < pu(W). We also have p(supp f) > Af > a
where the 1st inequality follows from the fact that g < V' with supp ¢ € K C V implies

Ag < p(V') by (1.18) and so also Ag < pu(K) by (1.19). Since we have found that o < p(V)
implies the existence of a compact K C V with o < p(K), it follows V satisfies (1.20).

O
Claim 1.29. For any sequence of arbitrary sets Fj... in X we have
o0
P ) <> i(En). (1.21)
n=1

Proof. Observe first of all that for two opens sets, we have
pWViUVa) <pu(Vi) +u(Va). (1.22)

To show this pick f < V3 U Va. Now there are h; < Vj such that hy + ho = 1 on supp f.
Then f = fh1 + fho with fh; < V; and since, linearity Af = Afhy 4+ Afha, we conclude
that

Af =Afhi+ Afhy < p (Vi) + p (V) for any f < ViU Vs

Hence

p(ViuVa) =sup{Af: f<ViUVa} < (Vi) +p(V2).
Notice that (1.22) extends immediately into

wWViu..UV,) <pu(Vi)+ ...+ p(Vy) for any finite n > 2 open sets Vi, ..., V. (1.23)

Going back to the countable subadditivity, if p (E),) = oo for some n we are fine. If this is
not the case, consider E,, C V,,, V;, open with p (V,,) < u(E,) + 27 ™. Consider the open
set V =Up2,V,, and consider f < V. Since supp f is compact, there exists an n such that

Af <UL V) <Y u(Vi) > p(E:) +e,
=1 i=1

where in the 2nd inequality we used (1.23). Since the last formula holds for any f <V and
we have U2, E; C V, we we conclude that

PV Ey) < p(V) < ZM (Ei) + €.
i=1

Since € > 0 is arbitrary, we obtain (1.21). O

Claim 1.30. For any sequence Ej... of disjoint elements in Mg we have for £ = U2 | E),
[ee]
w(B) = u(E) (1.24)
n=1
and, if u(EF) < oo, then £ € Mp.
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Proof. Let us first show that for disjoint compact sets we have
p(K1U K2) = p(Kq) + p(Ka). (1.25)

We know already that p(K; U Ks) < u(K1) + p(Ke) is true

There are disjoint open sets V; and Vo, with V; O K. Consider an open set W O K1 U K3
with u(W) < p(K1UK32)+e. There are f; < WNV; with Af; > p(WnNV;)—e. By K; € WNV;
and f1 + fo < W (where f1 + fo € C%(X, [0,1]) because supp fi Nsupp fo € ViNVe =),

p(K1) 4+ p(K2) < p(W N V) + p(W N Va) <Afi+ Afa + 2
< pu(W) + 2e < pu(K1 U Ka) + 3e.

By the arbitrariness of € > 0, we conclude p(K; U K2) > p(K7) + pu(K2), and so (1.25).
Notice that it is elementary that (1.25) extends to the case of finitely many n > 2 disjoint
compact subspaces.

Going back to the countable union, if we have p(E) = oo both sides are equal to co by
the countable subadditivity. So suppose u(E) < co. Since E; € Mp, there is a compact
H; C E; such that u(E;) > u(H;) — 2 %. For K,, :== H{ U ...U H,,

p(E) = p(Kn) = 3 p(H) > D pl(E:) = e

where the equality follows from (1.25), in the case of n > 2 disjoint compact subspaces.
This holds for any n and €. So

wE) = Z 1(E;).
=1

By the previously proved countable subadditivity we have equality, obtaining (1.24). In
particular, taking N large enough,

N N

p(E) <> (B +e< Y p(H) + 2 = p(Ky) + 2e.
=1 =1

This proves (1.20), and so proves E € Mp. O

Claim 1.31. If £ € Mp and € > 0, there are K C F C V, K compact and V open, with
wlV—K) <e.

Proof. There are K and V with K C ECV and u(V)—¢/2 < u(E) < p(K)+¢€/2. V-K
is open, we have p(V — K) < u(V) < p(K)+e€ < oo,s0 V — K € Mp by Claim 1.28. Then

u(K) +p(V = K) = u(V) < w(K) + e,

where the equality follows by Claim 1.30, yields the desired result. 0
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Claim 1.32. If A,B € Mp, then A— B, AU B, AN B all belong to Mp.

Proof. We start observing that for ¢ > 0 there are K1 C A C V; and Ky C B C Vs with
w(Vi\K;) < e. It is elementary that

A\B € VI\K; C (Vi\K1) U (K1\V2) U (V2\K3). (1.26)

Indeed A C Vi and K5 C B gives the 1st inclusion. Looking at the 2nd inclusion, elements
of 1\ K3 not in V1\K; are necessarily elements of x € K1\Ks. Since X = Vo U (V3 then
K1 = (KiNnW) U (K NCW). If € Ky N Vs, then, since x ¢ Ko, we have z € V5\ K>
Otherwise, z € K1 NCVa = K1\ Va. So, (1.26) is proved.
By subadditivity
(A — B) < 2¢ + u(Ky — Vo).

Since (Kj; — V,) is a compact subset of A — B, we conclude A — B € Mp. Next, AU
B =(A—-—B)UB and AU B € My by the previous step on disjoint unions. Finally,
ANB=A—-(A-B). O

Claim 1.33. M is a o algebra containing all Borel sets.

Proof. Let K be compact in X. If A € M, then CANK = K — (AN K) is the difference of
two elements in My and so by Claim 1.32 it belongs to Mp. So A € M implies CA in M.
Next, let A = U{°A; with A; € M. Let K be compact, let B; = A; N K and

B,=(A,NK)—(B1U...UBy_1).

Then the B,, form a disjoint sequence in Mp and so AN K = UB; € Mg by Claim 1.30.
So A € M. Finally, let C be closed. Then, for any K, C' N K is compact so is in Mg and
CeM. O

Claim 1.34. My contains exactly the £ € M with u(FE) < co.

Proof. Let E € Mp. For any K compact, E N K € Mp by Claims 1.27 and 1.32. By
definition, this implies £ € M.

Let us pick now E € M with pu(FE) < co. Then there is V O E with u(V) < co. By Claim
1.28, there is a compact K C V with u(V — K) <e. By ENK € Mp thereis HC ENK
compact with pu(ENK) < u(H) + €. We have

E=(FENK)U(E-K)C(ENnK)U((V-K).

This implies

u(E) < W(ENK) + p(V - K) < p(H) + 2,
so B e Mp. OJ
Claim 1.35. For any f € C)(X) we have Af = [ fdu.
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Proof. Tt is enough to prove
Af < /fd,u for any f € CY(X,R) (1.27)

since by A(—f) < [(—f)dp we get Af > [ fdu, and thus the equality.
Let K be the support of f and [a, b] the range. Pick

w<a<y1 < ..<yp,=bwithy, —y;_1 <eforalli=1,...,n.

Set E; = f~Y(Jyi—1,4:]) N K. These are Borel, disjoint with union K. There are open sets
Vi with u(V;) < pu(E;) + ¢/n and f < y; + € in V;. There are h; < V; with > h; =1 on K.

Af =D Ahif) <D (Wi + OAh:) < (yi + (Vi)
=1 i=1 =1

<> i+ OB + Y i+ -
i=1

=1

< Z(yi —)p(E;) + 2eu(K) + (b+e)e < Z Yi—1 () + 2epu(K) + (b + €)e
i—1

=1

S;/Eifdu+e(2u(K)+b+e):/dewrg(zu(KHbJrE).

Definition 1.36. A positive measure is regular if for any Borel set E

w(E) = sup{u(K): K compact set with K C E' } (F inner regular)
=inf{u(A) : A open set with A D E } (E outer regular).

Remark 1.37. In Theorem 1.25 every E € M is outer regular for the measure p, while the
inner regularity is proved for all £ € Mp.

Theorem 1.38. Let X be a locally compact, Hausdorff and o—compact space (X is a count-
able union of compact sets). Let M and p be like in Theorem 1.25. Then the following
happens.

1. For any E € M and € > 0 there exists ' C E C V, F closed and V' open, with
pw(VAK) < e.

2. w is regular.

3. For any E € M there exist A, a countable union of closed sets, B, a countable
intersection of open sets, with A C E C B, with u(B\A) = 0.

Proof. See Rudin [10]. O
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Theorem 1.39. Let X be a locally compact and Hausdorff space where every open set
is o—compact (a countable union of compact sets). Then any Borel measure p such that
w(K) < oo on any compact set, is regqular.

Proof. See Rudin [10]. O

2 Topological vector spaces on K =R, C

We will consider Topological Vector Spaces, that is, vector spaces, where the algebraic and
the topological structure are compatible.

Definition 2.1 (Topological Vector Space). Consider a vector space X on the field K =
R,C. A Hausdorff topological structure (X,7) on E is said to be compatible with the
vector space structure if the maps

XXxX3(z,y »z+ye X and K x X 5 (\,z) - Az € X are continuous. (2.1)
n

——f—
Exercise 2.2. Given a topological vector space X show that X" = X x ... x X 3 (21, ...,zp) —
1+ ... + x5 € X is continuous for any n, for the product topology in X".

Exercise 2.3. Show that in a topological vector space X a subset U C X is a neighborhood
of a point xgp € X is an only if U = z¢9 + V, where V C X is a neighborhood of 0 € X.

Definition 2.4. Consider a vector space X on K and a subset {2 C X. Then 2 is said to
be

1. balanced, if z € Q and |A\| < 1 imply Az € Q,
2. absorbing, if for any x € X there exists a scalar A such that x € A\Q2 .

Exercise 2.5. Any neighborhood U of 0, in a topological vector space X, is absorbing.

Answer. Consider the U, neighborhood 0 and let z # 0. Since R > A = uz € X is
a continuous map, there exists 6 > 0 such that uz € U for |u| < §. Pick one such p # 0.
Then pur € U <=z € AU for A =1/p. O

Lemma 2.6. For any given neighborhood U of O of a topological vector space X, there exists
a balanced neighborhood V' of 0 such that V C U.

Proof. Fix any neighborhood U of 0 in X. By continuity, there exists an open neighborhood
V of 0 and a § > 0 such that AV C U for any [A| < 6. Let V = (J;<5AV. Then V is an
open neighborhood of 0 contained in U, and it is easy to see that it is absorbing.

O]

Remark 2.7. It is well known, and easy to check, that in a Hausdorff topological space X
every subset {x} for x € X is closed. In the context of topological vector spaces, if we
subtract from the hypotheses that X is Hausdorff, but we ask that each {z} for z € X is
closed, then in fact, X is Hausdorff.
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Lemma 2.8. Assume that X is a vector space, that it has a topology for which (2.1) is true
and that each {z} for x € X is closed, then X is Hausdorff.

Proof. Tt is enough to show that if z # 0, then there exists neighborhoods U of 0 and V' of
x such that UNV = (. Since {x} is closed, we know that there exists a neighborhood U of
0 such that = & U;. Furthermore, there exists a neighborhood U of 0 such that U+ U C U;.
Furthermore, since Lemma 2.6 continues to hold under our hypotheses, we can assume that
U is balanced. So, in particular, U — U Z z. It follows that UN (x +U) =0. V =2+ U
is the desired neighborhood of . O

Definition 2.9. Given two topological vector spaces X and Y we denote by £(X,Y") the set
of linear operators defined in X and with values in Y which are continuous. In particular,
for Y = K, we set X’ = L(X, K) and we call it the dual space of X. We call the elements
of X' the linear functionals on X. Finally, when X =Y we write £(X) := L(X,Y).

Exercise 2.10. Show that a linear map T : X — Y between two topological vector spaces
is continuous if an only if it is continuous in just one point zg € X.

Exercise 2.11. Let X be a topological vector space on C. Show that the map v: X — R
in (2.2) is an R-linear and continuous if and only if the map f : X — C in (2.2) is C-linear
and continuous,

f(x) :=v(z) — iv(ix). (2.2)

Obviously any C—vector space X is also an R—vector space. It is easy to turn an R—
vector space into a C—vector space. There are various possibilities, with the first indicated
in the following exercise.

Exercise 2.12. Suppose that X is vector space on C and that J : X — X is a linear map
such that J? = —1. Then show that C x X > (z,z) — (Re(z) + Im(z)J)r € X makes X
into a C—vector space. If furthermore X is a topological vector space and J € £(X), then
show that the above gives X a structure of topological vector space on C.

Another possibility is the following.

Remark 2.13 (Complexification). Suppose that X is vector space on C and consider the
space C ®g X. There is an obvious identification of C®r X D R®r X = X and a complex
structure on C®g X, by A\ (A2 ®@x) = (A A2) @ z. If X has a structure as topological vector
space, then so does C ®g X. Finally, and crucially, for any R-linear 7" : X — X, setting
TA®z) = A®T(z), a related C-linear operator remains defined, and if the initial 7" is
continuous, also the other T is continuous.

For time dependent PDE’s, especially for Hamiltonian systems, when it is necessary to
consider the spectrum of the operators, it is important to complexify.

Definition 2.14. Given a topological vector space X, a subset B C X is called bounded if
for any neighborhood V' of 0 there exists a A > 0 such that A\V O B.
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Definition 2.15. Given two topological vector spaces X and Y, a linear operator T : X —
Y is bounded if, for any bounded subset B C X, the image T'B is bounded in Y.

Exercise 2.16. Show that if X and Y are topological vector spaces and T': X — Y is a
continuous linear operator, then it is also bounded, in the sense of Definition 2.15.

The following is very important.

Lemma 2.17. Let X be a topological vector space on K and let T : X — K be a linear
map with Tx # 0 for some x € X. The following statements are equivalent:

aTeX;
b kerT is closed;
c kerT is not dense in X;

d T is bounded on some neighborhood of 0 € X.

Proof. Clearly a = b = c¢. Now assume c. It follows that there exists a point  and a
neighborhood V of 0 such that x +V NkerT = ). We can also assume by Lemma 2.6 that
V' is balanced. Then TV C K is balanced. If TV is a bounded set, d follows. Otherwise,
we claim that

TV = K. (2.3)

Indeed, if | Tz, | D220, 1 oo for {zn }nen a sequence in V', for each n we have D (0, [Tz,|) C

TV by the fact that TV is balanced, thus proving TV = K.
If (2.3) is true, there exists y € V such that Ty = —Tz and so x +y € (x + V) NkerT,
giving a contradiction.

Finally suppose d. Then |Ty| < M for all y in a neighborhood V' of 0 and for a fixed
€ € €

M € Ry. Then, foer any € > 0, for z € MV’ for MV Sx = My, where y € V, we have

MM = ¢, hence the continuity in 0, and so everywhere. O

Definition 2.18. Let X be a topological vector space. A subset H C X is called a
hyperplane if H = f~!(a) where f : H — K is a (bounded or unbounded) linear map.

€
Tr| = —|Ty| <
Tzl = [Ty

Exercise 2.19. Let X be a topological vector space on K and let T': X — K be a linear
map. Let kg € K be kg # 0. Show that the following statements are equivalent:

aTeX
b T~ (k) is closed;
c T~ (ko) is not dense in X.

Answer. Notice that a = b = c¢. Assuming ¢ we have either T~ !(kg) = 0, which
implies 7" = 0 and so is continuous, or there exists xg such that T'(zg) = ko. Then from
linearity it follows T~ (ko) = x¢ +ker T and it is easy to conclude that T~ (ko) is not dense
in X if and only if ker T" is not dense in X. Hence ¢ = a by Lemma 2.17. 0
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Definition 2.20. A topological vector space X is metrizable if there is a metric on X which
induces the topology of X.
A metric d on a vector space is translation invariant if

d(z,y) =d(x + z,y + z) for all z,y,z € X. (2.4)

Definition 2.21. A basis of neighborhoods of a point xy in a topological space X is a
family 4 of neighborhoods of xg such that for any neighborhood V of zy in X there exists
UeldwithU CV.

A subbasis of neighborhoods of a point xg in a topological space X is a family &l of
neighborhoods of zy such that the family of finite intersections of elements of Ll is a basis
of neighborhoods of x.

It is obvious that if a topological vector space X is metrizable, then any point of X has
a countable basis of neighborhoods. The following converse is true, see Theorem 1.24 [11].

Theorem 2.22. If X is a topological vector space such that each point of X has a count-
able basis of neighborhoods then X is metrizable and admits a translation invariant metric
compatible to the topology such that all the balls centered in 0 are balanced. If furthermore
X s locally convex!, then it is possible to find a metric compatible to the topology which, in
addition to the above properties, is such that all the open balls are conver.

Proof. We can consider a basis {V}, }nen of neighborhoods of 0. We can assume them to be
balanced and such

Vit1 4+ Vogy1 CV, forall n e N (2.5)

Next we consider D := QN [0,1). Now any r € D can be written as

o
r= Z cn(r)27", with ¢,(r) = 1 for finitely many n’s and with ¢, (r) = 0 otherwise.
n=1
(2.6)

Let A(r) := X for r > 1 and set
e}
A(r) == Z cn(r)Vy, for r € D- (2.7)
n=1

Now we define f: X — [0,00) and d : X? — [0,00) by
f(z):=inf{r:z € A(r)} and d(z,y) = f(z —y). (2.8)
Notice that if d is a metric, it is obviously translation invariant. We claim that

A(r)+ A(s) C A(r + s) for all r,s € D. (2.9)

1See later Sect. 4.
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Let us assume (2.9). We then claim that
flz+y) < f(z)+ f(y) for all z,y € X. (2.10)

This is true if the r.h.s. equals 1, so we assume we are in a case with the r.h.s. < 1. Then
for any € > 0 there exists r, s € D with

flz) <r, fly) <sandr+s<f(z)+fy) +e

Then x € A(r) and y € A(r). Then (2.9) implies that = +y € A(r + s) and

fl@+y) <r+s<fl@)+ fly) +te= flz+y) < f(z)+ fv)

Hence (2.10) is proved.

Since the {V},}en are balanced, from (2.7) we see that the A(r) are balanced as well. Hence
f(Az) = f(x) for all |A\| = 1. That f(0) = 0 follows from 0 € A(r) for all r. If x # 0, then
we must have z € V;, = A(27") for some n. This implies that f(x) > 27" > 0.

We conclude that (2.8) defines a metric on X where

D(0,6)={z e X: f(x) <} =|JA)

r<d

is a neighborhood of 0 in X. If § < 27", then D(0,¢) C V,,. This impies that the topology
induced by d, is the same of the initial one.
We now prove (2.9) by an induction argument. We consider the proposition

A(r)+ A(s) CA(r+s)if r+s <1 and ¢,(r) = c,(s) =0 for all n > N. (Pn)

For N = 1, if r = 0 then A(r) = 0 and so the formula is obvious. So we reduce to
r=s=1/2,50 ca(r) = c2(s) = 1 and all the others are nil,

A(r)+A(s) =V2+ V2 €W

by (2.5).
Suppose now that (Py_1) is true for an N > 1. Consider r,s € D with ¢, (r) = ¢,(s) =0
for all n > N an let v’ and s’ be defined by

r=r"+en(r)27N, s=5+en(s)27V.
Then

A(r) = A(r") +en(r)Vn ,  A(s) = A(s") + en(s)Va.
By (Pn—_1) we have A(r") + A(s") C A(r’ + s"). Then

A(r) + A(s) CA( +8) + en(r)Vy + en(s) V.
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If ey (r) = en(s) = 0 from the above we get (Py). If cn(r) = 0 and ey (s) = 1 we have
A(r)+ A(s) CA( +8) +Vy = A0 + 8 +27N) = A(r + 5).
Finally, for c¢y(r) = en(s) = 1 we have

A(r) + A(s) CA(M +8) + Vy + Vv CAG +8) + V1 = A’ + ') + A2~ VD)
C A(r 45" + 27Ny,

where in the last step we have used case (Py_1). This completes the proof, because r’ +
s +2 W=D = ¢ 5 and we have shown that (Py_;) implies (Py).
O

Definition 2.23. A sequence {z,} in a topological vector space X is a Cauchy sequence
when for any neighborhood V' of 0 in X there exists a n(V') such that for n,m > n(V) we
have =, — x,, € V. A topological vector space X is sequentially complete if any Cauchy
sequence in X is convergent in X.

Exercise 2.24. Show that if a topological vector space X is metrizable and if we consider
on it a translation invariant metric, then a sequence {z,} in X is a Cauchy sequence in the
sense of Definition 2.23 if and only if it is a Cauchy sequence in the sense in Sect. 1.0.3.

Remark 2.25. A topological vector space X has a natural uniform structure, see Remark
1.9 which can be obtained defining, for any neighborhood B of 0 € X the set U = {(z,y) €
X2 .y —x € B}. Continuous linear operators are uniformly continuous.

Notice from Exercise 2.24 that if X is a metrizable topological vector space and if d
and dy are two distinct translation invariant metrics, then the Cauchy sequences for the two
distinct metrics are the same. In general two such metrics are not equivalent in the sense
of Definition 1.5. See below at Remark 4.30.

Exercise 2.26. Show that if X is a topological vector space on K with dimX =n € N
then X is isomorphic to K".

Answer. Let us proceed by induction on the dimension. If n = 1 consider 0 # xzg € X
and the map K 5 A\ — Azp € K. By (2.1) is a continuous linear operator and it is an
isomorphism in the algebraic sense. The inverse map X > z — «a(x) € K is linear with
ker a = 0. Since X is Hausdorff, then ker « is closed and so « is continuous by Lemma 2.17.
Hence we have proved case n = 1.

Now let us assume we have proved case n and let dim X = n + 1. Fixing a basis eq, ..., en41
in X consider the map

n+1
K™ 5 M= (M, Ang1) 2 TA =Y Ajej € X.
j=1

Then T is continuous by (2.1) and it is an isomorphism in the algebraic sense. Set V' :=
T(K"x0).dimV =nand T : K" x 0 — V is an isomorphism between topological vector
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spaces. At any point v € V, the space X has a countable basis of neighborhoods. Indeed
there cannot be a finite basis of neighborhoods because otherwise this would be true also for
the space V', but then V would not be omeomorphic to K™. Furthermore, there cannot be
only bases of neighborhoods of cardinality strictly larger than countable because we know
that the topology of X does not have more neighborhoods than the topology of K™*!, when
they are compared through the map 7. Hence Theorem 2.22 guarantees that X admits a
metric. Since as a topological vector space, V is isomorphic to K™, then V is complete for
the metric of X. Hence V is closed subspace in X. Now for any z € X we have

n+1
x = Z aj(z)e; for some linear maps o : X — K.
7j=1

Since ker a1 = V is closed, then au,41 is a continuous linear operator. Since we could
repeat this argument for all the «;, we conclude that all of them are continuous. But now

T 'z = (a1(2), ..., ans1(x)) € K™

and so T~1: X — K™ is continuous. O

3 Norms on Vector Spaces on K =R, C

By far, the most important topological vector spaces, are the normed spaces.
The most basic notion in Functional Analysis is that of norm in a vector space X on
the field K = R, C.

Definition 3.1 (Norms). A map ||- || : X — [0, +00) is called a norm on a vector space X
if it satisfies the following properties:

L ||z =0<=2=0
2. |lz+yl < x| + [|y|| for all pairs z,y € X

3. |[Az|| = |A| ||z]| for all A € K and z € X.

A vector space X endowed with a norm || - || x is called a normed space.

Exercise 3.2. Check that if on a vector space X there is a norm ||-||, then d(z,y) := ||z —y||
defines a metric on X.

Exercise 3.3. Check that if on a vector space X there is a norm || - ||, then for the topology
associated to the corresponding metric, we have that the maps X x X 5 (z,y) > z+y € X
and K x X 3 (\,x) = Az € X are continuous.

The important normed spaces, are the complete ones.

Definition 3.4 (Banach space). A normed vector space (X, || - ||) which is complete for the
associated metric, is called a Banach space.
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Exercise 3.5. Consider a non-complete normed vector space (X, | - ||x) on K and let
(X d) be its completion provided by Theorem 1.7. Show that X is a complete normed
vector space.

Ezample 3.6 (Lebesgue spaces). Let us consider a measure space (X, u) with a positive
measure g and let us consider the spaces LP(X, du) for p > 1. Then, for any f € LP(X,du)
let

I Nl oo (x,dp) (/ |f(x |pd,u> for p < oo and (3.1)
[ flzee (x.dpy :=sup{c = 0: p({z : [f(z)| = c}) > 0} (3.2)

These, as we will see below, are norms, by the Minkowsky inequality, see below Theorem
15.2.

Ezxample 3.7 (Spaces of Continuous functions). Let €2 be an open subspace of R?. Interesting
vector subspaces of L>°(Q2) are

C%Q) ;= {f € C°(Q) : f has compact support in Q} (3.3)

which is often denoted C§(),

BCY(Q) := C%(Q) N L>(Q). (3.4)
An important space is
CORY) = {f € CO(RY) : lim f(z) = 0}. (3.5)

Exercise 3.8. Show that for f € BC?(Q)

[ f1l Lo (@) = sup | f(2)]. (3.6)
e

Answer. It is enough to consider a nonzero f : 3 — [0, +00). Set S = sup f(2) > 0. For
any ¢ € (0,5) then f~!(c, +00) is a nonempty open subset of . This implies || f|| oo () > S.
On the other hand, if ¢ > S then f~!(c, +00) is empty, so we get (3.6). O

Ezample 3.9 (H*®(12)). Let Q be an open subspace of R%. We consider the vector space
H(Q):={f € C%Q,C): fis a holomorphic function Q — C} (3.7)
We consider the following subspace of L>°(Q2, C),
H>(Q) := H(Q) N L>*(Q,C). (3.8)

Notice that if f € H*(R?) then f(z) is a constant function.
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Ezxample 3.10. In the notation of Example 3.7 for n € N

CHQY) :={f €C™(Q): f has compact support in 2} (3.9)
which is often denoted Cf'(£2),
BC™(Q) :={f € C™"(Q): 9%f € BC(Q) for all |a| < n}. (3.10)
Notice that the following is a norm on BC"(2),
1 fllBem(o) = Z 107 f || oo (02)- (3.11)
laj<n

For 6 € (0,1) and for f € BC™(Q) let
0 (x) ~ 9§ ()]

[flgno) == sup  sup

|p|=n z#y in Q ’LL‘ - 919
Then we set
C™0(Q) == {f € BC™(Q) : [flemoq) < +00}. (3.12)
Notice that the following is a norm on C™(€Q),
[fllene) == I fllBen @) + [flenoq)- (3.13)
In particular, for n = 0 the space of globally Holder functions in €2 is
Q) := {f € BC(Q) : [f]cosq) < +0oo} with norm (3.14)
[ fllcooy = lfllze @) + [flcoo@)- (3.15)

In the context of Lebesgue spaces, the analogue of the space of globally Holder functions
in Q is the following.

Ezample 3.11. For § € (0,1) and 1 < p < oo is, for  open subspace in R?,

WoP(Q) == {f € LP(Q) : [flwor) < +oo} where (3.16)
f() = fy)P .

[f]%/e'p(ﬂ) = /QXQ dedy with norm

[ fllweor) = I fllze) + [flwor(q)- (3.17)

Ezxample 3.12. A special case of Example 3.6 is obtained taking X = N, Z with u({n}) = 1.
Then we have the spaces

%
H{zn}nexllev(x) = Z |, [P for p < oo and (3.18)
neX
[{@n fnex |l (x) = sup{|zn| : n € X}. (3.19)
A special vector subspace of /*°(X) is
co(X) == {{xn}nex € £7°(X) : nh_}IrOlo Ty = 0}. (3.20)
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Exercise 3.13. Check that for 0 < p < ¢ < co one has #(X) C ¢9(X), in particular with

[{zntnexlleac) < [{antnex e x)- (3.21)

Answer. Notice that for any ng € X and for p € (0, 00),

2ol < 3 Joal? = 2y

neX
This implies ||z.||poc(x) < ||7.[[¢r(x), and in particular (3.21) for ¢ = co. Let now 0 < p <
q < oo. Then
Iz feey = D lzal” < llzllfy D |zl = llz- 15 21 )
neXx neX

So we conclude

q—p
[|z. HZQ(X <. Hgoo(X [|z. Hzp()Q <. ng Hx ng Hmep(Xy

Ezxample 3.14. The following are Banach spaces.
1. The Lebesgue spaces LP(X, pu) for 1 <1 < +o0.

2. BC°(9). Indeed, if {f,} is a Cauchy sequence in BC%(Q), by the completeness of
n—o0

L>(Q) there exists f € L>®(Q) such that f, —— f in L*°(Q2). Notice that by (3.6),
that is by |fn(2) — fin(2)| < |[fa — finllLee(q) for all z € Q, it follows that {f,(z)} is
a Cauchy sequence for any x € (2. We can assume f(x) = ll)rf fn(z) for any x € Q.

Notice that then
[f(z) = fa(@)] < |If = fn||Loo y for any z € Q and n € N.

Indeed, for any pair pair z € 2 and n € N we have

[f(@) = fu(@)| = lim |[fin(2) = fo(@)| < lm || fo = folle@) = [If = fallo= @)

m—-+0o0 m——+00

Let us show now that f € C°(Q2). Let zo € Q and let € > 0. Then
there exists N such that n > N = ||f — fullLe () < %
Fix now n > N and let § > 0 such that

| fo (@) — ful@o)| < % for all = € Do (z0,0).

Then we have the following, which completes the proof of f € C%(Q),

[f(@) = f(o)| < [f(2) = fu(@)[ + [ (w0) = fu(zo)| + [fn(z) = fu(z0)]
< 2% + | fn(x) — fo(z0)| < € for all z € Dq(z0,9).
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3. H®(£), where Q is an open subset of R2. Notice that H>*(Q) C BC°(2). So if {f,}
is a Cauchy sequence in H*°(Q), from what see above we know that there exists an
f € BC%Q) such that f, === f in L>(Q). Notice that by Cauchy Theorem on
triangles [10, Theorem 10.13] we have (by triangle, we mean also the interior)

fn(z)dz = 0 for any triangle ' C Q2 and any n € N
oT
Since now f,, =% f in BC%(Q) implies

f(2)dz = lim fn(2)dz = 0 for any triangle T C €,
aT n—+00 Jor
by Morera Theorem [10, Theorem 10.17] we have f € H(2). Hence H*((2) is a closed
subspace in L>(2).

4. BCYR) for any | € N. Let {f,} be a Cauchy sequence in BC!(€2). This is expressed
equivalently saying that {02 f,} is a Cauchy sequence in BC?(Q2) for any |a| < 1. We
know that for any |o| < I there exists a go € BC%(Q) such that 8% f, — g, in
BCY(2). We need to show that g, = d%go. It is enough to prove this for |a| = 1. Tt
is not restrictive to assume o = e := (1,0, ...,0). We know that for any = € Q there

exists a d, > 0 such that for 0 < |h| < J, we have

fn(xl + hax/) — fn(xhx/)
h

x1+h
= / O1 fu(t, 2")dt for all n € N, where 2’ = (22, ..., 24).

1

Taking the limit n — +o00 the above equalities yields

go(z1+h,2’) — go(z1,2") 1 /xﬁh
xT

e, (t,2)dt for 0 < |h| < 6, .

h h

1

Hence we conclude

N ’
lim go(x1 + h,z") — go(x1,2") ~ lim 1

xr1+h
= t,x')dt = —
h—0 h h—0 h /‘,]c1 Ger (£, 7') Ger ()

ge, () = O1g9o(x) for all z € Q.
By symmetry, ge;(z) = 9;g0(x) for all x € Q and all j =1,...,d.

5. CL9(Q) for any I € Ny and any @ € (0,1). Let {f,,} be a Cauchy sequence in C*¢(€).
We know that f, ——» f in BCY(Q). It is enough to focus on the case [ = 0. For
x # y we have

F@) — F@] _ 1fal@) — o) @)~ Fal@)] . 1) — Fulw)
Tyl = —yf T gyl iy
2

< — 2 f = full e
< [falcoo) + ‘x_y‘gﬂf fallLeo (o)
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Then, sending n — +00 we get

M < limsup(fn]cos(q) < +oo for all z # y in Q.
’37 - y’ n—+00

So we conclude that f € C4(Q). Let us now show that

lim [f — fn]CO’g(Q) =0.

n—-+o0o

For any ¢ > 0 we know there exists n such that for any pair n,m > n. we have
[fm — falcooq) < € Now, for x # y and n > n, we have

|f(x) — fn(‘r) — (f(y) — fn(y))’ — lim ’fm(x) — fn(‘r) — (fm(y) — fn(y))|

|z —yl° m—-+o0 |z —yl°

<e.

n—oo

This implies that for n > n. we have [f — fn]coe(q) < € and proves f, —— f in
c%%(Q).

. The spaces W%P(Q) for § € (0,1) and 1 < p < oo are Banach spaces. Let {f,} be
a Cauchy sequence in W%P(Q). Then it is a Cauchy sequence in LP(Q2) and by the

completeness of the latter we have f, Z==% f in LP (Q) for some function f € LP(Q).

Then we have

(@) = fO _ |fn@) = Sl | [f(2) = fu(@)] | [1() = Fu()]

g+2 — g+ 2 o+ 2 9+ 2
|z —y"t jz—y|" > |z —y" > z—y|" >

The for any € > 0 we have

) — P z dz z
/xylzé |f|(x )_ y|£l§fc)l| dl‘dy < [fn]WG,p(Q) +2 (/Q dy|f(y) - fn(y) ’p y|9p+d>

z,ye |z—y|ze o =

= [fulwon() + 2Capo€ o = fllri)-

Since {f,} is a Cauchy sequence in W%P(Q) it follows that there exists a C' > 0 such
that [fu]werq) < C for all n. Then

[f(z) = fW)IP _
/z—yZe dedy < C+2Cyp0e ern — f”Lp(Q)

x,yc

and since on right we can take the limit for n — 400, we conclude that

f (@) = f(y)lP
=2 dxdy < C? for all 0.
/wylze |z — y|Optd Tay = or all € >

z,y€)
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‘We have shown that

_ P _ P

L N 017

= |z — vyl = |z -yl LY(QxQ)
Since pointwise we have

: [f(@) = F)PP _ [f(=) = Fy)lP

Eli%i Lig—y|>e P = P—TE for almost any (z,y) € 2 x Q
by Fathou’s Lemma we obtain % € LY(Q x Q) with
L e Rt Ly e o IR

Hence we have proved that f € W%P(Q). Finally it remains to show that [f,, —

f]We,p(Q) 220 0. To prove this let us recall the following fact (discussed later in

the proof of Theorem 15.4 ) that since f, D2H, fin LP(Q) there is a subsequence
frp () LmasN f(z) for almost every x € Q (notice that in general is not true that

fn(x) Do, f(z) for almost every z € 2, see Example (15.3)). Fix now € > 0. Then
we know that there exists M, > 0 such that m,n > M, implies [f,, — fn]Wo,p(Q) < e.
Let us keep such an m and observe that for a.a. x € ) we have

@) = @) = @) + @ _ @) = Sa) = Fo () + S

|z — y|optd koo |z — y|op+d

By Fathou’s Lemma we obtain

[ U@ )= )+ inl
QxQ

|z — yfr+d

p
< liminf / dxdy < €P
T k=40 Jaxo |z — y|op+d =

So we have proved that for m > M. we have [f — fi]wor) < €

4 Locally convex spaces

Normed and Banach spaces are not the only important topological vector spaces. A very
important notion is that of a convex subspace of a vector space.

Definition 4.1. 1. A subset €2 of a vector space is convex if for any xg, x1 € €2 we have
xp:= (1 —t)xg+teg € Q for all t € [0,1]

2. A subset Q of a topological vector space is strictly convex if it is convex and if x; €

o

Q(:=interior of Q) for all ¢ € (0,1) for any distinct pair xg,z; € Q.
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Ezample 4.2. 1. Let (E,| -||) be a normed space. Then Dg(0,1) :={z € E : ||z|]| < 1}
is convex. Indeed, given any pair xg,z; € Dg(0,1) and for any t € [0, 1], we have

I(X = t)zo + taa || < (1 =) ||zol +tlza]| < (A —8) + £ =1.

2. Notice that in RY, ||z|| := sup{|z;| : 5 = 1, ...,d} for which
DRd(Oa 1) - [_17 1]d7
which is convex but not strictly convex.

3. The previous example can be generalized noticing that any L°°(X,du) is such that
Dipeo(x,du)(0,1) is not strictly convex (except trivial cases). Indeed, consider two
disjoint measurable sets F¥ ad F' of finite positive measure, and consider fy := 1 and
fr =1 +27"1p. We have | foll o (x,ap) = I fillLoe (x,ap) = 1 and

11 = t) fo + tfill oo (xapy = 1B + 27 e oo (x,qp) = 1.

Exercise 4.3. Let X be vector space and let {€;};c; be a family of convex subspaces.
Show that ;¢ (2, is convex.

Exercise 4.4. Let X be a topological vector space and let €2 be a convex subspace. Then,
the following are true.

1. The closure €2 is convex.
2. The interior € is convex.

Definition 4.5. a A topological vector space X is said locally convex if, given any neigh-
borhood U of 0, there exists a convex neighborhood V of 0 such that V' C U.

b A topological vector space X is said a Frechét space if it is locally convex, metrizable
and complete.

Remark 4.6. Recall that it follows by Theorem 2.22 that a locally convex topological vector
space is metrizable with a translation invariant metric if and only if 0 has a numberable
basis of neighborhoods.

Lemma 4.7. Given a vector space X and a subset 2 C X, there exists a convex set C which
1s the smallest convex set containing €.

Definition 4.8. We call the above C the convex hull of Q in X.

Proof of Lemma 4.7. We consider € = {C : Q C C C X and C convex}. Obviously
€ > X. Then the intersection ()¢ C' is the desired set. O

Exercise 4.9. Let Q C X and A € K. Show that if C is the convex hull of Q then MC is
the convex hull of A().
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Lemma 4.10. For any given neighborhood U of 0 of a locally convex topological vector
space X, there exists a convex neighborhood V' of O which is balanced, absorbing and such

that V CU.

Proof. Tt is not restrictive to consider U convex. For any A € Dy (0,1) we know that
there exists a neighborhood W) of A in K and a convex neighborhood Uy of 0 in X such
that W\Ux C U. If we consider now a finite cover Wy, U...UW), D Dk (0,1) and set
U :=Uy, N...NU,,, then we consider V := Dk (0,1)U CU. Finally, let V' be the convex
hull of V. Notice that V is a neighborhood of 0, since it contains U, V is obviously convex,
and V C U. We know that V' is absorbing. We need to show that V' is balanced, that is
that \V C V for~any A€ EK(O, 1). Notice AV C V C V and, by a previous exercise, the
convex hull of AV is AV. So it follows \V C V.

O

It is not clear yet why locally convex spaces are so important. To understand this point
we need to introduce the notion of seminorm.

Definition 4.11. Let X be a vector space and let p : X — [0, +00) be a function with
p(x+y) < p(x)+p(y) for all z,y € X (4.1)
p(Az) = Ap(z) for all x € X and A > 0. (4.2)
Then p is called a seminorm.

Exercise 4.12. Let X be a vector space and let p: X — [0,400) be a seminorm. Let
C={reX:pl) <1} (4.3)

Then show that C is convex, 0 € C', C is absorbing.

Partial answer. Notice the following, which proves the convexity of C,

p(zy) = p((1 —t)zo +to1) < p((1 —t)wo) + p(tz1) = (1 —t)p(x0) + tp(z1) < (1 —1t) +t = 1.
]

Lemma 4.13. Let X be a topological vector space and let C' be an open convex set with
0 € C. Then there exists a seminorm p : X — [0,+00) satisfying (4.1)~(4.3). This
seminorm is called the Minkowski functional (or gauge) of C.

Proof. Set
p(z) :=inf{a > 0: g e C}. (4.4)

First of all, it is clear that for 2 € C we have 1 € {a > 0: £ € C}, and so p(z) < 1.
Furthermore, since C' is open, then (1 + €)x € C for € > 0 small, so p ((1 + €)z) < 1. Then

1
1+e¢

1 T
—_— D= = <
1 6E{a>0 aEC} p(x)
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and so p(x) < 1.

If for some € X we have p(x) < 1, then for some o < 1 we have £ € C and so by the
convexity of C'and by 0 € C' we have z = af + (1 — )0 € C.

So we have proved (4.3). Now let us prove first (4.2) and then (4.1).

For A > 0, for a = Aa we obtain (4.2) from

p()\m):inf{a>0:%GC}:inf{)\a>0:gGC}:)\inf{a>O:2€C}=)\p(:n).

For [A\| =1, a >0 and = € X, by the fact that C is balanced, we have

ﬁeC@feC
a a

This implies that for |A\| =1
Az
a

p(A\z) =inf{a>0: 22 € C} =inf{a>0: 2 €0} = p(x).

The last three formulas yield (4.2)
Given z,y € X, then for any € > 0 we have —%*— € C, p(y%ﬂ € C. Then for ¢ € [0, 1],

p(x)+e
x y
t————— + (1 —t eC. 4.5
s e T T 49)
For t = % we get ]ﬁ(g)we € C, as can be seen from
g P@)te  p@)+ply)+2e—(plz)+e)  ply) +e
p(x) + p(y) + 2¢ p(x) +p(y) + 2¢ p(x) +p(y) + 2¢

Hence we obtain the following which, by the arbitrariness of € > 0, yields (4.1),

p(x+y) < p(z) +p(y) + 2.

Exercise 4.14. Consider the p of Lemma 4.13 and show that p € C°(X, [0, +00)).

Answer. Notice that |p(z)—p(z¢)| < p(x—mz¢) for any x, 29 € X. For € > 0 then €C is an
open neighborhood of 0 and coincides with the solutions of the inequality p(y) < €. Then if x
belongs to the open neighborhood xo+€C of xy, it follows that |p(x) —p(zo)| < p(z—x0) < €,
proving the continuity of p at the point xg. O

Exercise 4.15. Consider a topological vector space X, Having proved that there is a one to
one correspondence between continuous seminorms p on X and open convex neighbourhoods
C of 0 € X, show that if C is balanced then its Minkowski functional p satisfies the following
more restrictive condition than (4.2),

p(Az) = [A|p(x) for all z € X and X € K. (4.6)
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Answer. Suppose by contradiction that there exists a C' like in Lemma 4.13 whose
Minkowski functional p, while satisfying (4.1)—(4.2) does not satisfy (4.6). It is easy to see
that this will imply that there exist zp € C and a scalar A\g with |[Ag| = 1 with p(Aozg) <

p(zp). Then I;\(O;)O) € C since

p()\ox()): 1 p(omo) < 1 p(z) = 1.

p(zo) p(wo) p(20)
Since C is balanced, also A ! ;‘(0;;0) = p(a;fo) € C, but this is not possible because p (p(zxoo)> =
royP(zo) = 1. O

Remark 4.16. Lemma 4.13 and Exercise 4.37 show that there exists a correspondence be-
tween open and convex neighborhoods of 0 and continuous seminorms.

Summing up, above we have proved the following.

Lemma 4.17. Let X be a locally conver Hausdorff topological vector space. Then there
exists a family {p;}jes of continuous seminorms (this family is called a subbasis of semi-
norms of X ) such that for any xo € X\{0} there exists a jo € J such that pj,(zo) # 0 and
such that the family {pj_l([O,r)) :r >0 and j € J} is a subbasis of neighborhoods of 0.

O

Remark 4.18. Since we know that any locally convex Hausdorff topological X has a subbasis
of neighborhoods of 0 which are open, convex and balanced by Exercise (4.15) the subbasis
of seminorms of X can be taken to involve seminorms satisfying (4.1) and (4.6).

Definition 4.19. A function f : X — K is homogeneous of order a > 0 if f(Az) = A“f(x)
for any z € X and any A > 0.

Remark 4.20. Notice that a seminorm p : X — K is a homogeneous function of order 1. A
Linear map f : X — K is a homogeneous function of order 1.

Exercise 4.21. Consider the setup Lemma 4.17, that is X with the seminorms {p;};c.
Show that a homogeneous of order 1, f : X — K, is continuous in 0 if and only if there
exist finitely many indexes ji, ..., jn, € J and a € > 0 such that

|f(z)] <1 for all z such that p;, (z) <e,...,pj, (z) <e. (4.7)

Exercise 4.22. Consider the setup of Exercise 4.21. Show that a homogeneous function
of order 1, f : X — K, is continuous in 0 is and only if there exist finitely many indexes
J1, - Jn € J and a constant C' > 0 such that

|f(x)] < C(pj,(x) + ...+ pj,(x)) forall z e X. (4.8)

Answer. We can assume formula (4.7) is true. We claim that (4.8) is true for C' := 2.

€
Set p(z) := pj, (z) + ... + pj, () and let C := 2. Then, for p(z) = § we have p;, () < & for
all k =1,...,n and so |f(x)| < 1. So (4.8) is true for p(x) = §. By the homogeneity this
yields automatically all cases where p(x) # 0. Notice that by homogeneity, if p(x) = 0 then

by (4.7) we conclude f(z) = 0. So our claim is true. O
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Exercise 4.23. Consider locally convex spaces (X, {p;j}jcs) and (Y, {qx}rex) with corre-
sponding subbases of seminorms. Show that a linear operator T': X — Y is continuous if
and only if for any kg € K there is a finite subset Ji, of J and a constant C}, such that

|gko (Tz) | < Ciy > pj(x) for all 2 € X. (4.9)
€Ik

Exercise 4.24. Let f : [0,400) — [0,+00) be a concave function with f(0) = 0. Show
that
flz+y) < f(z) + f(y) for any z,y € [0, +00). (4.10)

Answer. Notice that f satisfies
F((1 = t)wo + tr) > (1— ) (o) + £ (21) for any zo,1 € [0, +00) any £ € [0, 1]

Now, notice that if we consider the triple 0, z, z + y we have

T x
T = r+y)+(1——]0
:):—I—y( y) ( x—i—y)

and so

and, similarly,

So, summing up, we get (4.10) by
@)+ 1) 2 S fety) + St y) = f )

]
Ezample 4.25. Consider the space LP(0,1) for 0 < p < 1. We can define a metric by setting

1
d(f,9) :2/0 |f(t) — g(t)|Pdt.

Let us see the above is a metric. First of all, it is obviously it is symmetric and d(f,g) =
0 < f = g. By Exercise 4.24

(a + b)P < a? 4 VP for any pair a,b > 0,
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we have
1 1
g) = / () — g(t)[Pdt = / [(F(t) = h(t)) + (ht) — g(t)) [Pdt
0 0
1
< /0 (17(t) = RO + h(t) — g(&)]?) dt = d(f. h) + d(h, g) for any f,g.h € LP(0,1).

It is easy to see that with this metric, LP(0, 1) becomes a topological vector space.

We claim now that the only open convex subsets of LP(0,1) are () and LP(0,1). To see
this, let V' be open, convex, not empty and V' > 0 and let f € LP(0,1). Since V is open,
there exists €9 > 0 such that DLp(OJ)(O,&“O) C V. We will show that f € V.

Let n € N such that np_l fl |f(t)|Pdt < g9 and consider a decomposition tg =0 < t; < ... <
t, = 1 such that ft f(t)|Pdt =n~t fo |f(t)|Pdt. Then set g;(t) :=nxp,_,+,f- We have

1 7 1
/0 Igj(t>|pdt=np/t_ |f(t)|”dt:np_1/0 |F(t)|Pdt < &g

j—1
so that we have g; € Drr(0,1)(0,60) € V for all j. Then, since

f:gl—i—...—i—gn,

n

by the convexity of V' we have also f € V. So V = LP(0,1).

Ezample 4.26. Consider the space LP(0,1) for 0 < p < 1 of Example 4.25. Then if X is a
locally convex topological vector space the only continuous linear map 7' : LP(0,1) — X
is the 0 one. Indeed, for any non—empty open convex V C X, T7'V is a convex open
set in LP(0,1), and so, from what we saw in Example 4.25, it is either the empty set
or the whole LP(0,1). So we conclude T~V = LP(0,1) for any non—empty open convex
neighborhood V' C X of 0 (for which 7=V > 0), and so also TLP(0,1) C V. So in particular,
TLP(0,1) €V where the intersection is done on all open convex sets containing 0. Since
the intersection is 0, we conclude T'LP(0,1) = 0, that is, T"is 0.

Remark 4.27. As we mentioned earlier, in Functional Analysis what matters are most of all
the linear or nonlinear operators. From Example 4.26 we have (LP(0,1)) =0 for 0 < p < 1:
this makes LP(0,1) for 0 < p < 1 a not very useful space.

Exercise 4.28. Consider the setup and the hypotheses of Lemma 4.17, and consider the
topological vector space X with the structure arising from the seminorms {p;};cs. Suppose
that J C N. Show that

= o - —Y) (4.11)
jed + p] T — y)
is a translation invariant metric and that the topology this metric induces on X is the initial

one.
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Answer. First of all, let us check that d is a metric. Here we check only the triangular
inequality. Here notice that

pi(x —y) <pjlr —2) +pj(z —y) = flpj(z —y)) < f(pj(x —2) +pij(z —v))

< 1yl = 2)) + Fpi(z — ) for f(1) = .

where we use that f is concave with f(0) = 0, and hence we can apply(4.10). The above
implies the triangular inequality. Next, let (X, 71) be the initial topology and (X, 72) the
topology induced by d. It is enough to compare the neighborhoods of 0.

Let us consider the ball D(0,¢) = {x : d(z,0) < €}. Now, if N € N is such that 27V < ¢/2,
we claim that

Un(e/2) :={x € X :pj(x) <e/2forall j=1,..,N} C D(0,¢). (4.12)

To see this, notice that for any x € X we have

o Pl Y p; ()
d(z,0) =) 279~ + 9 1
N R
e j j N j €
Z 1+ 7T Z 2- <22 pji(x) +2° <22 pi(@) + 5.
j=1 p] j=N+1 j=1

So, if x € Un(€e/2) we have

N N 0o
. € € . € € - €
d 0<§2*J- —<—§2*J —<—§2*J - =e
(z,0) 2 pj(a:)—i—2 5 -1-2 5 +2 €

=1 j=1

This proves our claim and shows that the topology 7 is finer. Now we want to show they
are equal. To this effect, consider an Ups(e). It is enough to show that there exists a § > 0
such that D(0,9) C Ups(e). Now notice that if z € D(0,0), that is, if

i _j_pj(x) ,
0) 27— < =27 ——— < d(x,0 o f 11 N.
d(zx, ]221 1—|—p] < T+ p; (@) < d(z,0) < 0 for all j €

Now let us focus on the inequalities
g-i_Pil@) < d(z,0) for all j < M <= (1 —27d(z,0)) pj(z) < 27d(z,0) for all j < M .
1+ pj(x)
Now, if 2Md(x,0) < 2M§ < 1 we conclude that the above inequalities are equivalent to
27d(x,0)
Pi(®) < 15540, 09
oM

If now we choose 0 so that ; 2M§ < ¢, it follows that = € D(0,6) implies pj(z) < e for all
j< M, andsoD(O,é)gUM() [

forall j < M .
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Ezxample 4.29. Given a topological vector space X and X’ its dual, then the, discussed later
in these notes, o(X, X’) topology in X and the o(X’, X) topology in X', are examples of
locally convex space structures.

Remark 4.30. Exercise 4.28 provides an idea on how to find two distinct translation invariant
metrics which are not equivalent in the sense of Definition 1.5 but which share the same

topological structure mentioned in Remark 2.25. Just take any normed space (X, || -||) and
lz — yll
define dy(z,y) = ||z — y|| and da(z,y) = ——————.
1+ [l =yl

Definition 4.31. Given a vector space X two norms || -[|; and || - |2 are equivalent if there
exists a constant C' > 1 such that

1

cll < llzllz < Cllally. (4.13)

The open map theorem has this remarkable consequence.

Exercise 4.32. Let X be a complete topological vector space and suppose that the topology
of X is induced by two distinct norms ||-||; and ||-||2. Show that the two norms are equivalent.

Answer. Notice also that each of the two norm || - ||; and || - || forms by itself a basis
of seminorms. So using the statement in Exercise 4.23 there exist constants C; > 1 and
C5 > 1 such that

|z]|2 < Ci||z|l1 and [|z|]1 < Co||z||2 for all z € X.

Choosing C' = max{C1,C2} we obtain (4.13). O
A very important topological vector space of test functions, discussed in the 2nd
semester, related to the notion of tempered distribution, is the following.

Ezample 4.33 (Schwartz functions). Consider the set of Schwartz functions defined by

S(RY) = {¢ € C®(RY) : pas(¢) := sup [2°0%4(x)| < +oo for all multi-indexes a and S}
z€RY

Notice that the p, s(¢) are seminorms on S(R?) and, as o and 3 vary in all possible ways
among the multi-indexes, they provide S(RY) with a structure of Hausdorff and locally
convex and complete topological vector space.

Exercise 4.34. Prove the completeness of S(RY).
Exercise 4.35. Show that S(R?) with the above topology is metrizable.
Exercise 4.36. Show that the above topology of S(RY) does not come from a norm.

Answer. If it did and we had a norm || f||, then by the statement in Exercise 4.22 there
would be pairs (a1, f1),..., (an, Bn) a constant Cy > 0 such that

I1F1l < Co (Paysy (T) + o + Panp, (f)) for all f € S(RY). (4.14)
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Furthermore, since all the seminorms p,g are continuous, for the same reason, for any of
them there would exist a constant C,g > 0 such that

Pap(f) < Copllf| for all f € S(RY). (4.15)

Hence for any of the seminorms p,g we would conclude

Pap(f) < CoCap (Paysy (f) + - + Pansn (f)) for all f € SRY). (4.16)

It is easy to conclude, taking for example (a, 3) in Ng X Ng sufficiently ”large”, that this is
false. O

4.1 Inductive limits

The following is a supremely important space in Mathematics, treated in some depth next
semester.

Ezample 4.37 (Test functions). Consider an open set Q C R? and denote D(2) := C°(9).
For any compact K C 2 let

Dk (22) ={¢ € C(Q) : supp ¢ € K}.
In Dg(Q2), for any ¢ € Di () let
P,k (@) :=sup{|0; ¢(x)| : |o| <n and z € K}. (4.17)

Then the {p, K }nen are a subbasis of seminorms for a Hausdorff and locally convex topo-
logical vector space structure on D (€2).

Exercise 4.38. Show that each Dk (£2) with the above topology is metrizable and complete.

Lemma 4.39 (Inductive limit). Consider a vector space Xoo and let { X, }nen be a growing
sequence of subspaces of Xoo, such that U,cny Xn = Xoo. Suppose that each X, has a
structure of locally convez topological vector space and that the topology on each X, coincides
with the topology induced on X, by the topology of Xy,11, for all n. Let O be the collection
of all convex subsets of X, containing 0 for which each O € O is such that the set O N X,
is an open neighborhood 0 € X, for any n € N. Then:

1. O is a basis of neighborhoods of 0 for a locally convex topology in X ;

2. the topology generated by O is the strongest locally convex topology such that all the
immersions X, — X5 are continuous,

3. the restriction of the topology of X on X, yields the topology of X, for any n € N;
4. if each X,, is complete, s0 is Xoo;

5. if each X, is Hausdorff, so is is Xoo.
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Proof. This is discussed in Treves [14, Ch. 13] . O
Ezample 4.40 (Topology on D(2)). We consider

[o@)
a sequence K, of compact subsets of Q with K,, C Iofnﬂ V n and U K,=Q. (4.18)

n=1

Then we consider on D(2) the topology from the direct limit of the sequence of spaces
{Dk, (2)}. Notice that it is easy to show that for any n the topology induced on Dk, (€2)
by Dg,., () coincides with the topology of Dr,, ().

It can also be shown that the topology on D(2) thus defined does not depend on the specific
sequence K, in (4.18).

Exercise 4.41. Let X, and Y be two topological vector spaces, where X, is the inductive
limit of a sequence {X,, },en locally convex topological vector spaces. Let T : Xoo — Y be
a linear map. Show that the following statements are equivalent.

aTel(XsY).
b The restriction Ty isin £(X,,Y) for any n € N.

Remark 4.42. One of the most important modern notions in Mathematical Analysis is that
of distribution. The distributions on an open set ) are the elements T' of the dual D'(Q).
This means that 7 : D(2) — R is linear and for any K compact subspace of Q2 we have
T : Dk (2) — R is continuous, which, by Exercise 4.22 means that there exists an n € Ny
and constant C,,x > 0 such that

|f(x)| < Cri pni(x) for all f € D (Q). (4.19)

You will see this in detail the next semester.
Remark 4.43. Tt can be shown that D(£2) is not metrizable, see later Exercise 7.6 .
Remark 4.44. Consider a sequence {x,, }nen in Xoo the inductive limit of a sequence { X, }nen

locally convex topological vector spaces. Then if x, 2240 0 in X there exists an m € N

such that {z,},en is contained in X, and z,, 220 () in X,n. See exercise 6.11 below.

5 Continuous linear operators between normed spaces

For linear maps between normed spaces we have the following.

Lemma 5.1. Suppose that (X, ||-||x) and (Y,||-||y) are two normed spaces. LetT : X — Y
be a linear map. Then the following two statements are equivalent.

1. T is a continuous map in X.
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2. T is a bounded operator, that is

[Ty

ITllzxyy = sup (5.1)
zeDx(0,0\{0} I1Zllx

Proof. First of all, it is easy to check that T is a continuous map in X if and only if T’

is continuous in the point 0 € X. Suppose now that T is continuous in 0 € X. So since

TO=0e€Y, for any € > 0 there is § > 0 such that ||z|x = 0 implies || Tz||y < e. Given any

~_ 90 O T _ ~ _ [ 6
x # 0, then z = Tl L 18 |Z|lx =0 and T2 =T (Hrllxx) Tz so

— l=llx

| Tzlly _ [TZ]y _ €

lzlx — lIZlx ~ 0

and hence we conclude T is bounded with [T z(x,y) < §-

Viceversa suppose 7' is bounded. Then, for some constant ||| (x,y) we have ||Tz|y <
|7l zxvyllzllx for any 2 € X, and so we conclude that T is continuous in 0 because for
any € > 0 if we set § = m we have |z|x < ¢ implies |Tz|y < [|Tlzxvllzllx <

||TH£(X,Y)5 = €.
O
Exercise 5.2. Check that given two normed spaces (X, |- ||x) and (Y, |- ||y) then £(X,Y)
with the || - [|z(x,y) in (5.1) is a normed space.
Check that if (Y, - ||y) is a Banach space, so is £(X,Y") with the above norm.
Show that
1Tl zxyy == sup [Ty (5.2)
z€Dx(0,1)
In particular the dual X’ of (X, | - ||x) has a natural norm given by
| (o) xrnx |
1 fllx = sup R sup | (f, x>X’><X E (5.3)
zeDx (0,1)\{0} [ x z€Dx(0,1)

and X’ with this norm is a Banach space.

Ezample 5.3. We have (LP(X,du)) = L (X, du) with % + I% =1for 1 <p < oo. We will
discuss this later.

Definition 5.4. Given a sequence {7}, }nen in L£(X,Y) we say that the sequence converges
n—-+00

uniformly toa 7' € L(X,Y) if | T, =Tz (x,y) —— 0. We say that the sequence converges
strongly to an operator 7', a standard notation is s — lim T, =T, if T,z 22F0 T for

n—-+o0o

any r € X.
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Example 5.5. Consider XDya (0,0) thinking them as the operators f — XDRd(O,/\)f' Then, for

1 < p < 0o we have that s — /\li}rfoo XDgq(0)) = 1 in LP(RY) (see later Exercise 15.13), while

it is not true, in general, that )\li)rfoo XD,4(0) = 1in L(LP(RY)).

Ezample 5.6. Consider ¢ € BC?(R4 R) with ¢(0) = 1. Then, for 1 < p < oo, for the
operators f — ¢ (5) f we have that s — lim ¢ (A) = 1in LP(R?), while it is not true, in

A——+o00

general, that lim ¢ ()\) =1in L(LP(RY)).

A—+o00
Ezxample 5.7. Other important examples are obtained with groups or semigroups of oper-
ators, like the semigroup e'”, see Remark 7.28, which £(LP(R?)) is strongly continuous in
t € [0,400), but is not uniformly continuous.

Ezample 5.8. For f € C°([0,1]) let B,(f)(z) :== > p_ Of( ) ( ) 2F(1 — 2)" % see Sect.
1.0.6. The B, are called the Bernstein operators, and in Sect. 1.0.6 we showed that

s — limy 400 B, =identity. On the other hand, it is not true that B, m>1dentlty

uniformly in £(C°([0, 1])).

Exercise 5.9. Show that in a normed space X the sets bounded in terms of the metric,
are exactly the sets bounded in the sense of Definition 2.14.

Exercise 5.10. Show that if X and Y in Definition 2.15 are normed spaces, then Definition
2.15 is equivalent to the definition inside Lemma 5.1.

Exercise 5.11. Let E,F be two normed spaces, G a dense vector subspace of E and
T : G — F a bounded linear map and F' a Banach space. Show that 71" extends in a unique
way in a bounded linear map T : E — F' and that T and T have the same operator norms.

Exercise 5.12. Let F1,...., E,, F' be normed spaces, with n > 1. Then a map T : E; X
.. X B, = F an n—th linear map is bounded if

T :=sup{||T(x1, ..., zn)||F : [|z1]lE = .- = ||2Z0n]|lE = 1} < 0.

Show that T : Fy X .... X E, — F'is continuous if an only is bounded,

Exercise 5.13. Let F1,...., E,, F be normed spaces, with n > 1 and F' a Banach space.
Let Gy C F4, ... ,G,, C E, be dense vector subspaces, and let T : G1 X .... x G, — F be a
bounded n—th linear map. Show that 7" extends in a unique way in a bounded n—the linear
map T : Ey X .... x E,, = F and that T and T have the same operator norms.

We only consider Functional Analysis because we are interested to linear and non—linear
operators.

Ezample 5.14. Consider for 2z € C\[0, 00) the equation in L?(R, C)

(_j; - z> u = f where f € L*(R,C). (5.4)
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It turns out that for z € C\[0,+00) we have

u=R p(z)= / Ro(z —y,2) f(y)dy where Ry(x,z) := LVl where Im+/z > 0.
Tda R 2\/2
(5.5)

Notice that the operator in (5.5) is the resolvent in the language of Sect. 5.1, where we

introduce the resolvent only for bounded operators (so, not for the operator —éi—z?).
To see how it comes about, consider the homogeneous equation
d2
It has solutions
_ _Fivzx T—+00
Yi(z,vz)=e , where arg+\/z > 0 and where ¥+ (z,v/2) ——— 0. (5.7)
Notice that, for the Wronskian w(f, g) = f'g — fg’, we have
Then set
N CRVE L (RVE) B
R ) Tu ey Y 5 9
0@ Y:2) = | aluD-) gp 0 (5.9)
w(w+(y7\/5)v¢f(y»\/5)) ’
If we consider now,
Ro(2)f = [ Rola..2) )y (5.10)
_ /a: ¢+(9U> \/E)Qﬁ—(y» \/E) f(y)dy _ /+oo 77/}— (.%', \/E)¢+(y7 \/E) f(y)dy
—oo W (w-f—(ya \/E)u 1/}— (y7 \/g)) T w (¢+ (y7 \/5)7 ¢— (y7 \/E)) ’
it is elementary to see that (—j—; - z) Ro(2)f = f and that Ro(z,y,2) = ﬁeiﬁ‘x_m.
Ezample 5.15. Consider for z € C\[0, +00) the equation in L?(R, C)
d? 9
—@—FV—z u = f where f € L*(R,C), (5.11)
where V € CO(R, R).
In this case, if we consider the homogeneous equation
d2
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it is easy to see that there are solutions

Yy +(z,V2) = Y (x, V/2) for x & supp V. (5.13)

Notice that, for the Wronskian w(f, g) = f'g — fg’, we consider the

w (¢V+(x7 \/2)’ Yy — (l‘, \/2)) : (514)

Notice that we can have w (¢Yy4(z,/2), ¥y —(x,1/z)) = 0 for some z € R_. In this case
z € R_ is an eigenvalue of the (unbounded) operator —% + V. However, here we consider
only values of z so that w (Yy4(z, /2), Yv—(x,/z)) # 0.

Then set, for w (Yy 4 (x,1/2), Yy _(z,/2)) # 0, if for

_ _Yvi(EVER)vv-(y,v%) if o>
2 Yy
Ry(w,y,2) =4 zp(w((zj\/g)) o ((yﬁ)) . (5.15)
w(wv (/) v (y.v/2)) ¥,
we consider now,
= [ B2 )y (5.16)

_ /x ¢V+(x7 ﬁ)@b‘/,(y, \/E) f(y)dy _ /+OO wV*(x7 ﬁ)¢v+(y7 \/E)
w (¢V+ (yv \/2)7 1/}\/7 (yv \/E)) T w (¢V+ (ya \/5)7 ¢V* (ya \/E))

it is elementary to see that (—j—; +V - z) Ry(2)f = f.
In other words, the operators Rv(z) defined in (5.10) or, more generally (5.16), are resolvents

f(y)dy,

of ——22 or, more generally, — 2 + V, see Sect. 5.1, where, however, we consider only
resolvents of bounded operators

Exercise 5.16. Let X and Y be two normed spaces with X infinite dimensional. Show
that there are linear maps T : X — Y which are unbounded.

Answer. Let {z;}icr be a Hamel basis of X and consider a family {y;};cr in Y. There
exists a unique linear map 7' : X — Y such that f(z;) = y; for all i € I. Let us take y; so

that sup{ ”yiHi} = 400.Then

[l

sup{ 122 1 ¢ X\ {0}) > supt lwilly \; ¢ 13 = oo,
Izl x [EAN

45



5.1 Spectrum and exponential of a bounded operator
Definition 5.17. Let X be a Banach space on C, and let 7" € £(X). Then the resolvent
set of T is

p(T) ={z € C: (T — z) is invertible and (T — 2)~! € L(X)}. (5.17)

If z € p(T) we will denote Ry(z) := (T —2)~ L.
The spectrum of T is

o(T) = C\p(T). (5.18)

Ry (2) is the resolvent of T'.

Exercise 5.18. Show that if A € C is an eigenvalue of T, that is there exists 0 # z € X
with T'x = Az, then \ € o(T).

The set of eigenvalues is called also the point spectrum, denoted with o, (T")

Exercise 5.19. Consider the space LP((0,1),C) and the bounded operator T'f := zf in
LP((0,1),C) . Show that o(T") = [0, 1]. Show that T" does not have eigenvalues.

Exercise 5.20. More generally, consider the space LP((0,1), C), a function m € C°([0, 1], C)
and the bounded map T, f := mf. Show that o(T,) = m([0,1]).

Exercise 5.21. In the framework of of the above exercise, in LP((0,1),C) and with m €
C°([0,1],C), show that || T3l £(zr((0,1),0)) = Ml Lo (0,1)-

Exercise 5.22. More generally, for m € L*([0,1],C) show that || Tonllz(ze(0,1),c) =
||mHL<>°(0,1)-

n
Exercise 5.23. Consider the space LP((0,1),C) and let m(z) = Z Ajxi1,(z), where Ii,...,
j=1

I,, are pairwise disjoint intervals contained in (0,1). Show that each of the coefficients A;
is an eigenvalue of the bounded operator T}, f := mf. Find whether or not dim(7;, — A;)
is finite.

Lemma 5.24. p(T) is an open subset of C, o(T') is an closed subset of C and

o(T) € Dc(0, 1T £cx))- (5.19)

Proof. Let us start with |z|c > [|T|[z(x). Then consider

T
zT:z<1>.
z
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Obviously the invertibility of T'— z is equivalent to the invertibility of (1 — %) Not consider
the series

e} m

Zn
n=0

Notice that this series is convergent, because the tails converge to O:

oo T ITI7 x)
- i | 20 |Z|" _ I Tleeo '
L(x) n=m ||

Notice also that

T\ <~ T" T T Tt
(1_,2)22": (Zzn> <l_z> =1- S M2F identity, in L£(X).

n=0 n=0

So p(T) 2 C\Dc(0, ||T||£(x)) or, what is the same, o(T) € Dc(0, | T £(x))
One can prove similarly that p(7") is an open subset of C. Suppose that z € p(T).
Then, for some other ¢ € C we can write

T—(=T—242-C=(T—2)1+(T -2 (s—0).
Picking |z — (] < m we have ||Rr(2)(z — ()llz(x) < 1, so again

o0

Rr(Q) = (1+ Rr(2)(z = Q) 'Rr(2) = Y (=1)"(Rr(2))"(z = Q)" Rr(2),

n=0
where the above series converges absolutely. O

Remark 5.25. Notice that if A is an eigenvalue from |[A| < ||T|| we can derive also [A| < ||T"||%

for all n € N. So, in particular, if ||T”||* D210 0, we get A = 0.

Remark 5.26. It is rather elementary to show that the map p(T) 3 z — Rr(z) € L(X) is a
holomorphic map from p(T") to L(X).

Exercise 5.27. Check that if A € £(X) where X is a Banach space, then o(A) # 0.

Answer. If we have 0(A) = (), then 2 — R4(z) is holomorphic over the entire C with
values in £(X). We claim that R4 (z) === 0 uniformly in £(X). Assuming for a moment
this claim, it follows that R(z) is also bounded in C and hence, by Liouville Theorem
(which is true like for scalar holomorphic functions) it follows R4(z) is constant, and so
necessarily identically equal to 0, which is absurd. Now, by a previous computation, for
|z| > [|Allz(x) we have

1 Z—00

Ra(z <Y (1 =27ty ! < |zt
[RA()| ey < 12171 ( ) e < 2l T Al

47



Definition 5.28 (geometric dimension). If A € ¢,(T) and n := dim(7 — \) < oo, n is the
geometric dimension of A.

Remark 5.29. It is elementary to check that the sequence of vector spaces ker(T — \)" is
non decreasing.

Definition 5.30 (algebraic dimension). If A € 0,,(T) and if the space

Ng(T = \) := | ker(T — A)" (5.20)
n=1
has dimension m := dim Ny (T' — \) < oo, m is the algebraic dimension of A.

Exercise 5.31. Check that the usual definition of geometric and algebraic dimension in
the context of dim X < +oco coincide with the above ones (Hint: use the canonical Jordan
bloc decomposition).

Definition 5.32 (Exponential of an operator). X a Banach space and for A € £(X) the
exponential of A is the operator

oo An
et = 2} — (5.21)

Exercise 5.33. a Check that the series in (5.21) is convergent in £(X).

b Check that if A,B € £(X) commute, that is [A, B] :== AB — BA = 0, then e1*F =
edeB = eBeA,
¢ Check that UeAU ! = VAU

Example 5.34. Obviously, the exponentials are important because if we have for X a Banach
space and for T € £(X) and f € CO(R, X) the simple ODE

=Tz + f
{ 2(0) = o, (5.22)
then the solution to (5.22) is
t
z(t) = eTag + / =T f(s)ds. (5.23)
0

In fact these formulas are true also for appropriate unbounded operators, like for example
2 2

the Laplacian A = % + ...+ 86? in X = L2(RY).
1 d

Obviously, a very important topic is the study of e!” as t — 4o0.
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Remark 5.35. Notice that if, for X a Banach space, for f € C%(R, X) and T(-) € C°(R, L(X)),
we consider the ODE

zt=T@{t)x+ f
{ 2(0) = o, (5.24)
then the following formula
t
2(t) = efo Tds gy / eJs TN £(5)ds, (5.25)
0

which is valid for scalar equations, that is when X = R, is in general false.

Exercise 5.36. Show that (5.25) is correct in a Banach space X if additionally we assume
[T(t),T(s)] =0 for all pairs ¢,s € R.

Ezxample 5.37. It is worth computing the exponential of some matrix. For

A 0 0

0 Ay 0

A=10 0 A4

0 0 0

we have
etA1 0 0
0 et 0
=19 o e

0 0 0

So, also using the conclusions of Exercise 5.33, it can be shown that in finite dimension, it
is sufficient to understand case

A1l O 0
0 X 1 0
0O 0 X 1 0
A=10 0
0 A1
I .0 0 A
We have A = A\ + N where
0 1 0 0 T
0 0 1 0
0 0 O 1 0
N=10 0
0 0 1
I 0 0 0
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Since AIN = NI, risulta

GHOTHN) _ AT N

Obviously e* = et*. Notice that if N is an n x n matrix, then we have N® = 0 and

00 1 0 T
0 0 1
00 O 0 1
N2 = 0 0 °
0 0 1
0 0 O
L 0 0 0
[0 0 0 1 T
0O 0 0 O
N® = 0 0 1
0 0 0
0 0 O
i 0 0 0]
[0 0 1]
0 0 0
anl —
)
10 0 0]
Since ) .
tN 2 772 n—1arn—1
=1+tN+ —t“N t" N
e + + o1 + ...+ =1
we get,
r 2 3 n—2 n—1 -
e et %et)\ %et)\ (272)! tA (271 !et)\
0 e geth '52—2!6”‘ 7(51:2)!60‘
0 0 eth teth ﬁet’\
GHOTHN) 2!
0 0 o
O et>\ tet/\
i 0 0 et ]

Ezxample 5.38. Notice that there is a deep connection, between resolvent and exponential,
related to the Laplace transform. Indeed, if X is a Banach space and if A € £(X), then

+oo
Ra(z) = / et etz gy (5.26)
0
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is absolutely convergent for Re z > || A]|£(x), and can be extended in a larger region in p(A).
Notice that (5.26) is the Laplace transform of e*4
Obviously, it is possible to express ¢4 in terms of R4(2) in terms of the Inverse Laplace
transform, which for A € £(X) can be written as

1
et = —— [ ®Ru(2)dz (5.27)

2mi ~

with v a counter clockwise oriented closed path containing in the interior a topological disk
containing o(A). In many important examples, it is possible to study e*4 only by studying
R4(z). See for example, the classical paper by Jensen and Kato [6].

Exercise 5.39. Show that HGA”L(X) < el where A € £(X) for a Banach space
X. Then use this inequality to prove that for Rez > [|A[ z(x) we have HetAe_tZHE(X) <

et(”A”“X)_ReZ), which decays exponentially to 0 for t — 4-00.

Answer. Since by the triangular inequality

N An
DT

n=0

N
[ANIZ

A"l
< Z E(X Z n!(X)7

L(X) n=0 n=0

we get H6A||£(X) < elAlec) | Next,

HetAeftzHl:(X) — HetAeftRezuﬁ(X) — eftRez”etAHﬁ(X) < e*tReZe”A”L:(X)'

O

Ezample 5.40. Notice that if X is a Banach space, and if A € £(X) and if f € H(C), then
it is possible to define the function of the operator f(A).

FA) = o / F(2)Ra(2)dz , with 7 as in (5.27). (5.28)

A version of this, extends to unbounded operators. Obviously, for bounded operators, one
could use power series.
Let us check for example that for f = 1, then the right hand side of (5.28) is the
identity operator. We notice that the integral coincides for R > 1 with
R [ 1

9 1o 1 1 (% 1
-5 ————=eVd) = — —dd = — E— 5.29
2 Jo A- Rei? 27 %e*w -1 2 Jo 1-— %e*m (5:29)
1 AP A 2m > An .
=1 = —1m9d,19 -1 —ig —1m9d19.
"o Z Tor )y € T;) R
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Now notice that

A o —id — A" —iny
R /0 e Z T dy
n=0 L(

Al 1 R—+00
- R 1— 1Al 2 x)
R

_MAllee 77 HAIIL

- 27rR dﬁ
X)

=0

0.

This implies that for the operator in (5. 30)% 1 uniformly.

More generally, if we define f(A) using the power series, we claim that then equality (5.28)
is true. In fact, using the special case f = 1 just shown,

1

27 i

)+ o [ F@RAG) = 5 [ (FG) = 7)) Raz)az,
Y Y

Now, if f(z) = > 77 ,anz" is the power series expansion of f

1 > 1 & 1
— 2 — A" —_— dz. 5.30
271 [Ynz:%( ) A z o z::/ A —z ( )

We have the elementary factorization formula

z z—A)Zz”_]AJ L
j=1
Hence
1 o n ' '
de = —— AT [ 2 de =0
2mz/ — % 27rinzljgl /f ==

which proves our claim that (5.28) is true.

Exercise 5.41. Check that if f € H (Dc(0,7)) and [|A zx) < r where X is a Banach
space, then for f(z) =Y 07 anz" the power series of f, we have that

[e.e]
S o
n=0
is a well defined element in £(X), with the series convergent uniformly in £(X).

6 The Theorem of Hahn—Banach

The following result has surprisingly deep and fundamental consequences in Mathematical
Analysis.
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Theorem 6.1 (Hahn—Banach, Analytic form). Let X be a vector space onR. Letp: X — R
be a seminorm, Y a linear subspace of X and g : Y — R a linear map such that

9(y) < p(y) for ally €Y. (6.1)
Then there is a linear map f: X — R such that f|y = g and such that
f(z) < p(x) forall x € X. (6.2)

Proof. If zy ¢ Y, then the elements of the vector space Rxg + Y can be written in a
unique way as x = txg+y for y € Y and t € R. Then define f : Rzg +Y — R by
f(tzo +vy) =ta+ g(y) for @ € R to be chosen. We want

ta+g(y) < p(tzg+y) forallt e Rand y € Y. (6.3)
Notice that (6.3), considering only the case t > 0, is equivalent to
a+g(y) <plro+y) forally €Y. (6.4)

To see this, just observe that

ta+g(y) < p(txzog+y) forallt >0and y €Y <:>a+g<%)§p<:co+%> forallt >0andyeY

— a+g(y) <plrg+y) forally e Y.
Similarly
ta+g(y) <p(txo+y) forallt <Oandy €Y < —a+g(y) <p(—zo+y) foralyeV.
So we are reduced to searching an « € R satisfying (6.4) and

—a+g(y) <p(—zo+y) forally e Y. (6.5)
In other words, we need to have

sup (—p(—=z0 +y) +9(y)) < a < inf (p(zo +y) - 9(y)) . (6.6)
yey ye

Notice that

—p(=20 + 1) + 9(y1) < p(zo + y2) — 9(y2) == g(y1) + 9(y2) < p(zo + y2) + p(—20 + Y1)

The latter is true for all y1,y2 € Y. Indeed we have

g(y1) + 9(y2) = g(y1 + v2) < ply1 + y2) = p(xo +y2 — xo + y1) < p(xo + y2) + p(—z0 + Y1)-

This implies that there exists an a € R such that (6.6) holds true.
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We now define

P :={(h,D) s.t. D is a linear subspace of X with Y C D, h: D — R is a linear extension of g
with h(z) < p(z) for all z € D }.

Notice that in P there is a partial ordering
(hl,Dl) = (hQ,DQ) < D1 g D2 and hQ‘Dl = hl. (6.7)

P is inductive, that is, any totally ordered subset ) of P has an upper bound. Just take
for Q@ = {(hq, Dq)}qeq, then set D= Ugeq@Dy, which is a linear subspace of X, and for any
z € D set h(z) = hq(x) if x € Dy. Then applying Zorn’s Lemma 1.1 we conclude that P has
a maximal element (D,h). If D ; X, then by the above argument, if we pick xg € D, we
can extend h: D — R into a linear map h : {tzg+y:t € R and y € D} — R and conclude
that (D, h) is not a maximal element in P for the order relation (6.7). Hence D = X and
h is the desired linear functional.

O

Let us see some corollaries of the Hahn—Banach Theorem.

Corollary 6.2. Let (X, ||| x) be a normed space and let Y C X be a vector subspace, with
respect to the field K. If g : Y — K is a linear functional, there exists a f € X' which
extends g and such that

[fllxr = sup[g()] =: llglly- (6.8)

yeDy (0,1)
Proof. Let us start considering the case K = R. Apply Theorem 6.1 using p(x) :=
llglly]|z||x. Notice that x — p(z) satisfies (4.1)—(4.2) and that by the definition of ||g||y+ we
have that (6.1) is true. Then Theorem 6.1 yields a f : X — R such that f(x) < ||g[ly||z|x
for all x € X. Notice that this implies |f(z)| < ||g||y’||z|x for all z € X and in particular

yields || f]|x» < |lg|ly’- We must have || f||x» = ||g||y+ since obviously
[fllxr = sup |f(z)[ = sup |f(y)l = llglly
2€Dx (0,1) yeDy (0,1)

The statement has been proven in the case K = R. Let us consider now the case K = C.
So Y is a complex subspace of X and g is linear with respect to C. Then u = Reg is a
linear operator with respect to R. Apply the first part of the theorem, and let v € X’ the
extension of u. Then, using formula (2.2),

f(x) :=v(z) —iv(iz),

It is elementary to check that f is an extension of g and that it is linear with respect to C.
Next, since |[v(x)| < |f(z)], obviously ||[v||x’ < || f]lx’/- On the other hand, for any x there
exists A € C with |[A| = 1 such that f(Az) = |f(z)|. So |f(x)| = |[v(Az)| < ||v|lx/ =] x,
which implies ||v||x: > || f||x’ and, so, the equality.

0
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Corollary 6.3. Let (X, |- ||x) be a normed space. For any xo € X there exists a f € X'
such that

11l = llzollx and f(zo) = [lzol%- (6.9)
Proof. Let Y = Rzg = {\zg : A € R} and let g € Y’ defined by g(Azo) = A||zo|/%. Then
lglly: = ’g (mxo)‘ = m”l'ou?x— = |lzollx. Applying Corollary 6.2 we obtain the

desired result.

We can define a C-linear functional using an analogue of formula (2.2).
O

Remark 6.4. Recall that in Example 4.26 we have (LP(0,1))’ = 0 for 0 < p < 1 where we
recall that LP(0,1) had a metric. So Corollary 6.3 and Example 4.26 show a completely
different behavior of X’ whether X is normed or has just a metric. This does not mean that
only normed spaces have interesting dual spaces, and Examples 4.33 and 4.41 provide two
spaces without norms whose dual spaces are crucially important in Mathematical Analysis.

Corollary 6.3 is in general false if we switch the roles of X and X’.

Exercise 6.5. Consider X = ((N,R) with its dual X’ = ¢>°(N,R). Then show that it is
not true that for any f € ¢*°(N) there exists a z € ¢}(N) with

lzllx = [lfllx and f(z) = [|If]%-

Answer. Take any sequence f € (*°(N,R) with |f,| < 1 for all n but with || f||gec (v r) =
1. Then for any z € ¢*(N,R) of norm 1 we have

f@)] <Y lzall ful:
n=1

If |zy|| fn] = O for all n we obviously have f(x) =0 < 1. If there is |xy,]| fn| > 0, then

@) < |znollfuel + D Izallfal < lenel + D Izl = l2lleopvm) = 1.

n#no n#ng

So |f(x)| <1 for all z € £1(N,R) of norm 1. O

Ezample 6.6. Let T : X — Y be a continuous linear operator between two normed spaces.
Then the for any ¢y € Y’, that is a bounded linear map ' : Y — R, it is elementary that
y o T defines an element in X’. This defines a linear map

V'sy D yoT eX (6.10)
which is called the dual map of T. T™* is a bounded map and in particular we have

1Tl cx,vy = 1T ([ 2eve,xy- (6.11)
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To see this, notice that for ||y/|lys = 1, by the definition of the norm in X’ we have

1Ty lx = sup{(T"Y", 2) o 2llx =1} =sup{{y' o T, 2) ¢ l2llx =1}
=sup{(y . Tx)y, .yt l2lx =1} <[yl sup [ Tzlly <[yl 1Tl cexyy = 1Tlexy)s

|z||x=1
which yields |7 z(y+ x) < |T']|z(x,y)- Similarly, for [[z[|x = 1, by Hahn-Banach we have
ITally = sup{(T2.}y,y ¢ I/ ly+ = 1} (by Corollary 6.3)
=sup{{T", 2) 0 x : ¥/ llvr =13

< [lellx W 1Ty | x < Nzl x T e xry = 1T e xrys
y'llyr=1

which y1€ldS ”T*Hﬁ(Y’,X’) Z ||T”L(X,Y)
An application of Hahn Banach.

Corollary 6.7. Let U := D¢ (0,1) and T = 0U. Let A C C°(U,C) be a vector space.
Suppose that A contains the set C[z] of polynomials p,(z) = anz™ + ... + ag and that

1l oo @y = Ilf lLoc(my for any f € A, (6.12)

(notice that any element f € Clz] satisfies (6.12) by the Mazimum Modulus Theorem).
Then we have

s o 2 .
f(z) ! / 1-lF (e®)dt for any f € A and any z € U. (6.13)

- % - ‘Z — €it’2

Proof. Let Y be the subspace of C°(T,C) formed by the restrictions on T of the functions
in A. We fix z € U and we consider the linear map Y > fir — Afjr := f(2) € C. By (6.12)
it follows

|f(2)] < I firllpoe(my for any fip € Y.

So the norm of this operator is < 1. In fact, since 1(z) = 1, the norm is exactly 1. By
Hahn-Banach there exists an extension A : C°(T,C) — C with norm

Al =1and |A| = 1. (6.14)
We claim that
for any C°(T,C) > f > 0 we have Af > 0. (6.15)

Assuming (6.15), we can conclude that there exists a positive Borel measure dy, in T, such
that by Theorem 1.25 we have

Af = /deuzfor any f € C%(T,C). (6.16)
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We have

2" = / w"dp,(w) for any n € N (6.17)
T

and taking complex conjugation, for z = re'? we have

rinlein? — / w"dp,(w) for any n € Z (6.18)
T
Now notice that for
+oo ) 00 ) 00
P.(6—t):= Z rlnlein(0=t) — Re {1 + ZZ (ze_lt)n} = Re {1 +2 Z (ze_lt)n}
n=-—00 n=1 n=0
Re 2 1\ Re 1+ ze‘?t _ Re{(1 + ze_i‘t).(l2 —zel!)}
1—ze 1t 1—ze 1t |z — eft|
_ 1— |z +Refze  —ze} 1|2
|z — eit|? |z = eit*
we have
1 m . .
Py P(6 — t)etdt = r"le™ for any n € Z. (6.19)
™ —T

Comparing (6.18) and (6.20) we conclude that

LT Bo—t)f(et)at = /T fw)dp:(w) (6.20)

2 J_,

for any trigonometric polynomial

flw) = Zn: anw’ for w € T. (6.21)

j=—n

We will see in Corollary 7.26 that the trigonometric polynomials form a dense set in
CY(T,C). We conclude therefore that the equality (6.20) is true for all f € C°(T, C). Hence
(6.17) and (6.20) yield (6.13).

To complete the proof of Corollary 6.7 we need to prove (6.15). It is enough to assume
0 < f(2) < 1, since any C°(T,C) > f > 0 is of this type, up to multiplication by a
sufficiently small constant 0 < ¢, and if 0 < Acf = cAf, obviously also Af > 0. Set
g=2f—1. Then —1 < g < 1. Let Ag = a +if. Notice that for any r € R,

lg+ir]> =g+ 72 <1472
Then,

(B+71)?<|a+iB+ir* = |A(g+ir)]* < 1+,

27



where we used Air = irAl = ir and |A(g+ir)|? < Hg—l—ir”%oo(m < 1+72. Then B2 +28r <1
for any r € R. This implies 8 = 0. We have |a| = |[Ag| < ||g[/z(r) < 1. Then we obtain
the desired result:

I+9g 1+«
22

Af = A > 0.

Ezample 6.8. If we set
A:={feCU,C)NnC*(U,C): Af =0in U}

then A D C[z] and, by the Maximum Modulus Theorem for harmonic functions, Corollary
6.7 applies.

1— 2

Remark 6.9. Notice that for any 2y € T the function |‘Z||2 is harmonic in U, as can be
Z— 20

checked by direct inspection. Indeed, A = 40,05. Then

5 -]z 1—2Z
“ 2 — 22 “ (2 —2)(z ~ %)
—z 1—-22

(z—20)(Z—20) (2—20)(z—20)2

and

L— |2 [ —Z 1-2z ]
0.0 o, __ ER
|Z — ZO|2 (z — Zo)(z — Zo) (2; — ZO)(Z _ 20)2

B 1 {_1+ z N 1—2z N P }
|z — 2 (z—20) (2—20)(Z—%) (z2—%20)

1
- m [~z = 20)(z = Z0) + 2(z = Z0) +1 - 2* +2(2 — 20)]
— <0
! ot 25z I
= [ 20)F+2E 7)1 ) = g =0
|z — 20] 1z — 20|

So all functions in the space A in Corollary 6.7 are harmonic inside U. This means that
A D C[z], the fact that A is a vector space and (6.12), taken together are a powerful rigidity
condition.

Exercise 6.10. Prove that if X is a locally convex space and Y is subspace and g € Y,
then it is possible to extend f in an element of X'.

Answer. We consider the case K = R only. First of all, a base of seminorms of Y can
be obtained taking the seminorms defining the topology of X. By Exercise 4.22 the fact
that f € Y’ implies that

l9(y)| < q(y) for all y € Y where q(z) := C (p1(z) + ... + pjn(2)),
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for a certain number of seminorms in X. We can take the seminorms p; so that they satisfy
(4.1) and (4.6). Then notice that by the fact that Y is a vector space, the above inequality
is equivalent to

g(y) < qy) forally € Y.

Notice that g is a continuous seminorm on X satisfying (4.1) and (4.6). Applying Theorem
6.1 we know that there exists and extension f: X — K with f|,, = g and

f(x) < q(z) for all x € X.
But this is equivalent to the inequality
lf(2)] < q(z) =C (p1(x) + ... + pjn(z)) for all x € X.

By Exercise 4.22 this implies that f € X'. O

Exercise 6.11. Show using Hahn Banach that if {z,},cn is a sequence convergent to 0

in X the inductive limit of a sequence {X,, },en locally convex topological vector spaces

then there exists an m € N such that {z,},en is contained in X,,, and z,, 22H%0 () in X

Answer. Since x, 22%%% 0 and each neighborhood of 0 in X, is absorbing, the

sequence {Zp}nen is bounded. Let B be the set formed by the elements of the sequence.
We want to show that there exists an m such that B C X,,. Then, since the topology of
X, as a subspace of X is the same of his own topology, we must have x, 2210 0 in
X So we are left with the task of showing that there exists an m such that B C X,,.
Suppose by contradiction that this is not the case. This means that for any m the set
B\ X,, is nonempty. So let by € B\ X,,, where n; = 1. There will be a ng > n; such
that by € Xp, \ Xy, We will construct a sequence {by }reny with by € X, ., \ Xy, where
{nr}ren is a strictly increasing. Next, thanks to Exercise 6.10 there exists fi € X, with
f(b1) = 1. Again by Exercise 6.10, there exists and extension fo € X, of fi € X] | ie.
fal Xn, = f1, such that f(bs) = 2. By induction, and by a repeated use of Exercise 6.10,
there exist and extensions f € X,’lk with fk’Xnk,l = fn,_, such that f(by) = k. A linear

map foo : Xoo — K remains defined satisfying f| Xn, = fny, € X;lk for any k. This implies
that foo € X/, and so foo(B) is a bounded subset of K. But fo(B) is also an bounded

subset of K since foo(by) =k E2H0, 1 50, So we have a contradiction. O

6.1 Geometric form of the Theorem of Hahn—Banach

Definition 6.12. Let A and B nonempty subsets of a topological vector space X on R.
Let H = f~(a) be a hyperplane with f: X — R a linear map.

1. H separates A and B if f(A) C (—o0,a] and f(B) C [a,+0o0) (or viceversa f(B) C
(—o0,a] and f(A) C [a,+0)
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2. H separates strictly A and B if there exists an € > 0 such that f(A4) C (—o0,a — €
and f(B) C [a+ €, +00) (or viceversa).

A special case of the geometric form of the Hahn—Banach theorem is the following,
which states that if A = C is an open convex set and B = {z¢} with zo ¢ C, then there
exists a closed hyperplane separating them.

Lemma 6.13. Let X be a topological vector space on R, let C be an open and convex
nonempty subspace and let o € C. Then there exists a bounded linear map f: X — R such
that f(x) < f(xo) for allx € C.

Proof. 1t is not restrictive to assume 0 € C. Let us consider the seminorm p defined in
(4.4), that is, the Minkowski functional of C. Then p(z¢) > 1 by o &€ C. Set Y := R and
on Y define the linear map g(txzp) = t for all t € R. We claim have g(y) < p(y) forally € Y.
Indeed, in the special case z = xg, g(xg) = 1 and p(xzg) > 1 and so 1 = g(z9) < p(zo).
This inequality continues to hold if we multiply the above inequality by ¢ > 0, getting
g(tzg) < p(txo) for t > 0. Finally we have

t =g(txo) < p(txo) for all t € R

since, for £ < 0, the Lh.s. is negative while the r.h.s. is non negative.

We can now apply Theorem 6.1 and conclude that there is a linear operator f : X — R
which extends ¢ and is such that f(z) < p(z) for all z € X. Then f(z) < p(z) < 1= f(x0)
for all z € C. Notice that since f~1(1) N C = ), the hyperplane f~!(1) is not dense in X,
and so, c.f.r. Exercise 2.19, is closed and f is bounded. O

Theorem 6.14 (Hahn-Banach, Geometric form). Consider a topological vector space X .
Let A and B be nonempty and disjoint convex sets, with A open. Then there is a closed
hyperplane H separating them.

Proof. Set C := A— B ={a—bla € Aand b € B}. Then C is convex since if ag,a; € A,
bo,b1 € B, a; € A, by € B, we have a; — by = (a — b); € C.
We notice now that C' = Upep(A — b), as a union of open sets, is open and C' 0. We
apply Lemma 6.13 to the pair C' and xg = 0. Then there exists a continuous linear map
f:X — Rsuch that f(c) < f(0) =0 for all c € C.

This is the same as having f(a) < f(b) for any a € A and b € B. Then picking

<a< inf
iggf@) <o < inf f(z),

we have that H = f~!(«a) separates A and B. O

Remark 6.15. Notice that in Brezis [4, Exercise 1.9] it is stated, and later in the solutions it
is discussed, the fact that in finite dimension the statement holds just under the hypothesis
that A and B are nonempty and disjoint convex sets, without further specifications. This

would be false in an infinite dimensional topological vector space X. Take for example a
not continuous linear map f: X — Randlet A= f~'(R_) and B = f~!(R,). Then A and
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B are nonempty and disjoint convex sets, but there is no closed hyperplane H separating
them. If fact, if it existed, it would be of the form H = g~!(a) for a nonzero g € X’ and
with ¢ < o in A and ¢ > « in B. But the set where g < « is non empty and open in X,
while B is dense in X, by Exercise 2.19. So it is impossible that ¢ > « in B, and we get a
contradiction.

Theorem 6.16 (Hahn-Banach, Geometric form, 2nd version). Consider a locally convex
space X. Let A and B be nonempty and disjoint convex sets, with A closed and B compact.
Then there is a closed hyperplane H separating strictly them.

Proof. We claim that
3 a convex balanced open neighborhood U of 0 such that (A+U)N(B+U) =0. (6.22)

Let us assume (6.22). Then, since A+U and B+ U are easily shown to be open convex sets,
by Theorem 6.14 we know that there exists a closed hyperplane H = f~!(a) separating
A+ U and B+ U, that is

fla)+ f(z1) Sa< f(b)+ f(z2) foralla € A, b€ B and all 2,25 € U. (6.23)

Notice that there exists an € > 0 such that f(U) D [—¢, €]. Indeed there exists zp € X such
that f(zp) = 1 and there exists € > 0 such that exg € U. Then Azp € U for any |\ < e
because U is balanced. Then f(U) D f ({\xo: |\ <€}) = [—¢€,¢]. Then from (6.27) we
derive

fla)<a—e<a+e< f(b) foralla € Aand b € B.

Now we turn to the proof of (6.22). Let us consider the family U of the open convex and
balanced neighborhoods of 0 in X. For any V € 9, the complement C(A + V) of the closure
A +V is obviously open. We claim

U tAa+v)2aB. (6.24)
Vey

To see (6.28), we consider any = € B. Since A is an open neighborhood of z, there exists
a balanced open and convex neighborhood of 0, V, such that V +V + 2 C CA. Since the
latter inclusion implies

v1 —v2 +x # a for any a € A and v; and ve in V), (6.25)

it implies V + 2 C C(A + V). Since V + z is open, V + 2 C C(A +V)=C(A+V). This
proves (6.28).
Since B is compact, there is a finite cover

CA+Wv)u..ul(A+V,) 2 B.
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Taking W = V1N...NV,,, we conclude C(A + W) D B. Let us consider now a convex balanced
open neighborhood U of 0 such that U + U C W. Then, like in (6.25),

BNClL(A+U+U) <= B+UCL(A+U)< (B+U)N(A+U) =0,

thus proving (6.22) and completing the proof of the theorem. O

Remark 6.17. When X is a normed space, then the proof of (6.22) is simpler. In fact it is
easy to prove that

there is an € > 0 such that (A + Dx(0,¢)) N (B + Dx(0,¢€)) = 0. (6.26)

Indeed, if this is false, for any sequence €, Do, 0T, there exists
zn € (A+ Dx(0,€e,)) N (B + Dx(0,¢y)).

Then there are sequences {a,} in A and {b, } in B with ||a,—2,||x < €, and ||bp,—2n||x < €n-
So we have ||a, —by||x < 2€,. On the other hand, since B is compact, there is a subsequence

of {b,} in B convergent in B. It is not restrictive to assume that b, 2270 b in B. We

have also a,, 2240 b, But then be AN B, which contradicts AN B = 0.

Remark 6.18. Tt is obvious that, if we replace in the hypothesis in Theorem 6.16, B compact
with B closed, then there is no hope, even in finite dimension, that in general these can be
separated strictly with a closed hyperplane H. For example consider in R? the sets

1
A={(z,y) eR*:y<0and z € R} and B = {(z,y) €R*:y >~ and z € R, }.
x

They are disjoint closed convex sets. Any line ¢ disjoint from A must have equation y = ¢
with ¢ > 0. In order for such line to be disjoint from B, it must be y = 0. So this line
separates A and B, but does not separate them strictly.

In Brezis [4, Exercise 1.14], there is an example of two closed convex sets inside ¢! (N), which
cannot be separated by a closed hyperplane H. The idea is to consider the two vector spaces

X :={(zp) : ®2p, = 0 for all n € N} and

Y = {(yn) : y2n = %ygn_l for all n € N}.

These are closed vector spaces. The key point now is that X +Y = ¢//(N) but X +Y ;
¢*(N). Let ¢ ¢ X +Y. Then there is no closed hyperplane separating ¢ and X + Y (since
the latter is dense). Now let Z = X —c¢. Then Y and Z are closed disjoint convex sets, and
the claim is that they are not separated by a closed hyperplane H. Otherwise there would
be f € (/}(N))’ separating them, that is there would exist « € Rand f < ain Y and f > «
in Z. Necessarily « > 0 and f = 0 in Y, by linearity and, similarly, f = 0 in X. Then
0<a<—f(c). So f(c) < —a<0and f =0in X + Y would give us f~!(a) as a closed
hyperplane separating ¢ and X 4 Y, which in fact cannot exist.
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Corollary 6.19. Let Y be a nonempty vector subspace of a locally convex space X on R.
Assume Y ; X. Then there exists f € X' nonzero and such that

f(y) =0 forallyeY. (6.27)

Proof. Take #9 ¢ Y. Then A :=Y and B := {z¢} satisfy the hypotheses of Theorem 6.16.
So in particular there exists f € X’ such that for some o € R

fly) <a< f(xg) forall y e Y. (6.28)

But then we must have (6.27) for, if we had f(yo) # 0 for an yg € Y, then

sup f(Ayo) = sup (Af(yo)) = +o0,
AER AeR
contradicting (6.28).
O
Remark 6.20. Notice that in the spaces LP(0,1) with 0 < p < 1, where (LP(0,1))" = 0, then
Corollary 6.19 is false.
Ezample 6.21 (Runge Theorem). A concrete application of Hahn Banach is the Runge
Theorem, which we state in the following form.
Let QQ C C be a simply connected open set and let K be a compact subset of Q). Then
for any f € H(Q) and for any € > 0 there exists a p € C|[z] such that

1P = flle(x,c) <€ (6.29)

The above statement is equivalent to saying that if Y is the closure of C[z] in L*°(K,C)
then Y 3 f|x. By taking a K larger, we can assume that K is simply connected. Let 7 be
a closed path in C\ K such that Ind,(¢{) =1 for all ¢ € K. Then

z) = 1 f(w) dw. .
/(2) /7 (6.30)

2mi w—z

Since (6.30) is basically representing f|x as a linear combinations of functions g, := w% it

is enough to prove that Y 3 g, |k for any w € C\K. We claim preliminarily that this fact
is true for any w > R with R = sup{|z|: z € K}. Indeed in this case

+oo
1 1 2"
O e D

Z
w

where the series converges uniformly in z € K and this yields our preliminary claim. Now
suppose that the Runge Theorem is wrong. Then there exist a wy ¢ K and a functional
¢ € (L*°(K,C))" such that ®|y = 0 and ®(gy,|x) # 0. Consider the function

F(w) :=®(guw|x) = ®((w — ')_IIK) :C\K — C.
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Notice that C\K > w N (w—-)"Yx € L*®(K,C) is holomorphic. Then we claim that
F = ® o G belongs to H(C\K). To see this, we first observe that, as a composition of

continuous functions, F € C%(C\K, C). Next, for any triangle T contained with its interior
in C\ K, we have

[ Fwytu= [ @ Gpaw=o( [ cuw) o

by the C-linearity of ® and by the Cauchy Integral Theorem. But then, Morera’s Theorem
applies and we obtain F' € H(C\K). Next notice that since K is simply connected, we have
that C\ K is connected. Furthermore, we know that for any w > R we have g,,|x € Y and
so F(w) = 0. But then necessarily F'(w) = 0 for all w € C\ K, which gives a contradiction.
So gw|k € Y for all w € C\K showing that the hypothesis gy, |k ¢ Y for a wg ¢ K is
absurd. O

Example 6.22. We give now another concrete Complex Analysis application of Hahn Banach.
It is the Miintz-Szasz Theorem which states the following:
Let I =10,1] and let 0 < A\ < A9 < ... be a strictly increasing sequence with A, noteo

+00. Then the closure Y of the subspace in C°(I) generated by 1,tM 122 . is such that

(1) If il/)\n = +oo then Y = C°(I).

n=1

(2) If D 1/An < 400 and if A#0is A& {A}5, then t ¢ Y.
n=1

Notice that, in the particular case \,, = n, we reobtain the Weierstrass Approximation
Theorem 1.20. The Miintz-Szasz Theorem, in particular, implies that if we eliminate any
number N of elements A,, < ... < A,, from the sequence in case (1), the set ¥ remains the
same and continues to coincide with C°(T).

For the proof we refer to Rudin [10]. We sketch the proof of statement (1), which is
a beautiful application of Corollary 6.19, of the fact that (C’O(I ))/ is the space of Borel
measures on I, see Theorem 15.19 later, and some basic fact on bounded holomorphic
functions in in the unit disk U.

To prove (1) it is enough to prove that for any complex Borel measure p we have

An _ _ n _ _
/It du(t)_/ldu(t)_ovn;»/lt du(t) = 0¥n = 0,1, . (6.31)

But then, since span {1,¢,¢2,...} is dense in C%(I), we conclude p = 0. Hence, since all the
elements of (CY(I))" which are null in the closed set Y are also null on C°(I), by Corollary
6.19 we conclude that we cannot have Y S CO(1).

To prove (6.31), define

£(2) = /I Fdp(t). (6.32)
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Then f € H({z : Rez > 0}). Indeed, f(z) is bounded and continuous in {z : Rez > 0}
and, applying Morera Theorem, is holomorphic in {z : Rez > 0}. Next, set

o0 =1 (152).

Then g € H*(U), where U = D¢(0,1), with g(a,) = 0 for a,, = An —

14+ A
C +1)2 > we conclude that «,, is strictly increasing. So we have
oo [e.e] oo 1 _ o0
1/, = = 1/ = . 6.33
21/ n =0 ;MZH% 1—1—04; —lan|) = +00.  (6.33)

oo
Hence Z(l — |an|) = +oo. But there is a theorem which says that then g = 0 (it is a

refinement of the theorem which guarantees that if g # 0, the set of the zeros of g has no
accumulation points inside U). So f = 0 and, in particular, f(n) = 0 for all n = 0,1, 2...
proving (6.31). We refer to Rudin [10] for the proof of (2), which is based on some beautiful
theory of holomorphic functions on a half-plane, and for further details.

We will see later further applications of the Hahn—Banach Theorem.

6.2 The bidual and orthogonality

Let X be a normed space and consider the Banach space X’. Then the bidual of X is
X" := (X')". There is a canonical immersion J : X < X".

Lemma 6.23. Consider the map J : X — X" given by (Jz,2') xny = (x,2") /- Then
J is an isometric immersion of X inside X" .

Proof. For ||2'||x» = 1, by the definition of the norm in X", we have

(T2, 2") e | = 1@ 2 ) o | S N2l lllx = Nzl

from which we derive that ||Jz|x» < ||z||x for any z € X. On the other hand, for any
x € X, by Hahn-Banach we know that there exists 2’ € X’ with ||2||x» = 1 such that

lzllx = |z, 2") o | = [{T2,2") 0 o | < N2 x0T = (| T2l
so that we conclude ||Jz||x» > ||z|x for any x € X. Summing up, ||Jz|x» = ||z] x.
O
Definition 6.24. Given a topological vector space X and M C X, we set
Li={fe X (fix)xiux =0 forall zc M} (6.34)
Similarly, for N C X’ we set
Li={zeX:(f,x)y, x =0forall fc N}. (6.35)
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Lemma 6.25. Given a normed space X and a linear subspace M C X. Then

(M)t =M. (6.36)
Given a linear subspace N C X', then

(NHE DN (6.37)

Proof. By definition of M+ in (6.34), we have (f,x)y,, x = 0 for all z € M and f € M.
So (M*)+ D M by the definition of (M+)*, in (6.35) for N = M=*. Furthermore, since
the orthogonals are closed spaces, we have also (M J-)J- D M. This in particular proves
also (6.37). Now let us prove the equality (6.36). Proceeding by contradiction, suppose
that there exists 29 € (M+)-\M. Then there is a closed hyperplane H separating strictly
xo and M. In particular, is not restrictive to assume the existence of a continuous linear
functional f and an o € R such that

(f,m0) xrox = f(x0) << f(x) = (f,x) 1y forallz e M.

By linearity we need to have f(x) = 0 for all z € M. This means that f € M*. On the

other hand, f(xg) < 0 implies that 2o ¢ (M*)*, which contradicts our hypothesis that

xg € (M+)*\M. So we have proved that (M+)\M = (. O

Ezample 6.26. We will see later that (¢1(N))’ = ¢*°(N) and that (c(N)) = ¢}(N), where

co(N) is a closed subspace of £°(N). Now, co(N)t = 0 C ¢(N) and 0+ = ¢*(N), so
L

(coN)*)™ = £2(N) 2 co(N).

Lemma 6.27. Consider a bounded operator T : X — Y between two Banach spaces and
the adjoint T : Y' — X'. Let R(T) =TX and R(T*) = T*Y'. Then we have the following:

ker T = R(T*)*; (6.38)
ker T* = R(T)*; (6.39)
(ker T)* D R(T*); (6.40)
(ker T*)* = R(T). (6.41)

Proof. Formula (6.38) follows from (T'x,y')y v+ = (@, T*Y') x - Indeed, if € ker T' then
the formula yields (z,7*y')y, x = 0 for any ¥/ € Y’, and so # € R(T*)*. If, viceversa,
z € R(T*)*, then (Tx,y')y .y = 0 for all ¥ € Y, and this implies T2 = 0 by Corollary
6.3, that is, x € kerT'.

A similar discussion, in fact, simpler since it does not rely on a deep theorem like Hahn—
Banach but stems directly from the definitions, is valid for (6.39). Indeed, if ¢’ € ker T*
then from 0 = (z,T*Y) . x = (T7, ')y y- for all x € X we have y' € R(T)*. Viceversa,
if ¥ € R(T)*, then 0 = (T, y )y .y = (2, T*Y') . x for all z € X implies, by definition
of T*y' € X’ (and therefore not by any deep theorem), that T*y’ = 0 and, so, 3’ € ker T"*.
Turning to (6.40), we know from (6.37) that (R(T*)*)* D R(T*), which gives the desired

result. Similarly, we know from (6.36) that (R(T)*)* = R(T), which gives 6.41. O
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Exercise 6.28. Let T' € £(X,Y) and consider T* € L(Y ', X'), T** € L(X",Y") and the
maps Jx : X - X” and Jy : Y — Y” in Lemma 6.23. Then for the following two maps
X — Y, show that we have T**.Jx = JyT or, otherwise stated, that the following diagram
is commutative,



A subspace of a topological space X which is countable intersection of open sets is called a
G5 subspace of X.

Exercise 7.2. Consider a compact space K and a decreasing sequence ofcompact sets with
NnenKy = 0. Then only finitely many of them are nonempty.

Hint: use Exercise 1.13.
There are two important classes of Baire spaces: locally compact spaces and complete
metric spaces.

Theorem 7.3. Every locally compact Hausdorff space X is a Baire space.

Proof. Take a sequence {A,},>1 of dense open sets. Take any open set G;. We can
take a sequence of decreasing nonempty relatively compact open sets, with for n > 2,
G, C G, C A, NG 1, Gy compact. Then we claim we have

mneNGn == mneNén. (71)

Obviously from G,, C G, yields the C in (7.1). On the other hand, if x € N,enG, then
r € G, C G, for any n > 2 and so z € NyenG,, which yields equality in (7.1).

By Exercise 7.2 we also know that the above infinite intersection is non empty, since oth-
erwise there would be N such that G,, = () for n > N, which, by construction, is not true.
Notice also that

ﬂzozlGn - m?f:an c mzo:Q(An N anl) - O?LO:QAn-

Then G1 N (NS5 A,) # (. This implies also G1 N (N2 A4,) # 0 (we could apply the above
argument to a sequence {A, },>1 where A; = Ag). This implies that any sequence {4, }n>1
of dense open subspaces in X is such that N2 A, is dense.

]

Example 7.4. Let X be any non empty set and let us consider the topology where any
Y C X is open. Notice that X is locally compact ( for any x € X the set {z} is a compact
neighborhood of z). If A is a dense set in X, then necessarily A = X. So for any sequence
A,, of dense open sets we actually have A,, = X for all n and trivially N2 ; A4,, = X, which
is obviously dense.

Theorem 7.5. Every complete metric space (X,d) is a Baire space.

Proof. Take a sequence {A;,},>1 of dense open sets in X. Take any open set G;. We
can take a sequence of decreasing nonempty open balls, with for n > 2, D(x,,r,) C
D(xp,rn) € D(xp—1,7n-1) C Ap NGy with r,, \, 0 (r, a strictly decreasing sequence,
convergent to 0). Then, proceeding like in the proof of (7.1), it is easy to see that we
have N2, D(zp, ) = N> D(xy, ). Furthermore, since X is a complete metric space,
this intersection is non empty and, in fact, is of the type {Z} for some T € X. Here
T € D(xp, ) for all n, and so T € 4,, N Gy for all n. So, in particular Z € (N2, A4,) N G;.
This shows that N72; A, is dense.

O
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Exercise 7.6. Show that for Q2 and open subspace of R?, the space D(Q) is not metrizable.

Answer. As we know, D() is the direct limit of a strictly increasing sequence { Dk, ()},

where {K,,} is a sequence of compact subsets of 2 with K,, C Io(nﬂ Vnand ;2| K, = Q.
Notice that since each Dk, (§2) is complete, by Theorem 4.39 also D(12) is complete.
Each Dk, (2) is a closed subspace of D(2) (since it is complete) and it has empty interior,
since there are elements ¢ € D, , (Q) arbitrarily close to 0 in D, ., () and with supp ¢ 2
K. Furthermore, D(Q) = 7, Dk, (). All this implies that D(£2) is not a Baire space.
If it were metrizable, it would be a complete metric space and, by Theorem 7.5, it would
be Baire.

Definition 7.7. Let {A;}cs be a family in £(X,Y) with X and Y two topological vector
spaces. We say that {A;};cs is equicontinuous if for any neighborhood V' of 0 in Y there
exists a neighborhood U of 0 in X such that A;U C V for all j € J.

Exercise 7.8. Show that a family {A;};c; in £(X,Y) with X and Y two normed spaces
is equicontinuous if and only if there exists an M € R, such that ||T}||z(gr) < M < oo for
all j € J.

Lemma 7.9. Let {A;};cs be an equicontinuous family in L(X,Y"). Then, for any bounded
set I/ in X there exists a bounded set I' in'Y such that Uje]AjE CF.
Proof. Set F :=J s AjE and let V' be any neighborhood of 0 in Y. By equicontinuity, we
know that there exists a neighborhood U of 0 in X such that A;U C V for all j € J. Since
F is bounded, we know that there exists ¢ € Ry such that £ C tU. It follows that for any
j € J we have A;E C tA;U C tV. So also F' = UjEJ A;E C tV, which proves that F' is
bounded in Y.

O

Theorem 7.10 (Banach-Steinhaus). Consider a family {A;}jers in L(X,Y) with X and
Y two topological vector spaces. Consider the orbits

I(z):={Ajz:je J}
and set
B ={z € X :T'(x) is bounded in Y}.

Suppose that the complement of B in X does not contain a Gs set dense in X. Then the
family {Aj}jcy is equicontinuous.

Proof. Since by hypothesis B := X\ B does not contain the intersection of a sequence of
open dense sets in X, it follows that B is not contained in the union of a sequence of closed
sets, each with empty interior.

Consider an arbitrary balanced neighborhood W of 0 in Y and let V' be another balanced
neighborhood of 0 in Y with V +V C W (notice that V C V + V, since if z € V
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then (z + V)NV # (0 which implies z € V —V = V + V, and so we can just take
VHVCVHV4HVHVCW).
Set E:= (e, AJ._IV. Then we claim that
BC | JnE.
neN

Indeed, for any = € B, the fact that I'(z) is bounded in Y implies that there exists an
n € N such that I'(z) C nV. So Ajz € nV or, equivalently = € nAj_lv7 for all j € J. Hence
z € Njeynh; 'V =n;c;A;'V =nkE.

The nFE are closed sets. Each of them has non—empty interior exactly if F has a non—empty
interior. So there is an interior point x € Eanda neighborhood U of 0 in X with z+U C F.
By the definition of F, this implies that Ajz + A;U C V for all j € J. Then

AjUQV—Aj:z:QV—V:V—i—VQWforalljEJ.

So we have proved that for any neighborhood W of 0 in Y there exists a neighborhood U
of 0 in X such that A;U C W for all j € J and so, that {A;};c; is equicontinuous.
O
An immediate corollary is hence the following .

Corollary 7.11. Let X and Y normed spaces and consider a family {Tj}jc; € L(X,Y).
Suppose supje ; | Tjz|ly < oo for any x € X. Then ||Tjl|z(x,y) < M < oo for some M for
all j e J.

If it is not true that sup;c; [|Tjz| c(x,y) < M < oo for some M, then sup,c; ||Tjz|y = oo
for all the x in a G dense set.

Remark 7.12. If we do not use the proof of Theorem 7.10, we can prove directly Corollary
7.11 as follows.

Proof. Suppose sup;¢ s | Tjz|ly < oo for any z € X. Let B, = {z € X : || Tjz|y < nVj}.
Notice that X, = N2, T; Dy (0,n) is closed.

Notice also that UpenEpn = X. Indeed, given an z € X, since sup;¢; || Ty < oo, there is
an n € N s.t. sup,c; [|Tjzlly <n and so z € Ey.

Since X is a Baire space by Theorem 7.5, some of these E,, has non—empty interior.
Suppose that E,, has non—empty interior. Then, we have Dx (zg,r) C E,, for some z¢ € E,

and some r > 0. Then, by the definition of E,, it follows that
|Tj(xzo + rz)|ly < n for all z such that ||z||x < 1.

So r||Tjz|ly < n+ |[[Tjxolly < 2n for all z € Dx(0,1). This yields [|T}|zx,y) < 20 for all
j € J and proves the first sentence in the statement.

Suppose now that it is not true that sup;c; || 7j[lz(x,y) = +0o. From the above ar-
gument it follows that each F, has empty interior and so each open set X\ E, is an open
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dense set. Notice that the following set is a G5 dense set (since it is the intersection of a
sequence of open dense sets in a Banach space)

MneN (X\En) = X\ (UnGNEn) :
Furthermore, for each x € X\ (UnenEn) we have sup,c; [|Tjz|ly > n for any n € N and so
supje | Tjx|ly = oo. O
7.1 Some application of Banach—Steinhaus to convergence of trigono-
metric series

A function f(z) = P(cosz,sinz) with P(z1,22) a polinomial is called a trigonometric
polinomial. Using repeatedly the prostaferese formulas

cos((n —m)z) — cos((n + m)x)

sin(nz) sin(ma) =

2 b
cos(nz) sin(ma) = S+ m)T) . sin((n —m)z) -
cos(nz) cos(max) = cos((n — m)z) ;L cos((n +m)x) 7

it is easy to see that any trigonometric polinomial can be written in the form

f(z) = % + ) (agcos(tx) + bysin(éz)). (7.3)
/=1

Lemma 7.13. Given the trigonometric polinomial (7.3), the following formulas are true,

1 ™ 1 2
ag = — f(z)cos(lx)dx = — f(z)cos(x)dx, £ =0,1,---
TJ s
- | o (7.4)
by = — f(x)cos(fz)dr = — f(x)sin(lx)de, £=1,---.
T —r v 0
Proof. For 6, the Kronecker delta, we have
L[ . :
/ sin(nz) sin(maz)dz = 6, m
™ —T
1 ™
/ cos(nx) cos(mx)dz = 6y m (7.5)
™ —T

1 ™

/ cos(nz) sin(ma)dx = 0.
™ —T

So, if we multiply (7.3) by cos(mz), obtaining

f(z) cos(mz) = % cos(mzx) + Z(ae cos(lx) cos(mx) + by sin(lz) cos(mx))

(=1
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and if we integrate, we get

n
a ™

= ?0 cos(mzx) + Z(ag/

=1 T

™

cos(fx) cos(mz)dr + bg/ sin(fx) cos(m:z:)dx)‘

—T

(7.5) at most one term on the right hand side is non—zero, and we have

f(z) cos(mz)dr = ap,m.

In this way we obtain the 1st line in (7.4). The 2nd line is obtained similarly, multiplying
(7.3) by sin(mz) and integrating.

O
Definition 7.14 (Fourier Series). For any f € L!(—m,7) its Fourier series is the series
o
=9 cos(ma) + Z (ag cos({x) + bysin(fx)) (7.6)
(=1

where the coefficients a,, and b,, are defined by (7.4). Alternatively, we can define the Fourier
series of f as the series

i 70 where (7.7)
LeZ

f =5 [ et

The expansions can be obtained one from the other, using e'

¥ = cos({x) + isin(lz).
Ezample 7.15. For [a,b] C [~m, 7] and for the characteristic function x|, ), we have

— 1 b b—a
X[a,b](o) = 27T/a dx = o and, for n # 0,

/\ 1 b —inb __ ,—ina
Xap) (1) = o— / ey =15
a

2T 2mn

Definition 7.16 (Tori). For any d € N, we set T¢ := RY/27Z? which we call the d-

dimensional Torus. There is a natural identification of LP((—,m)%) with LP(T%). For any
f € L' (T%) its Fourier coefficients are given by

N 1 —in-z
flo) = 5 /T () (7.8)
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Notice that if f € C*(T¢) for any |a| < k we have

BT) = s [ e fw)n = () [ ope e s

= ilalpy ...ngdf(n). (7.9)

In other words, transformation (7.8) diagonalizes all the operators 05. So in particular, for

d
the Laplacian A := Z (‘9]2» we have
j=1

Af(n) =i2(n} + ...+ n2)f(n) = —|n|*f(n). (7.10)

The f(lllowirlg lemma expresses the fact that a bounded operator remains defined by
LYT9) 5 f — f € co(Z?), where the latter is defined in (3.20)

Lemma 7.17. For any f € L'(T%) we have

1f(n)| < ”f(”;: )(j{d) for alln € Z¢, and (7.11)
lim f(m) =o0. (7.12)

Proof. Inequality (7.11) is straightforward. Let us turn to the proof of (7.12), which we know
is true for f = X{a,,b1]x...x[aq,bg] OF for f a linear combination of functions X4, b:]x...x[ag,bal-
Such linear combinations form a dense set in L'((—m, m)%). So, for any e > 0 there exists

N
9= D AX[0 00 (a4
=1

with || f — gllp1(1e) < €. By Example 7.15 we have

d —inkbg) _ e—inkag)

-d N

1 (&
lim g(n) = lim —— Aj =0,
n%oog( ) n— oo (27r)d ; J kl_Il ny

which implies that there exists a N, such that for |n| > N, we have |g(n)| < e. This implies
that for |n| > N, we have

)] < G|+ [Fn) = §)] < e+ @m)~f = glloze < (14 @m0 e

We conclude that we have shown (7.12).
O
Let us focus in dimension d = 1. Obviously, it is interesting to get information on the
convergence of the Fourier Series, that is on the limit

ngr—lr-loo Snf(z) , with the partial sums S, f(z) := % + ;(CL@ cos(lx) + by sin(Lx))
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Definition 7.18. For any n > 1 the Dirichlet kernel is the function

Z cos(lx) M (7.13)

z
2sin 5

I\DM—‘

Notice that the 2nd equality follows from using the telescopic sum

(o) S (+)2) (1))

/=1

—sm( ) ZQSlD( )cos lx).

Lemma 7.19. For any f € LY(T) we have

S f(z) = % " Dy (x — tdt. (7.14)
Proof. Follows from B
S, f(z) = % R dt+z <cos ()L _7; (1) cos(ﬁt)dt—i—sin(ﬁx)% _7; £(1) sin(ﬂt)dt)
_ %% / T; f(t)dt+;7r 5 " F(t) (cos(tx) cos(tt) + sin(Ex) sin(¢t)) dt

= 71r/7r £(1) (; + ZCOS(€($ - t))) dt.
T /=1

We will denote by C°(T) the set of the functions f € C°(R) and 27—periodic.
Let us apply now the Theorem by Banach and Steinhaus to the Fourier series.

Theorem 7.20. For any x € T there evists f € CY(T) whose Fourier series does not
converge in x.

Proof. First of all, it is not restrictive to consider x = 0. Recall that the partial sums are

given by ] | 1
Spf(x) = % 3 f(t)Dy(t — x)dt , Dy (z) = W

Notice now that

v (n+3)m dt
| Dnll 1t >2/ |sm n—|— ’—2/ ’Sin(t)‘— >2/ ‘sm |7
0 t 0
> 221%7/(k1)ﬂ‘81n(t)‘dt = 42% i NN
k=1 k=1
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lifx>0

lifr <0’ then it is easy to understand

If we set g(t) = sign(D,(t)) with sign(z) = {

that sign(D,,) is Riemann integrable.
Notice that

1 (7 1 [7 1
$:90) = 5 [ o@1Dutdt = o [ IDa@)ldt = o IDalliage

2 J_, T om -

By Lusin Theorem, for any 1/j > 0 there exists a function f; € C°(T) with I £5ll ooy <
9]l oo (ry = 1 such that

{z: fi(z) # g(x)}] <1/j.

Hence f; 2% g in LY(T) and S, f;(0) 2% 5,9(0) = o= | Dull 1 (-

If {S,f(0)}nen for any f € CO(T) were convergent, then for any f € C°(T) we would
have sup,, |S,f(0)| < co. Now, the operators ev(S,, : f — S, f(0) are bounded operators
CY%(T) — C for any n. By Banach Steinhaus, sup,, |S,f(0)| < co for any f € C°(T) would
imply a uniform [|evoSyl|(co(r)y < C for all n € N. Then in particular

150 f5(0)] < llevoSull oy 1fillcoery < llevoSnll(co(ryy < C for all n and j.

But taking we obtain |Sy, f;(0)] EmALN 1Sn9(0)] = 5= [ Dnllz1(T)- So we obtain the following,
which gives a contradiction

+oo+n

1
+00 ¢——— —||Dnllp1(r) < C < 400
27

Exercise 7.21. Show that for any f € CY(T) we have

Sn
i [1Snfllcor)

=0.
n—4oo  logn

A direct consequence of Banach—Steinhaus and Theorem 7.20, is the following.

Corollary 7.22. For any x € T the subset E, formed by the f € C°(T) whose Fourier
series does not converge in x contains a Gg set, that is it contains a countable intersection
of open dense sets.

O

The fact that f € CO(T) is not the pointwise limit of its Fourier series, does not prevent

f from being the pointwise limit of another sequence of trigonometric polynomials. What
follows is related to the notion of Cesaro means. Recall that, given a sequence of numbers

Ty, then
. . T1+x2+ ..+
lim z,=A= lim ! 2 = A
n—-+oo n—-+oo n
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Obviously < is not true (take z,, = (—1)"). Turning to f € C°(T), instead of considering
the limit lim S, f(x) we will show instead that
n—o0

lim o, f(x) = f(z) for any = and for o, f(z) = Sof(x) + 51/ (@) + - + Snf(x) (7.15)
n—00 n+1
Definition 7.23 (Fejer Kernel). The Fejer Kernel is given by
N N . 1
1 1 sin((n + 5)t)
Ky(t) = —— Dy(t) = . 7.16
w (1) N+1n§) ®) N+1n§0 2sin (7.16)

Lemma 7.24. We have the following facts.
1. Kn(t) >0 for all t.

1 ™
2. We have — Ky(t)dt = 1.
m

—T

3. For un(8) := max{Kx(t) : § <t <}, we have uyn(§) < 1/(2(N + 1) sin? %) Notoo,
0.

Proof. We have the following formula, which shows the 1st and 3rd claim,

~—

s t
SlIl2

N . 1
1 sin((n + 5)t

Kn(t) = > =
wio) N+14& 2sin?)

1 Ncosnt —cos((n+ 1)t
3 (nt) ((n+1)t)

= 24
N+1n:0 4 sin 5
o ((N+1)
1 l-—cos(N+1)t) 2 Sm( 5 t)
N +1 4sin2% CN+1 4sin%

Finally, the 2nd claim follows, using (7.13), from

1 /7 1 1 XKy
— Ky)dt = — ——— D, (t)dt
L= S [ o
N n N
1 1 (1 1 1 ™1
= — — = — by . 1
7rN+IZ/_7r 2+ cos(ﬁt))dt ﬂN+lz/_ﬂ2dt
n=0 =1 n=0
O
Here notice that for
N N
Sy f(x) = 70 + Z(an cos(nx) + By sin(nx)) (7.17)
n=1
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then

oof(z) = % L ouf(z) = ag + oy cos(a2c) + B sin(x)

30 + 201 cos(z) + 26 sin(z) + a cos(2x) + Bo sin(2z)

orf(x) = 3
Ntlag + Nay cos(z) + Ny sin(z) + ... + ay cos(Nz) + By sin(Nz)
onf(x) = N1
In particular
onflz) == + Z < N 1> (o cos(nz) + By sin(nz)).

(7.18)

Lemma 7.25. Given f € LY(T) and a point xg where the two limits f(xF) exist and are

finite, then the sequence

7 sin Mt ?
onf(a) = 2) e+ 1) (H) dt

7
(N +1 4sin 5

converges in x = xg with

nhm onflxo) = f(zg) ‘;‘ flzy)
Proof. We write
o f(w0) — W _
" sin (2414 2
e [saro s (G

7

7r sin (n+1) ’
! ) | ttao =)= sa) (M) dt.

(7.19)

(7.20)



Now, considering for instance the 1st term in the r.h.s., we have

. ( (n41) 2
1 m sin (Tt>
277(”4‘1)/0 (f(zo +1) — f(z7)) sl dt

2
1 g Sm<(n;1)t>
:WH)/O (f(zo+1) — f(z3)) vy e

. ((n41) 2
1 ™ sin (Tt>
+27r(n+1)/5 (flmo+1t) = flz)) | ——— | dt,

where the last line is in absolute value bounded above by

- /5 (17 o + 01+ 1FI) (@)t < = (1 sy + £ @)I) on(5) 2255 0.

s

So for § > 0 arbitrarily small and to be chosen, we look at the limit for n — oo of

sin (nt1)
11)/05(f(x0+t)—f($ar)) M 0

2m(n + sin §
2
1 1 B sin <wt)
+27T(n_i_1)/0(f($0—t)—f($o)) " smi dt.

For ¢ > 0 sufficiently small, | f(zo £ t) — f(2F)| < € for any preassigned ¢ > 0 and using

1 sin (@t) ’

n+1 sin% ’

8K, (t) =

the absolute value of the previous formula is less than

2
¢ § [ sin ((n;rl)t) Qe [T
/ _ dt < — Kn(t)dt = &e.

1
sin 5 T J

So
flzg) + f(ag)

Unf(xO) -

lim sup
n—oo

Since € > 0 is arbitrary, we conclude with (7.19).
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Corollary 7.26. For any f € C°(T) and any point xo we have

nh_}rrgo onf(zo) = f(xo). (7.21)
Furthermore, we have
onf 22F2 f in CO(T). (7.22)

Proof. The limit (7.21) follows immediately from Lemma 7.25. Let us now prove the uniform
limit in (7.22). In analogy to (7.20)

onf(x) = flx) =

sin ( (L) ’
S - /| IRUCDRC) M dt

2r(n+1) sin £
1 sin ((n—QH)t)
+27T(n+1)/|t25(f(96‘+t)—f(ﬂc‘)) “ami dt = I +11I.
we have
ey < sup [ (17600110 100t < 2 (Wi + 271w m) 1 (5) 2255 0.

On the other hand f € C%(T) implies that f : T — C is uniformly continuous. So, for any
€ > 0 there exists 0 > 0 such that on any I C T with diam(I) < ¢ we have osc;f < e. Hence
for such § > 0 we have

sin (nH)t ?
sup [ [+ 0) -~ f) ) - A
t]<s

I 70y = ————
111z zy om(n+1) ser sin &
. (n+1)
1 Sin ( t) 4 T
< e/ 2 ) a <= [ K, (tydt = 4e
2r(n+1) Jy<s sin 5 T J_

like in the proof in Lemma 7.25. This completes the proof of (7.22).

O
Exercise 7.27. Show that it is false that
onf 22F2 fin L(T) for any f € L=(T). (7.23)

Remark 7.28. We will return later to the phenomenon in Exercise 7.27. Notice that the
operator defined by
lz—y|?

et® f(z) == (47rt)_g/ e” @ f(y)dy for f € LP(R?) (7.24)
Rd
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solves the initial value problem
w—Au=0, ul,_,=Ff (7.25)
for 1 < p < oo but not for p = co. We will prove

lime'®f = f in LP(R?
lme™f = fin (RY) (7.26)

for all f € LP(R%) for 1 < p < oo and

% e®f = fin L®(RY) for f € CO(RY), (7.27)
where
Co(RY) :={g € C°(RY) : lim g(z) = 0}. (7.28)

T—00

While we will discuss (7.26) and (7.27), we will not discuss the above PDE (this would
require the Fourier Transform). Notice that it is not true, and we will discuss this, that

lim e'® f = f in L®°(RY) f L®(RY).
t{%e f=fin L>®(R?) for any f € L*°(R%) (7.29)

Remark 7.29. The operator defined by

ile—y|?

eBlug(z) = (47Tit)_g/ e 7 ug(y)dy for f e LP(RY) for 1 < p < 2. (7.30)
R4

solves the linear Schrodinger equation

iug + Au=0,u(0,z) = up(x). (7.31)

8 Open Mapping Theorem and Closed Graph Theorem

Theorem 8.1. Let E and F' be Banach spaces and consider a bounded linear map T : E —
F which is onto. Then there is ¢ > 0 such that

T(DE(O, 1)) > DF(O, C). (8.1)
Proof. First we show there is ¢ > 0 such that

T(Dg(0,1)) D Dp(0,2¢). (8.2)

If this is not the case, then consider X, :=n T'(Dg(0,1)) = nT(Dg(0,1)) = T(nDg(0,1)).
Since F' = UX,, and F' is a Baire space by Theorem 7.5, some of the X,, must have nonempty
interior. Since X; = %Xn, we conclude that X; has non empty interior. Then , there exists
a disk

Dr(yo,4c) € T(Dg(0,1)). (8.3)
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Hence yg € T(Dg(0,1)) and, since T(Dg(0, 1)) is balanced,
—yo € T(Dg(0,1)). (8.4)

Summing (8.3)—(8.4), we obtain

Dr(0,4¢) € T(Dg(0, 1)) + T(Dg(0,1)) C 2T(Dy(0, 1)), (8.5)

the latter inclusion by convexity of T'(Dg(0,1)). This gives (8.2).
Next we want to show (8.1). Let |ly||r < c. We claim that

there is z; € Dg(0,1/2) such that ||y — Tz||r < 271 (8.6)

Indeed, (8.2) implies T'(Dg(0,1/2)) D Dg(0,c) and this inclusion proves the claim, because
either y € T(Dg(0,1/2)) and so thereis a ||21||g < 27! with y = T2y, or y is in the closure of
T(Dg(0,1/2)), and in this case for any € > 0 there is z; € Dg(0,1/2) with ||y — Tz ||r < €.
So we get the desired claim (8.6).

Suppose we have found z; € Dg(0,277) for j = 1,...,n so that [y — > Tzjllr < c27™
Then we claim that there exists 2,11 € Dg(0,27"71) so that ||y — Z;”ill Tzjl|lp < 27" L
Indeed on one hand we have (y — >_%_; Tzj) € Dp(0,27"c) and on the other (8.2) implies

T(Dg(0,277=1)) D Dp(0,27"c). We conclude like in the proof of (8.6).

Consider now z = zj. We have ||z||g < Z llzille < ZQ‘j =1,s0 x € Dg(0,1).
j=1 j=1 j=1

n
On the other hand ||Tx —y||p = lim |y — ZszHF =0, so y = Tx. So we have proved
n—-+0oo =1
]:
(8.1). O
Corollary 8.2. Let E and F' Banach spaces and consider a bounded linear map T : E — F
which is onto. Then T is open, that is, it sends open sets into open sets. Furthermore, if
T is also one to one, then also T~ is bounded.

Proof. First we need to show that if U C E is open, then TU C F is open. Let yg € TU
and z¢ € U with yp = T'zg. Since U is open, there exists r > 0 such that Dg(z¢,r) CU. It
then follows that yo + TDg(0,7) C TU. By (8.1), we know that TDg(0,7) D Dr(0,c 7).
Then yo + Dr(0,c¢ r) = Dp(yo,c r) € TU. This proves that TU C F is open.

We prove now the last sentence in the statement. We know that 77'F — FE exists and
we have to prove that it is bounded. Form (8.1) we know that if y = Tz € Dp(0,¢), then
necessarily z = T~y € Dg(0,1). So we conclude [T~ 'y|g < L||y|r for every y € F and
T—! is bounded. O

Ezample 8.3. In Sect. 8.1 we discuss the fact the map § : f — f(n) which sends L(T) in

co(Z) is one to one but is not onto. Notice that the operator L(T) 3, R(F) & co(Z) is one

—1
to one and onto on the image. Yet the inverse R(§) U LY(T) is unbounded. Indeed, if it
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were bounded, then L!(T) 3, R(F) would be an isomorphism, and R(g) would be complete,

but in fact it is not, since R(F) = co(Z) inside ¢*°(Z). So in other words, in Corollary 8.2
the hypothesis that F' is a Banach space is essential, since otherwise the statement is false.

Ezample 8.4. Another example is the operator LP(R?) > f KN ()" f e LP(R%) where
(x) = y/1+ |z|? is the Japanese bracket. This is obviously a bounded operator. Notice
that the spectrum is [0, 1] and is an obviously not invertible, since otherwise 0 would not
be in the spectrum, or, more directly, since the inverse would be f — (z) f, which is clearly
not a bounded operator in LP(R?). On the other hand R(T) D> C°(R%), which is dense
in LP(R?) for p < oo. So again, T~ ¢ L(R(T), LP(R?)) since otherwise R(T) would be a
closed subspace of LP(R?).

Obviously this example can be replicated using any ¢ € CO(R?, R, ) with lim ¢(z) = 400

and LP(RY) 5 f 5 (p(2)) "' f € LP(RY).

8.1 An application of the Open Mapping Theorem to Fourier series

Theorem 8.5. The map f — f(n) which sends LY(T) in co(Z) is one to one but is not
onto.

Proof. Let us proceed by contradiction and let us  suppose that the map is not one to one.
Then there exists a nonzero f € L'(—n,7) with f(n) = 0 for all n € Z. In particular this
implies that

" HWPMdt =0 (8.7)

—T

for any trigonometric polynomial P(t). Then we claim that (8.7) extends replacing P by
any g € CY(T). Indeed, we have

" rtong(tyir =0

On the other hand, fong nooo, fg in LY(T) since

n—-+4o0o

1fg— fongllLrry) < 1fllevmyllg — ongllpes(ry — 0,

by Corollary 7.26. This implies our claim:

0= Nlirfm /7; f(t)ong(t)dt = 7; f(t)g(t)dt for any g € C(T).

Now, for any interval I C (—m,7) it is elementary to find a sequence g, € C°(T) with
|gn(x)| < 1 everywhere and liT gn(x) = xr(x) for any x. Indeed, if say I = [a,b] C
n—-+0oo
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(—m, ), we can take

1if z € [a,b)
Oifz ¢ [a—L,b+ 2]
n(m—a+%) ifx e [a—%,a]
—n(a:—b—%) if x € [b,b—i—%,a],

gn(x) =

and we can deal similarly with other cases. Then, by Dominated Convergence, we obtain

0= lim / f(t)gn(t)dt = f(t)xr(t)dt for any interval I C (—m, ).

n—-+4o00o

This implies f(¢) =0 for a.a. t.

Having proved that our map is one to one, we show that it is not onto. Indeed, since it
is a bounded map, by Corollary 8.2 if it is also onto, then it has bounded inverse. Then we
would have || f|l¢oz) = Cllfllz1 (T for some fixed C. But then also || Dy ||coz) = CllDnll 1 (T)
which is impossible, since the left is 1 and the right goes to oc. O

Remark 8.6. Notice that in the above proof we exploited Hl/?;Hgoo z) = Land || Dyl L1 (T) noteo,

+o0o. The two quantities HD\nH o (z) @04 || Dl s () are instead comparable for 1 < p < 2

and p' = Ll It is possible to prove that
p —_—

for 1 < p < 2 the map L*(T) > f — {f(n)}nez € 7 (Z) (8.8)

is bounded (it is an immediate consequence of Riesz interpolation theorem and the fact that
the map is bounded for p = 1 and for p = 2). Injectivity is proved in the above theorem.
Finally, for the fact that (8.8) is not an isomorphism, see later exercise 19.18.

Example 8.7. The following is true:

oo .
sin(nx
a g sin(nz) is not the Fourier series of an element in L!(T);
ogn

n=2
. cos(nx)
b Z is the Fourier series of an element in L'(T).
o logn

Let us check a. Suppose by contradiction that it is the Fourier series of f € L!(T). From
the Fourier series we conclude that

2m
; f(z)dz = 0. (8.9)

We consider now

F(z) = /0 " Fyt.
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Then from the latter and from (8.9) we obtain F' € AC(T). It is easy to check from the
definition of Fourier series that the series of F' is obtained formally integrating term by term
the series of f. We have in particular (the Fourier series of a AC(T) function converges
pointwise to the function) the pointwise convergence of the series with

ap = cos(nz)

F(x) = for all x € R

2 = n logn

for some constant ay € R. In particular, from F(0) = 0 we have the following, which
obviously gives a contradiction,

=1
RBCLO:QZ = 4o00.
n=2

nlogn

The discussion of b is more complicated and we refer to p. 183 Zygmund [17] for the
following which generalizes b. Consider a series

[e.e]
% + nz:l a, cos(nx)

where the sequence satisfies the following two hypotheses:

. —
lanui’l}O;

ii the sequence {a,} is convez, that is ap4+1 + an—1 — 2a, > 0 for all n > 1.

Then the above series is the Fourier series of an element in L!(T).

8.2 The Closed Graph Theorem

Notice that if F and F are normed spaces, then E' x F' can be provided with the norm

Iz )l = llellz + llyll#- (8.10)

Exercise 8.8. Show that £ x F' is a Banach space if and only if both £ and F' are Banach
spaces.

Theorem 8.9. Let E and F' be Banach spaces and consider a linear T : E — F. If the
graph G(T) is closed in E X F then T is bounded.

Proof. Being a closed subspace in the Banach space E'x F', G(T') is also a Banach space. The
projection G(T') — FE is bounded, since ||z||g < ||z||g + ||Tz||F, is one to one and is onto.
Hence it is an isomorphism by Corollary 8.2. This means that E 5> z — (z,Tx) € G(T) is
a bounded map, and hence that there exists C' > 0 such that ||z|| g+ ||Tz||r < C|z| g, and
so ||[Tz||p < (C —1)||z||g for any « € E. This implies that 7" is bounded. O

The following are two examples of linear operators T : ' — F where F is not a Banach
space, F' is a Banach space, the graph G(T) is closed in E x F but T is not a bounded
operator.
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Ezample 8.10. Let F' = ¢*(N) with its own norm and E := {x = (z,,) € (}(N) : >°° | n|z,| <
oo} with the norm of ¢*(N). Clearly, E C F is a dense subspace of F, since £ O H,
H = {x = (z,) € }(N) : z, = 0 except for finitely many n’s}, which is a dense subspace
of /(N).

Consider now the map 7' : E — F defined by (7x),, = nzy,. It is clearly an unbounded
map, since otherwise, from

j"’(()7...7()7 1 ,0,--~):n(0,---,0, 1 707...),
~~
n-th position n-th position

we would get the absurd conclusion

HT(O7"' 0, \1,_, ’07"')”61(1\1)
n-th position
—+
:’I’LH(O,,O, \ 1 , 503)||€1(N):n£—io_>+()o§HT||E*>F<+OO
n-th position

Yet the graph G(T) C E x F is closed. Indeed, suppose that {(x,,Tx;,)}nen has limit
(x,y) in E x F. Then x, 22> x in ¢!(N) implies that for any m € N, we have x(m) =
n—-+00

liIE X,(m). Similarly, Tx, ——— y in £}(N) implies that for any m € N, we have
n—-+0o0

y(m)= lim Tx,(m)= lm mx,(m) = mx(m). This means that y = T'x, and so that
n—-+o0o n—-+0o

G(T) C E x F is closed.
The map T : E — F is clearly invertible, with inverse T-! : F — E defined by

(T~ %), = x—". Clearly this map is bounded. And yet T', as we saw above, is not bounded.
n

A more interesting but similar example, is the following one.
Ezample 8.11. Let F = C°(]0,1]) with the norm L*([0,1]) and E := C*([0,1]) with the
norm as subspace of F. It has been already proved that F C F' is a dense subspace of F'
(Exercise:why?).
d
Consider now the map 7' : E — F defined by Tf = T f. It is clearly an unbounded

map, since || Tt"|| 1o 0,1y = nl[t" || 1o(0,1)) = 7 and so, like above if it was bounded we
would have

+
T | 1o 0,1)) = Pl | oo (o)) = 1 > +00 < | T||pF < +00.

Yet the graph G(T') C E x F is closed. Indeed, if (fn, ifn> oo, (f,9) in E x F, notice
that . .
£(£) = lim fu(t) = lim £, (0) + lim / Tfo(s)ds = £(0) + / g(s)ds

d
from which we conclude that f € C1([0,1]) with @f =g.

Unlike in Example 8.10, here the map T : E — F' is not invertible, since it is not one
to one.
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9 Projections and complemented subspaces

Definition 9.1. A vector subspace F' of a topological vector space E is said complemented
if it is closed and if there is a closed subspace G of E such that

E=Fe&gG, (9.1)

that is, E=F + G and FNG =0.

Exercise 9.2. Let E be a topological vector space and £ = F & G with F' and G closed.
Show that then F is isomorphic to the product F' x G.

In the next two lemmas, we consider to classes of examples.

Lemma 9.3. Let E be Banach and let F be a subspace of finite dimension n. Then F is
complemented.

Proof. First of all F', being isomorphic to K™, is complete and so closed in F.

Consider a basis fi, ..., f, of F and write z € F as x = Z?Zl x;f;. This defines bounded
operators ¢; : F' — K by ¢;jz = x; which we extend by Hahn Banach. Set G := N}_; ker ¢;.
Obviously G is closed.

We have FFN G = 0 because if x = Z?zl xjf; is such that ¢z = x; = 0 then z = 0.
Furthermore, given z € E with ¢;2 = x;, set x = Z?Zl xjfj. Then ¢;(z —x) =0 for all j
and so 2 =z + (2 — ) with x € F and (2 — z) € G.

So we have proved E = F @& G. O

Lemma 9.4. Let E be Banach and let F be a closed subspace of finite codimension. Then
F' is complemented.

Proof. The space E/F is a finite dimensional vector space and we can consider the projection
m: E — E/F. Consider elements g, ..., g, € E which project into a basis of E/F. Then
their span G is a closed complement of F. O

Definition 9.5. Given a topological vector space E, an operator P € L(F) is a projection
if P2 =P.
Exercise 9.6. Show that if P is a projection, also 1 — P is a projection.

Exercise 9.7. Given £ = X @Y with X and Y closed, show that the maps P(x +y) =«
and Q(x 4+ y) = y are projections.

Answer. First of all any x € X can be written uniquely as x = x 4+ 0 as a sum for the
form x = x1 + y; with 1 € X and y; € Y, and hence Px = x for any « € X. Hence, for
2z = x4y we have Pz = x and P?z = Px = . This means that Pz = P?z for all z € E.
The same holds for ). Next, let us consider the product X x Y with the norm the like in
(8.10). Then

X xY 3 (x,y) > x+y € Fissuch that ||z + y||lg < ||z||lg + ||yl
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by the triangular inequality, and hence is continuous. It is also a bijective map. Since
X and Y are closed subspaces of F, they are Banach spaces, and so is also their product
X x Y. Then by Corollary 8.2 the above map is an isomorphism. Hence the inverse map,
which is given by

E>z— (P2,Q2)e X XY
is bounded. Hence there exists a constant C s.t.
[Pz]e + |Qzle < C2] e

This in particular implies that both P and ) are bounded operators.

Exercise 9.8. Let X be a Banach space and let P, @ € £(X) such that +oo > dim R(Q) >
dim R(P).

1. Show that if P, @ are both two projections, then ||P — Q| zx) > 1.
2. Is the above statement correct if it is not true that P, () are both two projections?

Exercise 9.9. Given a topological vector space E and a closed vector subspace X, then X
is complemented if and only if there exists a projection P € L(FE) such that PE = X.

Remark 9.10. It will be obvious, later, that if X is a Hilbert space and Y is a closed
subspace of X, Y has a closed complement, thanks to the fact that there exists an orthogonal
projection on Y. Remarkably, it can be proved that if X is a Banach space which is
not topologically isomorphic to a Hilbert space, there exists in X a closed subspace not
complemented. For example, cy(N) is not complemented in £>°(N), see [1]. Similarly, C§(R)
is not complemented in L*>(R).

Lemma 9.11. Let T € L(E, F) be an onto bounded operator between two topological vector
spaces. Then the following are equivalent:

1T has right inverse (that is, S € L(F, E) with T oS =1dp).
2 kerT is complementary in E.

Proof. 1f we assume 1, then S(F') is such that E = ker T + S(F') and kerT' N S(F) = 0.
By T € L(E,F) we conclude that T': S(F') — F' is a bounded operator. By hypothesis,
S:F — S(F) C E is a bounded operator. Since T'o S : F' — F' is the identity, we conclude
that T': S(F) — F is onto. We know from ker 7'N S(F) = 0 that T : S(F') — F is one to
one. So S : F — S(F) is the inverse of T': S(F') — F. This implies that T : S(F) — F
is an isomorphism between Banach spaces. In particular, S(F) is closed in F, and so is a
closed complement of ker T" in E.

If we assume 2, let E = kerT @& G. Then T(E) = T(G) = F,and T : G — F is an
isomorphism. So there is an inverse. O
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Exercise 9.12. Let F be a Banach space which is not topologically isomorphic to a Hilbert
space, and let F' be a closed subspace of E which is not complemented. Show that the
immersion j : F' — E cannot be extended into a bounded operator £ — E.

Answer. If there exists an extension T' € L(E,F) of j, then we can consider the
closed space kerT'. It is easy to see that kerT'N F' = 0 and that kerT + F = E. So F is
complemented and we derive a contradiction. ]

Some of the most important projections come up when dealing with the spectrum.

Exercise 9.13 (Spectral projections). Let X be a Banach space on C, let A € L£(X),
and let v an counterclockwise oriented closed path which is topologically a circle inside the
resolvent set p(A). Show that

1
P:=——— [ Ry(2)dz, 9.2
AA<> 9.2)

27

is a projection. In particular, show that if o(A) is wholly contained inside the bounded
region delimited by v, then P is the identity operator (this has already been shown in
Example 5.40).

Answer. We can represent P also using a different path o, fully contained in the region

enclosed by . Then
1\2
PP=(— ! dzd?'.
<27ri> /a/yRA(Z)RA(Z) zdz

Now notice that we have the important resolvent identity
RA(Z)Ra(z) = (2 — 2)~* (Ra(?') — Ra(2)) -

So, inserting this in the previous formula, we get

1 1 1
P?=—— [ dZRa(?)=— /(z — 27tz + 2,/dzRA(z) /(z’ —2) Y
v v o

o 2mi mi 2ri
1

1
= ./RA(Z')Ind(’y, z/)dz’—l—Q,/RA(z)Ind(a, z)dz.
- i J,

27

Since each z € « is in the outer component in the complement of the path o, we have

Ind(o, 2) = 0. Since each 2’ € ¢ is in the inner component in the complement of the path
7, we have Ind(v,2') = 1. So

P2 = b

2ri J,

Ru()dz' = P. (9.3)

Since the operator in (9.2) is in £(X), we conclude that (9.2)-(9.3) imply that P is a
projection. ]
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Exercise 9.14. Let X be a Banach space on C, let A € £(X) and z € p(A). Show the
commutation formula [A, Rs(z)] = 0.

Then, for v a closed path in p(A) and for P defined by (9.2) show the commutation formula
[A, P] = 0.

Answer. We have (A — z)A = A(A — z). So, applying R4(z) both on the right and on
the left, we have

Ra(2)(A—2)ARA(z) = Ra(2)A(A— 2)Ra(z) = ARA(2) = Ra(z)A
that is [A, Ra(z)] = 0. Next, [A, P] = 0 follows by

AP = —ALR (2)dz = —;mfyARA( 2)dz = —1LRA( )Adz—l,fyRA(z)dzA:PA.

2mi 27 21

O

Ezample 9.15. Suppose o(A) = X1 U 39, where 3; is wholly contained inside the bounded
region delimited by ~ of Exercise 9.13, while X5 is in the unbounded region Then

A=PA+(1-P)A4, (9.4)
with 0(PA) = ¥, and o((1 — P)A) = ¥5. Finally, the splitting
E =ker P& R(P), (9.5)

where R(P) = PX, is left invariant by A by Exercise 9.14.

Notice that, by iterating as much as possible (9.4)—(9.5), one gets the spectral decom-
position of A, which is akin to the decomposition (modulo conjugation) in Jordan blocks of
a matrix.

Let us show that restricting A to F':= R(P) we have Yo C p(A). Recall that, the P in
(9.2) reduces to the identity in operator in F. But then, like in the discussion in 5.40 it is
possible to show that we can define like in (5.28) the operator

1

T:=—— [ (z = A\)"'Ry(2)dz for any \ € %y. (9.6)
271 J,

Then we claim that T = (A — \)~! € L(F) for any A € ¥5. Indeed, for o like above

(A— A)T—i ( — MRy (2)d' 1/(2—)\) 'RA(2)dz

27 271

<27r1> //z ~ NRa(2)(z = XN) T Ra(2)d=d?!

=5 | 4 = VR )271“/7(2—» Wz — ) lde

ton L dz(z — A)_lRA(z)%ﬂ /g(z' (= 2)ld

= —L. (2 = N Ra(2)Ind(y, 2') (2" — )7tz + 2%“ /(z — A RA(2)Ind(o, 2)(z — N)dz=.
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Now, like before Ind(o, 2) = 0 for z € v and Ind(v, 2')dz’ =1 for 2’ € o . So, in F
1

2mi J,

(A-NT = Ru(2)dz' =1

Since also, by the commutations in Exercise 9.14, we have T(A — \) = (A — \)T =1, our
claim is proved.

Ezample 9.16 ( Leray projector). One of the most famous projections in the theory of
Partial Differential Equations is the Leray projector. If L?(T% R%) are the L? vector fields
on T? and if H(T% RY) are the L? vector fields with 0 divergence, that is they satisfy (recall
from (7.9)that V - u(n) = in - G(n))

d
anﬂj(n) =0, where n = (ny,...,nq),
7j=1

then P : L2(T¢,RY) — L?(T%,R?) is the orthogonal projection on H(T? R?) and is defined

by ‘

_ w(0)ifn=0

(Pu)” (n) = § 5 (n) - W S njngi(n) if n # 0. (9.7)
There is a version with T¢ replaced by R?.
Exercise 9.17. a Check that P is indeed the orthogonal projection of L?(T¢,R%) on H(T%, R%).

b Check that ker P is formed by the conservative fields in L2(T%,R9).

Exercise 9.18. Let X be a topological vector space and P € £(X) a projection. Show that
o(P) C {0,1} and that X = ker(P) @ R(P) with P =0 1 is its spectral decomposition.

10 Weak o(FE, E') topology

Definition 10.1. Given a topological vector space E, we consider the (weak) o(E,E")
topology, that is the topology which has as subbasis of seminorms the family {|f|}rcp.

Exercise 10.2. Show that for any z¢ € E a basis of neighborhoods of x( for the o(E, E’)
topology is of the form
Vo (f1s ooy frr€) = {z 1 |fj(x — x0)| < e for j =1,...,n} where (10.1)
neEN, fi,....fn € B and € > 0.
Exercise 10.3. Show that the o(E, E’") topology is the weakest topology on F such that
all the linear functionals f € E’ are continuous functions.

Exercise 10.4. Show that if E is a topological vector space on C, the two weak o(FE,E")
topologies, one from linear functionals on R and the other from linear functionals on C,
coincide.
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Lemma 10.5. If F is a locally conver space, then is Hausdorff for the weak o(E,E")
topology.

Proof. We consider first the case K = R. Let xg # z1 in E. Then we can apply the 2nd
geometric form of Hahn—Banach Theorem 6.16 and conclude that there exists f € E' and
o € R such that f(zg) < a < f(z1). Then f~!(—o00, ) is an open neighborhood of ¢ and
f~ (@, +00) is an open neighborhood of x; for the weak o(F, E’) topology and these two
open sets are disjoint. O

Notation 10.6. When a sequence {x,} in X converges to z in a weak topology we will
write x,, — .

Lemma 10.7. Let E be a topological vector space and let x,, be a sequence in E. Then:
1z, — x for o(E, E') if and only if f(xz,) — f(x) for any f € E'.
2 If x, — x strongly, then x, — x for o(E,E').

Suppose now that E is a normed space.

3 If v, = x for o(E, E') then {||z,|| g} is bounded and ||z||p < liminf ||z, | .
4 If v, = x for o(E,E') and if f, — f in norm in E', then f,(x,) — f(z).

Proof. We prove only 3. For any f € E' we know that f(x,) — f(z) and so that {f(z,)}
is bounded. If this holds for any f € F’, this implies by Banach Steinhaus that {||z,| g} =
{|[Jzn|| g~} is bounded (recall the canonical isometry J : E < E” in Lemma 6.23. Next,

@)= lm [f(zn)]= lm |f(zn,)]

n—+oo k—4o0

for any subsequence {ny}. If we take this subsequence so that ||z, | g K20, Jim Jirnf |lxn || 2,
n—-+0o0o

we conclude

F@) = T [f )] < 1l T e )le,

and so ||z||g < liminf ||z, g.
n—+0o00
O

Exercise 10.8. Prove that if £ is finite dimensional, then the strong topology and the
o(E, E') topology coincide.

Theorem 10.9. Let E be a locally convex topological vector space and consider a convex
set C C E. Then C is closed for the o(E,E") topology if and only if it is closed for the
strong topology.
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Proof. Suppose C is strongly closed. Consider 29 € [C. By the 2nd geometric form of
Hahn-Banach Theorem 6.16, there is f € E' and o € R with

f(zo) < a < f(x) for all z € C. (10.2)

On the other hand

V={y: fly) <a}

is an open set for the o(F, E’) topology containing x, and so in particular it is an open
neighborhood of zq for the o(E, E’) topology. Since by (10.2) we have V' C [C, we conclude
that any point zg € CC' is an interior point of CC for the o(E, E') topology. So CC is open
for the o(E, E’) topology and, hence, C is closed for the o(FE, E’) topology.

If C is closed for the o(FE, E’) topology, it is closed also for the, stronger, strong
topology. O
Remark 10.10. There is no analogue saying that a convex C C E’ closed for the strong
topology in E’ is closed also for the o(E’, E) topology introduced in Sect. 11 below. One
example is ¢(N), which is a closed vector subspace in ¢>°(N) for the strong topology but
not for the weak o(¢>°(N), /}(N)) topology. See Example 11.7 below for the reason.

Lemma 10.11. Let E be an infinite dimensional Banach space and let U be an open subset
for the o(E, E") topology. Then U contains a line.

Proof. Let g € U. Then U contains a neighborhood of z for the o(E, E’) topology of the
form

Vi={z:|fj(x —z0)| <e j=1,..,n} for some fi,...f, € E. (10.3)

Notice that, for f : E — R™ defined by f(z) = (f1(x), ..., fn(x)), ker f has finite codimension.
Since FE is infinite dimensional, this means that ker f has infinite dimension, and so in
particular it contains a line. Finally, g +kerf CV C U. ]

Corollary 10.12. Let E be an infinite dimensional normed space. It is not metrizable for
the o(E, E') topology.

Proof. Suppose by contradiction that there is a metric d and consider the balls U,, = {x :
d(x,0) < 1/n}. Then, since each U, is open, it contains a line, and in particular there exists

xn € Uy with ||z,||g = n. Then obviously z, D240 0 in (E,d), that is , — 0 in the

o(E, E") topology. But ||z,|lg =n D2H0, | 00, contradicting Claim 3 in Lemma 10.7. O

Exercise 10.13. Consider an infinite dimensional normed space E, and suppose that there
exists X C E’ countable and dense in E’ (i.e. E’ is separable, c.f. below). Is the topology
on E which has as subbasis of seminorms the family {|f|}sex the same as the o(E, E')?

Answer. No, because if yes, then E with the (weak) o(E,E’) topology would be
metrizable by Exercise 4.28. But, by Corollary 10.12, this is not true. O
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Lemma 10.14. If E is an infinite dimension normed space, then the unitary sphere S =

{z : ||z||g = 1} has closure in the o(E, E") topology which equals Dg(0,1) = {x : ||z||g < 1}.

Proof. Let ||xo||r < 1 and consider a neighborhood V' of zg of the form (10.3). Let now
yo # 0 with fj(yo) = 0 for all j. Consider g(t) := ||zo + tyol|lr. We have g(0) < 1,
limy_, o g(t) = +00 and so there is ¢y > 0 so that g(t9) = ||zo+toyol|z = 1. Notice now that
xo+tyo € V for any t. Hence we see that SNV # () for any V’s of the form (10.3) Since there
is a basis of neighborhoods of ¢ for the o(E, E’) topology of the form (10.3), we conclude
that any xo € Dg(0,1) is an accumulation point for S for the o(F, E’) topology. Then the

closure of S for the o(E, E") topology contains Dg(0,1) and the closure Dg(0, 1)) 5.5 of
o(E,E’

Dg(0,1) for the o(E, E') topology. The latter is a closed set also for the strong topology of
E (all the closed sets for the o(E, E’) topology are also closed sets for the strong topology).

Then Dg(0, 1)‘ 5.5 D Dg(0,1). On the other hand Dg(0,1) is closed for the o(E, E’)
topology, see in Theorem 10.9 above. Hence we have proved that the closure of S for the
o(E, E') topology coincides with Dg(0,1). O
Remark 10.15. Dg(0,1) has empty interior in the o(E, E') topology, in the infinite dimen-
sional case. Indeed, if V' is an open set for the o(FE, E’) topology contained in Dg(0,1), it
contains an open set V for the o(FE, E’) topology of the form (10.3) which contains a line.

Hence, for no such V' we can have V' C Dg(0,1).

Exercise 10.16. Consider a normed space E, and suppose that there exists X C E’
countable and dense in E’ and consider the topology 7 on E which has as subbasis of
seminorms the family {|f|}scx. Show that the topology induced on Dg(0,R) and on
Dg(0,R) for any R > 0 by (E,7) coincides with the topology induced by the o(E,E’)
topology. Prove that Dg(0, R) and Dg(0, R) with the o(E, E’) topology are metrizable.

Ezxample 10.17. While Lemma 10.14 might seem surprising, in fact it is quite natural. To
see this consider f € LP(RY) for 1 < p < co with ||f||z» = 1 and let {z,} be a sequence in
R? divergent to infinity. Then obviously ||f (- — z) [|zr = 1. We claim that f (- — 2,) — 0
for o(LP, (L?)"). We will see later that (LP(R?) = L (R%). Then our claim is equivalent to
the following statement,

(F(-=an),9) 2252 0 for all g € L' (R?). (10.4)

To prove (10.4) suppose that €y := supp f and Q; := supp ¢ are both compact. Then
supp f (- — xn) = xn + Qo and, since {z,} is divergent to infinity, then there exists ng € N
such that for n > ng we have (z,, + Q) N2y = (. But then we conclude that

(f (- = xn),g) =0 for n > ny. (10.5)

Now let us assume that f and g are not of compact support. Nonetheless, we will see later
that there exist f and g in C2° (R?) with

If = fllzr < eand |lg =gl <e
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Then, from

(f (=) 9)
= (FC=20).g) + (FC—m) = FC=20),G=9) + (F (= 2) = (= 20).9) +{ (- = 20) 9~ )

we obtain

[ C=2a) ) S I(FC=20),3) [+ 16 = 20) = F (= 20) [0llg = 3
1 =) = F = 20) lollgllw + 15 ¢ = 2) 122 llg = 3l
<I(FC=20),3) |+ +eligllw + [1fll e

By the previous argument there exists n. € N such that for n > n, we have | <f( —Ty) ,§> | =
0 we conclude

[{f (= 2n),9) | <€ +ellgll o + I flLre for n > ne.

By the arbitrariness of € > 0, this implies (10.4).

Exercise 10.18. What can be said of {f (- — xy)}nen for z, 12F0 oo in LY(R%) if
f#07

Answer. Then we cannot say that f(-—x,) — 0. If for example [, f(z)dz # 0,
then (f (- —2n),1) 11100 = Jpa f(2x)da is incompatible with f (- — x,) — 0. On the other

hand, since for any ¢ € CO(RY) we have (f (- — Zn), @) 11y o0 22F, 0, we cannot have

fl—zn) — g for some g € L'(R?) different from 0.
If fRd x)dx = 0 it is not restrictive to assume that in a disk D we have a :=
f D x)dx > 0. Let now

o0
U (D + )

By taking a subsequence, we can assume that the {D + z,,} are disjoint and that

1f(- = (@n —2i) (D) < 2777 g for all j # n.

Then

/Rdf(m—xn Ix(x dac—/f Ydx + Z /fx—xn 1p(x — z;)dx

jzlj#n
=a- Z Hf(~—($n—$j)HLl(D) >a— Z 277 lg =27 > 0.
Jj=21j#n J=1,j#n
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Remark 10.19. Notice that by the Theorem 12.1 and by Theorems 15.5-15.6, for 1 < p < o0
the closed ball Dypra(0,1), is compact for the o(LP(R?), (LP(RY))") topology which, by
Exercise 13.7 and the fact that the (LP(R%)) = L? (R%) are separable, is a compact metric
space. We know that given any sequence in a compact metric space, we can extract a
convergent subsequence.

The closed ball D1 (ga)(0, 1), on the other hand, is neither compact, see Theorem 12.1,
nor metrizable for the o(L'(R%), L>°(R%)) topology. So, given a sequence in Dpigay(0,1),
we cannot conclude that it has a convergent subsequence for the o(L'(R%), L>(R%))) topol-
ogy. See also Remark 10.31 for a simple bounded sequence in ¢!(N) which does not have
convergent subsequences in the o(¢}(N), £*°(N)) topology.

Ezample 10.20. Brezis [4, Exercise 4.38] considers the case of the sequence

n—1
Uy, = ”Zx[i,@rL}‘
=0 n'’n ' p2
First of all, it discusses the fact that
1 1
lim Up fdx = / fdz for all f € CY([0,1]). (10.6)
n—+o0 Jq 0

This is easy to see, because

/Olunfdxzngéi+é ( )dz:%—nZ/i 12< f(i))dm.

Now, by the fact that f € C°([0,1]), it is Riemann-integrable, and so

L) B ()= [

On the other hand, f is uniformly continuous. So for any € > 0 there exists 0 > 0 such that
for any interval I C [0,1] with |I| < § we have osc;f < e. So in particular, if n? > 1/§ we
have

M

This proves (10.6).

If now there exists a subsequence with wu,, weakly convergent to some u € L'(0,1), from
(10.6) it must be u = 1. On the other hand u,, / 1. To see this notice that |[supp u,| = =
Choosing a further subsequence, we can assume that 3, [supp un, | < 1. So [J;, supp un, &

1if o & |J, supp un, _ .
(0,1). So, ifsay f(z) = {0 if 2 € L, supp ty, we have (uy,, , f) = 0 for all k& while (1, f) > 0.
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Ezample 10.21. Let now fo, f € Dppgay(0,1) with compact support and with || foll7, +
| fl7» = 1. Then, since for n > 1 the supports of fo and f(- — x,) are disjoint, for n > 1

o+ £ =l = [ ) +f(93—xn)|1’dx>;

= ([ s+ [ 156 -2 |pdm) — /1ol + 171, =

while fo + f(- — xn) — fo for o(LP, (LP)").

Ezample 10.22. More generally, for fo, f € Dppgay(0,1) with [|foll7, + [ flI7, = 1 and
supp f compact we claim

m o+ 10— 2a)llze = (ol + 11 =1 (10.7
Indeed, for € > 0 let g. € C°(R?) with || fo — gel|zr < €. Then

lge + f( = @n)llze = [[fo = gellr < [[fo+ f(- = @n)llze < llge + (- — 2n)llze + [ fo — gellzr

yields

lgely + 171, = € < timinf || fo + £ = o) o < limsup | fo + £ = z)lliw < llge + F(- = wa) 1o + e
n—-+o0o

Taking the limit € — 0% we obtain (10.7).
Then

Jo+ f(-—xn)
1o+ f( = @n)llzr
So we have proved that for any fo € Dpp(ra)(0,1) there is a sequence { f,} with || fu|[zr =1
such that f, — fo for o(LP, (LP)).
Ezample 10.23. In the previous examples we exploited the group action of R% on LP(R9),
specifically spacial translations. Dilation provides another example of group action. Let for

da
example fy(z) := A7 f(Ax). Notice that ||fy|lrr = ||f||Lr and let again assume 1 < p < oc.
We claim that

— fo

fr, = 0in LP(RY) if A, 227520 0o (10.8)

Suppose that f € L'(RY)NLP(RY) and take g € L” (R?). Suppose initially that g € CO(R?).
Then by dominated convergence we have

/Rd A f ) g () dar = )\n—d(l—%) f(x)g (;\i) dx (10.9)

= [ M Fua)gla)de = A / fa () =55 [ rentrg©) tim A
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By a density argument it is easy to conclude (10.8).
We now claim that

fr, — 0in LP(RY) if A, 225225 ot (10.10)

By the above computation

(fans9) = <f79i> Lmary))

where g1 — 0 in L' (R%) by (10.8). This yields (10.10).

n—-+o0o

Exercise 10.24. What can be said of {\%f(A\,2)}nen for A, 2% 400 in LY(RY) if
f#07
Answer. For g € BOO(RY)

/ M f(\z)g(x)de = flx)g <f> dr 220 f(x)dzg (0). (10.11)
Rd R4 n Rd

This shows that for [ f # 0, then if A, D70, oo it is not true that M f(A\) — 0.
Rather, as measures, A% f(\,z)dz converge to ([ fdx)§(z)dx, with §(z) the Dirac delta
centered in 0 (see next semester). Notice that for any g € BC(R?) with g(0) = 0 the limit
in (10.11) is 0, and so there cannot be any 0 # u € L*(R?) with A% f(\,-) — u.

Let now [ f = 0. It is not restrictive to assume that on a closed disk D C R? not
containing 0, we have a := [, f(x)dz > 0. Let now

X := D A\ tD

n=1

By taking a subsequence, we can assume that the {\, 1D} are disjoint and that
HfHLl()\n)\j—lD) < 2777 1q for all j#mn.

Then

/Rdng(Anan(x)dx:/Df(x)dx+ > /RdAgf(Aan(ij)dx

i>1j#n
—at 3 [ o0 hade=a+ 3 [ fada
jzLjtn R i1 #n A D
=a- Z ||f||L1(>\n/\._1D)>a_ Z 277 g =9271a > 0.
j>1j#n ’ j>1j4n

Another construction is the following, if we have a nonzero f € L'(R?) with Jraf=0
and such that there exists an infinite cone C' in R? with tip 0 € R¢ such that fC f>0.
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Then, for any sequence A, Lima N 400, we do not have A f(\,-) — 0 for the (L', L>)

topology. Indeed,

d = d xT)ar = xT)ax .
/Rd )\nf()\nx)lc(m)dx_/c)\nf(An )d /Cf( )dz > 0

O
Remark 10.25. Consider the sequence {A% f(Anz)tnen for Ay 2=2% 400 and f € L(RY)

with || | 1 (mey = 1. Notice the crucial difference between thinking D1 (gay(0,1) in (CO(RY)Y,
where it is relatively compact and metrizable for the o ((Cg(Rd))’, o (]Rd)) topology, and in
(L°°(R%))’, where it is relatively compact but not metrizable for the o ((L>(R?)), L°(R?))
topology.

Corollary 10.26. Let E be a locally convex space. If ¢ : E — (—00,+00] is convex, then it
is lower semi continuous for the o(E, E") topology if and only if it is lower semi continuous
for the strong topology.

Proof. Indeed for any a, C = {z : ¢(z) < a} is convex since ¢ is convex, and is closed in
one topology if and only if it is closed for the other.

O
Ezample 10.27. Let E = ¢? (N,R) and consider for any n € N the sequence e, := {J;, }jen
with 6;, = { (1]’ i;,f]f]_#nn; Of course we get a sequence of linearly independent vectors.

Adding to this sequence further vectors we can obtain a Hamel basis B of E. Now consider
the linear map ¢ : £ — R such that

b(x) = (=1)"n, if x = ey;
10, if x is any other element of the basis B.

This defines a non continuous linear map ¢ : E — R. Notice that e, — 0 for o(E,E’)
because we are in a similar situation as Example 10.17. On the other hand ¢(0) = 0 and
liminf, o ¢(e,) = —00. So obviously it is not true that

H(0) < lim inf ()

and so ¢, which is a convex map, is not weakly (or strongly) lower semicontinuous.

Exercise 10.28. Show that if F is a topological vector space on R and if ¢ : £ — R is any
non continuous linear operator then ¢ is not lower semicontinuous.

Notice that in a normed space E, the fact that x,, — = implies ||z||g < liminf ||z,| g
follows from the fact that ¢(x) = ||z||g is convex and continuous (and therefore also lower
semi continuous) in the strong topology.

Corollary 10.29. Let E and F be two Banach space. Then, a linear map T : E — F is
continuous in the strong topologies if and only if it is continuous from the o(E, E’) to the
o(F, F") topologies.
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Proof. Suppose T is continuous for the strong topologies. Then, for any f € F’, the map
x — f(Tx) is continuous in E. Hence f oT € E’. Notice that if 7 is the weakest topology
in FE for which foT € FE’ for any f € F’, this is exactly the weakest topology 7’ in E
which makes T : E — (F,o(F,F’)) continuous. Indeed, the open sets for 7/ are of the
form T~ A, with A open set in (F,o(F, F')), and the open sets of the latter are generated
by f~(I), with f € F’ and I open in R. So, the open sets for 7/ in E are generated by
T-1f~Y(I) = (f o T)~(I), and hence they coincide with the open sets of 7. So 7 = 7'.
So (E,T) EiN (F,o(F,F")) is continuous. On the other hand, the o(E,E’) topology is
obviously stronger than the 7 topology, so we conclude that (E,c(E, E')) KN (F,o(F, F"))
is continuous. Notice that for this part of the proof, we did not use the Banach structure
of £ and F.

For the opposite direction, the graph G(T') is a vector subspace and so a convex subspace
of E x F. Furthermore, the continuity of (F,c(E, E')) KN (F,o(F, F")) implies that G(T)
is closed in E x F for the o(F, E’) x o(F, F') topology (for any continuous map f: X — Y
between two topological spaces, the graph of f is closed in X x Y). Furthermore, the
o(E,E") x o(F,F") topology coincides with the o(E x F,(FE x F)') topology. Then, by
Theorem 10.9, G(T') is closed in E x F for the strong topology. Then T is continuous for

the strong topologies by the closed graph Theorem 8.9.
O

Exercise 10.30. a For 1 < p < oo find that there are sequences in ¢P(N) converging
o(P(N), /7' (N)) weakly to 0 but not strongly.

b Show that a sequence in ¢!(N) converging o(¢!(N),£>*(N)) weakly to 0, it does so also
strongly.

Answer. For a is enough to consider sequences of the form {f(- — n)}nen.
Let us turn to b. Suppose the statement is false. Then it is easy to see that there is a
sequence { fp(-) bnen in £1(N) such that f, — 0 but || f, 2y > 1 for all n € N. It is easy to

see that f,(m) 22H%0 0 for any m € N. Then it is possible to define a sequence of disjoint

intervals {[Ny, Mj]}ren such that My < N1 such that there is a subsequence { fn, (+) }ren
and such that

o 1 1
J=Nk JEINk, Mp]
and define g € ¢>°(N) by
N Signfnk(j) fOI"j S [NkaMk]

99



Then [|gl[¢o ) = 1 and

(e 9) = ank i)+ Y Ful ernk D IR0 B

(10.13)

k—+o0

And so it is not true that (f,,,g9) — 0 and that f, — 0.

Remark 10.31. Notice that the sequence {e,}nen in ¢1(N) is obviously not convergent
strongly and so, by item b in Exercise 10.30, neither weakly. Notice the connection with
Remark 10.19.

Remark 10.32. Suppose that {f,(-)}nen is a sequence in ¢!(N) such that Jf, — f** in
(¢°(N)) in the topology o((¢>°(N))’,#>*(N)). Then in fact f** = Jf with f € ¢}(N) and
we have f, nooo, f strongly in £}(N). Notice that this is true even though we know that
JOY(N) S (1=(N))'.

To prove the above statement notice that like in the solution to Exercise 10.30, a
function f remains defined. By Fathou’s Lemma we have f € ¢!(N) with £l <

liminf,, s oo || fulletv)- It is not restrictive to assume f = 0. Proceeding by contradiction

we assume that it is not true that f, Uima Ny strongly in ¢!(N). Then it is not restrictive

as above to assume || fu[[;1(vy > 1 for all n € N. Then we can extract a subsequence like in
Exercise 10.30 and this time we define g € ¢>°(N) by

o _ J(=1)Fsignfy, (5) for j € [Ny, My)
9(3) = { 0 for for j ¢ UZ‘;l[Nk,]\Zk]. ’ (10.14)

Then, for k even we have (f,,,g) > 1 like in (10.13). For k odd we have

M,
(i 9) = Z P9+ D Fa@el) < (CDF D I+ Y ()l <

J=Ng JE[Ng,My] J=Ng JEI Nk, My]
Hence {(f,,9)} is not a convergent sequence, but this contradicts the fact that Jf, — f**
n (¢*°(N))" in the topology o((¢>°(N))’, ¢*°(N)).
O

11 Weak o(E', F) topology

We will consider a Banach space E. Then we know that E’ has a structure of Banach space.
On the other hand E’ has also the o(E’, E”) topology. We will consider on E’ also the weak
o(E', E) topology.

Definition 11 1. Given E’, the weak o(FE’, FE) topology, has a subbasis of seminorms the
famﬂy {‘ E><E’

}xEE'
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Lemma 11.2. E' is Hausdorff for the weak o(E', E) topology.

Proof. Given fo # f1 in E’, there exists x € F such that fo(x) # fi(x). It is not restrictive
to assume that fo(r) < a < fi(z) for some a € R. But then

{feE: flx)<a}resp. {f € E: f(x)>a}
are disjoint open neighborhoods of fy resp. fi. O
Exercise 11.3. Consider E’ with the weak o(FE’, F) topology. Then show for any fy € F

a basis of neighborhoods of fj is of the form

Vi (@1, ooy tn, €) = {f | f(xj) — fo(x;)| < efor j=1,...,n} where (11.1)
neN, zy,...,z, € E and € > 0.
Exercise 11.3 implies the following.

Corollary 11.4. The topology in E' is the weakest topology such that for any x € E the
evaluation map (x, f) g g = f(2) is a continuous map from E' to R.

Proof. This follows from the fact that a basis of neighborhoods of any fo € F’ is of the
form (11.1). O
Notice that as a consequence, we get the following.

Corollary 11.5. Let F : (Y,7) — (E',0(E',E)) where T is a topology on Y. Then F is
continuous if and only if y — (x, F(y)) gy g 1S a continuous map from (Y,7) = R for any
r e L.

O
Lemma 11.6. Let f, be a sequence in E'. Then:
1 fn— f for o(E',E) if and only if fn(z) — f(x) for any x € E.

2 If fn — f strongly, then f, — f for o(E', E)).
If fo = f for o(E', E")) , then fn — f for o(E', E)).

31If fn — f for o(E',E) then {||funllp'} is bounded and ||f| g < Uminf || f, | -
4 If fp — f for o(E',E) and if x,, — x strongly, then f,(z,) — f(x).

Proof. We prove only 3. For any = € E we know that f,(z) — f(x) and so that {f,(z)}
is bounded. If this holds for any = € E, this implies by Banach Steinhaus that {|| f,| g} is
bounded. Next,

@)= lm_|fa@)] = Tim |f, ()]

n—-+0o

101



for any subsequence {ny}. If we take this subsequence so that || f,,, || K240, i Jirnf Il fnll 2,
n——+0o0

we conclude

@] = lim |fo,@)] < 2llz, L[l fo e

and so
fllgr = sup flx)| < lim || fn|lgr = liminf || f,|| &
Ifller = sup 1SS Jm ol = Hminf 15
O
Ezample 11.7. Let co(N) > x,, := (1,....,1,0,...}. Then, for any ¢ € (co(N))" = £}(N), we
——

n times
have <Xn7£>cD(N)><gl(N) LimAEN >_7216(j). This implies that x, — xe = (1,1,1,1,...) in
o (¢ (N), ¢}(N)). Obviously {x;, }necn is not a Cauchy sequence in cg(N). Notice that co(N)
is closed for the strong topology in ¢*°(N), but not for the o(¢>°(N), /}(N)) topology.

Exercise 11.8. Let E be an infinite dimensional normed space. Is E’ metrizable for the
o(E', E) topology?

Answer. No. Suppose by contradiction that there is a metric d and consider the balls

U, ={f:d(f,0) < 1/n}. Each U, is open. Then, each U,, must contain a line. Indeed, each

U, contains a set of the form (11.1), which in turn, is an open set also for the o(E’, E")

topology and hence, by Lemma 10.11, contains a line. Then there exists f, € U, with
n—-+0o

|| fnller = n.Then obviously f, ——— 0 in (E’,d), that is f,, = 0 in the o(F’, E) topology.

But || fllzr = n 2= 400, contradicting Lemma 11.6. O

Exercise 11.9. Suppose that F is infinite dimensional and there exists a subset X C F
countable and dense in F (i.e. E is separable, c.f. below). Is the topology on E’ which has
as sub-basis of seminorms the family {|(z,") 5, g the same as the o(E', E)?

}xeX
Answer. No, because if yes, then E’ with the (weak) o(E’, E) topology would be
metrizable. But, by Exercise 11.8 this is not true. O

n—-+00

Ezample 11.10. Let f € L>®°(RY) with supp f compact. Then if )\, “——% 400 we have
f(A\y) — 0 in the o(L>, L') topology. Indeed, for any g € C?(R9)

o)

By the density of CO(R?) in L'(R?) this yields the limit f(\,-) — 0 in the o(L*>,L')
topology.

— — +
=1 <A fllosllgllos *= 0.

fAnz)g(z)dx
R4

Proposition 11.11. Given ¢ : E' — R linear and continuous for the o(E', E) topology,
then there is x € E such that ¢(f) = f(z) for any f € E'.

This uses the following lemma.
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Lemma 11.12. Let fi,... fn, f linear forms on a vector space X such that fj(x) = 0 for
all x implies f(x) = 0. Then f is a linear combination of the f;’s.

Proof of the Lemma. Consider the map

F:X =R F(z):=(f(z), fi(x),..., fulz)).

Then a = (1,0,...,0) does not belong to F(X), which is a vector space. So there exists a
linear map R"*1 — R

(X0y 1y eey Tn) = AT + AN1T1 + oo + Ay,

which separates a and F(X). In particular, it is not restrictive to assume for allx € X

A<a<Af(z)+ > Nfj).
Then, Af(z) + > A;jfj(z) =0 for alle € X and o < 0 and so A < 0. O

Proof of Proposition 11.11. Let |¢(f)| < 1 for |f(z;)| <€, for j =1,...,n. In particular,
if f € E' is such that f(z;) =0 for j = 1,...,n, then we have |¢(¢tf)| = t|¢(f)] < 1 for all
t > 0, and this can only happen if ¢(f) = 0. Then use the lemma for X = E’ and conclude
that

o(f) = Z)\jf(:nj) = f(x) for x = ij.
j=1 Jj=1

O]

Corollary 11.13. If H is an hyperplane in E' closed for o(E', E), then it is of the form
{feFE: f(x)=a} for some xz € E and a € R.

Proof. By definition, see Def. 2.18, H is the set of solutions of ¢(f) = a for a linear map ¢
and a fixed a. By Exercise 2.19 and by the fact that (E’,o(E’, E)) is locally convex, ¢ is
continuous for the o(E’, F) topology. Then, by Proposition 11.11, there exists x € E such
that ¢(f) = f(x) for any f € E'. O

Theorem 11.14 (Banach Alaoglu). Let E be normed and consider its dual E'. Then

Dpi(0,1) :={f : || flle < 1} is compact for the o(E', E) topology.

Proof. We consider the map ® : E' — RF defined by f — f(z) for x € E. Notice that
E’ is the set of all bounded linear functions from E to R. Notice that R is the set of all
functions from E to R. So ® is the identification of any element of E’ with itself. Obviously,
® : E' — ®(F’) is bijective. It is easy to see that, with the identification of elements of
R with functions w : E — R, for the projection 7, : RF — R where z € E we have
(W) = w(x).

We want to show that ® establishes a homeomorphism E’ — E' = ®(E’), where in ®(E’)
we consider the topology as a subspace of R”, which we denote by (®(E’),7'). But the
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topologies coincide because they are both the weakest topology such that the evaluation
maps E' 5 f — f(x) € R are continuous for any z € E.
Now we consider {f : || f||z < 1} C RF and we claim it is equal to K3 N Ko, with

Ky ={w: w(@)| <|lzllg V2 € E},
Ky ={w:w(x+y) =w)+w(y),wAr) = \w(z)Vz,y € E, X € R}.

This is obvious and let us see why. Ky can be identified with the functions from E to R
which are linear. K7 N K9 can be identified with the linear operators £ — R with norm
< 1. So our claim

DE/(O, 1) =KiNkKsy

is proved. Now we show that K N K5 is compact in RF by showing that K5 is closed and
K is compact. K> is closed because

Ko = Ny yepAcy NaeR, zeE Bag

with A, , defined by the scalar equation w(z 4+ y) — w(z) — w(y) = 0 and B, defined by
the scalar equation w(Az) — Aw(xz) = 0, which are closed sets because involve continuous
functions defined in R” with values in R. For example, the function R” > w — w(z + y) —
w(z) —w(y) € R is continuous because it is a composition of continuous maps

RE 5w — (w(z+y),wx),wly) e R = w(x+1y) —wx) —wly) €R.

The space K is the product K1 = [[,cp[—|z||E, [|z]|£] of the compact sets [—||z|| g, [|z| £]
({0} when x = 0) and, by Tychonoft’s theorem, K is compact.

O
Ezample 11.15. Consider E = ¢°°(N) and the sequence {e, } in E’, where we notice that e,, €
(*(N) C E'. Then |lep||z = |lenlloqyy = 1. The sequence {e,} does not have subsequences

convergent weakly for the o(E’, E) topology. In fact, for any given subsequence {e,, }, let
¢ € £>°(N) be defined by
0 if m # ny, for all k

§m) = { (=D if m = ny.

Then [[{]lz = 1 and, clearly, (en,,&) pryp = (€nys &)y = (—=1)* is not convergent.
Hence, there is no subsequence {e,, } convergent weakly for the o(E’, E) topology. This
is related to the fact that the unitary disk Dg/(0,1) with the o(E’, E) topology is not
metrizable. Here notice that E = ¢*°(N) is not like the space F in Exercise 11.16, here
below.

Exercise 11.16. Consider a normed space F, and suppose that there exists X C F count-
able and dense in E and consider the topology 7 on E’ which has as subbasis of semi-
norms the family {| (-, %) 5/, g |}zex. Show that the topology induced on D/ (0, R) and on
Dp(0,R) for any R > 0 by (E,7) coincides with the topology induced by the o(FE’, F)
topology. Prove that Dg/(0, R) and Dg/ (0, R) with the o(E’, E) topology are metrizable.
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Ezample 11.17. For n € N let ¢,, € (¢>°(N))’ defined by
f)+...+ f(n)

<¢n7 f>(z°o(N))’xf°°(N) - n .

Notice that for any f € ¢*°(N) we have

S+ + [f(n)]

| (@ns f) oo iy ooy | < < 1 lleee oy-

This implies ||¢p | gy < 1. On the other hand
<¢m 1N>(@oo(N))/><goo(N) =1 for all n € N.

Hence ||(Z)n||(goo(N))/ = 1.
There are no subsequences of {¢,} weakly convergent for the o ((¢(*°(N))’,¢*°(N)) weak
topology. Suppose, by contradiction, that ¢,, is such a subsequence. Then, by taking a

k—+ .
further subsequence, we can assume % 2T, to00. Setting ng = 0, we define

E(m) = (=1)*if m € [np_1 + 1,n4].
Notice that [|{[|gec ) = 1 and that (¢, ,&) € [~1,1] for all k. Now we have

Sk E() Mk — Mk—1—1 Ng—1 k ke TWk—1 k

<¢nk7€> =
k—+o00

= (=1)* 4 o(1) where o(1) =2 0.

This shows that ¢, is not weakly convergent for the o ((¢*°(N))’, £>°(N)) weak topology.

Remark 11.18. See also Lemma 13.9 for a result of existence of weakly convergent subse-
quences in the context of reflexive Banach spaces.

12 Reflexive Spaces

Let E be a Banach space. Let J : E — E” be the natural immersion. It is a continuous
injection for the strong topology. We say that F is reflexive if J is an isomorphism.

Theorem 12.1 (Kakutani). E is reflexive if and only if Dg(0,1) is compact for the o(E, E")
topology.

Proof. If E is reflexive and so, by definition, J : E — E’ is an isomorphism (for the
strong topologies), then J(Dg(0,1)) = Dgn»(0,1). We know that Dg»(0,1) is compact for
o(E", E") by the Banach Alaoglu Theorem. So we need to show that J=! : (E”,o0(E", E')) —
(E,o(E, E")) is continuous. It is enough to show that E” > & — (f, J ') p«p is o(E", E')
continuous for any fixed f € E'. We have E” 3 ¢ — (f,J ' pwr = (£ flprxe and
the latter is continuous in £ for o(E”, E’), by definition. This completes the proof that E
reflexive implies Dg(0, 1) compact for the o(F, E’) topology.

Now we need to show that Dg(0,1) compact for the o(FE, E’) topology implies E reflexive.

105



Lemma 12.2 (Helly). Let E be Banach. Fiz fi,....fn in E' and aj € R, j =1,...,n. The
following statements are equivalent:

1 For any € > 0 there is . € E such that ||zc||g <1, |fj(ze) —aj| <€ forall j=1,...,n.

2 ijaj < ijfj for all bj eER, j=1,....n.
Jj=1 Jj=1 E!

Proof. We first consider 1 = 2. Indeed, it is clear that

Zb]’a]’ = hm+ ijfj(l‘G) < ijfj
= e—0 j=1 j=1

E/

Next us consider 2 = 1. If we set F' = (f1,...,fn) : E — R", Claim 1 means that
a:= (ai,...,an) € R"is a € F(Dg(0,1)). Proceeding by contradiction, we assume that
a ¢ F(Dg(0,1)). Then, there exists a vector b := (b, ...,b,) € R" and an o € R with

Y bifiw) <a <) bja; forall z € Dp(0,1).
j=1 J=1

Clearly, since the left hand side is 0 at x = 0, we have a > 0. Furthermore, by linearity, we
get

ijf](l') <a< ijaj = ijaj for all z € DE(O, 1).
j=1 Jj=1

i=1

This implies the following, which contradicts Claim 2, and so it is absurd,

> bk
j=1

n
<a< ijaj .
E’ Jj=1

O]

Lemma 12.3 (Goldstine). Let E be a Banach space. Then JDg(0,1) is dense in D (0,1)
for the o(E", E') topology.

Proof. Let £ € Dgn(0,1) and consider V' a neighborhood of ¢ for o(E”, E’), given by

V = {77 S E// . |<77 _§7fj>E”><E" < €,j = 17"'7”}'

We need to find € Dg(0,1) with Jx € V which means
[(Jz =& fi)erse = (&, [i) Exer — (&, fi)Brxpr| <eforall j=1,..n.
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Set aj = (¢, f;). Now, for any b;,j =1,...,n we have

> “bjas| = <g,ijfj> <lele | D _vifs| < |Dobifi| -
j=1 j=1 j=1 g=1 E

E''XE' B /

Then by previous lemma there is 2. € Dg(0, 1) such that |(z., fj) pxp —aj| < €j=1,...,n.
This means that Jx. € V and so we have proved that JDg(0,1) is dense in Dgn(0,1) for
the o(E", E') topology. O
Remark 12.4. Notice that, if E is a not reflexive Banach space, by Lemma 12.3 we have
JE dense in E” for the o(E", E") topology, with JE a closed space of E” for the strong
topology (because J : E — E” is an isometry and E is complete). So, like in Example 11.7,
we have another example of strongly closed convex set (here in E”) which is not closed
for the * topology (here the o(E”, E') topology), in contrast to what happens in E for the
o(E, E’) topology, c.f. Theorem 10.9.

End of proof of Theorem 12.1. We are assuming that Dg(0, 1) compact for the o(E, E’)
topology . J : E — E” is continuous for the strong topologies and so, by Corollary 10.29, for
o(E,E") — o(E",E"). This implies that J : (E,0(E,E")) — (E",o(E", E")) is continuous,
because the o(E”, E’) topology is weaker than the o(E”, E"") topology.

Since the image of a compact set for a continuous function is compact, we conclude that

JDE(0,1) is compact for the o(E”, E") topology. Since JDg(0,1) ( and by consequence also

JDg(0,1)) is, by the Goldstine lemma, dense in Dg»(0,1), then JDg(0,1) = Dgn(0,1).
But this implies that JE = E” and so, that F is reflexive. O

Lemma 12.5.

1 E Banach and M closed subspace of E. Then if E is reflexive, also M 1is reflexive.
2 E is reflexive if and only if E' is reflexive.
Proof. The topologies o(E, E') and o(M, M') coincide on M (indeed at first sight o (M, M)

is stronger than o(E, E’) because any element in E’ leads to an element in M’. By Hahn
Banach the two topologies coincide). Dg(0, 1) is compact for o(E, E') implies that Dy, (0, 1),
which is a closed subset of Dg(0, 1) for the strong topology of E and hence, since Dy (0, 1)
is convex, also for the o(F, E’) topology, is compact for the o(E, E’) topology, and so also
for the o(M, M") topology on M. This sets the 1st claim.

We consider now the 2nd claim.
Assume F is reflexive. Dp/(0,1) is compact for o(E’, E) = o(E’, E”) (by Banach Alaoglu
and by reflexivity). Hence E’ by Kakutani is reflexive.

Assume E’ is reflexive. Then, by the previous argument, E” is reflexive. JE is closed
in E” in the strong topology since J is an isometry in the strong topology. Then, by the
1st claim of this lemma, JF is reflexive, and so is E.
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Lemma 12.6. Let E be Banach reflezive and let K C E be a bounded, closed convex set.
Then K is compact for o(E,E").

Proof. Since K is bounded, there is a constant m > 0 such that K C mDpg and since the
latter is compact for o(F, E') and K, by Theorem 10.9, is closed for o(E, E’), K is also
compact. ]

Ezample 12.7. Notice that for f € L'(R%) and for A, D220, | oo the sequence Al f (Ap)da
converges as a measure to [, fdzd(z)dz. Notice that L' (R?) is not reflexive and so Lemma
12.6 does not apply.

Corollary 12.8. Let E be a reflexive Banach space and let A C E be a closed, convex non
empty set. Let ¢ : A — (—o0,+00] be conver lower semi continuous with

im  ¢(z) = +o0.
[|z|| g—o0,z€A

Then there is a point of minimum xg € A.

Proof. 1If we consider any z9 € A and we set A\g = ¢(7), then Ko = AN ¢~ ((—o00, \g)) is
compact for the o(F, E’) topology. Indeed, the fact that ¢ is lower semicontinuous implies
that Ky is closed in A, and also in E. The behaviour at infinity of ¢ implies that Kq is
bounded. Finally, the convexity of ¢ and of A, imply that Kq is convex. Then, by the

previous lemma, it follows that K is compact for the o(E, E") topology. Let us take now

a sequence g > A, := ¢(n) “—=% inf ¢(Ko) with {2, } a sequence in K. We can always

assume that {\,} is strictly decreasing (because either we can extract from {\,} a strictly
decreasing subsequence, and we can work with the subsequence, or from a certain n on A, is
constant, but the existence of a minimum points is obvious). Let K, = AN ¢~ ((—o00, \,])
for any n > 1. Then {K,,} is a strictly decreasing sequence of non empty compact subsets of
K. Then the intersection K := (,~, K, cannot be empty, by the finite collection property,
see in Exercise 1.13. The points x € K are absolute minimums. Indeed, if x € K then
x € K, for all n, and so ¢(z) < Apy1. This implies ¢(z) < nEI}Lloo Ant1 = inf ¢(Kp). Hence

¢(z) = inf (Kp) and x € K is an absolute minimum. Notice that if ¢ is strictly convex,

then there exists just point of absolute minimum.
O

13 Separable spaces

A topological space is separable if it contains a countable dense set. For example, CY([0, 1])
is separable because R[z] is dense and has a countable dense subset.

Lemma 13.1. For E a Banach space, if E' is separable, then E is separable.

Proof. Let {fn} be dense in E’. We can consider a sequence z,, € F with ||z,| g = 1 with
fn(xn) > || fallEr/2. Then the closure L of the Span{x,, : n € N} is separable. If L & E there
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exists f € E'\0 such that f(z,) =0 for all n. Since there is a subsequence f,, ktoo, fin
E’ we have

in the limit we get 0 > || f|| g/, which is a contradiction.
O

Exercise 13.2. Show that F is a reflexive and separable Banach space if and only if E’ is
a reflexive and separable Banach space.

Lemma 13.3. L>°(—1,1) is not separable.

Proof. For any a € (—1,1) consider I, = (—|al, |a]) and consider Dyeo(_1,1)(X1,,1/2)-
We claim that

DL°°(71,1)(XLZ, 1/2)N DLOO(AJ)(XI{,, 1/2) = for any a # b . (13.1)

Indeed, if there was an f such that ||f — x7,/lcc < 1/2 and || f — x7,|/lcc < 1/2 then by
the triangular inequality would imply |x7, — X1/l < 1. However, we know we have
X1, — X1.llo = 1, s0 (13.1) is true.

So {Dpee(=1,1)(X1a> 1/2) }ae(-1,1) is an uncountable family of open sets pairwise disjoint. If
there existed a dense countable set f,, € L°°(—1,1) we would have an injection I — N which
of course is impossible. O
Ezample 13.4. Notice that E := L'(—1,1) is separable while E’ = L>°(—1,1) is not sepa-
rable, so the implication E’ separable = E separable cannot be reversed.

Exercise 13.5. Show that ¢*°(N) is not separable.

Answer. Consider F := {f s.t. f: N — {0,1}}. Then give two such functions f # g
we have || f — g[go ) = suppen | f(n) — g(n)| = 1 because f(n—g(n) € {~1,0,1} and there
exists at least one n € N such that f(n) — g(n) # 0. Then {Dgeo(n)(f,1/2)}ser is a family
of disjoint disks in ¢°°(N). Since the cardinality of F' coincides with the cardinality of R, it
follows by the same argument of Lemma 13.3 that ¢°°(N) is not separable. O

Ezample 13.6. Consider a space L (X, C). Then the subspace of L>°(X) generated by the
XE, for all measurable F, is dense in L.

Indeed let g € L>°(X, C) decompose the ball ||z]|c < ||g]|co into a finite partition A1U...UA,
of disjoint measurable sets of diameter < e. Then set E; = g~ '(4;) and fix a; € A;. Then
lg — Z}Ll ajXE;llo < €

Exercise 13.7. Consider a normed space E, and suppose that there exists X C E’ count-
able and dense in E’ and consider the topology 7 on E which has as subbasis of seminorms
the family {|f|}fex. Show that the topology induced on Dg(0, R) and on Dg(0, R) for any
R >0 by (E, ) coincides with the topology induced by the o(FE, E’) topology. Prove that
Dg(0, R) and Dg(0, R) with the o(E, E') topology are metrizable.
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Remark 13.8. We have discussed in Exercise 13.7 that if E’ is separable then Dg(0,1) with
the o(E, E’) topology is metrizable. In fact, the viceversa is also true, so that Dg(0, 1) with
the o(F, E') topology is metrizable if and only if E’ is separable, see Brezis [4, Theorem
3.29].

Similarly, we have discussed in Exercise 11.16 that if E’ is separable then D/ (0,1) with the
o(E', E) topology is metrizable. In fact, the viceversa is also true, so that Dg/(0,1) with
the o(FE’, E) topology is metrizable if and only if E is separable, see Brezis [4, Theorem
3.28].

Lemma 13.9. Let {x,} be a bounded sequence in a reflexive Banach space E. Then there
exists a subsequence {xy, } weakly convergent in the o(E, E'") topology.

Proof. Consider the closure F' in F of the space Sp{z, : n € N} generated by the elements
of the sequence. Then, by Lemma 12.5 the space F' is reflexive. It is obviously separable.
Hence by Exercise 13.2, F” is reflexive and separable. Then there exists a subsequence {x, }
weakly convergent in the o(F, F’) topology. But, as we remarked in the proof of Lemma
12.5, this is the same as the convergence in the o(E, E’) topology. O

Exercise 13.10. Let X be a Banach space, X’ its dual space, (-, -) x/x x the duality product,
and Dx/(0,1) the unit ball in X’. Consider a bounded sequence {x,,n € N} C X such that

Va' € ODx:(0,1) the sequence (x',x,)x/xx converges.
a Show that if X is reflexive, then x,, is weakly convergent in X.

b Is the above conclusion necessarily true if X is not reflexive? Prove it if it is true, or find
a counterexample if it is false.

Answer. For definiteness, let X be a Banach space. A function ¢ : X’ — R remains
defined. It is elementary that ¢ is a linear map. Since {z,,n € N} C X is bounded, then the
associated sequence {Jxz,,n € N} C X” is bounded. It is elementary to conclude that ¢ €
X" and that Jx,, — ¢ for the o(X"”, X') topology. If X is reflexive, then J : (X, 0(X, X)) —
(X", 0(X",X")) is an isomorphism, and thus x,, — z in X for the o(X"”, X’) topology and
for the x € X s.t. Jz = ¢.

Let us now give a counterexample for a X not reflexive. Referring to Example 11.7
let X = co(N), X’ = ¢/(N) and X” = ¢*(N), and recall the sequence co(N) > x, :=

. IR _ . o 1 :
(1,.:..,1,0,...} for which x,, — xo = (1,1,1,1,...) in o(¢*°(N),¢*(N)). Notice that {x,}
n times
is bounded in X and (x',x,)x/xx oo, Zj; (7)) = (¥, Xoo) x'xx for all 2/ € X' =
(*(N). So this gives a counterexample.

More generally, if Jz, — 2 for the o(X"”, X’) topology for a 2" ¢ R(J), then we
get a counterexample to the claim. Then one can ask if all the not reflexive X yield a
counterexample. Notice that by Lemma 12.3 we have that JDx(0,1) is dense in Dx~(0,1)
for the o(X”, X’) topology. So, for 2" € Dx»(0,1)\JDx(0,1) we can ask if there is a
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sequence {x,} in Dx(0,1) such that Jx, — 2" for the o(X"”, X') topology. If Dx~(0,1) is
metrizable for the topology induced by the o(X"”, X’) topology, this is the case. Notice that

in the counterexample given above, X’ = ¢!(N) is separable, and so Dx~(0,1) is metrizable
for the (X", X") topology. O

14  Uniformly convex spaces

E Banach is said uniformly convex if for any ¢ > 0 there is 6 > 0 such that for any ||z||g < 1,
lyllz <1 and ||z —y[[g > € we have HIQﬁH? <1-0.

So for instance R? with |z| = (22 +23)2 is uniformly convex while || = max(|z1], |x2|)
is not uniformly convex.

Theorem 14.1 (Milman—Pettis). A wuniformly convex Banach space E is reflexive.

Proof. Let £ € E” with ||€||g» = 1. We want to show £ € J Dg(0,1). Since J Dg(0,1) is
closed for the strong topology in E”, it is enough to show that for any

for any € > 0 there is © € Dg(0, 1) such that || — Jz|| g <. (14.1)

To find the z in (14.1) consider the § > 0 associated to € > 0 from the definition of uniform
convexity, and let f € E’ be such that

)
(faf>E”><E’ >1-— 5 and ”fHE'/ = 17 (142)

which exists by ||¢]|g» = 1. Set

5
V= {77 €E" [ —n lerxe| < 2}-
V is a neighborhood of ¢ for the o(E”, E’) topology and V N Dg»(0,1) is a non-empty
open set for the o(E”, E') topology in Dg»(0,1). Since JDg(0,1) is dense (by Goldstine)
in Dgn(0,1) for o(E”,E"), there is a € Dg(0,1) with Jx € V.

Claim 14.2. The point z satisfies (14.1).

Proof. Suppose by contradiction that = does not satisfy (14.1). This means that £ ¢
Jx 4+ €Dpn(0,1) and let W be the complement of Jx + eDgr(0,1) in E”. W is open
for o(E", E"), because Jx + eDpgn(0,1) is compact, and so closed, by Banach Alaoglu. Then
EeWnNnV and so WNYV is nonempty and o(E”, E') open. It is also strongly open and,
since ¢ is an accumulation point for Dg»(0,1) in the strong topology E”, it follows that
W NV NDgn(0,1) # 0. Once again, since by Goldstine JDg(0,1) is dense in Dgn (0, 1) for
o(E",E"), we have W NV NJDg(0,1) # 0. So let & € Dg(0,1) be such that J& € WNV.
We have

& Y prsm — (x, [Exe] < g by Jr €V
(14.3)

. 4 .
& M ernxm — (&, f)Exe| < 3 by J& € V.
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Then
2-90< 2<§7f>E><E’ < <$+Cﬁ,f>E><E/ +9 < HCE—F@HE‘—F(S, (144)

where the upper bound is obtained summing in (14.3), while the lower bound uses (14.2).
Since J& € W we have J& & Jx+eDgn(0,1). Since J : E — E” is an isometry, this implies
|z — &||g > e. But this implies ||2}%||p < 1 — ¢ which, inserted in (14.4), yields

R k) RS
2 2 |, 2 2
that is 1 — g <1l- %, which is absurd. We conclude that x satisfies (14.1). OWe

have proved that any in £ € E” with ||¢||g» = 1 is in J Dg(0,1). Notice that this implies
that E” = R(J). So, J is an isomorphism from F to E”.

O
15 L? spaces

Let us consider a measure space (X, u) with a positive measure p and let let for 1 < p < oo

LP(X,dp) = {f measurable s.t.|f|P € L'(X, du)}
L*°(X,du) = {f measurable s.t. a.e. |f(z)| < C for some C < 0o0}.

Recall that

P
Il e (x,dp) = (/X |f(a:)\pd,u) for p < oo and

[fll 2o (x.a) 3= sup{c 2 0: p({z: |f(z)] = c}) > 0}.

Theorem 15.1 (Holder inequality). Let f € LP(X,du) and g € LP (X, dp) with 1 = %—i— }%.
Then fg € LY(X,du) and
’f.q,Ll(X,du) < ‘f‘LP(X,du)‘g‘Lp’(X,du) (Hélder Inequality) (15.1)
Proof. Cases p = 1,00 are easy. Let 1 < p < co. We have
jaP [b]” : -
lab] < — + —~ (Young’s Inequality) (15.2)
p p

which follows from the concavity of log : R, — R and

p/

p bpl 1 1 ’
tog [ 122 1+ ) > Liogap + L tog fal?” = tog fab.
b p p
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So point—wise we have

which shows that |fg| € L*(X, du). Then

’f‘Lp (X,dp) n |g|LP Xd,u).
p p

| f9lorxau) <

Also, for any A > 0, we have

Ny 90 9,
) Ly (X,dy) LP (X,dp)
|fglrrx ) < ’ N )\p|f|L,,(X ay Tt -

Choose A so that the two terms in the r.h.s. are equal. Then

p_ 9l () _ 191 L' (x,dps)

5
|f|LP (X,dp) ’f’ip(X,dy)

will do, since )\p]f\L,, (Xdp) = |f|Lp(X7du)|g|Lp/(X’dlu) and

|g|LP (X, dp) ‘g|Lp/(X,d#) _
S - — = [flerx.dm)|9] 1 (x,dp0)-

[flep(x,dp)

Inserting in the 1st inequality in (15.3), we obtain (15.1).
O

Theorem 15.2 (Minkowsky inequality). Let f,g € LP(X,du). Then f+ g € LP(X,du)
with

|f+ 9lzex.an) < | floecxdn) +19l0e(x,ap) (Minkowsky Inequality). (15.4)

Proof. Case p =1, 00 easy.
Let 1 < p < 0. By triangular inequality,

[f () + g(@)P < (If @)+ lg(@)))” < (2max{|f(z)],|g(=)|})”
< 27 (max{|f ()], |9()| 1) < 2°(If (@) + [g(x)[P). (15.5)

Then f + g € LP(X, dy). Now
[176)+gt@Pdn = [ 15+ 9@~ 11@) + gl
< [176)+ 90" (@) + 1@ = [ 17() + 9(a)~! (o) d
+ [17@)+ @) g@)ld
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By Holder

1+ 8l = [ 170 + 9o
< 1F + 917 a1 o ) + LF + 917 o 920

= ||f +g”zl7/;/:tp71)(xyd'u) (HfHLP(X,du) + HgHLP(X,du))

= 1 + 9125 gy (1 o) + N9l rxan) -

So, after simplification,

1+ gllzexaw < N Flleex,dw + 191 Le(x,du)-

O

Ezample 15.3. Notice that there are sequences f, ———=% f in LP(0,1) with 1 < p < o0,
with fn(z) 4 f(z) for all x € [0,1]. Indeed, consider a sequence {I,} formed by the

intervals [%, ﬂ for j=1,...,n and for n € N. Then 17, 22F% 0 in L?(0,1), but for any

x € [0, 1] the sequence {1y, (z)} is not convergent.

Theorem 15.4. LP(X,du) for 1 < p < oo is a Banach space.
Proof. Consider first L>°. We consider a Cauchy sequence f,. Then, for p = oo,
for any k € N there is N}, such that for n,m > Ny we have ||f, — fmll, <1/k.  (15.6)

Hence for a 0 measure set Ey, for all z € X — Ej we have |f,(x) — fin(x)] < 1/k for
n,m > Ni. For any x € X — UE}, there is a limit f(z) such that |f,(z) — f(x)| < 1/k for

n > Ni. S0 ||fn — flloe < 1/k for n > Ny and hence || fr, — f|loo —— 0.
Consider LP with p < oo and a Cauchy sequence f,. Reducing, in case, to a subse-
quence, we can suppose we have a sequence with

an - mep < 27" for m > n. (157)

Indeed, given the Cauchy sequence condition (15.6), it is enough to choose a strictly in-
creasing sequence ny > Ni. For simplicity, we will assume that the whole sequence satisfies
(15.7).

Consider now the telescopic series

A+ (farr = fn). (15.8)

n=1

Then the partial sums gn(z) := [fi1(x)| + 327, [fi+1(x) — fj(2)| are such that ||gnll, < C
for a fixed C'. By the monotone convergence theorem, then they converge a.e. and

tim [ lgu@)Pau= [ lgta)dn

n—-+00
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This implies the pointwise convergence a.e. of the telescopic series (15.8) to f. For m > n
m—1
[f(@) = fm(2)] < D [fjsa(2) = fi(2)]
j=n
EJbH — (@) = 9(@) — gar(@) < g(a)

and so for m — oo, |fn(z) — fin(x)] mzee, | fn(x) — f(z)| where |fn(x) — f(z)| < g(z) a.e.
Then f € LP and by dominated convergence f, — f in L. O

Theorem 15.5. LP for 2 < p < oo s reflexive.

Proof. We have the Clarkson inequality (see proof below)
Hf g

+ 1
15 < L (171 + o) for 2 <p < o,

Assuming the Clarkson inequality we prove that for 2 < p < oo then L? is uniformly convex.
Indeed, for ||f|l, <1, [|g]l, <1, and || f — g[, > €, then

9)

so we conclude that LP is uniformly convex, and hence reflexive by Milman—Pettis.
We turn to the proof of the Clarkson inequality, which is a consequence of

Hf+g

p
1—:Hf+g

p

L |
< 5 (la? + |b|P) for 2 < p < oc.

a—>
2

a+bl?
2

+

We have
of + P < (a2—|—52)% for 2 <p< oo

which in turn is a consequence for ¢ = p/2 and for a = o and b = 2, of

a? + b7 < (a4 b)? for 1 < g < oo, which is equivalent to

aq+bq<a+b_1
a+b a+b) “a+b a+b

For a = ‘“T'H’} and g = ’“T_b

a+bl"  |a—blP a+bl? |a—0b*\? a? b P
< =|l5+5) <5 +5
2 2 2 2 2 2 2 2
where the last inequality follows by the convexity of ¢ — t5. O
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Theorem 15.6. LP for 1 < p < 2 is reflezive.

Proof. For any 1 < p < +o00, for any f € LP there is an element T'f in (Lp/)’ defined
by <Tf’g>(LP’)/pr’ = ffg Then by Holder HTfH(Lp/), < |Ifll, and, setting g(x) =

@ P21(z) € LY, we see (Tf,9) oy = G and llgly = IFIE™ s0 TSl oy =
| fllp and hence ||Tf||(Lp/), = ||f|lp for all 1 < p < +o0 and

T : LP — (L*') is an isometry for all 1 < p < +o0. (15.9)

So R(T) is a closed subspace of (L¥')'. Now let 1 < p < 2. By Theorem 15.5, L?" is reflexive.
By Lemma 12.5 this is equivalent to the fact that (Lp/)’ is reflexive. Furthermore, Lemma
12.5 guarantees that the closed subspaces of (L?')’, and so also R(T), are reflexive. In turn,
since T': LP — R(T') is an isomorphism, this implies that LP is reflexive for 1 < p <2. O

Theorem 15.7 (Riesz representation theorem). Let 1 < p < oo and let ¢ € (LP(X))". Then
there is u € LV (X)) such that

¢(f)=/Xuf vfer.

Proof. By (15.9), TL¥ is a closed subspace of (LP)’. If TLV S (LP)', then there is a
nontrivial h € LP ~ (LP)" with (Tu, Jh) ey ey = 0 for all u € L¥ . But

(Tu, Jh>(Lp)/><(Lp)u = <h,TU>Lp><(Lp)/ = /uh =0forall ue L”.

If we choose u(x) = |h(x)[P~2h(x) € L¥ | then we obtain

O:/uh:/\h|pth:/]h]p:>h:01an.

Thus we get a contradiction and we conclude TLY = (LP)’. So T is an isometric isomor-
phism.
O

Theorem 15.8 (Riesz representation theorem). Let ¢ € (L'(X)) where X is o-finite.
Then there is uw € L*°(X) such that

o(f) = /uf vfe LX),

Proof. Here o—finite means that X = Uj<,<nX,, with N € NU {oco} and with each X,, of
finite measure. We can assume that the sequence X, is increasing with n. Then it is possible
to define a w € L?(X) such that for any n there exists C,, > 0 such that w(z) > C,, > 0 for
all x € X,,. Indeed, we can choose ¢, > 0 with

ap(X1)+ Y enp(Xn\Xn1) < +oc.
2<n<N
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and then define w(z) = ¢; in X; and w(x) = ¢, in Xp\Xp—1.
Next, the map f € L?(X) — (¢, Jw)1(x)yxri(x) is bounded. So there exists g € L (X)
such that

(b, fw) (L1 (x)y x L1 (x) :/fg v f e L*(X). (15.10)
g

Set now w = {, which is measurable. Then

‘/f9| = \/fwu\ = [(¢, fw>(L1(X))’xL1(X)’ < "b’(Ll(X))"fw’Lly

where the first equality follows from the definition of w and the second from (15.10).
We claim that [|ule < [|¢[l(z1). Indeed let C' > [¢]1) and let
Ay ={z: tu(z) > C}.

We will show that |Ay| = 0 with the argument for |A_| = 0 similar. If |[A;| > 0, then there
exists n with |[AL N X,| > 0 and

C w < / wu = / g = /XA+ang = <¢7XA+ﬁan>(L1(X))’><L1(X)
A+ﬂXn A+ﬂXn A+ﬂXn

< ‘¢|(L1)/ HXA+I’7an||L17

which yields C' < [¢[(z1y, and a contradiction. So now we have [|ulloo < [|@[(£1y-
Next, we claim that

<¢), f)(Ll(X))’XLl(X) = /fu for any f € Ll(X) (1511)

If f € LY(X)N L?(X) we have

f f
(D, XX, F)(mr (x)y <Lt (x) = <¢»XXnEw>(L1(X))’><L1(X) = /Xxnwg = /Xxnfu

where the second equality holds because of (15.10). Since L'(X)NL?(X) is dense in L'(X),
it follows that

(D, xx, )Ly st (x) = /XanU for any f € L'(X). (15.12)

We have xx, f “=% f in LX), 50 (¢, XX ) (L1 (X)) x L1 (X) ot (e, F) (L1 (X)) x L1 ()-
n—-+00

On the other hand, we already know u € L>(X), so fu € L'(X) and xx,, fu — > fu in

n—-+00

L'(X) and hence we conclude that [ xx, fu —— [ fu. So we conclude that taking the
limit n — oo in (15.12) we obtain (15.11).
Finally, by Holder

(B oyt ()] = | / Bl < 1l lulloc

we conclude [[ulloo > [|¢]|(£1y, and so [[ulleo = [|@[(£1y-
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Exercise 15.9. Given an open set  C R? show that if u € LP(f), then
/ufdx =0 for all f€C%Q) = u=0.
Q

Answer. If u # 0, it is not restrictive to assume that there exists a compact set K
inside Q with measure |K| > 0 where v > 1. For any open A with K C A C § there exists
fa € CY9(,[0,1]) with f4 = 1 in K and supp f4 C A. We can generate a sequence of

decreasing A, with |A,\K| \, 0 and ufa, D272, 1w by dominated convergence. Then

we get a contradiction by
0= / ufa,dr LimascN / udx > |K| >0
Q K

Corollary 15.10. Given an open set Q@ C R%, C%(Q) is dense in LP(Q) for 1 < p < co.

Proof. Suppose this is not the case and consider the closure Y := C9(2). Then there is
0 # u € LP(Q) such that Jqufdz = 0 for all f € CJ(). By exercise 15.9 we get a
contradiction.

O
Exercise 15.11. Show that for 1 < p < ¢ < oo, then LP(RY) N LY(R?) is a Banach
space with norm || - |[z» + || - ||ze and for any r € [p,q| we have the bounded immersion

LP(RY) N LI(RY) — L"(RY).

Exercise 15.12. Show that for 1 < p < ¢ < oo, then LP(R?) + LI(R?) is a Banach space
with norm

Il = mf{liglly + Al : f=9+h}

and for any r € [p, q] we have the bounded immersion L"(R%) < LP(R?) 4+ L4(R%).

Exercise 15.13. Show that for f € LP(X) for 1 < p < oo for X of infinite measure but
o—finite, for any € > 0 there exists A C X of bounded measure such that

|t <e

Answer. Recall that X = U,X,, (numerable growing union) with all X,, of bounded
measure. Then xx, f notoo, fin LP(X) by dominated convergence. Hence xgy, f nooo,
0 in LP(X), and so just take A = X, for n large enough.

Exercise 15.14. Let X be o-finite,
1 < p < oo and suppose sup,,cy || fnllp < 0o and f, D2H, f ace. Show the following.

a We have f, — fin LP(X) for 1 < p < c0.

b Statement a is not true in L'(X) (if X is an infinite set).
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c Statement a is true in L°°(X) for the o(L>°, L') topology

Answer. a First of all f € LP(X) with || f||, < liminf || f,|[, by the Fathou Lemma. Let
g € LP (X). Then by Exercise 15.13, there exists A with |A| < oo, such that Joa lg|P" < e.
Furthermore, for any € > 0 there exists § > 0 such that for any B C A with |B| < § we
have [ lg|"" < e. Finally, By Egorov Theorem, there exists B C A with |B| < ¢ such that

fn LimAEN f uniformly in A\E . Then

= £,9) = (fo = FX059) + (n = FX59) + Un = F.X029)

Since

| (fn—fixp9) | < 2sup | fullzre and | (fn — f,x0a9) | < 2sup||fullLr

and

n—-+o0o

(B = Fxm59) | < n = Fll eyl “=22 0,
n—4o0o

where € is arbitrary, it follows (f, — f, g) 0.
b As an example, we know from Exercise 10.24 that for L'(R?) > f # 0, then if

An 2220 150 it is not true that Al f(An-) = 0. Now take for example any f with supp f
compact, and then \,%f(\px) D2H0 0 for any x # 0.

c Repeat proof of a.

Exercise 15.15. Consider L?([—m,7]).

a Then cos(n-) — 0 in L?([—7, 7]).

b It is not true that cos(nz) 270 0 ae.

Answer. We have ffﬂ cos(nz) f(x)dx = may, i i sN | by the Riemann-Lebesgue

Lemma, see (7.12). If we had cos(nz) =225 0 a.e., then also sin(nz) 222 0 a.e., but
sin?(nx) + cos?(nz) = 1.

Exercise 15.16. Show that f,(z) := nx(o,1/n)(7) converges a.e. to 0 in [0,1] but f, /0
in any LP([0,1]).

Answer. For p > 1 we have || fy|lzr(0,1) D20, 400, while if f, converged weakly we

would have sup,, || fallzr0,1) < 00. For p = 1 we have f,(z) = nx()(nr) and we know
already by Exercise 10.24 that f,, does not converge weakly.

Ezample 15.17. We have (co(N))’ = ¢/1(N).
Indeed, First of all, it is easy to see that ¢{ D ¢;. Next we want to show that ¢, C ¢;. We
proceed as follows.
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Given ¢ € ¢, we can define u by u(n) = ¢(e,), where (ey,)(m) = 5, the Kronecker delta.
Now, if u ¢ £, for any M 3 N such that

N N N
M < Z ju(n)| = leignw(n))u(n) = leignw(n)w(en)

N N
=¢ (Z sign(ﬂ(ﬂ))%) = <Z sign(u(n))en,¢>

coxcj)

<

N
> sign(u(n))en||  (I6lle, = 1]l
n=1

yAsS]

Obviously this is impossible, by the arbitrariness of M. Se we conclude that v ¢ ¢'. But
then (co(N))" = ¢1(N).
Notice that the map ¢ € (co(N)) — u with u(n) := ¢(e,,) is an isometric isomorphism.

Ezxample 15.18. Recall that the Hahn—-Banach Theorem, see Corollary 6.2, implies that for
any ¢ € (co(N))’ = £}(N) there is an extension in (/*°(N))" with the same norm. It turns
out that this extension is unique. Indeed, suppose |¢||s ) = 1, where

¢($1,x2, ) = Z ¢jxj.
7=1

Notice that this defines also an element in (/°°(N))’. Now suppose that there is another
extension ¢ € (¢*°(N))’ different from ¢. It is not restrictive to assume there exists a unitary
element x = {x,} in £>°(N) where

¥ = Y(%) — B(x) > 0.
Let N such that Z;Vﬂ |¢j| > 1 — /2. By linearity, and by the fact that the functionals
coincide in ¢y(N), for xy = (1 — x[0, N])x we have

v =¥(xn) — o(xn).

Now

o0

b < > gl < /2

j=N+1

Then ¢ (xx) > /2. Furthermore, for z = (sign¢y, ..., sign¢n, 0,0, ....)

N
U(z) = P(signgy, ..., signon, 0,0, ....) = Z |pj] > 1 —~/2.

i=1
So

Y(xy +2) =¢(xn) +(z) >7/2+1—7/2=1

But since [[xy + z[[¢ = 1, we contradict [|1)]](geo )y = 1.
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The following important theorem holds true.

Theorem 15.19 (Reisz Representation). Let X be a locally compact Hausdorff space and

consider C2(X,R). Then (CI(X, R))/ is isomorphic to the space of bounded Borel measures

(without sign) which are regqular, see Remark 15.20. Furthermore the relation between ® €
0 ! . .

(C2(X,R))" and measure i is given by

d(f) :/ fdu for any f € CO(X,R). (15.13)
X
Remark 15.20. A Borel measure is regular if its absolute value measure
H(B) = (15.14)
sup{z |u(Ey,)| : over all disjoint finite or countable unions F = U E,, with measurable sets},
(15.15)
is regular.

Proof of Theorem 15.19. We skip the discussion of uniqueness, which is easier, and we
discuss existence. We can assume that

1]l (co(x ryy = 1- (15.16)
We claim that

there exists a positive linear map A : C?(X,R) — R such that |®(f)] < A|f] < I fllcocx r)
for all f € CY(X,R) (15.17)

Let now A be the measure associated to A by Theorem 1.25. Notice that we have
MX) =sup{Af:0< f<1with f € COX,R)} <1. (15.18)

Then
) Alf] = dA.

Then by Hahn Banach there exists an extension ® € (L'(X,d)\)" with norm 1. So there
exists g € L*°(X,d)\) such that

B(f) = /X Fgd. (15.19)

We set as our measure du := gd\. Notice that d|u| = |g|dA.
We have

1= [|®[|(corx ryy =sup{|®(f)| : [|fllcoxr) = 1} < /x |gldA = [p|(X).
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On the other hand, (15.18) and ||g||z = 1 and the latter, imply |g| = 1 a.e. , so d|u| = dA
and. |1](X) = A(X).

We now turn to the proof of Claim (15.17). For CJ(X) the positive elements of
CY(X,R), let

Af = sup{|®(h)|: h € CY(X,R) such that || < f}. (15.20)

Then Af > 0, (15.18) is satisfied, A is order preserving and Acf = cAf for ¢ > 0. Now we
need to prove

Af+Ag=A(f+g) for f,g € CI(X). (15.21)
Let hy,hy € CO(X,R) be such that |hi| < f and |ha| < g with

Af <|@(h)| + e and Ag < [P(h2)| + €.
Let «j be unitary complex numbers such that |®(h;)| = o;®(h;). Then

Af + Ag < ’q)(hl)| + ’(I)(hg)| + 2¢ = Oél(I)(hl) + agq)(hz) + 2¢
=& (Oélhl + Oéghg)) + 2e < A(‘h1| + |h2|) + 2 < A(f + g) + 2e.

Hence we have proved < in (15.21). Let now |h| < f+g, call V := {z : f(z) + g(x) > 0}
and set

@h@) gl
hi(z) := 0 and ha(x) := 0 outside V.

Inside V' the functions h; are continuous. For zg ¢ V, we have h(zg) = 0. Furthermore we
have 0 < hq(z) < h(x) everywhere, so lim hj(z) = lim hj(x) = 0 and we get continuity
T—T0 Tr—xQ

also for xg ¢ V. Then,
|©(h)| =[P (h1+ he)| <|P(h1)]+|P(h2)| < A(f+ f) for any h € C’S(X,]R) be such that |h| < f +g.

This implies the inequality >, and so also the equality, in (15.21).
Having proved (15.21), by linearity it is possible to extend A.
0
The following is discussed in Yoshida [16, p.118] .

Ezxample 15.21. (L*°(X, M,d)\))" is the space of maps u : M — R with the following three
properties:

EiNEy=0= /L(El U Eg) = [L(El) + (EQ); (1522)
sup |u(E)| < oo (15.23)
EeM

ME) =0 = u(E) = 0. (15.24)
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Here ¢ € (L°(X, M,d)\) and set u(E) := ¢(xg) for any F € M and it can be
checked that properties (15.22)—(15.24) are true, see [16]. Viceversa, given p with the above
properties, for f € L(X, M,d)\) it is possible to define ¢ € (L>°(X, M, d\)" by setting

o(f) = lim Za]nu E;y,) where hm IIf— Zajn,u ]n)||me0,

n—-+o00
7j=1

see Example 13.6 on the density of simple functions in L (X, M, d\).

Theorem 15.22 (Young’s convolution inequality). Let f € LP(RY), g € LI(RY) for p,q €
[1,00]. Set
frglx / flz— (15.25)
Then
1 1 1
1f * gllLr@ay < 1Nl o ayllgll oy for ~tl= » + 7 (15.26)

Proof. We consider the trilinear form

I(f.g.h / oy V() dwdy, (15.27)

for h in an appropriate dense subspace of L" (Rd), f in an appropriate dense subspace
of LP(R%) and g in an appropriate dense subspace of LI(R%). It is enough to prove it is
bounded in a dense set, to conclude that it automatically extends, uniquely, in a bounded
trilinear form in the whole spaces, see Exercise 5.13. Notice that this, for similar reasons,
will imply that (15.25) extends to a bounded bilinear map LP(R%) x LI(R?) — L"(R%).

To bound (15.27), it is enough to show if we assume f >0, g >0, h >0, ||gllze = || fllzr =
|h|l - =1, that

I(f,g9,h) < 1. (15.28)

The condition 1 -+ 1= 5 is the same as 2 = 5 +

B e



Hence
1F9.0) = [ (P =)' 7 (7P (@)

Using % + ]% + % =1, by Holder inequality we obtain

(g - (@) dudy,

1 1
7

I(f,g9,h) < (/ fP(y)g?(z — y)dﬂfdy>1 </ f”(y)hrl(ﬂﬁ)dwdy) ' </ 9% (x — y)hrl(fv)dwdy> "

From this we obtain the Young’s convolution inequality (15.26). O

Proposition 15.23. Let f € C*(R?) and let g € L} (RY). Then f +g € C*R?) with
VI(f xg) = (VI f)xg forj <k.

Proof. For any fixed x the map F(z,y) = f(x —y)g(y) is in L;. For z, — x, then there
is a compact set K such that F(x,y) = xx (y)F(x,y), F(zn,y) = Xk (y)F(zn,y). We have
pointwise F(zy,y) — F(x,y) for all y and |F(zp,y)| < Xk (y)|floo|g(y)|- Then we can apply
dominated convergence and conclude lim [ F(z,,,y)dy = [ F(z,y)dy. This sets case k = 0.

For the general case it is enough to prove the case k = 1 and then proceed by induction.
We have

fle+h—y)—flx—y)—h -Vf(x—y)=h I(x —y,h), where
1

I =) = [ (VS +sh=y) = Vi~ y)ds.
0

Notice that Vf € C2(R?,R?) implies that V£ is uniformly continuous. This implies that

I(z,h)| < o(1), where o(1) is a function dependent only on A with o(1 5270, 0. Then
H1( : p y

[f@+h—y)=flz—y) =h-Vfz—y)| <[hlo(l).
For fixed = in some bounded set, there is a compact set K such that for |h| <1
[fe+h—y) = flx—y) = h-Vi@—y)| <|hlo(1)xx(y)-
Then
[fxg(z+h) = fxg(x)—h-Vfxg(x)| <|hlo(1) /K l9(v)ldy

and so f * g is differentiable in  with gradient V f * g.
O

Theorem 15.24. Let p € L*(R?) be s.t. [ p(x)dz = 1. Set pc(x) := e Up(x/€). Then for
any f € LP(RY) with 1 < p < co we have

. _ . p d

1{1(1)/06 x f = f in LP(R?). (15.29)
In particular we have, see (7.24),

lime'® f = f in LP(R?).

lim "= f = [ in LP(RT) (15.30)
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d e

Proof. Clearly (15.30) is a special case of (15.29) setting ¢ = v/t and p(x) = (47) " 2e 4 .
To prove (15.29) we start with f € C2(R?). In this case

po f@) = 1a) = [ (fo=en) = @)piwiy

so that, by Minkowski inequality and for A(y) := ||f(- —y) — f(*)||zr, we have

loe * F(z) — F(@)l|e < / (W) Ae y)dy.

Now we have lim,_,0 A(y) = 0 and A(y) < 2||f||rr. So, by dominated convergence we get
. ] B o du — 0.
sy o £(2) ~ #(0)1 = lim [ lo(o)] e p)dy =0

So this proves (15.29) for f € C2(RY). The general case is proved by a density argument. [
Exercise 15.25. Show that the statement in Corollary 15.10 would be wrong for p = oco.

Exercise 15.26. Show that the statement in Corollary 15.10 is correct with p = oo in
(15.30)—(15.29) when taking f € CJ(R%).

Exercise 15.27. Show that if f,g € C2(R?), then

supp f * g C supp f + supp g. (15.31)

Proposition 15.28. For any open set 2 C RY, C(Q) is dense in LP(Q) for any 1 < p <
00.

Proof. Let us start with Q = R%. Let ¢ € C°(R?) with [¢ = 1 and R > 0 such that
Dga(0, R) D supp ¢. Consider ¢(z) = % ¢(x/e). Notice that supp ¢e C Dga(0,€R). Then
for any g € C?(R™) with K := supp g we have ¢, * ¢ — ¢ in LP(R?) and furthermore
supp (¢e * g) € Dga(0,€R) + K is compact. By C9(R?) = LP(R?) we get the desired result
for Q = R%.

For more general 2, and for ¢ and ¢ as above, with K C Q, then dist(K, 9) =: v > 0.
Then, for € € (0,7/R), supp (¢e * g) C 2. Hence also in this case we have proved C°(£2) D
CY(2) and, consequently, C2°(Q) = LP(Q).

O

Exercise 15.29. Consider the group actions
R x IP(RY) 3 (y, f) — 7y f := f(- —y) € LP(RY)
Re x LP(RY) 3 (A, f) = 6y f := A# f(A) € LP(RY).

a Show that for 1 < p < oo we have 7, f v=20, [ and 0p »f Al f for any f € LP(R?).
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b Show that claim a if false for p = co.

¢ Show that for 1 < p < oo it is not true that 7, y—igldentity in £(LP(R%)) and similarly
that it is not true that 6, » ﬂ>Iden‘city in £(LP(R%)).

Remark 15.30. Notice that Exercise 15.29 is closely related to Remark 7.28. Notice for
example, that (y, f) — 7,f := f(- — y) is really the group e ¥V f, and similarly, 6o f =
dyg.
et<P+gC V) f. In other words, associated to these group actions, are certain differential oper-

ators.

Exercise 15.31. Let k € L9(RY) and consider the convolution operator T : LP(R?) —
L"(R%), where % +1= % + %, defined by T'f = k % f. Show that this operator commutes
with translations, that is

7,T = T, for any y € RY. (15.32)

Theorem 15.32 (Kolmogorov, Riesz, Frechét). Let F C LP(RY) for p < oo be bounded and
s.t. the following property is true:

for any € > 0 there is §(¢) > 0 s.t. |h| < d(€) = [|[Tnf — fllor@w) < € for all f € F.
(15.33)
Then for any open bounded Q2 in R? the restriction Flq is relatively compact in LP(€2).

Proof. We will prove that

Ve >0, Flg is contained in the union of finitely many balls of radius € in LP(€2).

(15.34)
The proof is related to Ascoli’s Theorem. We first claim that

for any € > 0 there exists w CC Q s.t. || f|[zr(\w) < % for all f € F. (15.35)

We skip the proof of (15.35) for the moment. Notice now that for any a,b € R, if we set
T(a,b) = {f € CARY : | fll oty < @ and [V F] e ey < 01,

then T'(a,b)|, is relatively compact in C%(w,R) by Ascoli’s Theorem. Let us consider now
a standard sequence of mollifiers p, () = n?p(nzx), with p € C2°(Dga(0,1),[0,1]) a function
of integral 1. Then using (15.33), for n > 1/§ (§) we have

low £ = Flasgey =1 [ pu)(F@ =) = @)yl < [ pulalir-uf = Flusguaydy

€

< [ =5
deny4_47

since pp(y) # 0 only if |y| < 1/n <4 (%).
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Fix now n € N. We have for any = € R?

ou ) < [ oulo =@y <l ey | lsguey < 0o for all f € 7, (15.36)

. d(1—% ..
(indeed [|pn 1ty = 090}t gty = 2771l gy and siomilaly ¥ pall o gy =

_ 1
(! p/)“va” 1/ (mey below). Similarly

Vo s f(a)] < /R Von(w = IS Iy < [90nll o)1 oy < b for all £ € F

So we have a sequence {(an,b,)} in R? s.t. for any fixed n we have {p, * f : f € F} C
T(an,by). For any n the latter set, being relatively compact in C%w,R) C L®(w) C
LP(w), is contained in a finite union of balls or radius § in LP(w). Fix ng > 1/6 (§). Let
T(angy, bn,) C U;-VleLp(w) (uj,€/3). Then we claim

Flo CUN1Drw)(ujse) (15.37)

where uj|Q\w := 0 since above we can take u; € C%(w,R) with supp (u;) C w. Indeed, let
f € F. Then there is u; s.t. [|png * f — ;]| 1p(w) < €/3. This implies

1f = willze) < I fller@\w) + I1f = willzew) < 1flle@w) + om0 * f = willLew) + I1f = pno * fllLoway < €.

Hence (15.37) is proved, and so also (15.34). However we need yet to prove (15.35). We
write

€ 1
[ fllze@w)y < N = ono * flloway + lone * fllr@\w) < Y Pno * fll Loo(may [SN\w]?
€

<
— 4

+ an0|Q\w|% < % for |Q\w| sufficiently small.

O]

Ezample 15.33 (An application of the Reisz Representation Theorem 15.19). We show that
if h(z) is harmonic in U := D¢(0, 1), that is if Ah =0 in U, and if

sup / \h(rel?)|do = M < oo,

0<r<1J—nm

then there is a complex valued measure p on T := U such that for r < 1

W(reé®) = P)(rd®) = = " B0 — t)du(e®)

with
1—r2

PO —t) = .
(6-1) 1 —2rcos(f —t) + r?
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To check this, for any f € C°(T) and 0 < s < 1 we set

We have that ||Asl|(cm)y < M. By o((C(T))’,C(T)) compactness of the unit ball in (C(T))’
(that is Banach— Alaouglu) there exists a sequence s, /1 and a A such that A;, — A in
(C(T))’ for the o((C(T))’,C(T)) topology, that is

lim A, f=AfvYfeC%T).

n—+00

As a consequence of Theorem 15.19, there is a complex Borel measure p with

™

lim h(sne') f(e)dt = i f(e)du(el).

n—-4o0o —r

Now, by Example 6.8, for » < 1 we have

1

L / " B0 = Oh(sne)dt.

h(rspe?) = 5
s

For s, — 1 in the latter we get, applying previous formula for f(e'*) = P.(6 —t),

. . I ; 1
h(rel?) = lim h(rspe?) = lim — P.(0 — t)h(spet)dt = —
27 2m

/_ " B0 — t)du(e).

—T

Exercise 15.34. Prove the following, which we will use later: for f € L'(T), we have

nll}g_loo/ |sin(nx) f(z)|dz = / |f(z)|dx (15.38)

Answer. Let us start with f = 1. Then, using a scale change and the 27 periodicity of
sinz and the 7 periodicity of |sin z,

2 2mn 27 s
/ |sin(nz)|dz = n~! / |sin(z)|dz = n_ln/ |sin(z)|dz = 2/ sin(z)dr = 4
0 0 0 0

= %HlnLl(T)

More generally, let f € L'(T). By density it is enough to focus on simple functions

N
f= Z )‘jX[Qﬂ'aj,Zfrbj]v

Jj=1

where the intervals [27aj, 27b;] are pairwise disjoint. Then

/T|sin(nx |dx—Z\>\ y/

2mb; 2nmb;

| sin(nx)|dz = Z |\j n_l/ |sin(x)|dz. (15.39)

j=1 2nma;
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Now, for [t] € Z the integral part of ¢ € R, defined by |t] <t < |t] + 1, we have
2nwb; 27 | nb; | 2mna; 27nb;
/ | sin(z)|dz :/ | sin(z)|dz —/ ]sin(:v)|d:v—|—/ | sin(z)|dz.
2nma; 27| naj| 2m | naj | 27| nbj |

Then

2nmb; 2| nb; |
/ | sin(x)|dz — / |sin(z)|dz| < 27 (naj — |naj]) + 27 (nbj — [nb;])
2 2

nwa; T naj |

< 2m + 27 = 4.
Going back to (15.39), we conclude that

2 Lnbjj

N
i = nt sin(z)|dxz + o
/T rs1n<nx>f<x>|dx—j§;|AJ\ / |sin(z)|dz + o(1)

27| nay)

N
1)+ Z (Ajln~ 4 ([nbs) — |nay))
)+ Z (Ajln~ 4 [nb; — naj — (nb; — |nb;]) + (na; — [na;))]

n +oo
RS SIS Z\A 4065~ a5) = oy
7j=1

A different take of Exercise 15.34 follows in the two next exercises.

Exercise 15.35. Show that for any f € L!(T) we have o, f norteo, f for the Fejer series
(7.15)

The following implies Exercise 15.34.

Exercise 15.36. Show that for any f € LY(T) we have that the sequence f,(z) := f(nz)
we have f, — f(0) in LY(T). Hint, treat first the case of trigonometric polynomials, and
then use the approximation in Exercise 15.35 to obtain the result for all f € L(T).

Exercise 15.37. Show that C := {f € L'(0,1) : fol |f|?dz < 1} is a closed subset of
L'(0,1). Show that C' = 0 in L*(0, 1).

Exercise 15.38. Show that T'f(x z! fo t)dt defines an unbounded linear operator
in LY(0,1).

Answer. Just consider the sequence nxp, L which have all norm 1. Then

ifx <

1
™
ife> =
n

T gy(0) = §

8= 3
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Then
1 1 1 .
/ nTX[l L](:B)dx = / ndx +/ Zdx=1+logn DTEO Lo,
0 n 0 1T

Ezample 15.39. Notice that T f(z) = 2! [ f(¢)dt defines a bounded linear operator in
LP(0,1) for all 1 < p < 400, and this is part of the famous Hardy inequality. Case
p = oo is trivial. The general case can be seen in a variety of ways. One, is to say that
|Tf| <2M(|f|) with M the Hardy-Littlewood Maximal function (see next semester), and

then use ||Tf||zr(0,1) < M ([fDllzr0,1) < Cpll fllzr(0,1)-
Another possibility is the following direct computation:
T 1 1
ot /0 F(6)dt]| ooy = | /0 F(tx)dt ooy < /0 1£(1)llnodt (by Minkowski inequality)

1
1—

1 _1
< /0 1 Olront Pt = —— 1 fllro)-

1
P

Proceeding with a similar computation it is possible to solve the following exercise.
Exercise 15.40. Show that if for a fixed nonzero z € C we have Rez < 1% then T'f(z) =
a1 [ t72 f(t)dt defines a bounded linear operator in L?(0,1) for all 1 > p < 4oo0.

Exercise 15.41. Consider a sequence x. = {x, },en. Consider the shift operator operator

Oifn=1
(Tx.), = {xn_l ifn>2" (15.40)

a Show that it defines a bounded operator in ¢*°(N). Show that o(T) = {z € C: |z| < 1}.

b Show exactly the same things in /’(N) also for 1 < p < co.

16  Hilbert spaces

Definition 16.1. A Pre-Hilbert space on R consists of a vector space H on R with a
symmetric bilinear form (u,v)g, positive, that is (u,u)y > 0, and strictly positive, that
is (u,u)g = 0 = uw = 0. Then ||ul|g := +/(u,u)y defines a norm, and the space is said
Hilbert, if for this norm it is complete.

Definition 16.2. Let X be a vector space on C. A sesquilinear form is a map B : X X
X — C such that:

a Bz + py, z) = AB(x, 2) + nB(y, 2);
b B(z,Ax + py) = AB(z,2) + EB(2,y).

A sesquiliner for is said to be Hermitian if additionally:
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¢ B(z,y) = B(y,»).

It is positive if

d B(z,z) >0 for all z € X.
Nondegenerate if

e if B(z,z) =0 = 2 = 0.

Definition 16.3. A Pre—Hilbert space on C consists of a vector space H on C with a
sesquilinear for (-,-)y : H? — C satisfying conditions a-e in Definition 16.2. ||jul|y :=
\/(u,u) g defines a norm, and the space is said Hilbert, if for this norm it is complete.

Ezample 16.4. Consider

(f,9) 2 (xdp) = /X f(z)g(z)dp and, in particular

(a,b)(ze) = Y anbn.
nezd
They make L?(X,du) and, in particular, £2(Z%), into Hilbert spaces,
Remark 16.5. Tt is possible to complexify H, (-,-)y like in Remark 2.13 .
The parallelogram identity is

2

+
H

!
g 2

a—>b
2

a+b

5 (lall7 + 6117), (16.1)

and can be obtained by expanding the left hand side, and observing that the mixed terms
cancel out. We claim now the Cauchy Schwartz inequality |(a,b)g| < ||a||z ||b]| 7. Obviously

2(a,0) +2(b,a)nr = l|a + || — lla — bl < 2(llallF; + [1blI%),

so that
2Re(a,b)ir < [lallF + [1b]F-
But
1 2 2 1 2
2Re(a,b)g = 2Re | Aa, Xb < Xallz + ﬁHbHH for all A > 0
H
s0 Re(a,b)yr < ||al| i |bll i by taking A such that A2al|3; = 3 [[b%, that is A2 = {22

Notice that
la+bll3; = (a+b,a+b)m = |lalf + [bI% + 2 Re(a, b)u
< |lallZ + 1617 + 2llall bl = (lallz + 16l )*.
This proves Minkowski inequality
la+ bl < llallg + bl -
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Proposition 16.6. H Hilbert implies H uniformly convez.

Recall that H uniformly convex means that for any € > 0 there is 6 > 0 such that
for any |la|lg < 1, [|b]lg < 1 and |ja — b||g > € we have H“T‘H’HH < 1 — 0. Now, using the
parallelogram identity we get

2
62

2

1

<1l-——.
4

g 2

a+b a—2>b

5 (lall7 + lIl17) —

H

2
a+bH <1-(1—4/1-%).
2 |, 1

Theorem 16.7 (Projection on a closed convex set). Let K C H be a closed nonempty
conver: set and fix f € H. Then there is a unique u € K such that ||f —ullg < ||f — v|lg
for allv € K. u is also characterized by

and so

Re(f —u,v —u)g <0Vv € K.

Proof. Since the map ¢(z) = ||z — f||g is continuous and convex with lim ¢(x) = +o0 as
|z||;; — oo, the existence of a minimizer in K follows from the fact that H is reflexive.
However a more direct proof of existence of a minimizer is the following one. We consider
a sequence x, € K such that d, := ||z, — f|lg — d := mingex ||z — f||g. Now by the
parallelogram identity applied to a = f — x,, and b = f — x,,, we get

2 2

Ty + Ton
2

Ty — Tm

_ 1 2 2
. = 5 (@ + 7).

|-

H H

By convexity W% € K and so

2
Tn — Tm

1 .
5 < i(di—i-d?n)—dQ im}%rilw]]$n—xm]]H:O.

So x,, is Cauchy and converges to some u € K.

Next step is to show that the characterization holds, that is, u is a minimizer if and
only if Re(f —u,v —u)g < 0Vv € K. If for a moment we accept this equivalence, then we
can see that u is the only minimizer as follows. If we had two minimizers w1 and ue, then

Re(f —ui,v—u)g <0Vv € K
Re(f —ug,v —u9)g < 0Vv € K.

In particular

0 > Re(f — U, Uy — U1)H +Re(f —Ug,U1 — UQ)H

= Re(f —U1,U2 — ul)H — Re(f — U2,U2 — ul)H = 2HUQ — UIHJQLI
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and hence u; = us. Now let us show the second characterization of the minimizer. Assume
u is a minimizer and pick v € K and consider for ¢t € [0, 1]

If = u—tw—w)lf = If —ullfy — 2t Re(f —u,v — w)y + ]jv — ul]F.

For ¢t = 0 to be an absolute minimum we need Re(f —u,v—u)g < 0, so v minimizer implies
Re(f —u,v —u)g < 0Vv € K. Viceversa, assuming this latter property, for any v € K

lu = FIIF = llo = fIIFr = lullzr +2(v =, f)a = ol

=2Re(v —u, f —u)g + 2Re(v —u,u) g + ||ull3 — ||v||%

=2Re(v —u, f —w)y — [u— v} < —llu—o|F
In particular ||u — f|lg < |[v— f|lg unless u = v. O

Proposition 16.8. Let K C H be a closed nonempty convex set and for any f € H let
Px f € K the corresponding projection in K. Then Pk is a contraction:

|1 Prcf — Prglla < ||f —gllu-
Proof. Let u = Pk f and v = Pxg. Then
Re(f —u,w —u)g <0Vw € K
Re(g — v,w —v)g < 0Vw € K.
Then Re(f — u,v —u)g < 0 and Re(g — v,u — v)g < 0 and, adding up,
0>Re(f —u,v—u)g +Re(g—v,u—v)g =Re(f —u,v—u)g —Re(g —v,v —u)g
=Re(f —g,v—u)g +Re(v —u,v —u)y
So [l —ullf; <Re(f — g.u—v)u < |If = gllu v = ullw and so [lv —ullg < |f = glu. O

Corollary 16.9. Let K C H be a closed vector subspace. Then uw = Pxf € K is charac-
terized by (f —u,v)g =0 for allv € K. Furthermore, Pk is a bounded linear operator.

Proof. The characterization Re(f —u,v —u)g < 0 for all v € K and so by K = K — u,
Re(f —u,v)g < 0 for all v € K and the fact that v € K implies —v € K, yield Re(f —
u,v)g = 0 for allv € K, and in fact also (f —u,v)y =0 for allv € K. If (Pxku—u,w)yg =0
and (Pxv —v,w)g =0 for all w € K, then

AMPru —u,w)g + w(Prgv —v,w)g = (APgu+ uPrv — (Au+ pv),w)g = 0Vw € K.

But this means P (Au+pv) = APgu+puPrv so Pk is linear. We know P is continuous. [

Theorem 16.10 (Riesz Frechet). Let f € H'. Then there is y € H such that {f,x)g«g =
(x,y)u for all x € H. Furthermore, ||f||m = ||yl u-
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Proof. The map T : H — H' defined by y — (-,y)g is continuous. By |(Ty,z)pxg| =

(@, )l < lylullellm we get 1Tyl < lyllm, and by Iy} = Ty, v) < < |Tyllallylla
we get | Ty|lgr > |lyllg. So, in particular, T' is an isometry and T'(H) is closed in H'.
If T(H) # H', there is by Hahn Banach a h € H” such that (Ty,h)g/wpg» = 0 for all
y € H. But H is reflexive, so h = Jx for some x € H and (Ty,h)gr«g = (Ty, Jx) grxpgr =
(z,y)g = 0. Picking y = = we get = 0, and so also h = 0. O

Definition 16.11. A subset S C H is called orthonormal if ||z||g = 1 for all z € H and
(z,y)g = 0 for any pair z # y of elements in S.

Ezample 16.12. Consider in L2([0, 1]) for k > 0 integer the family of Rademacher functions,
which are defined as
) = {1 if k = 0;
R sign (sin (2Fmz)), if k> 1.

where sign(z) = 1 if > 0 and sign(z) = —1 if < 0. Then we claim that {r;};>1 is an
orthonormal set in L?([0, 1]). Let us discuss this point.

Notice that sin (2’“77:5) is periodic, sin (2’“77(1:+T)) = sin (2k7rx) for any x € R, with
period such that 2877 = 27, that is with 7' = 2'=* and half period 27%. If we decompose
[0,1] = U, [(7 — 1)27%, j27#], we have

(2) = 1, ifxe((j—1)27% j27F) with j odd;
TR 21, it o e ((— 1)27F, j27F) with 5 even.

Then |rg(z)] =1 and [|rg[|z2(j0,17) = 1. It is easy to understand that for k& > 1

2k=1 91—k

1
Lrgago = [ ez =3 |
0 =
o—k 2l—k
== (/ ri(x)dz —I—/ rk(x)dx) — k-1 (2_1§ - 2"“) = 0.
0 2k

Let now 1 < h < k, then

21—k

rp(z)de = 281 / ri(z)dx

_1)21—k 0

Qh [27}1 2}L £27h
o =2 [ m@neds =300 [ s

=1 J(L=1)2=h =1 (e—1)2—"

with

27h 270 ' ‘ N 2=h ‘ ‘ N
/(leh ri(z)de = /(£1)2h sign (sm (2 7r:1:>) dr = /0 sign (sm (2 Wm)) dx

gk—1—h j217k 21—k

= Z / sign (sin <2k7mc>) dx = Zk_l_h/o ri(x)dx = 0.

j=1 (—1)2L-k
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Let now Y = span {1, for all k£ > 1}. Then it can be proved that Y C LP([0,1]) for all
p < oo, and hence Y & L*([0,1]). To prove this let p = 2" and let us consider a finite
combination

N
F= " Arne
k=0

Then

Qn—l Qn—l on— 1
”fHL2" ([0,1]) Z H >\k]~ H Xhi <H Tk, H Thys > .
=1 L2([0,1])

0<k1,..kgn—1,h1,0.skgn—1 <N\ j=1

Now if for any of the indexes (ki, ..., kgn—1, h1, ..., hgn—1) which are nonzero there is another
one equal and if we can partition the indexes in pairs equal so that there is no index left
out, then

277,71 anl
I 1T rm =1
j=1  j=1

and so

on 1
<H Tk, H Thys > =1
L2([0,1])

If however we have some indexes left out, then there exist an m and indexes 0 < wy < ... <
wyy, such that

on—1 m
HWHm 11 7.
a=1

Then

2n—1 m
<Hrk Hrhl, > :<Hrwa,1> / Hrwadx
L2([0,1]) L(

a=1 [0.1])
2¥m—1  po—wm_1 m—1
= Z/ Tw,, () Tw, (T)dx
(=1 J(=1)27mt a=1

The function H;”;ll Tw, () is constant in [{ —1)27Wm—1 ¢2=Wm-1] which can be decomposed

me—ufm71—1

[(E _ 1)27w'm717£27wm71] — U [(E _ 1)2*'&)77171 + (Z o 1)27(wm71)7£27wm,1 + Z2i(wm71)]

i=1
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and since in each of the above small interval r,,, has null integral, we obtain

2¥m—1  yo—wm_1 m—1

So we conclude that
on 22n an—t ) 22n on
e <2( ) 2 T maP=2(% I
0<k1,erkyn 1 <N j=1
and so

22n

2
5 )) for any f € span {1,ry for all & > 1}.

’f”L2n([0,1}) < CQ”HfHLQ([O,l]) for Con = <2<

It is easy to see that exactly the same inequality holds for any f € Y. Finally, since for any
p € [1,400) there is an n such that p < 2", we have
1 fllze oy < N fllzem oy < Conllfll L2 (o,

where the first inequality follows from Holder inequality.

Theorem 16.13. Let S C H be orthonormal. Then the following hold.

1 For any u € H we have

> lu,s)ml* < lullf (Bessel Inequality). (16.2)
sES

2 Let Vg be the closure of the subspace of H spanned by S. The following are equivalent:
a)ueVs;

b) Y I(u,s)ml* = |lulli;

sES

c) The series Z(u, s)gs is convergent in H with limit u.
s€s

8 For any u € H the series Z(u, s)s is convergent in Vg with limit Py u and we have
seS

Z |(u,8)|* = ||Pvgul|3; (Parseval Identity). (16.3)
ses
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Proof. Let, to begin with, S be at most numerable. We will suppose S is exactly numerable
and we will write the elements of S as {s;};en. Consider sy, ..., s, and let

n

Spu = Z(u, Sj)HSj- (16.4)
j=1
Then .
1SnulFr = |(u, 55)ml*. (16.5)
and
lu = Spullf = lullF — [1Saull? (16.6)

which follows from (S, u,u — Spu)y = 0 which in turn follows from
(ej,u— Spu)g =0 for all j < n. (16.7)

Hence ||Spullg < ||u||g. Then we conclude

00
D M si)ul* < Jullf, (16.8)
7j=1

in the case S countable. Obviously, also the case S finite set is proved.

Let us assume now that S is infinite with cardinality strictly larger than card(N). Let
S = {s € 5:(us)y # 0} If card(S) <card(N) there is nothing more to prove. Let
card(S ) >card(N). Then it is not restrictive to assume S = S.

For any m € N let S(m) = {s € S : |(u,s)g| > 1/m}. It is immediately clear that S(m)
is a finite set, since otherwise we could consider a sequence of distinct terms {s;} jen which
from (16.8) satisfies

o0 1 o0
Zm* Zus] 2 < lull? < oo,

which is obviously absurd. But from S = U,,enS(m) and card(S(m)) < oo for any m imply
card(S) <card(N) yielding a contradiction. This completes the proof of the 1st claim of
Theorem 16.13.

Let us turn to the 2nd claim. Let u € Vg. For any € > 0 there exists s4,,...,54, € S
k

and Ap, ..., \y € K such that ||u — Z AjSo, |l < €. Collecting all these s,, for a sequence
=1

€ \, 0, we see that an at most countable subset S’ of S remains defined, such that v € Vg.

So, it is not restrictive to assume that the initial S is at most countable. Then we can

write S = {s;}jes, with J either finite or countable. For definiteness, let J = N. Then
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u € Vg implies that for any € > 0 there exists n € N and Aq,..., A, € K such that
n

n

||lu — ZA]'SJ'HH < €. We have, for S,u := Z(u, S§)HSj

j=1 j=1
2 2
n n n
=Y Nisjl| = |lu= Y (ws)msi+ > (w,s)m —Aj) s
j=1 " j=1 j=1 "
2
n
= |lu — Spu + Z ((u,85)H — Aj) 85
j=1 H
n
2 2
= [lu = Snully + D 1w, s7)m = N = Ju = Soull,
j=1
by (16.7). Then
n
lu— Spully < u—Z)\jsj < €.
Notice that the above implies also
m
lu — Smull 4z < u—Z)\ij <eforallm>n
j:l H
just by setting A\; = 0 for n < j < m. Then
o
|lu — Spull g4 Liman Ny IR, Z(u, Sj)HSj-
j=1
It follows that, ¢) must be true. Obviously c) implies a). Next, if ¢) is true, from S,u Do,

u in H we have ||S,ul|% LimA N |ul|%. So, since

n o0
ISwull =Y I(u,s5)ul® we get Y [(u, s5)ul? = [lullF,
j=1 j=1

hence proving ¢)=Db).
Now, let us assume b). By (16.5) and (16.6) we have

n
—+
lu— Snullzy = llulF = [SnullF = llullt =D 1w, ) ml* =0,
j=1
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where the limit holds by b), obviously proving S,u 22H% win H, and thus c).

Notice that for v € H with have Py u € Vg and (u,s)g = (Pyyu,s)y for any s € S.
So in particular c) is true for Py u yielding

Pyou= Z(vau, s)gs in H
s€S

(16.3) follows by b). The proof of Theorem 16.13 is completed. O

Definition 16.14. Given a Hilbert space H, an orthonormal basis is an orthonormal subset
S C H such that Vg = H.

Theorem 16.15. FEvery Hilbert space H admits an orthonormal basis.
Proof. It can be proved using Zorn’s Lemma. In fact, consider
S :={S: S is an orthonormal subset of H},

with the order relation C. Notice that & is inductive, that is given a totally ordered set
2 C G, then S = UgenS is an upper bound of . By Zorn’s Lemma, there is a maximal

element S € &. If Vo & H, let H > u ¢ Vs. Then setting, v = u—Pygu

= Tu=Pygulu
Sy == {v}US 2 S is an orthonormal set strictly larger than S, which is absurd. So
Vs =H. O

we have

il-x
Example 16.16. Consider the set S := {(e )d S Zd}. It is easy to conclude that it is
2m)2
an orthonormal subset in L?(T%). We claim it is an orthonormal basis. To see this, notice
from L?(T¢) = L2(T)®c9 that it is enough to prove this for d = 1. Since CO(T) = L*(T),
it is enough to prove that C°(T) C Vs. Recall from (7.22) that for any f € C°(T) we have

onf UimAN fin C°(T), for the Féjer sequence o, f: obviously, this implies convergence also

in the weaker topology of L?(T). On the other hand, any o,,f is a trigonometric polynomial
and so we have o, f € Vs. Hence f € Vg for any f € CO(T).
Having proved that S is an orthonormal basis of L?(T¢), we have from Parseval Identity

eié-x 2
2 (“ <2w>?>‘ -2

tezd

and in L?(T%) we have u = Z u(l)
LeZd (2m)

Notice that we got an 1-1 map L?*(T%) < ¢2(Z%) which is an isometry multiplied by the

scalar (2m)~%2. The image is dense in £2(Z%) (since it contains all t compactly supported

elements in ¢?(Z%), which are the images of trigonometric polynomials) and is complete

(being the image of the Hilbert space L?(T?) with the map an isometry multiplied by the

scalar (27)~%?) we have an isomorphism L?(T%) 5 f — f € (2(29).

1 u(x)e_ie'md:v
(2 )% Td
T

2
= 2m)* 3" @O = ful2apay

Le74

(16.9)

elé-m

d-
2
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Exercise 16.17. Show that, if {e,} is an orthonormal basis of a separable Hilbert space
H, we have e, — 0.

Exercise 16.18. Show that, if {e,,} is an orthonormal sequence in a Hilbert space H, we
have e,, — 0.

Remark 16.19. Notice, by Exercise 10.30, that there is no sequence f, in ¢}(N) with
[ fallo@yy =1 and f, — 0.

Lemma 16.20. Consider f,g € L'(T%). Then we have

—

F*g(n) = (2m)4f(n)g(n). (16.10)

Proof. We have

Fratm) = 2m) [ e agloydn = @m0 [ o™ [ fa = oy

'I[‘d

= n [ e o= yg(y)dedy = (20) Fl)n).

O

Exercise 16.21. Consider a p € C°(R% R) s.t. [ p(x)dr = 1 and set pe(x) := e 4p(z/e).
Show that in the space

CYRY) == {f € C°(R%,R) : lim f(z) =0} C L®(RY)
e—0t

we have p. x f —— f.

e—0t

Exercise 16.22. Show that it is not true that p. x f ——— f for all f in the space
BCY(R%) := C°(RY,R) N L=®(R?) C L>®(R%).

Exercise 16.23. Find the spectrum o(T) of the operator T : (?>(Z) — (?(7Z) given by
(Tx) = xp_1 for all k € Z, where x = (zg)kez.
Ezample 16.24. The operator defined in ¢2(Z¢) by

d
Au(n) = Z u(m) — 2du(n) (where |n — m| = Z |nj —mjl|) (16.11)

meZz? Jj=1
[n—m|=1

is a discrete version of the Laplacian (the finite differences Laplacian). It is a bounded
operator in £2(Z%). Keeping in mind the isomorphism L2(T%) — ¢2(Z%), see Example 16.16,

140



we have

(2m) =t S v rAfm) = 2m) S v | Y flm) - f(n)2d
neZzZd nezd |nn—]r€nZ|d:1

_ (27T)_d Z eim-xj/c\(m) Z ei(n—m)-x —9d

meZ4 nezd
In—m|=1

= (2m) ¢ Z e F(n) Z cos(m - z) — 2d

nezd meZ?
|m|=1

d
= ¢(z)f(x) , where ¢(x) := Z cos(m-z) —2d =2 Zw(xj)
meZz? Jj=1
|m|=1

where 9(z;) = cos(x;) — 1. Here ¢(T?) = [—4d,0]. Notice that we have shown

Af(n) = ¢f(n).

Up to a conjugation by an isomorphism, the map (16.11) is equal to the multiplier operator
f — &f. These two operators have the same spectrum and so, recalling Exercise 5.20, we
have o(A) = [—4d,0]. Notice that there are no eigenvalues.

Remark 16.25 (Schmidt’s Orthogonalization). Given a finite or countable sequence {f;}
sequence of linearly independent elements of a pre—Hilbert space H, then there exists an
orthonormal set S spanning the same linear space of {f;}

Indeed, setting hy = f1 and g1 = h1/||h1||g and by recurrence

n—1

ho = fo =Y (fn:95)9; and gn = /|| Bl 11,
Jj=1

It is easy to see by induction that for any n, Span{fi,..., fn} =Span{gi,...,g,} and that
{91, .-, gn} is an orthonormal set. The statement follows.

Ezxample 16.26. By the Weierstrass Approximation Theorem we know that the span of
{1,t,#2,13,...} is dense in C%([a, b], R) for any closed interval [a, b], and so in particular is also
dense in L?([a,b], a(t)dt), for a(t) € L'([a,b]). If we consider Schmidt’s Orthogonalization
{Po(t), Pi(t), Pa(t), P3(t), ...} we obtain the Tchebyschev system of orthogonal polynomials
in L%([a, b]).

Notice that if take away any finite number N of elements from {1,¢,¢2,¢3,...}, then its
span is not dense in L?([a, b],dt) and in fact its closure has codimension equal to N. This
is conspicuously different to what happens in C%([a, b]), see Example 6.22.
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Exercise 16.27. Show that if x,, — x in a Hilbert space H and ||z, | g UimakcN |z|| 7, then

Tn Uima SN strongly in H.

Remark 16.28. The above statement continues to be true for uniformly convex Banach
spaces, see Proposition 3.32 [4].

Exercise 16.29. Let H be a Hilbert space and Y ; H a proper, nontrivial closed subspace.

a Show in an elementary fashion, without resorting to Corollary 6.2, that for any v € Y’
there exists an extension b’ € H' of v/ with ||| g = [|y/||y+-

b How many such extensions exist?

16.1 Operators in Hilbert spaces

Definition 16.30. Given a Hilbert space H, for any T" € L(H) it remains defined another
operator T € L(H) such that

(Tz,y)g = (x,T"y)y for all z,y € H (16.12)

T is called symmetric or selfadjoint if T' = T™*.
T is called unitary if it is an isometric isomorphism.

Remark 16.31. Notice that in the very important case of unbounded operators, the two
notions of symmetric and of selfadjoint operator do not coincide.

Exercise 16.32. Show that 7™ is well defined, that T** = T, that ||T(|zz) = T z(ar)
and that |77 gy = ITT* |y = I1T1Z g1y

Exercise 16.33. Show that if 7 is unitary, then 7% = T
Definition 16.34. Given a Hilbert space H, an operator T' € L(H) is positive if

(Tz,z)g >0 forall z € H. (16.13)

We write T' > 0.
Given T, S € L(H), we write T > Sif T — S > 0.

Remark 16.35. It is easy to see using an appropriate polarization that if H is a Hilbert
space on C, then A € L(H) with A > 0 implies A = A*.

Exercise 16.36. Show that T7*T > 0 and TT* > 0.
Lemma 16.37. For T € L(H) selfadjoint, consider the orthogonal decomposition

H =kerT @ ker' T. (16.14)
Then the above decomposition is T —invariant and, furthermore, we have

kert T = R(T). (16.15)
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Proof. The invariance is elementary and left as an exercise, while (16.15) follows from (6.42),
after the identification H = H' = H”. This can also be seen in an elementary fashion and
from scratch, from

(l'aTy)H = (T:l:ay)H for all T,y € Ha

where we see that if 2 € ker T', then the above is zero for any y, which tells us ker™ T D R(T).
Viceversa, if we had ker™ T 2 R(T), there would be a z € kert T\R(T). Furthermore, we

could take z € R(T)J_. Then we would get z € ker T which would imply 0 = (2,2)g = ||2]|%
which implies z = 0, yielding a contradiction.

O

Remark 16.38. The decomposition (16.16) extends to a general and not necessarily selfad-
joint T' € L(H) as

H = Ny(T) & (N, (T")), (16.16)
where Ny(T') is the generalized kernel, see formula (5.20).
Lemma 16.39. The McLaurin series of \/1 — z is absolutely convergent for all |z|c < 1.
Proof. The series is

i(—l)” <i> 2" | where <i> _ [Tj= (%7; (j — 1))’

n=0

and has radius of convergence 1, so that it is absolute convergent for |z|c < 1. Let us see

case |z|c = 1. By direct inspection, we have (—1)"(%) < 0 for all n > 1. Then, for any
N e N,

N

n=0
i 1

<2 — lim Z(—l)n<2>x":2— Iim v1—2=2.

r—1— n r—1—
n=0

(3] =2 S (3) o S (B

=0 r—1—

This implies the following, which completes the proof,

()]
O

Theorem 16.40 (Square root of a positive operator). Let A € L(H) with A > 0 and let
A = A*. Then there exists and is unique a B € L(H) with B > 0 and selfadjoint such that
B? = A.
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Proof. First of all, it is not restrictive to assume [|Al|z(z) < 1. Next, we define

T 1
1-—A):2 = —1)"( 2 )A" 16.1
=S (3) (16.17
2
where the series is convergent in £(H). We skip the proof that ((1 - A)%) =1-A Itis
straightforward, using the series (16.17), that (1 — A)% is selfadjoint. Similarly straightfor-
ward is the fact that (1 — A)% commutes with A. Then we can write
A(l—A) = (1 — A)ZA(L — A)z.

We next claim 2

11— Allgy <1 (16.18)
This follows from
(1 = A)zlfr = (1= Az, (1 = Az)y = (x,(1 = A)z) y — (AL — Az, )y
= (z,(1— A)z), — ((1 ~A)TA(L - A)%x,x)H

= (@, (1= A))y — (A= A)pz, (1= Apx) < (@,(1— A)y <)L= Az|ulle]n,

where we used the fact that the operators are selfadjoint and A is positive. Claim (16.18)
follows immediately.
Notice that by [[Allz(g) < 1 we have

(1= Az, )y = |lallf; - (Az,2)y >0

andsol—A>0.
We also claim that /1 — A > 0. Indeed, using 0 < (A"z,z), < ||z||%, we have

(viiea), = lolly + S (3) (e,

=1
N 1 N 1
> |23 + llliF Y (=1 ( %) = |l (2— (—1)"( 2 )zo.

Thanks to (16.18), we can consider

n

1 1 s l
Az :=(1—(1—A))? :Z(—1)”(2)(1—A)" (16.19)

n=0

2Operators which satisfy (16.18) are called accretive operators, which is an alternative to the notion of
positive operator in Definition 16.34. Notice that (16.18) makes sense in a general Banach space.
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which has the desired properties.
Notice that

ker A = ker A2. (16.20)
Indeed, ker A D ker A3 follows from

1
(A[B, x)H - HA§$H%{7

2
and ker A C ker A3 follows from A = (A%> . Notice that this implies that, for A positive

and selfadjoint, « € ker A if and only if (Az,z), = 0.

To conclude the proof of Theorem 16.40 we need to check the uniqueness. Let B > 0 and
selfadjoint satisfy B?> = A. Notice that B commutes with A = B?. We conclude that B
commutes with the series (16.19), and so with Az Then we have

O:A—A:BQ—(A%)Q:(B—A%) (B+A%).

Then we conclude B = A? in R <B + A%> = ker® (B + A%)
So, since by (16.16) we have

H = ker (B+A%) @ kert (B+A%),

we need to check the behavior of B — A% in ker (B + A%)

Since B + A2 > 0 and is selfadjoint, by a previous discussion we know that
x € ker (B —i—A%) & <<B —I—A%) x,x)H =0& (Bzr,2)y =0= (A%x,:v>H

Sre kerBﬂkerA%.

So, in ker (B + A%> we have B = A3 = 0 and so, again and trivially, B = Az. Hence
B = Az in all H.
O

Exercise 16.41. Show that if T € L(H) is such that [T, A] = 0, for A the operator in
Theorem 16.40, then [T,v/A] =0

Theorem 16.42 (Polar decomposition of an operator). Any A € L(H) can be written as
A = UR with R positive and selfadjoint and U unitary. There is a unique such R positive
and self-adjoint operator, we denote it by R = |A| and we call it absolute value of A.
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Proof. Let R = v/A*A. We have
|Rz||% = (Rx, Rz), = (sz,m)H = (A*Az,2)y = (Az, Az); = ||Az||3; for any = € H,
that is || Rz|| g = ||Ax| g for any € H. This implies
ker R = ker A. (16.21)

Since R* = R, by Lemma 16.37 we have the decomposition

H =ker R® R(R). (16.22)

Set now

Uz = {A“ ifz = R (16.23)

z if © € ker R.

Notice that, by ker R = ker A, U is well defined in ker R & R(R).
From |Uz||g = ||z||g, it follows that U extends in an isometry on H = ker R® R(R). It is
easy to check that U is an isomorphism (left as an exercise). Then we conclude URz = Ax
for any x € H.

Now we need to show uniqueness of R. Let A = U; R; be another polar decomposition.
Then

R? = A*A = RiU{U\R, = R? = R = Ry,

by the uniqueness of the positive square root of a positive self-adjoint operator.

Remark 16.43. We remark that we have shown that U splits

U:ker R® R(|A|) = ker R® R(A). (16.24)

Exercise 16.44. Check whether or not the U in the factorization A = U|A]| is unique.
Exercise 16.45. Show that if A, B,C € £(X) for X any topological vector space, then

[A, BC| = [A, B]C + BJA, C] (16.25)
[AB,C] = [A,C|B+ A[B, C]. (16.26)

Show also
[A,[B,C]]|+ [C,[A, B]] + [B,[C, A]] = 0. (16.27)

Exercise 16.46. Show that if A is self-adjoint then the U in the proof of Theorem 16.42
is self-adjoint.
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Remark 16.47. The Spectral Theorem for self-adjoint operators (which is one of the most
important theorems in Functional Analysis, and which will be treated in the next semester
in the course named Functional Analysis) allows to define the operator f(A) for any self-
adjoint operator A and for any Borel function f : R — C. Then U = f(A), with

{lgifﬂs#()

HE =Ttz =o.

Notice that the absolute value operator |A| in Theorem 16.42 is, for A self-adjoint, indeed
|A| = f(A), for f(x) = |z|. So the notation and the terminology are consistent.

16.2 Some remarks on Sobolev Spaces

Some of the most important Banach spaces are the Sobolev Spaces, which will be discussed
in some length in the 2nd part of this course. They are based on the Lebesgue spaces
LP. The simplest ones, and the most important ones, are the ones based on L?. We will
discuss them only on the tori T¢, where we will exploit the notion of Fourier Series and the
isometric isomorphism L?(T%) > f — f € £?(Z%) discussed in Example 16.16.

Definition 16.48. For ¢ € R? we denote by (£) := /1 + |£|? the Japanese bracket.
For any s € R we denote by H*(T?) the completion of the space of trigonometric
polynomials

R il-x
f@)=3 Ji-— (16.28)
=y (2m)2
provided with the norm
1F1Fe iy = D_OZ=IFOF = [0 F O 0, (16.29)

Lez
Exercise 16.49. Prove that if sp > d then || (€)™ [|sp(za) < 00 .

Exercise 16.50. Show that if for n € N we denote by H"(T¢) the completion of the space
of trigonometric polynomials (16.28) provided with the norm

”f”?-[n('ﬂ‘d) = Z 102 fll L2 (Ta) (16.30)

la|<n
then the norms (16.29) and (16.30) are equivalent and the two spaces H™(T%) and H"(T¢)
coincide.

Exercise 16.51. Show that H*(T?) has a natural structure of Hilbert space and write
explicitly the inner product.

Exercise 16.52. Show that, for A%, for any k € R, the operator defined by W(@) =

~

(05 f(€), then A5~ : H*(T%) — H7(T?) is an isometry.
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Ezxample 16.53. One simple example of Sobolev’s Embedding Theorem, which is a cru-
cial theorem in Functional Analysis, discussed later in the 2nd part of this course, is the
following: if s > d/2 then there is an embedding H*(T?) — C°(T9).

To see this embedding consider for trigonometric polynomials the identity (16.28). Then,
taking absolute value of (16.28), we have

f@< YOI Y o=@ o< [ Y o™ PORGNIG]E

| <N [|<N tez4d ||<N
= 140> Il 2 gy | £ | s -
By density, this yields
1£llcogray < 1140~ leqzay | f | 715 (pay for any f € H*(T). (16.31)
We refer also to the solution of Exercise 18.6, see below, for more.
Exercise 16.54. Consider for some 1 < m < n the embedding
T > (1, ooy Tm) = (21, e, T, 0,..,0,0) € T™.

Show that the restriction C*°(T",C) > f — flpm € C°°(T™,C) extends into a bounded
map

H*(T™) — H* (T™)
when s > ¢ + %

Remark 16.55. Notice that restriction theorems like the one in Exercise 16.54 play a deep
role in PDE’s. For example, the celebrated Strichartz estimates, which for example for the
group introduced in (7.30), tell that

”eiAtuOHLq(R,LT(Rd)) < C'”UOHB(Rd) (16.32)

for all pairs (g, r) which are Schrédinger—admissible, that is

2 d d

242z 16.

q+r 5 (16.33)
2d . .

2§r§ﬁ(2§r§001fd:1,2§7“<001fd:2). (16.34)

Strichartz proved the non sharp case, that is all cases except those with r = 2 for d > 3,
exactly as a restriction theorem on the paraboloid & = &7 + ... + §3 in Phase Space. The
classical paper is Strichartz [13]. The best explanation for this, as for many other topics, is
in Stein [12]. The endpoint case r = 2 for d > 3 is another classical paper, this by Keel and
Tao [7] (at the time of writing these notes, it is the most quoted paper of the 2006’s Fields
Medal laureate Terence Tao). Strichartz estimates is a very important topic and tool. A
great expert is Damiano Foschi, at the nearby University of Ferrara.
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Ezxample 16.56. Recall from the Riesz Frechét Theorem 16.10 that, given a Hilbert space
H, there is a natural isomorphism H — H’ given by u — (u, ). However, often it is natural
not to identify H and H’. A case point are the spaces H*(T?%) when s # 0, which are
Sobolev spaces, that is, some of the spaces used in applications of Functional Analysis. If
we consider two trigonometric polynomials, then we have

(F)ieqee) = [ Falal@de = 32 FOG0 = 3 (0" Fo) (07 0.

LeZ4 ¢czd

Then we get

< 1f s (vey 191l s ey -

‘(ﬁ 9)L2(14)

This shows that (-,)z2(pay : H*(T%) x H=*(T¢) — C is a bounded bilinear map. It is
easy to conclude from this that there exists an isomorphism H~*(T%) 3 g — (-, ) r2(1d) €

(H* (Td))/. This sort of identification, arising concretely from the inner product in L2(T9),
is much more common in practice than the somewhat more abstract identification of H*(T%)

and (HS(’]I‘d))/.

17 Compact Operators

Definition 17.1. A bounded linear operator T' : E — F between two Banach spaces is
said compact if it sends bounded sets into relatively compact sets.

Example 17.2. A bounded linear operator T : X — Y between two Banach spaces is a finite
rank operator if dim R(7T) < co. Finite rank operators between Banach spaces are compact
operators.

Exercise 17.3. Let T € L(X,Y) and S € L(Y,Z) and suppose that one of the two is
compact. Then S o T is compact.

Exercise 17.4. Consider a compact operator 7' : X — Y between two Banach spaces.
Show that if z,, — z in the (X, X’) topology then Tz, 7% Tz in the strong topology
inY.

Remark 17.5. Consider a compact operator T : X’ — Y between two Banach spaces with
X' the dual of a Banach space X. It is not true in general that if 2/, — 2’ in the o(X’, X)
topology then T/, “=>% T4z’ in the strong topology in Y. Indeed, consider Y = R
and consider evgf := f(0), which is bounded from CJ(RY) — R. Let T': L®(R%) — R
be an extension of evy using the the Hahn—-Banach Theorem, Obviously, T" is a compact
operator. Consider any 1 € C%(RY) with ¥(0) = 1 and let ¢, () = t(nz). Then, by
Dominated Convergence we have 1, — 0 in the J(L“(Rd),Ll(Rdl) weak topology, yet
n—oo

Tn, = evothy, = Pp(0) = 1 for all n. So it is not true that T, —— 70 = 0, and this
gives a desired example.
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Example 17.6. Lack of compactness of an operator T : E — F' is often related to the action
by a non—compact group. For example, take a convolution

Tf=krxf.

We know that by Young’s inequality (15.26),
1 1 1
1T fllrmay < 1 f e ey |15l Laray for - +1= » + 7

The operator T : LP(RY) — L"(R%) is never compact if x # 0 when p > 1.
Indeed, if we take any sequence x, 22H0 o in R?, then by the commutation property
(15.32), we have T'r,, f = 75, Tf. Now, if 1 < p < oo we have 7, f — 0in o (LP,LPI) if

1 < p < oo for any f € LP(R?) (See Example 10.17) but, if Tf # 0, we have ||7,,Tf| - =
|T £, and so T'7y, f does not converge strongly to 0 in L"(R?).

Case p = oo is similar. Indeed, 7, f = 0 in o (LOO,Ll) for any f € L°(R?) with compact
support but, if T'f # 0, we have ||, T f||zec = |[|Tf]|| £, and so T, f does not converge
strongly to 0 in L>°(R%) (recall, » = co). Notice that here x € L'(RY) and, if & # 0, there
is certainly an f € L>°(R%) of compact support such that x * f # 0 in L>®°(R%).

When supp « is compact, we can capture also case p = 1.

Example 17.7. A similar effect of translation invariance is obtained considering scale invari-
ance. So here, in a specific example, we will use scaling as an alternative to translation. A
very important theorem states that

1 1 d—
foranyq/E(O,d)and1<p<q<oovvithf:f%—T’y (17.1)
b q
and for
Tfa) = [ o=l f0)dy (17.9)
there exists a constant C s.t.
1T fllLoqrey < Cllf | oqray for all f € LP(RY). (17.3)

This is the Hardy-Littlewood-Sobolev Inequality. It is related to the Sobolev Embedding
Theorem, although not discussed in Brezis [4] and not in the 2nd part of this Course. We
refer for it to Stein [12]. Notice that

— “T\: — Vi dg _ y\y—d—344
Topf(x) = d!w—yl Ar f(Ay)dy = A y Az — Ay[TTAP f(Ay)ATdy = A AT f(x).

R

So we have shown that

To,0f = N5t 55, \TF.
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It is easy to see (we leave this as an exercise, you’'ll see something similar when discussing
the Gagliardo—Nirenberg Sobolev Inequality in the next semester) that, for (17.3) to be
true, we need to have v —d — g + % = 0, which is indeed the condition in (17.1).

So here we have that, under the conditions (17.1), then

TSprf = 62T (17.4)
n—-+4o0o

This can be used to show that the operator T is not compact. In fact, taking \,, ———— +4o0.
we recall that for 1 < p < oo we have d,, f — 0 in LP(R?) for the o(LP, L*") topology, see

Example 10.23. If T was a compact operator, we would have d, 5,7 f 2% 0 in norm in

L(R%), but this is not true, because 6.3, T f Nl Laray = [T f || La(ray # O for all nonzero f.

Notice that here, we could have used translation instead of dilation. But there are
examples where translation is not available but dilation is, and in fact you will see it, in
relation to Remark 10 p. 214 in Brezis [4], in the next semester.

Remark 17.8. It is an important topic to find why certain operators fail to be compact,
for example the operator e*® : L2(R?%) — L4(R, L"(R%)) for an admissible pair (q,r), see
Remark 16.55. There are results which state that there is a sort of compactness up to scaling
and translation. An important paper is Bahouri and Gerard [2], but there are earlier papers.
The most famous paper exploiting these facts in PDE’s is probably Kenig and Merle [8].
An expert on the failure of Sobolev Embeddings to be compact is Sergio Solimini, now in
Bari but many years ago professor at SISSA.

Exercise 17.9. Prove that ¢°(Z%) C ¢4(Z%) for p < q and check if the immersion (P(Z%) —
09(Z%) is compact, at least for some p < q.

Answer. One can exploit the existence of translation in Z? which induces translation
in the above spaces, to exclude that these embeddings are compact operators.

Exercise 17.10. Check if the immersion L?(0,1) < L!(0,1) is compact.

Answer. It is not compact. Notice that we have

L?(0,1)  L'(0,1)

*(2) £(2)



multiplications by €!*". So, for any f € LP(T) consider the sequence " f. If a subsequence
el f is convergent in L4(T), then for any e > 0 there exists N(¢) such that

) 1| | f(a)|dz < e

j,k:>N(e):>/T}eim’“—eimf‘ |f(:v)|dx:/T

But, using (15.38),

-
T

> [ lsintatn = n)| [f@lde S22 )

ele(ne—n;) _ 1’ |f(x)|dx = /T |(cos(z(ng —ny)) — 1) +isin(x(ng, — ny))| |f(x)|dx

which yields

2
= [ <

Obviously, by the arbitrariness of € > 0, this implies f = 0. O

Lemma 17.12. The space of compact operators K(E, F) is closed for the uniform norm,
in the space of bounded linear operators L(E, F)

Proof. Consider Dg(0,1) the unit closed ball in F and let T' € K(E,F). To show that
TDpg(0,1) is relatively compact it suffices to show that for any e > 0 we can cover T Dg(0, 1)
by a finite number of balls in F' of radius e. Let S € K(E,F) with ||S —T||zgr) < €/2

and cover SDg(0,1) by balls Dr(f;,€e/2) for j = 1..n. Then Dp(f;,€) for j = 1...n cover

TDg(0,1).

O

Theorem 17.13. Given two Banach spaces X and Y, T € K(X,Y) if and only if T* €
K(Y' X"

Proof. Assume that T € K(X,Y). We need to show that T%(Dy/(0,1)) is compact. Let
K := T(Dx(0,1)). We know that K is compact. Consider a sequence y/, in Dy/(0,1).
Obviously {y)|;} are elements of CY(K,R). It is easy to see that we can apply Ascoli-
Arzela and conclude that there is a subsequence, which is not restrictive to assume equal
to the initial sequence, such that y;, | D2F0, » in CO(K, R). So

n—-4o00
— 0.

sup ‘<y§l, T$>Y'><Y —o(Tx)
.TED)((O,I)

This implies

n—+00,m—-+00

0.

sup ‘<T*y;l’x>X/><X - <T*y’l/ﬂ’x>X/><X
zGDx(O,l)
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This is equivalent to

n—+o0o0,m—-+oo
_—

1Ty, — Ty, || x7 0.

This implies that T*(Dy(0, 1)) is compact.

Let now T* € K(Y', X'). Then, by the first part of the proof we have T** € K(X",Y").
Recall that from Lemma 6.23 we have T**.Jx = JyT. Since T**|; y € K(JxX,Y") and,
having image in JyY, it is T**\JXX € K(JxX,JyY), and since Jy : Y — JyY and
Jx : X = JxX are isometries and isomorphisms, T’ = J,-* ;. x Jx € K(X,Y). O
Theorem 17.14. If F' is a Hilbert space, then any T € K(E,F) is the uniform limit of
finite rank operators.

Proof. Let TDg(0,1) C U;‘ZlDF(fj,e). Let G be the space generated by the f;, j = 1..n,
and Pg the orthogonal projection on G. Then for any x € Dg(0,1) there is f; such that
|Txz — fi||lF <€ So|PgoTx — fj||r < eandso ||PgoTx—Tx|r < 2e. This implies that
”PGOT_THL(E,F) §2€ ]

Exercise 17.15. Show that, for x € L!(T%), the operator
Tf=rxf (17.5)

is a compact operator T : L2(T¢) — L?(T4).

Remark 17.16. The crucial difference between Example 17.6 and Exercise 17.15 is that T¢
is a bounded manifold.

Exercise 17.17. More generally, show that, for x € Lq(']I‘d) with ¢ < oo, the operator
Tuf =rxf (17.6)
is a compact operator Ty : LP(T?) — L"(T¢), where 1 +1 = % + %,

Answer. Let us consider the case x € C°(T?). Then & is uniformly continuous and for
any € > 0 there exists 6 > 0 s.t., if Q C T¢ is such that diamQ < 6, then oscor < €. So,
let us consider U;V:H Dra(yj,6/2) a covering of T¢ and a partition of unity Z;V:H xj(z) =1
such that x; € C>°(Dra(y;,0/2),[0,1]). Then

Ly f(x)

Ne
)= 3 nla =) [ sy

Ne
N N

SN f(x)
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Now, Ly, is a finite rank operator and so it is compact, while

Ne 1
S8 Flzorny < €[> /T GOy = el (volT)) " < ol £l ra)-
j=1 Lp(’]rd)

+
So || Ly, — Tkl £(Lp(T4)) < evol(T%) 2%, 0 and we conclude that T}, is compact. In general,
if ¢ < oo, we can take C°(T?) > 22,k in L(T9), and then

n—-+o0o

||Tnn_Tn”g Lo(Td)) < H"fn_"fHLq ray — 0
(Lr(T4)) (T4)

and so, since all the 7, are compact, also 7T}, is so. ]

Lemma 17.18. Let W & X, W closed and X Banach space. Then there exists a sequence
Up, such that ||v,||x =1 and

n——+0oo
—_—

dist(vp, W) 1.

Proof. Given v € X\W, there exists a sequence w,, € W such that

v — wn|lx 22225 dist(v, W) > 0.

Let vp = - Obviously dist(vy, W) < dist(v,,0) = ||vn]|x = 1. Suppose now that
S = lirginfdist(vn,W) <1 (17.7)

Let S < a < 1. Then there would be a subsequence of n and u, € W such that

v = wn — (v — wallx)nllx < allv— wpllx 222255 adist(v, W) < dist(v, W) — &g
for some sufficiently small g9 > 0.
So, setting W 3 w, := wy, + ||v — wy||x Uy, there is a subsequence of n and u, € W
such that
lv — up||x < dist(v, W) — e

for a fixed small €. Absurd. This means that we have S = 1.
O

Exercise 17.19. Let X be an infinite dimensional Banach space. Show that for any
r € (0,1/2) there exists a sequence {v,} in X such that ||v,|x = 1 and the closed balls
Dx (vp, ) are pairwise disjoint. Show also that (72 ; Dx (vn,r) is a closed set in X.

Corollary 17.20. V' Banach with Dy (0,1) compact. Then dimV < oo.
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Proof. If dimV < oo we know Dy (0,1) compact. Let us prove the opposite. Suppose
dimV = oco. Then there is a strictly increasing sequence E, of closed vector spaces such
that for any n there is a u,, € E, — E,_1 with |Ju,|lv = 1 and with dist(uy,, Ep,—1) > 3. Then
[tn, = um|lv > § for n # m, and in particular this sequence does not admit a convergent
subsequence. This implies that Dy cannot be compact.

O

Remark 17.21. The following theorem is a very important tool. As we know, if T € E(]Rd),
then R(T) = R? <= ker T = 0. This is not true if 7 € £(X) with dim X = co. However
Theorem 17.22 implies that if T = A+ K with A an isomorphism in £(X) and K a compact
operator, then in fact R(T) = X <= kerT = 0.

Theorem 17.22 (Fredholm alternative ). Let X be a Banach space. Let K € K(X) and
set T =1— K. Then:

I dimkerT < oo

2 R(T) = (ker T*)*

3kerT =0 R(T)=X

4 dimkerT' = dim ker T*.

Remark 17.23. Notice that the condition R(T) = (ker T*)* is crucially important when
solving equations (1 — K)x = xo, which has solutions if and only if g € (ker 7%)*. It is
impossible to overestimate the importance of this solvability criterion for these equations.

Proof.

1For N :=ker(I—K), we have Dy (0,1) C KDx(0,1) and so Dy (0, 1) is relatively compact.
Then, by Corollary 17.20, N is finite dimensional.

2 We have R(T) = ker' T* by (6.41), so here we need to show that R(T") = R(T). Consider a

n—-+o0o

sequence Tz, —— f in X, we need to show that f € R(T'). Notice that z,, = Tx,+ Kx,.
If {zy }nen is a bounded sequence in X, then up to a subsequence, which is not restrictive
to assume equal to the whole sequence, we have Kz, Do, gin X. Then z, UimaN f+g
and hence, by continuity, Tz, Do, f=T(f+g),and so f € R(T).

The whole point in the above argument was the boundedness of the sequence {z,},
which in general is not true a priori. However we claim that

3 a sequence {y,} in ker T s.t. {5, — Yn }nen is @ bounded sequence in X. (17.8)
This in turn yields Claim 2 of the statement, because
Ty, =T(xy — Yn). (17.9)

Notice that ker T'= N and has finite dimension. Let d,, := dist(z,, N). It is elementary, by
the Weierstrass Theorem, that since ||z, —.[[x € CY(N,R) with limy o |2, — y[lx = 400,
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there is an absolute minimum y, € N, with therefore d,, = ||x,, — yn||x. It is enough to
prove now that {d,} is a bounded sequence. Suppose that this is false, and that there is a

subsequence with limit +oco. It is not restrictive to assume d,, 2= +o00. By (17.9) and
n—oo .
Tx, — fin X,

T$n n—-+o0o Tn — Yn

I~ wy, — Kwy 22 0 where wy, 1= —— (17.10)
20 — ynllx 20 — ynllx

By compactness, up to a subsequence which, again, is not restrictive to take the whole
sequence, Kw, -+ ¢in X. By (17.10) we get wy, 22¥% gin X and g € N. This

obviously implies
dist(wn, N) < |Jwn — g||x 22225 0. (17.11)

However

dist(w,, N) = dist < Tn — Yn ,N> _ dist (x, — yn, N)  dist (zn, N) d
Hxn - yn”X

— - _1
|25 — ynllx dp dn
So we get a contradiction to (17.11), and this shows that {d,,} is a bounded sequence. This
completes the proof of the claim in (17.8).

3 Assume T is injective. Suppose T' is not surjective. We know X; = R(T) & X is
closed. Then T : X — X is an isomorphism between Banach spaces. Set by induction
Xpt1 =TX,. By induction, this is a strictly decreasing sequence of closed spaces. Indeed
if X;, G Xy—1, then by injectivity Xpy1 = TX, & TX,—1 = X,,. Next consider z, € X,,
such that ||z,||x = 1 and dist(xy,, X;41) > 1/2, see Lemma 17.18. Now for n > m

Kxy — Kap =1 —T)xym — (1 —T)xy = 2m + [—2n — (Txm —Txp)] = Tm + Tnm

with zpm € Xpmq1 by z, € X, € Xpq1 (since n > m + 1) and by Tz, € Xppq1 and
Txy, € Xpy1 C Xy € Xint1-
Hence .

Kz, — Kz || x > dist(z,, Xmt1) > 7

But then {Kz,} is not a relatively compact sequence, because it cannot have a a convergent
subsequence, contradicting the compactness of the operator K. We conclude that T injective
implies T surjective.

Now we consider the opposite implication assume that T is surjective. Then, by
ker T* = R(T)*, see (6.39), the dual T* = I — K* is injective. Since K* is compact
and X' is a Banach space, we conclude R(T*) = X' and, therefore, from ker T' = R(T*)*,
see (6.38), that T is injective.
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4 Let d = dimker T' and d* = dim ker T*. We have already proved that both are finite. Let
us show first d* < d. If not, d < d*. Notice that codimR(T) = d*, since there is a natural
identification (X/R(T))" ~ ker T*. Indeed, there is a natural embedding (X/R(T))" — X’
with image in (R(T))", which by (6.39), equals ker T* and, viceversa, given any element of
X’ in (R(T))*, it induces an element in (X/R(T)). The above algebraic isomorphism is
continuous, and so it is an isomorphism between Banach spaces.

So we conclude that both ker T" and R(T') are complementary and we have

X=kertT®E=F&R(T), where dim F' = d". (17.12)

So there is amap A € L(ker T, F) with ker A = 0. Let then S = K + APy, 7, with Pyey 7 the
projection on ker T' associated to the first splitting. Notice that S is a compact operator.
Then we claim that ker(1 — S) = 0. Indeed, if (1 — S)x = 0, then

0=01—-K)x — APz =Tx — APy = Tx = 0 = APier 7,

by the 2nd splitting in (17.12). From ker(1 — S) = 0 we conclude R(1 — S) = X. But this
is not possible because there exists an element f € F which is not of the form AP, rx for
all x € X. So we proved d* < d. Similarly

dimker T** < dimker T* < dim ker 7. (17.13)

But it is obvious from T**Jx = JxT and the fact that Jx is an isometry, that we have an
embedding Jx : ker T' < ker 7", and so that dimker 7** > dimker7". Then in (17.13) we
have equalities. O

Remark 17.24. A consequence of the Theorem 17.25 below, is that, given K € K(X), there
is a K—invariant decomposition

X=X P NJ(K-N (17.14)
e (K)\{0}

+o0o
where o (K|y,) = {0} and where inside each Ny (K —X) (recall Ny(K—X\) := U ker (K — \)"),

n=1
up to an appropriate choice of basis, K decomposes in a finite direct sum of finite rank Jor-

dan blocks like in Sect. 5.1. So one can get a sense of the meaning of some of the statements
in Theorem 17.22 splitting and looking singularly at 1 — K| x, and at each 1 — K | Ny(K—2)
with A € o(K)\{0}, further splitting the latter in the Jordan blocks. The idea is that, up
to the 0 spectrum part, K is a (possibly infinite) sum of finite dimensional operators.

So, for example, if we focus on a Jordan block, K leaves a space Sp{ey, ..., e, } invariant.
For definiteness let us assume n = 3, but what we write below works for any n. For this
basis has associated matrix

1-A -1 0
and 1 — K = 0 1-Xx -1

A
K=10
0 0 0 1—-A

S >
> = O
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For A # 1 obviously the above matrix is invertible and there is trivial kernel. The interesting
case is when A = 1. So, in Sp{ey, e2,e3},

0 -1 0
T=1-K=|0 0 -1
0 0 O
Now, let X’ = Spt{ey, e, e3} @ Spiet, €5, €5} with
<ej’ez>X><X/ = 5jk- (17.15)
Then notice that
ik = (ej, €Z>X><X/ =(—Tejr1,€p) x o xr = — <ej+1=T*€Z>X><X/
implies T*e;, = —e;_ | with T'e3 = 0. In Sp{e], 3, e3}, for this basis, 7" acts as
0 0 0
T"=1]-1 0 0
0 —-1 0

So R(T) = Sp{ei1,ea} and ker T* = Sp{e;} and, by (17.15), they are orthogonal to each
other, as indicated in Theorem 17.22, but here, in this example, one can see it!

Theorem 17.25. Let K € K(X) and let dim X = co. Then:
10€0(K);

2X€o(K) and A # 0 = X is an eigenvalue;

3 Either o(K) is finite or o(K)\{0} is a sequence convergent to 0;

4 Fach A € o(K)\{0} has finite algebraic (and so, also geometric) multiplicity.
1If0 ¢ o(K) then I = K o K~! is compact, which is incompatible with dim X = co.

2 Let A € 0(K) and A # 0. If X is not an eigenvalue then ker(KX — \) = 0 and, by Fredholm
alternative, R(K — \) = X. Then, (A"'K — 1)7! is well defined, with domain X. The

graph of A 'K - 1) ' ={(z, N\ 'K - 1) '2) :2e X} = {(A\'K - 1)z,2) : 2 € X}
is closed , because the graph
graph of A 'K — 1) = {(z, A 'K — 1)z) : 2 € X}
is closed. But then by the Closed Graph Theorem we have (A\™1K —1)~! € £(X). Hence
(K—-)\)"!leL(X)andso A ¢ o(K).
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3 Suppose o(K)\{0} is infinite. Then, since K is bounded we have o(K) C{z € C: |z| <
K|l zx)}- So o(K) is compact. Consider a sequence A, of distinct elements in o(K) and
suppose A, — XA # 0. Let Kz,, = \,x,, and let X,, be the span of {x1,...,z,}. There exists
Yn € Xn, llynllx = 1, dist(yn, Xn—1) > 1/2. Now, for n > m

K K K— )\ K-\
Yn  BYm — Yo + |:ym+( n)yn 7( m)ym = Yo + Znm

An A An Am
with 2y, € X1 since (A, — K)y, € X,,—1. Hence

K K

and this contradicts the compactness of K.

4 It is easy to see that if A € (K )\{0} then dimker(K — \) < co. Otherwise we could
consider the usual sequence X,, = span{x1,...,x,} C ker(K — \) with dist(z,, X,—1) > 1/2
and ||z,||x = 1. But then ||[Kxz, — Kzy| > |A\|/2 > 0 for n # m and we contradict
compactness of K.

Ezample 17.26 (Compact operator without eigenvalues). Let f,, be an orthonormal basis
in a Hilbert space H, and a decreasing sequence in R with a strictly decreasing sequence
n—oo

an, —— 0. Then

A= Z an(+ fo) 0 fr
n=1
has no eigenvalues and o(A) = {0}. It is easy to see that A

N—oo
=aN41] — 0

L(H)

N
A— Z an (s fn)H fas1
n=1

and so A € K(H). It is also easy to see that ker A = 0. Next, we claim

A" f = Z H an—j+1 (fn—m+1, ) fat1 (17.16)

n=m j=1

Formula (17.16) is trivially true for m = 1. Suppose it true for m. Then, for fo = 0, we
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have

AL = Z Han—j+1(fn—m+1,Af)an+1 =

n=m j=1

=Y []an-in (fnm+1azal(fa fz)Hfl+1> frs1
H

n=m j=1 =1
co oo m

= Z ZH% j41ar (fo—ma1s fren) m (Fy f) B fota

n=m |=1 j=1

5m7nl

o) m+1

= Z Han j+10n— m(f7fn m an+1 Z H an—j+1 f fn m)an—i—l

n=m j=1 n=m+1 j=1

where in the last line we used that fy = 0. This yields (17.16) is trivially true for m + 1
proving it for all m.
We have

1
. N m ™ 1 m e
|A HZ(H): (H‘%w) SEZ‘CLM%O;

n=1

n=1

where the inequality follows from,

m % m 1 1 m
o (T 1) " = 3 Lt < 10 3.
n=1

n=1 n=1

1
that is, the fact that log (with basis e) is strictly concave and increasing. So ||A™ HZL(H) moe

0. This implies that there are no nonzero eigenvalues and so o(A4) = {0}.

Remark 17.27. Notice that, if A is an eigenvalue from |A| < ||T'|| we can derive also |A] <

n—-4o00

||T"||% for all n € N. So, in particular, if ||T”||7 — 0, we get A =0.

Exercise 17.28. Suppose that 7' € £(X) is an operator with o(7) = {0}. Is necessarily T'
compact?

Answer. No. Take in ¢?(N) the operator

T(x1,xa,...) = (22,0,24,0, ..., Ton, 0 o)
~——

at 2n — 1 and 2n place
It is trivial that 72 = 0. Notice that if A # 0, then

1 T 1 1
- ~+=)=1 T-T)— =T?=1
A-T) <)\ * )\2> " )\( ) A2
which means that \ € o(T). O
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Exercise 17.29. Consider the operator T f(x) = ! fo t)dt, that, as we saw in Example
15.39, defines an bounded linear operator in LP(O 1) for all 1 < p < +00. Using scaling,
show that it is not a compact operator.

AnswerAn easy answer is to consider the isometry (8 f)(z) := AP f(Az). Then

1 x 1 Az
T obyf(z) = )\1/7’/ fOt)dt = )\1/7’/ f(s)ds = 6y o Tf(x).
T Jo AT 0
Now, for p € (1,+00) we know ) f — 0in LP(0,1) for A — 0F. If T' is compact, this implies
Todrf=0dyoTf—0in LP(0,1) in norm.

But this is not true, because |[6x o T f||r(0,1) = | Tf || 1r(0,1) and, as we will see later, T'f # 0
for any f # 0. So, by this contradiction, we conclude that T is not compact. For p = oo
one can repeat the same argument picking f € CJ((0,1). O

The following exercise shows that T' does not satisfy the conclusions of Theorem 17.25,
so provides another reason why 7' is not a compact operator.

Exercise 17.30. Consider the operator T f(x) = 2~} fo t)dt, that, as we saw in Example
15.39, defines an bounded linear operator in Lp(O 1) for all 1 <p < +00.

a For p < oo show that the set of the eigenvalues is the open disk D¢ (%, %/)
(1 1)
b For p = oo show that the set of the eigenvalues is D¢ (5, 5)\{0}.

¢ Show that in all cases o(T") = D¢ (2 , 2)

Answer. Clearly ker T' = 0 since if
Tf:0<:>/ FOdt=0= f(z) =
0

since F(z) := [ f(t)dt is Absolutely Continuous and so F'(z) = f(x) for a.a. z € (0,1),
and on the other hand F =0. Let now z € C be nonzero. Then T'f = zf is equivalent to

zof' +(z2—1)f =0.
So multiplying by 25" the above is equivalent to
z—1 4
z (:CTf(a:)) =0

that is to f(z) = Ca~ % for some constant C, which can take C' = 1. For p € (1, +00) we
have f € LP(0,1) if and only if

1 1
1— = Z
Re{ z}<
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that is, for z = zg + iz,

Soptd—pipr<0e

p/ p/ 2 p/ 2 p/ 2 p/ 2
212%—1-2?—22@3—1—( ) <<2> ©<23—2> +z%<<2> .

So we have shown that for p € (1,400) we have f € LP(0,1) and so z is an eigenvalue of T’
if and only if z € D¢ (%’, %)

z=1

In L>(0,1) we have = € L*®(0,1) if and only if

|

1
Re{l—--} <0
z
that is for
1 ZR 2 2
1<Re{-}=——"—5< — <0&
< e{z} 212%+z% 2p+ 27 —2r <

N | 11 n?
ZR+ZI_2§ZR+Z§Z<:> ZR—§ +ZI§

that is if and only if z € D¢ (%, 3)\{0}.

Since we know that o(T") is closed, we have o(T') O D¢ (%l, %l) Let us now take

z & Dc¢ (%l, %l) and let us show that it belongs to the resolvent set p(T"). For g € LP(0,1)

let us consider the equation
x
(T —2)f =g, that is / ft)dt —zzf = xg.
0
Let us suppose g € C2°(0, 1). Differentiating we obtain

vzf' + (2= 1)f = —(zg +9)

We solve this ODE multiplying it by the integrating factor obtaining

z—1 / 1
2 (x z f(w)) =—a =(zg' +9)
Then, integrating by parts we write

fz) = —x_j /Oz 7 (tg + g)dt = —x_zz <x1—ig(:p) - <1 - i) /Om —ig(t)dt+/: t—ig(t)dt>
oot (1) [Tt = s

z z

162



This, initially defined for g € C$°(0, 1), since Re {%} < z% extends into a bounded operator
S, : LP(0,1) — LP(0,1), see Exercise 15.40. But then, since

(T'—2)S.g =g for all g € C°(0,1),

it follows by continuity that this equality holds for all g € LP(0,1). So R(T — z) = LP(0,1)
and since we know that ker(7' — z) = 0 by the Open Mapping Theorem T — z is an
isomorphism.

O
Ezample 17.31. For s > o, the inclusion H*(T%) ¢ H°(T%) is compact.
Indeed, let 7 = s — 0. Then notice that A7 : H3(T%) — H(T?) is a bounded operator.
Next, we claim that A=7 : H°(T?%) — H?(T9) is compact. Assuming the claim, the lemma
follows by the fact that the immersion coincides with A7 o A7. So let us prove the claim.
Let us split

il-x il-x

ATf= 3 0T T O+ 3 (07T O = Tunf + Tinf.

<R 2m)z =k (2)

ol

Then, for any R the operator T1r has finite rank while

1Tarf e irny = 3 (072 O 1FOP < (R Y (0% ()

1¢[>R tezd
= <R>_2T HfH}QqU(Td)

o [ Tar|l gomo(rayy < (R)™T foteo, . Hence, since Tir BoH0 AT in L(H(T%)), it
follows that A™" is a compact operator.

Exercise 17.32. Show that the embedding the embedding in Example 16.53 is compact
for any s > d/2.

Remark 17.33. Notice that the following statement is true:

1 1
for any s € (0,d/2) we have an embedding H*(T%) — LP*(T%) for P 2 (17.17)
Notice that there is a natural analogue
for any s € (0,d/2) we have an embedding H*(R?) — LP:(R%) (17.18)

with natural analogue H*(R?) space which can be defined using the Fourier transform.
There is also H*(Q) < LPs(Q) for  open in R? (where H*(Q) for s ¢ N is more delicate to
define). Usually the proof of (17.17), or of the Sobolev embedding theorem in the context
of more general Riemannian manifolds than the tori T¢ := RY/27Z?, is obtained using
coordinate charts and (17.18).
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Ezample 17.34. Notice that the Sobolev Embeddings in (17.17) are not compact. Since we
don’t have at disposal the Fourier transform, it is easier for us to check this in the special
case s € N. Take any u € C®((—m,m)%) and for A > 1 consider 6, \u € CZ((—m,m)%).
Then using the equivalence in Exercise 16.50 consider the equivalent norm

16 s/\qu'—Is('JTd) = Z 107 Op.xul| L2 (ray = Z A “_ ”a daxul| L2(Ta)

laf<s laf<s
; 1
=) AG-3 )\‘O‘|H52)\3§u||Lz(Td)
la|<s
L % +ed ) e A—+o0 o
Z )\ be 105 ull p2(ray —— Z 105 wll £2¢ray,
laf<s laf=s

+la] A—>+o0
lot]

11 11
where we exploited that Ad(g 2) 0 for |a] < s and )\d(Ps 2>+‘a| =1 for |a| = s.

On the other hand we know that

‘|(5ps>\uHLp5((,7r’7r)d) == ”uHLpS((,ﬂ’ﬂ.)d) for all A Z 1. (1719)
Consider A\, “=*% 4o0. Then the sequence Spoantt is bounded in H*(T9). If the above
embedding is compact, then J,_ y, u is relatively compact in LPs((—m,7)%). But in fact, we
know 2 < py < oo and d,,5,u — 0 in LPs((—m,7)%) so, if a subsequence converges strongly
somewhere, it must converge to 0. But by (17.19) we know this is not the case if u # 0 and
we conclude a contradiction, and therefore that the embedding in (17.17) is not compact, at
least in the case s € N. The argument used is similar to that in Example 17.7. In Example
17.7 we exploited the scale equivariance (17.4). Here we used V?§, = d2\V?.
The case s € N is similar, but requires the use of the Fourier transform, which will be intro-
duced next semester. This argument is used in Brezis [4] to show that Sobolev Embedding
WHL(I) < L*(I) is always not compact, for any interval I, and will be discussed in the
next semester.

Exercise 17.35. Establish if the operator Ry(z) in Example 5.14 is in K(L?(R)).
Exercise 17.36. Establish if the operator Ry (z) in Example 5.15 is in K (L?(R)).
Ezxample 17.37. The operator

Tu(z) = /O Cu(t)dt (17.20)

defines a compact operator T : L'(0,1) — L'(0,1). To get a sense whether or not is
compact, it makes sense to consider sequences like f,,(z) := nx(_10/(n(z —1)) = nX[1-1/n,1-
Then

0ifo<z<1-1/n
Tfn(fﬂ):{n(x_(l_l/n)) ifl—1/n<z<1.
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Then

1
/1 'Tf”'dx:"/l (t— (1= 1/n)) dt = n L= =1/m) _1
0 1 n

—1/n 2 1-1/n

So |IT fullL1(0,1) 12792, 0, and this is compatible with T’ being compact.

In fact, in the Spring Semester you will see that the embedding W1(0,1) < L(0,1)
is compact and it happens here that T' € L (Ll(O7 1), wti(o, 1)) However this is not an
adequate answer now, since in this moment we don’t even know what W11(0,1) is .

Let us see if we can use the compactness criterium by Kolmogorov, Riesz, Frechét. Let
us consider

T 1
Sf(x):/o f(t)dt—x/o F(t)dt. (17.21)

Notice that S € L£(L'(0,1),C°([0,1])) and that Sf(0) = Sf(1) = 0 for all f € L(0,1).
Extend Sf(x) =0 for x € R\[0, 1] and let

F={SfeL'R): f€Dpnpy01)}
Let us check that condition (15.33) is satisfied. For definiteness let h > 0. Then
1—h 1 h
IS5C )= Sfluw = [ 185+ 0) = Sp@lde+ [ |85@lde+ [ 18f@)de

Since [|Sfl|oor) < 2[[fllL1(0,1), the sum of the last two terms is bounded by 2|h[. Next
1-h 1-h a+h
|18t m = sr@de < wifln + [ de [ sl

1 ¢
= hllfllr o) +/0 dt|f(t)’/ hdx = 20| fllL1(0,1) < 2/A]-
tf

This yields (15.33) taking 2 > 0. With a similar argument we can consider the case h < 0,
obtaining the desired compactness.

Exercise 17.38. Let I =[0,1] C R, X = C°(I) and Y = L'(I). Set

Tu(x) := /Ox xyu(y) dy.

a) Prove that T € £(X) and T € L(Y).
b) Establish if 7" is compact in X and in Y, justifying the answer.
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17.1  Hilbert—Schmidt operators
The following is a very important class of operators.

Definition 17.39. A linear operator T : L*(X,du) — L?*(X,du) is a Hilbert—Schmidt
operator if it is of the form

x) = /X K(z,y)f(y)du(y) with K € L*(X x X, dp x dp).

We denote ||T|us := || K||L2(x xx)-
It is straightforward that T' € £(L*(X,du)). Indeed

/Olu(m’)!Tf(ﬂf)!2 < /du(x)HK(w,-)!\%2()()HfH%2(X) = 1K 12 (x| 1172

so that in particular we obtain

1Tl 22 x,ap)) < TN ms-

It turns out that T is also compact.

Notice that there exists a sequence of K, € L*(X,du) ® L*(X,du) with K,
in L?(X x X). But, then, if we set

n—-+4o00 K

/sz y)duly),

we have

+
IT = Tollcerexapy < IT — Tullas = 1K — Knll2(xxx) ——= 0.

Now, for each n, we have dim R(T},) < oo, so T), is compact. Then also T is compact.

Exercise 17.40. Let T'f :/ f(#)dt in L*(0,1).
0

a) Find T*.
b) Show that T is Hilbert—Schmidt operator.
c) Find o(T).

Remark 17.41. Notice that 7' is compact in L?(0,1) but f — 17'f, while bounded, is not
compact, see Example 15.39 and Exercise 17.29. Notice also that it is possible to compute

(x —t)"
dt.
/ 1) n—l
n—-+oo

Notice that this implies |77 z(zr(0,1)) < ﬁ”T”E(Lp(OJ)) ———— 0 and in particular,
shows in the previous exercise, that o(T") = {0}.
Exercise 17.42. Let A, B € £(X) with X a Banach space..

a) Show that if either A or B is compact, the composition AB is compact.

b) Is the condition that one of A and B be compact, necessary in order for the com-
position AB to be compact?
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17.2 The Lax—Milgram Theorem

Definition 17.43. Let H be a Hilbert space on K = R (resp. C). A bilinear (sesquilinear
if K =C) form B : H x H — K is said bounded if there is a v € R such that

1B, y)| < el Iyl for all 2,y € H. (17.22)
and coercive if there is a § € Ry such that
||z||% < |B(z,z)| for all z € H. (17.23)
Ezample 17.44. Let V € C°(T%, [0, +00)) with V positive and V' # 0 and consider the

HY(T?,C) x HY(T¢,C) > (u,v) — B(u,v) € C
B(’LL, 'U) = (Vu, VU)LQ(Td,(Cd) + (Vu, U)LQ(Td,C)' (1724)

By the simple fact that V € £ (H'(T? C), L*(T? C?)) and that the multiplier operator
u — Vu is bounded from LQ(']I‘d, C) into itself, we obtain that the above sesquilinear map
is bounded. Now let us check that it is coercive. We have

(Vu, Vu) p2(pa cay = HVUH%%mcd) = [nt(n sz(zd Cd) Z nf*[a(n

nezd
d _.
= 2m)*  Inflam)? = 27" (1 + [nf)[am)|* = 27 lu — (27) 7 28(0) |31 pa ¢y > 0.
n#0 n#0
(17.25)
We have
|(Vu,v)poracyl < IV poocrecyllullzcracyllvllizere (17.26)

Notice that [lul3, = 2m)4a(0)|? + ||u — (27)~ e u(0 )||Hl T4 C)" Since V' > 0, we have
(Vu,u)p2(racy = 0
If say (27)4)7(0)]? < C?|u — (2m)~ e u(0 )HHl(Td o) for a C' > 0 to be defined momentarily,

from (17.25) we conclude

(T4,C) =

_ _d_.

B, u) > [IVulZa i oy = 274 u = (27)32(0) 21 g
2—1
14+ C?
92— 1

d_ a_
5 (C?llu— 2m) 580 o ¢y + lu — (27) 58O s
di=~()12 -4~ 27!
e (@mIOR + = 207320 B rae)) = Tl gy

>
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d .~
2

If instead (2m)%@(0)[> > C?|ju — (2m)~2a(0)||%, (Ta,cy» We can consider

|(Vu, u) p2pa oyl > (2m)~4(VE(0), @(0)) 2 e c)

= 2|Vl oo (pacyllu — (2m)~ 2a(0 N z2(re,oyll(2m)~ 2(0))| 2 () — IVIlzeo(ra,oyllu — (2m)~ 2a(0 ))”L2 Td,C)
= 2m) V|| 1 e,y [T(O)* = 2[[V || oo gy 1 — (2) 2a(0 ) L2(ra ) [@(0)]?

~ IVl oo ¢ra gy llu — (2m) =2 (0 N2(ra )

> ((2m) 2Vl grecy = 2@7) IV e @a0) O = IV ey ©2) (27) O

d

So, choosing C' > 1, for (27)%[@(0)|% > C?|lu — (27)~2(0 )||Hl (Ta,c) We get
(V) 2 (pa, oy = 271 2m) 22| V|| g1 g gy (27) [ (0)
— 22(2) 2 ((%)dm(on? + (27r)d|a(0)|2) > 27227) 2V || pa oo 1wl s e -

So we get the lower bound in (17.23) for

ot
0< ) S min {]_—’—6'272 1(271') 2d‘|VHL1(Td7(C)} .

Notice that

B(u,v) = (Vu, Vo) pa(ra cay + (Vu,v) p2(ra 0y = (Au, v) p2(pa cay where A= —A+V,
(17.27)

where A € L(H'(T4,C), H~Y(T¢,C)).

Ezxample 17.45. Recall from the Riesz Frechét Theorem 16.10 that, given a Hilbert space
H, there is a natural isomorphism H — H' given by u — (u, ). However, often it is natural
not to identify H and H’. A case point are the spaces H*(T¢) when s # 0, which are
Sobolev spaces, that is, some of the spaces used in applications of Functional Analysis. If
we consider two trigonometric polynomials, then we have

(f, 9) 2oay = / @@z = 207 S FOF@) = @0 S (0 ) (0 500).

ez ez

Then we get

(£.9) 22w

This shows that (-,)p2(qe) : H*(T?) x H=*(T?) — C is a bounded bilinear map. It is
easy to conclude from this that there exists an isomorphism H~*(T¢) 3 g — (-, g) r2(1d) €

< (27T)dHfHHS(Td)”g”H*S(’H‘d)-

(H* (Td)),. This sort of identification, arising concretely from the inner product in L?(T9),
is much more common in practice than the somewhat more abstract identification of H*(T¢)
and (H*(T%))".
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Theorem 17.46. Let B be like in Definition 17.43 . Then there exists S € L(H) which is
invertible, S~! € L(H), such that

(z,9)m = B(z, Sy). (17.28)

We have ||S|| gy < 671 and ||S_1||£(H) < . If B is a symmetric (or Hermitian) bilinear
form, then S is a symmetric operator.

Proof. Let
D :={y e H: thereis a y* € H such that (z,y)g = B(x,y") for all z € H }.

Obviously 0 € D, with 0* = 0. y* if it exists is unique, since 0 = B(x,y; — y5) for all z,
and so in particular for z = y} — y3, implies 0 = |B(y; — y5, vy —v3)| > 6llyf — y3|/% and so
Iyt — v5llm = 0.

So we have a well defined function S : D — H defined by Sy = y*. It is easy to see that S
is linear. We have

§|ISyll7 < 1B(Sy, Sy)| = |(Sy. ) ul < 1Syl allyl a-

So ISl zpa) <671 B
Next, we claim that D is closed. First of all, we have an extension S : D — H. For
D>y, UimacN z, then by continuity Sy, 122 H%0 w for some w € H with, by the continuity

of B,

(x7Z)H = ngr—i{lm(‘%.’yn)H = nETOOB(wv Syn) = B(x’ w)'
So z € D with w = Sz.
It remains to be shown that D = H. Suppose D ; H and consider wy € D+ ¢ H
nonzero. Then, by |B(x,wq)| < v||z| g||wol fr, the Riesz Frechét Theorem 16.10 guarantees
the existence of a w € H such that B(z,wy) = (z,w)y for all z € H. This implies wg = Sw.
Then
SllwollF; < [B(wo, wo)| = |(wo, w)n| = 0= wo = 0.

The above argument shows that D = H but also that S(D) = H. Since S : H — H is both
surjective and injective, and since it is bounded, it follows that S~ : H — H is a bounded
operator. We have |(z, S~ 'y)u| = |B(z,y)| < lzllmllylla and so |S™|zem) < -

Finally, from (17.28) and if B is Hermitian, cf. Definition 16.2, we have

B(‘T’y) = (‘T’Sily)H = ((Sil)*xvy)H = B(yvx) = (yvs_l‘r)H = (Silxvy)H’

from which we read that (S~!)* = S~!. From this we conclude also S* = S.
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Corollary 17.47 (Lax-Milgram). Under the previous hypotheses, let f' € H' and consider
the problem of finding u such that

B(v,u) = <v’f,>HxH' for any v € H. (17.29)

Then there exists exactly one solution and is given by uw = Sf, where f € H and ' € H’

are related by (-, f") o = (- [ H-

Moreover, if B is symmetric, that is B(v,w) = B(w,v) for all v,w € H, and satisfies
B(w,w) > 6||w||% for all w € H, then u solves (17.29) if and only if it the minimizer of
minimization problem

inf {p(w) : w € H} where ¢(w) := %B(w, w) — (w, f*) o o - (17.30)

Proof. We know there is an isomorphism f’ — f such that (-, f) ;. v = (-, f)a. We also
have

0 ") i = (0, )i = B(v, Sf) for all v € H.

So u = Sf. Notice that u solves (17.29) if and only if it is a critical point of the (nonlinear)
functional ¢. We know from Theorem 17.46 that any such critical point is unique. Further-
more, since ¢ is strongly continuous and lim,, .~ ¢(w) = +00, by Corollary 12.8 we know
that ¢ has an absolute minimum and so the minimization problem (17.30) has a solution.

O
Lemma 17.48. Let T' € L(H) be selfadjoint. Then o(T) C R.
Proof. Let A € C\R. Then, for
B(u,v) == ((T — Mu,v)H, (17.31)
obviously B satisfies (17.22) for v = ||T'|| z(z) + [Al-
From
B(u,u) = (T — Nu,w)g = (T — Ar)u,w)g —iAr(u,u) g
——
€R eRrR
we obtain

|B(u,w) = [Arlllullf

and so we get the lower bound (17.23) with 6 = |A;| > 0. So there exist the S,S~! € L(H)
with

B(u,v) = (T — Nu,v)g = (u, S"'v)g for all u,v € H.
Then (T —\) = (S71)* and so (T —A\)~! = §*. Then A\ € o(T) if A ¢ R, and this completes
the proof o(T) C R. O
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Exercise 17.49. Let U € L(U) be self-adjoint and unitary. Show that o(U) C {—1,1}.
Furthermore we have

P ker(U - ). (17.32)
Ao (U)

In particular show that for U # +1 then we have a nontrivial orthogonal decomposition
H =ker(U + 1) P ker(U — 1). (17.33)
Proposition 17.50. Let T € L(H) be selfadjoint. Then
inf o(T) = m where m := inf{(Tu,u)y : v € H with ||ul|g = 1} (17.34)
supo(T) = M where M := sup{(Tu,u)g : v € H with ||u|g = 1}. (17.35)
Furthermore ||T|| oy = max{|m|, M}.

Proof. We know already that ¢(7") C R by in Lemma 17.48. By proceeding like in Lemma
17.48 for

R>\¢&[m,M]

we get A € o(T'). Indeed, for B like in (17.31), B satisfies (17.22) for v = ||T'[| z(zy + [A[- If
say, A < m, we have

B(u,u) = (Tu,u)ir = Allullf; > (m = A) Jul

and so we get (17.23) with 6 =m — A > 0. We conclude that if A < m then A\ & o(T).

The proof for A > M can be done similarly or, alternatively, one can observe that case
A < m implies case A > M by replacing T~ —T.

We now need to show that m, M € o(T') and it is not restrictive to reduce to the proof
of m € o(T). Let us consider B(u,v) := ((T'— m)u,v)y. Since T'— m is symmetric and
positive, by B(u,u) > 0 for all uw € H, by Theorem 16.40 it has a positive and symmetric
square root. So we have

|B(u,v)| = |((T = m)u,v)u| = |(T —m)zu, (T —m)2v)p| (17.36)
< (T - m)%UHHII(T m)2vl|g = /Bu,u) /B(v,v) < v/Blu,u)yAlvln.
Then,
(T = m)ullar < vAVB(u,u) = AV (T — m)u,u)p. (17.37)

Then, there exists a sequence {up bneny With [[un |z = 1 such that ||[(T — m)un || g ——25 0.

This implies that m € o(T). Indeed, if m & o(T) then (T —m)~! € L(H) and

L= Junlli = 1T = m) (T = m)ugllir < |(T = m) Mg (T = m)un |l “= 0,
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yielding a contradiction.

Finally, we need to show that [Ty = max{|m|, M}. It is not restrictive to assume
M > |m| (otherwise, by the replacement 7' ~ —T we can get to this case). By (5.19) we
already know that M < ||T| zg). If T > 0, then ||| zg) = ||\/TH%(H) and

1Tl ey = sup{||Tullr < lullzr = 1} = sup{|[VTull% : llullr = 1} = sup{(Tu, w)n : |lulm = 1} = M.

If T is not positive, then by Polar Decomposition Theorem 16.42 we have T' = U|T|, with
U unitary. Since T is self-adjoint, by Exercise 16.46 the U introduced in Theorem 16.42
is self-adjoint. If U = 1, then T is positive, so here U # 1. If U = —1 then it is not true
that M > |m|. So in our case U # £1 and, by the solution of Exercise 17.49 we have the
orthogonal decomposition

H =ker(U + 1) P ker(U — 1). (17.33)
Since [T, U] = 0, T leaves the above decomposition invariant. Then,

T\ker(Uq) = U’Terr(Uﬂ) = |Terr(U71)
Tlerw+1) = UlTllkerw41) = = T llker(w1)
Then

1Tl 2y = max{ [ T]]| £erw—1))> 1T £(ker(w—1))} < M.
O]

Theorem 17.51 (Spectral decomposition of a selfadjoint compact operator). Let T € L(H)
be selfadjoint and compact operator and let H be separable. Then there exists an orthonormal
basis of H formed by eigenvectors of T'.

Proof. Using T' = U|T| and the decomposition (17.33), it is easy to show that it is not
restrictive to assume 7' > 0. So, assuming 7" # 0, we have M > 0 in (17.34). Notice
that m > 0 in (17.35), and since 0 € o(7") by Theorem 17.25, we have m = 0. Since
o(T) 3 M > 0 it follows that M is an eigenvalue, which has finite multiplicity. Let now
My := M. Then

H = ker(T — My) @ ker (T — M)

Then the restriction of T in kerl(T — M) is again a compact positive self-adjoint operator.
Let My = supo (T’kerL(T7M1)>. Then Ms < Mj. One gets a sequence, finite or infinite
My > My > ... of strictly positive numbers. Finally we consider

H = @31 ker(T — My) @) (@1 ker(T — M) "

Then for the operator T in (®,>1 ker(T' — M,,))" we must have o = M = 0, that is T = 0.
So
H = ®p>1 ker(T — M,) @ ker T..
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Theorem 17.52. Consider Example 17.44. Then there exists a sequence of strictly positive

numbers A\, D2F0 o and functions e, € HY(T,C) which form an orthonormal basis of

L*(T?,C) s.t. Aey = Anen, where A is the Schrédinger operator in (17.27).

Proof. Let us consider the operator f € L?(T,C) — Sf € H'(T?,C) ¢ L*(T¢, C) which
associates to each f € L2(T9, C) the solution u of (17.29). This means that

(VSf, VU)Lz(Td@d) + (VSf, U)LQ(Td,(C) = (f, U)LQ(Td7c) for all v € Hl(Td, (C) (1738)

Notice that here v is the so called test function.
Let g € L?(T¢,C). Then, for v = Sg, from (17.38) we obtain

(fs59) r2(racy = (VSF,VSG)p2(racay + (VS 59) 2(ra o)
= (VSF,VS8g)L2(racay + (S, VSg)r2(racy = (SF,9) L2 (e 0)s

where the last equality follows reversing the roles of Sg and Sf and thinking of the latter
as the test function.

We also know that ker S = 0. Then, there exists a sequence of non-zero numbers p, — 0
and a corresponding orthonormal basis {e,,} of L?(T% C) with Se,, = fine,. So we have, for

An = 1/Hnu
(ASen — en,v)p2(ra cay = (1/pinAey — €n,v) p2(pa cay = 0 for all v € HY(T?,C).
That is

(Aen — Anen,v) p2(pecay = 0 for all v € HYT?,C) = Ae,, — Ane, = 0 in H~Y(TY, C).

0
18 Some exercises from SISSA’s PhD entrance exam
Exercise 18.1 (Exercise 1 March 2025). Consider the Cauchy problem
= f(x) , x(0)=umx (18.1)

where f:R" — R" is a C! vector field with for some m € N
|f(z)| < |z|™ for all z € R™.

Prove that for any zyp € R™ the solution of (18.1) is defined on a time interval [0, T}qz)
where

1. if m =1 then T},,, = +00
2. if m > 2 then there is a constant ¢, > 0 such that T}, > mj% for any ¢ # 0 and

Timar = +oc if zg = 0.
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ANSWER. First of all, since here m > 1, the function z(t) = 0 is a equilibrium defined
for all times. This shows that T}, = +o0 if g = 0.

Next, reviewing the proof of the local existence theorem, for any given m it is easy to
see that for any My > 0 there exists a T'(Mp) > 0 such that for any |zo| < My we have
Tinaz > T(My). By simple arguments, this in particular implies that if T},4, < +00 then
there is blow up:

lim |z(t)] = +oo.

t—Tmax

Now, in the case m = 1 there is no blow up. Indeed, the inequality

t
(0] < fool + [ la(s)lds (18.2)
0
implies, by the Gronwall inequality, that
|z(8)] < e'|zo.

The latter formula excludes blow up in the case m = 1, and so if m = 1 then T}, = +00.
Let us consider now the case m > 2. Set

o0) = ool + [ lato)l"ds
Then obviously |z(t)| < y(t) by (18.2). Notice that
y<y".
So now let us consider the problem
z = 2z" with z(0) = |zo|. (18.3)
Then again, it is easy to see that y(t) < z(t). This can be seen by writing

d

S (y—2)<g(y—2) where g =) /12",

j=1
Then the above inequality reads

d

= (e Ta gy~ 2)) <0

which after integration yields for positive ¢

y(t) — 2(t) < e 9085 (y(0) — 2(0)) = 0.

174



The above inequalities guarantee that if z(¢) is bounded in an interval [0, T}], then Tpq0 >
T,. But we can compute z(t) explicitly. Equation (18.3) is an easy separable equation that
can be formally solved by writing

—

Zm

and integrating

/ ()ﬁ B 1 B 1 _,
o) 2™ (m—=Dzol™t (m = 1D)](t)m"t

Solving with respect to z(t) = |z(t)|, after some elementary computation we obtain

|0
z(t) =
() 31— (m = 1)]ze[m 1t

Then Th00 >

I S
= (m=Dzo[™~ 1"

So z(t) blows up with blow up time 7 = (m_l)l

‘z‘o‘m71 .

Exercise 18.2 (Exercise 2 March 2025). Prove the following facts:

a For any sequence of real numbers (¢, )neny with ¢, — 0o, and any set F' C R with finite
measure it holds
A(F)

. -2 _
nlggo Fsm (cpx)dx = —~5

where A\(F) denotes the Lebesgue measure of F.
b Let (ap)nen be a sequence of real numbers such that

f(z) = n11_>rr010 sin(ay, )

exists on a set £ C R of positive measure. Prove that (a;)nen has finite limit.

ANSWER. To answer a take more generally for g € L!(R)

1-— 2¢cy, 1
lim [ sin®(c,z)g(z)dz = lim Mg(x)dx D) / g(z)dx
R

n—oo Jp n—oo Ip 2 2

where we used [ cos(2¢,x)g(x)dx D220, which follows by the Riemann— Lebesgue

Lemma. So in particular for g = xr we obtain a.

Let us consider now b. We proceed by contradiction and suppose that (o, )nen has no

finite limit. There are various cases to consider. If ay, 1240, 100 then we would have by

the Riemann— Lebesgue Lemma and by Dominated convergence

lim [ sin(opz)g(z)de = / f(x)g(x)dz = 0 for all g € L'(E).

n—oo E
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Then f = 0. But again by

1
. . 9 _ 3 Jr 9(x)dz, and 1
T}l_}n;o Esm (anx)g(x)dz { T P (2)g(x)da = 0 for all g € L (E)
we would get a contradiction. So we cannot have «,, 22420, 1 oo and similarly we cannot
n—-+00

have o, ——— —o0. Then it easy to conclude that since (o, )nen has no finite limit, there
are two subsequences one with finite limit @ and the other with finite limit b where a # b.
But then we conclude that in F we have sin(ax) = sin(bz). But since this implies that

either z = 2Lkb with k € Z

then we would have F C %ZU (7r + %Z) and so A(F) = 0, contradicting the hypothesis
AE) > 0. n

Exercise 18.3 (Exercise 3 March 2025). Let K : [0, 1] x [0, 1] — R be a measurable function
satisfying

M = sup/ K (z,y)|dy < 400
z€0,1] J[0,1]

My := sup / |K(x,y)|dr < +o0.
y€[0,1] /[0,1]

Prove that the integral operator A : L%([0,1]) — L?([0,1]) defined by
(Au)(@) = [ K(z,y)f(y)dy
[0,1]
is a bounded operator with norm
Al 20,1y < (M1M2)1/2||UHL2([0,1])-
ANSWER. In fact this is a special case of a more general result called Young’s inequality

which states that
1

/ 1
[ Al 0,1y < Mll/p M21/p|]u\|Lp([071]) for all 1 < p < oo and ’ + v L. (18.4)
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For the exercise we can write

i 2
/[01 |Auf*dz < /[0 ; da (/[0 , |K(£C,y)||u(y)|dy> :/{0’1] da (/[0’1] ’K($7y)2|K(5L‘,y)|2|u(y)|dy>
2
/[01 clzlc/01 (z,9)|dy’ / |K (z,y)||u(y)|*dy

< / dz sup / K, o)y / K (2, )|[u(y) dy
[0,1 z'€0,1] [0,1] [ 1}

)

]
—ny [ o [ RGPy = [ dyluto)P [ Kol
[0,1] [0,1] [0,1] [0,1]
< [ dylul)? swp [ Gyl = Ml
[0,1] y'€0,1] J[0,1]
In fact the general case (18.4) can be proved similarly. First of all it is trivial that

/ | Auldz < / da / 1K (2, )| Ju(y)|dy = / dylu(y)| / K (z,y)lde < My / fu(y) | dy
[0,1] [0,1] [0,1]

[0,1] [0,1]
which gives (18.4) for p =1 and

z€[0,1]

)

sup [Au(z)| < sup /[0 ; K (2, y)[[u(y)ldy < [[ullLo=((o,11)5uPaefo,) /[0 ] K (2, y)|dy = Mullul| L= po,1))
xre 5 )

which gives (18.4) for p = co. Usually the textbooks state the intermediate 1 < p < oo

cases as an immediate consequence of the so called Reisz Interpolation Theorem. However,
we can provide a direct proof, similar to the case p = 2:

P P
1 1
/ AulPde < / dm</ |K<x,y>||u<y>|dy> - / d(/ |K<x,y>|p/rK<x,y>p|u<y>|dy>
[0,1] [0,1] [0,1] [0,1] [0,1]

p

< / dm</ |K<x,y’>|dy') / | (2, )| [u(y)Pdy
[0,1] [0,1] [0,1]

)

P
7

P
< / d:c(sup/ |K<:c,y’>|dy') / K (2, )| [u(y) Pdy
[0,1 z’€[0,1] J[0,1] [0,1]

)

]
“uf [ [ E@lurd =2 [ afu)r [ Kl
[0,1] [0,1] [0,1] (0,1]

)

P
<uf [ aylut)P s [ | Gylde = MY Mol
[0,1] y’€[0,1] J[0,1]

Exercise 18.4 (Exercise 4 March 2025). Let ¢2 = {¢ = (cp)nenlen € C and > 00 |en|? <
oo}. For any ¢ € £ consider the power series

oo
= E ez
n=0
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1. Show that for any ¢ € £2 then f. : D — C is holomorphic, where D = {z € C : |2| < 1}.

2. Let (ag)ken be a sequence in D and suppose that the set they form has an accumulation
point in D. Consider the following vectors of £2:

hi = (1, a, ai,a%, ).

Show that £2 = span {hy, ha,....}.

ANSWER. Let |z| < p < 1. Then

00 00 00 1
|en]? ZP% = |en|? ——.
n=0 n=1 n=1 1 _>p2

From the above it is easy to conclude that in the disk |z| < p with p < 1, the power series
converges uniformly and hence the sum of the series is holomorphic in the disk. By the
arbitrariness of p < 1 if follows that f.: D — C is holomorphic.

Suppose that ¢2 2 span {h, ha,....}. Then there exists a nonzero ¢ € £? such that

0 0
> leal 12" <) lenl p" <
n=1 n=0

(hg,c) = chaz = fe(ar) =0 for all k € N

n=0

But then the set of zeros of the holomorphic function f. has an accumulation point inside
D. This can be possible only if f.(z) = 0, which is not true if ¢ # 0. So we get a
contradiction. O

Exercise 18.5 (Exercise 5 March 2025). Consider T : C([0,1]) — C(]0,1]) defined by

1—x
(Tf)(x) = /0 F(y)dy.x € [0,1].

a Prove that T is a linear, bounded, compact operator on C(]0, 1]).
b Compute the spectrum and the eigenvalues of T'.

ANSWER. It is easy to see that T is a bounded operator from C?([0, 1]) to C*([0, 1]).
Since by Ascoli Arzeld the embedding C*([0, 1]) = C°(]0, 1]) is compact, we get (a).
Obviously 0 € o(T). If A # 0is A € o(T'), then X is an eigenvalue. We have

Tf(x) = Af(x)
if and only if

f(1)=0and A\f'(x) = —f(1 — ).
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Notice that f/(0) = 0 and that

M) = /(1 —2) = -1 f(2). (18.5)

So

with boundary conditions

{ Asin (1) + Bceos (1) =0,
A:Q7

A

This requires A = 0 and for B # 0 we need cos (%) =0, that is % = § +nm for any n € Z.

Viceversa, we can go backwards and conclude that A, := ﬁis an eigenvalue for any
2
n € Z. Finally, notice that 0, while in the spectrum, is not an eigenvalue, since (18.5) tells
us that a corresponding eigenfunction would be a nonzero function satisfying 0 = — f(1 —x)
for any x € [0, 1], that is f = 0, a contradiction. dJ
Exercise 18.6. [Exercise 7 March 2025] For s > 0 let H*([—m, 7]) be the Hilbert space of
Lebesgue-measurable, 2r—periodic functions f : T'= [—m, 7| — C of the form
f(z) = chei]m, x € [—m, 7]
k€eZ

where ¢ are complex numbers such that

£l () = (Z(l + \klz)s\cﬁ) < .

keZ
a Show that if s > 1/2 then there is a positive constant Cs > 0 such that
£l ooy < Csll fll fs ¢y (18.6)
and that the and the evaluation functional
E : H® — C defined by Ef = f(0) (18.7)
is continuous.
b Prove that if s = 1/2 then the embedding (18.6) fails for any constant C 5.

ANSWER. In the proof of a, the embedding (18.6) is a special case of what discussed
in Example (16.53). Notice also that, if (18.6), then we have f € C%(T), this because
CY(T) is a closed subspace of L>°(T) and because the trigonometric polynomials, which
are easily shown to be dense in H*(T"), are continuous. Since the evaluation functional F
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is well defined and continuous in C°(T') it remains well defined and continuous in H*(T)
for s > 1/2. More can be said. Since the series defining f is convergent in H*(T'), by the
embedding in (18.6), the series is uniformly convergent in C°(T).

Turning to b, suppose by contradiction that the embedding (18.6) were true a constant
Cyp also for s = 1/2. Then we would have HY2(T) € C%T) and the series defining f
would be uniformly convergent in C°(7T'), and in particular it would we pointwise convergent
at x = 0. This has to apply to

eikm
J(w) = kZZQ kloghk
where the series converges in H/?(T') because of
P
=k log? k

and yet we do not have the convergence
1
0) = — = .
J0 =2 Klogh 1 °°
k>2

This is a contradiction. O

Exercise 18.7 (Exercise 8 March 2025). Let H be a real Hilbert space with inner product
(-,-) and recall that a symmetric bounded linear operator A on H is said to be positive
semi—definite if (Ax,z) > 0 for any z € H. Let A and B be two symmetric, bounded linear
operators on H. Prove or disprove the following statements:

a If (Az,z) = (Bzx,x) for any « € H, then A= B on H.

b If A —1 is positive semi-definite, where 1 denotes the identity on H, then A is invertible
and 1 — A~! is positive semi-definite.

c If A,B and A — B are positive semi-definite, then A? — B? is positive semi-definite.

ANSWER. a and b are true, while c is false. Let us start with a. It is enough to
consider case B = 0. Then we use

(Alz +y),z+y) = (Az,z) + (Ay,y) + 2 (Az,y)
which implies (Az,y) = 0 for all z,y € H, and so A = 0. Let us show b. We have
[Az|* = ||z + (A = D)a|* = [|lz]* + (A = Da||* + 2 (A - D, z) > [[]*.

This implies that ker A = 0. It is easy to see that it shows also that the range R(A) is
closed. If R(A) G H, there exists a nonzero y € R(A)*. But then

0= (Ay,y) = Iyl + (A= Dy, y) > |yl
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yields y = 0, a contradiction. So R(A) = H and hence A is an isomorphism by the Open
Mapping Theorem. Now, for any x = Az we have

(1= Az, z) = (A—1)z Az) = <(A ~1) \/Zz,\/Zz> >0,

where for the square root see §16.1. This completes the proof of b. We give now a coun-
terexample to c. Take C? with inner product

(z,y) = Re{z -7}

and consider the operators Ax = ix and Bz = i(z - Tp)xzo for some fixed xy # 0. Then for
any

(Az,z) = Re{i|z|?} =0
(Bz,x) = (i(x - To)xo, x) = Re{i(z - To)xo - T} = Redi|z -Io|2} =0
and obviously ((A — B)z,x) = 0.
Then A%2x = —z and
B2l' = 1((BCL‘) 'fo)l’o = 1((1($ . fo)xo) . fo)xo = —(IE . f@)|$0|2l‘0
so that
((A* = B?)z,z) = —[af” + |z - To|*|zo|?

which is certainly not positive, and specifically is negative for x # 0 with x - Tg = 0. Notice
here that the crucial point is that the operators A and B do not commute.
O

Exercise 18.8 (Exercise 9 March 2025). Let v € [0,1]. Show that all the solutions of

Z+x —sin(ax) =0
are periodic.

ANSWER. For a = 0 the equation reduces to a linear equation whose solutions are
explicitly known and have all period 1. Let now « € (0,1]. Then setting y = @ we get a
hamiltonian system with hamiltonian

22 +y?  cos(azx)

H(z,y) = 5t

It is elementary to see that lim, .y, H(z,y) = +oc, that the origin is the only critical
point, it is a nondegenerate critical point and obviously is the absolute minimum of H. The
origin is an equilibrium (so, as a constant function, is periodic), the level set H(z,y) = c is
for any ¢ > 0 a closed curve and it is the trajectory of the solutions which lie in the curve,
and these solutions are periodic. O
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Exercise 18.9 (Spring 2024). 1. Show that the map

T C((0.1]) - C°(0,1)) Tﬂﬂzf@%i[}wﬁ

is invertible.

2. Show that there exists a ¢y > 0 such that for any g € C°([0,1]) with ||g]lcoo,1)) < €o
there exists at least a solution f € C°([0,1]) of

Tf+f*=g.

ANSWER. Since T' = 1 + K with K compact (because of Ascoli Arzela), 0 € o(T) if
and only if there exists a nonzero f € C°([0,1]) with

: t)dt = 0.
f@+AfU
This implies

{f’+f:0m[o,1]
f(0)=0

This implies f = 0 and so we conclude 0 € o(T") and T is invertible.
Turning to the second question, we can frame the problem as a fixed point problem

f=-T'+T " g=2(f)
inside a ball D¢o((o.17)(0,€). For f € Deoo,17)(0,€) we have
12(Hllcogoy < IT7HI(e* +€0) < 2T leo

if €2 = ¢y. We want also 2||T~!||egp < &/2 which we easily arrange picking ¢ < W. In

this way Dcoo,1))(0, €) is preserved by the mapping ®. We have

_ _ 1
1@(f) — (M)llcoqo.ay < 1T = BPllcoqo.ayy < 26N = Rllcogo.) < S If = hllcogo,ny-

So since we have a contraction, there is a unique fixed point f € DCO([M])(O, £). O

Exercise 18.10 (Spring 2024). Consider the operator T : L?(0,1) — L?(0,1) defined by

1
H@ZA%W—MV@@

1. Show that it is continuous

2. Find o(7)
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ANSWER We have

Tf =z, f) —a* (2 f)

which by z, 22 € L?(0, 1) shows that it is not only continuous but, since dim R(T) = 2, it is
compact. Hence 0 € o(T). In fact it is obvious that

ker T = Span*{z, z?}
and that
L*(0,1) = Span{z, 2*} © ker T

is a T invariant decomposition of L%(0,1). We have a corresponding direct sum decompo-

sition 7" = T’Span{:c,:ﬁ} @ 0 so what is left is to check what is o <T|Span{$7$2}) since

o(T) = 0 ( Tlspangeazy ) (O}

Now
T(az 4 ba?) =z (x,az + bx2> — 2% (2%, az + bz?)
1 1 1 1
:x<a/ yzdy+b/ ygdy>—x2 (a/ y3dy+b/ y4dy)
0 0 0 0
SN (R W
“f\sTe) Tt \a Ty

So, in other words, we have the map

(5 50

The eigenvalues of the above matrix will provide o <T|Span (o x2}>. O

Exercise 18.11 (Spring 2024). Let p,q € (—o00,1)\{0} be such that % + % = 1 and let
fy9: R — (0,+00) two Borel functions. Show that

f (1) ()

ANSWER. Necessarily one of the two is negative and the other is in (0,1), so we can
assume p < 0 and g € (0,1). Then we have after elementary computation



We then rewrite the inequality (if the right hand side is not 0) as

frae((2))" = ([ )

and equivalently

1

(Jae) (JG))" 2 for firr ()

Now the above inequality is equivalent to Holder’s inequality
1 q q

[ (3) <z (5) 1

f L

Exercise 18.12 (September 2020). Let f,g: R — R be 27 periodic. Prove that

Q\H‘)—‘

a If f € C*°(R) prove that for any n € N there is a constant C,, > 0 such that

|F(k)| < Cy|k|™ for any non zero k € Z

where f(k) = = 027r f(z)e ™z dy.

b For f € C* and g € L*° show that

1 21

tm 5= | p@gtnds = 2x F0)500)

n—-+oo 27

¢ Prove the same result for f € L.

ANSWER. a follows from a straightforward integration by parts. b in the case of g a
trigonometric polynomial follows immediately from the Riemann—Lebesgue Lemma and by
density extends to all the g € L? ( and not just for all g € L™). Finally, by the density of

C in L' also ¢ follows.

Exercise 18.13 (September 2020). Prove that for any ¢ € [0,1) the solution z.(t) of the

following problem is periodic,

i+ (1+cAi— 2222 =0
z(0)

(0)

+
0
1.

What about case ¢ = 17
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ANSWER. The system is Hamiltonian. Obviously for ¢ = 0 all solutions are periodic
and our specific solution con be found explicitly, so we will consider only case ¢ € (0, 1).
If we set y = & we have the system
y=—0;H(xz,y), and
& = 0yH(z,y) with hamiltonian
2 2 2
Y 2\ L !
H =41 — — ="

Notice that H(0,1) = 1/2 so that the trajectory of our solution is contained in the curve

2 2 2
Y N 1
2+(+c)2 5T =5 (18.8)

Notice now that by
O H(z,y) = (L4 %) —2c%2%) z
OyH(z,y) =y

we have critical points (0,0) and

1+ c2
=0and z =+ .
y and x \/ 503

The origin is a point of local minimum while the other two critical points are saddles. Indeed
the Hessian matrix at these two points is

( —202%—1-62) ;) )

Furthermore an elementary computations shows that the nonzero critical points belong both
to the level curve C defined by
(1+c)?
H(xz,y) =
(z,y) 2
where

(1+c%)? ( >1/2, if0<ec<1and
8c? =1/2, ife=1.

2c
for ¢ < 1 to the same component of R?\C which is filled by smooth and closed level curves
which contain (0,0) in their interior region in particular for ¢ < 1 the level curve (18.8) is
a smooth closed curve and so our solution is periodic. In the case ¢ = 1 the level curve
(18.8) coincides with C. There cannot be a smooth closed component Cy of C' containing
the point (0,1). Indeed if this existed then C' would intersect the z axis in at least 4 points
(the two critical points and at least two intersections of C with the real axis). But in fact
the two critical points are the only points of intersection of the level curve (18.8) with the
real axis when ¢ = 1. U

Since the two points (0, :|:1+62) belong to C' and the points (0,y) with 0 < y < 1 belong
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Exercise 18.14 (September 2020). Consider a sequence {f,} in L'(0,1) with f, — f a.e.
in (0,1) and such that

im | fullion) = 1 lr0,1)- (18.9)

n—-+4oo
Prove that
a f, — fin L'(0,1).

b Prove that if the hypothesis (18.9) is changed into ”the sequence {|| fn||£1(0,1)} converges”,
then statement a is not true in general.

ANSWER. For question b just consider the sequence f,,(z) = nlp yj(nz) = nlj,1 /()
where f,, — 0 everywhere (0, 1) and where || f,||1(0,1) = 1 for any n. Obviously it is not
true that f,, — 0 in L(0,1).

Turning to a, recall that the Egorov Theorem guarantees that for any § > 0 there exists
an E5) with measure |Es)| < d such that {f,} converges uniformly to f in (0,1)\Es). So
let By, := E(1/,) where we can take this sequence of sets to be decreasing. If a is false, it

is not restrictive to assume that we have a sequence with || fn, — f|z1(0,1) > €0 > 0. Notice

that by dominated convergence we can conclude that || f||11(g,,) I2E0 0. So we can take

an m such that [|f[|z1(g,,) < 5. On the other hand

€0 < [fn— fllzro,ny < fn = fllzrqoanen) + 1 fnllov e, + 1l e

€
<|fa = fllorn\Ew) + IfallziE,.) + 50

Then

2 nstoo, 2
||anL1(Em) > 560 - ||fn - fHL1((O,l)\Em) __)_+__> 560.

So we can assume that for n > 1 we have || full11(g,,) > 2€o. Then

I fallro,n) = 1o,y = (fallzro,\Em) = Il onEm) + 1l ey — 1l (En)
1
> (Ifell o, 0\Em) — 110, 0\E)) + 60

where (|| full 1 ((0,0\Em) = 12100\ ) = 0. But then

1

nligloo (Ifallzr01) = I1f L2 0,1)) = 50

which contradicts (18.9). O

Exercise 18.15 (September 2020). Consider w € ¢*°(N) and the multiplication operator
Twf :=wf in £2(N). Prove that
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a Determine o(T,).
b Show that for any compact A in C there is w such that o(7,,) = A.

ANSWER. It is easy to see and we have seen that o(7T,) = w(N). If A has finitely
many elements choose any w € £>°(N) such that w(N) = A. Otherwise let C be a countable
subset of A which is dense in A and choose w € ¢>°(N) such that w(N) = C. O

Exercise 18.16 (Problem 1 2009). Prove that f € L?*(0,1) if and only if f € L'(0,1) and
there exists an increasing function g : [0, 1] — R such that

/ab f(x)dx

ANSWER. If f € L%(0,1) then by Schwartz inequality

/abf(:n)dx

and we obtain (18.10) by setting g(x) := [ | f(t)|*dt. Now let us start assuming (18.10).Then,
for any choice of

2
< (g(b) —g(a))(b—a) forall0 <a<b< 1 (18.10)

2 b
< [ 1@l - a)

0<ai<bhh<aa<b<..<b_1<a,<b,<1

we have
n n bj n
<fﬂz>\jx[aj,bj]> SZ’)\H / f(z)dx §Z|)\j| 9(b;) — g(a;)\/bj — a;
j=1 j=1 aj Jj=1
< D (a(by) - g(ﬂj))d > NP - aj)
j=1 Jj=1

n—1

= [ 9(bn) — g(a1) = > " (glaz1) — 9(05) || XjX(ay ]
Jj=1 J=1

£2(0,1)
Van) = g(an) | XjXia, 5] <UD AiX(a b with C' = 1/g(1) — ¢(0).

J=1 L2(0,1) J=1 £2(0,1)

IN

So we have found

I(f,9)| <C ||9||L2(0,1)

for any simple function like the above ones. Since these functions are dense in L?(0,1), the
fact that (f,-) is a bounded functional in L?(0,1) and that f € L?(0,1) with 11l 200y < C
follows by density. O
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Exercise 18.17 (Problem 2 2009). Consider the differential equation in the plane

& = cos(zy)x
y = cos(zy)y’.
For every initial condition (z(0),y(0)) € R? determine whether or not the corresponding
solution is defined in the whole of R.

ANSWER: Notice that the system is neither Hamiltonian nor a gradient flow(something
that it is always a good idea to check). Notice that (0,0) is an equilibrium, and so the
corresponding stationary solution is globally defined. Other equilibria are obtained in cor-
respondence to cos(xy) = 0 that is for 2y = § + nn for an n € Z. The points on the union
of these hyperbolas are all stationary solutions and so they are globally defined.

If we take 2(0) > 0 and y(0) = 0 it is easily to compute explicitly the solution, which
reduces to the equation & = 23 with initial value x(0) > 0 and with y(¢) = 0, which blows
up in finite time. By symmetry the same happens if we take xz(0) = 0 and y(0) > 0.

Take now for example (z(0),y(0)) in the interior of the portion of 1st quadrant between
coordinate axes and the hyperbola xy = 7. Then for all £ we have 0 < x(t)y(t) < 5. Suppose
now that we have forward blow up 22 (t)+y?2(t) 21 J oo for some T > 0. Notice that both

x(t) and y(t) are growing functions in ¢. It is not restrictive to assume that x(t) 2T .

But then we get the following contradiction due to the fact that y(0) > 0,
t—=T~

5 > w(ty(t) > w(t)y(0) “ +oo.

This implies that there exists global forward existence. Nor there exists backward blow up

T+
22(t) + 3 (t) 27T oo for some T > 0 exactly because for t < 0 we have 0 < z(t) < z(0)

and 0 < y(t) < y(0). This implies also global backward existence.

Using ideas exposed above, it is possible to conclude that for any (z(0),y(0)) in the
interior of the 1st quadrant, the corresponding solution is defined for all ¢ € R. By the sym-
metries of the system, this guarantees that in fact for any (x(0),y(0)) not in the coordinate
axes, the corresponding solution is defined for all ¢t € R. O

Exercise 18.18 (Problem 3 2009). Let f be a polynomial of one variable with simple roots
and let f’ be the derivative of f. Determine the quantity

1
Zti—sj

where {t;} is the set of all roots of f and {s;} is the set of all roots of f’.

ANSWER: The value is 0. In particular, for any s;, we have

n

> L o (18.11)

-[/-.75.
i=1 * J
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It is not restrictive to consider the case of a monic f, which by the Fundamental Theorem
of Algebra can be factorized as follows

Notice that then

Returning to (18.11) we have
i 1 _ Z?:l H%ﬁ%(t@ - Sj) _ (_l)nfl f,(Sj) _
i s [[i=i (ti — 55) (=D f(s5)

since s; is a root of f’. For non monic polynomials we still have

n

L),

ti—s; (L) flsy)

O]

Exercise 18.19 (Problem 8 2009). Consider the space C°([0,1]) endowed with the || - ||oo
norm. Let A : C°([0,1]) — C°([0, 1]) be the operator defined by

t
Au(t) = et/ e *u(s)ds.
0
a Prove that A is continuous and compute its norm.
b Prove that A is injective.
¢ Determine the range of A.

ANSWER: Let ||u|/cc = 1. Then
t t

|[Au(t)| < et/ e *lu(s)|ds < et/ e *ds = e' — e = 2sinh(t) < 2sinh(1) = || Al]x
0 0

It follows immediately [|A| = 2sinh(1). If Au = 0 then by the Fundamental Theorem of
Calculus,

t d t
/ e fu(s)ds =0 = / e *u(s)ds = e tu(t) =0 = u = 0.
0 dt Jo
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Now let us look at the range. Preliminarily let us look at the range of

Bu(t) = /0 " o(s)ds.

Notice that the equation F' = Bv has a solution v € C°([0, 1]) if and only if F € C([0,1])
with F'(0) = 0. But the ranges of A and B are the same, this because the map f — e!f is
an isomorphism in C7([0,1]) for any j, so we have responded to all three questions. O

Exercise 18.20 (Problem 9 1990). Let I = [0,1] and C a closed subset of R and let
Xo={feL*1): f(z) € C for ae. zcI}.

a Prove that X is closed in the strong topology in L?(I).

b Prove that if C is an interval then X¢ is closed also in the weak topology in L?(I).

¢ Show with an example that in general that if C' is not an interval then X¢ is not closed
also in the weak topology in L?(I).

ANSWER. We start with a. If C = R then X¢ = L?(I) which is obviously closed. Let
now f ¢ X¢. There will be [y1,y2] C (v,v5) C I\C and a compact set K C f~1([y1,y2])
with Lebesgue measure |K| > 0. Then, for any g € X¢ we have

/ (@) - g(a)Pde > K|
K

where ¢¢ := dist ([y1, y2], C) > 0. This implies that D21y (f,€) N Xo = 0 if € < /| K|eo.
The statement b is correct because it is easy to see that if C' is an interval then X¢ is
convex and so, as a strongly closed convex set, it is also weakly closed.
To prove c just take C'= {1, —1} and let V' be the following weak neighborhood of the
origin

Vi={:|(®,g9)] <e j=1,..n} for some gi,....g, € L*(I).

Notice that all functions r; = sign (sin (2k7ra:)) belong to X¢. These are the so called

Rademacher functions. They form an orthonormal family. Since by the Bessel inequality

(T, 95) E220 0 for all j, it follows that for & > 1 we have r, € V. But then we conclude

that V' N X¢ # 0 and this shows that 0 ¢ X¢ is not an interior point of the complement of
X for the weak topology. O

Exercise 18.21 (Problem 7 1991). Let

Lo = {6 € L*(—a,a) : ¢ odd}
Le = {¢ € L*(—a,a) : ¢ even}

Find the distance of f(t) = t + t? from L, and from L.. Find also the distance of an
arbitrary f € L?(—a,a) from L, and from L..
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ANSWER. Notice that any f € L?(—a,a) can be written as

£y =1 +2f =9, 18 ;f CD . fut) 4 1olt) € L2 4+ L2

Since L2 N L2 = 0 we have
L*(—a,a) = L} & L?

which, as can be seen easily, is also an orthogonal decomposition. Let now P.f be the
closest element of L. to f. We know that

/ (f=Pef)(v—P.f)yde =0forallve L. | (f— P.f)vde =0 for all v € L,

This implies that

f_Pef:fe_Pef+f0€Lo

Then P.f = f. and so

diSt(fv Le) = Hf - Pef”L2(—a,a) = HfO”L2(—a,a)‘

By a similar argument

diSt(f> LO) = ||f - POfHLQ(fa,a) = ||f€||L2(fa,a)'

In particular for f(t) =t + t> we have f,(t) = t and f.(t) = t>. We skip the elementary
computation of the last two integrals. O

Exercise 18.22 (Problem 10 1991). Let I = [0,1] and g € C*(I x I) and consider the
operator

Tf(t) = /g(t, s)f(s)ds for f € C°(I)

I
Discuss the spectrum of T

ANSWER. It is an elementary consequence of Ascoli-Arzela that the operator T is
compact. Hence o(T") contains 0 and it has either finitely many elements or it is a countable
with 0 the unique accumulation point. All the nonzero elements of o(7')\{0} are eigenvalues
with finite multiplicity (both algebraic and geometric).

Let C C C\{0} = {A1, ..., A\n} be finite and non empty. Then consider the trigonometric
polynomial

glt,s) = N0
j=1
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It is easy to see that Te*™ (t) = \;e*™! Notice that T sends L?*(I) into itself and that
the eigenfunctions of 7' in CO(I) are also eigenfunctions of T in L?(I). Since the map
feL*1I)— fe*Z) with

Fo = [ st
I
is an isomorphism and since ﬂ(n) = a(n)f(n), then in L2(I) o(T) = a(Z) which hence is
also the spectrum of T in CY(I).
Let us now consider an arbitrary sequence A, 22F 0 in C\{0}. Let us suppose

+oo
> A < oo (18.12)
j=1

Consider the sequence of integral kernels

n

gn(t,s) = X;e?mili=s)
j=1

with corresponding operators 7;,. By the previous discussion each of them is compact with
o(Ty) = {0, A1, ...y An}
n—+0oo

and it is easy to see that T,, ———» T in L£L(C°(I)) where T is the operator associated to
the integral kernel

“+o00
t,5) = Y AP
7j=1

is compact with spectrum exactly the set formed by all the A, and 0. If we drop the condition
in (18.12) then the discussion is more complicated. Always there exists a T € L£(L?(I)) such

that T,, 2= T in £(L2(I)), where in particular m@) = an () F(j), ﬂ(y) = a(j)f(j)
With an,a € co(Z) and a, =% q in co(Z)

g € LY(I), then T, D220 T where T has kernel g(t — s). If a is not the Fourier transform
of a function g € L'(I) then, it gets interesting 7?7?77 O
Exercise 18.23 (Problem 4 1992). Let, in /2(N), L; = span {e, + 2en41 : n € N} and
Ly = span {e1}. Show that Lj + Ly is dense in ¢?(N).

ANSWER: If for f € ¢2(N) the fact that (f,u) = 0 for all u € Ly + Ly implies f = 0,
then the claim is true. Recall that for any u € ¢2(N), we have

. If a is the Fourier transform of a function

+o00o
(fru) = fn)u(n)
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Then (f,u) =0 for all u € L; 4+ Lo implies

f)=0
2f(n+1) = —f(n) for all n € N.
It is obvious that this implies f(n) = 0 for all n, and so f = 0. O

Exercise 18.24 (Problem 5 1992). Find the maximum domain of existence of the following
problems

y =sin(y?) , y(0)=1 (18.13)
y =y +sin(y?) , y0)=1 (18.14)
y =vy* , y(0)=1 (18.15)

ANSWER. I look only at forward times. In case (18.13) if 7" is the maximum time of
existence and if T' < +oo we have sin(y?) € L>°(0,T) which implies that

y(t) =1 +/0 sin (y2(s)) ds

extends into a function in C°([0,T]) which can be extended by solving the problem for
t > T and with initial condition y(7") at T. The same happens for problem (18.14). For
example we can set z = e~'y and in the new variable the problem (18.14) becomes

' =etsin(e®2?) , 2(0)=1

and the same argument of case (18.13) gives T' = +o0.
For (18.15) we can compute explicitly the solution, which is given by y(t) = ﬁ which
lives in [0, 1). O

Exercise 18.25 (Problem 10 1992). Let H be a separable Hilbert space with basis {e;, } nen.
Let T : H — H be a bounded linear operator such that

o0
Z | Ten|? < +o0.

n=1
Show that T' is a compact operator.

ANSWER: Let T,, = T'P, with P, the orthogonal projection on span {e; : j < n}.
Then T, is finite rank, and so compact. We have

n
TPx—TZ:Ue] erjTej
7j=1 j=1
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Then for m <n

and so

[SIE
N

(T = T)all < [ > I(z,e5)) > ITesl?

from which we obtain

1T =Tl < | D 1 Tesl?
j=m+1

which implies that {7}, },en is a Cauchy sequence in £(H) and has a limit S. Since for any
n we have SP, = TP, it follows that T'= S, and so T is compact. O

19 Old exams

Exercise 19.1. Consider the operator T'f(z) = 1 f (1).
a Show that it is a bounded operator of L?(R. ) into itself.

b Find the spectrum of 7. In particular, check if there are eigenvalues and if there are
eigenvalues of finite multiplicity.

c Establish if T" is a compact operator.

Consider the map F = Af where for f € L2(Ry) we set F(y) = e2 f(e¥). Then notice
that

/ |F(y)|2dy = / |f(e¥)|2eYdy changing variable z = eV
R R

- [ 1

so A is an isometry L?(Ry) — L?(R) and it is easy to see that it is an isomorphism. Now

AT f(y) = ¢} (if (i))

In other words, thinking of f — Af as a change of coordinates, in the new coordinates
A becomes the operator BF(y) = F(—y). Then if F' is even BF = F and if F is odd

= e Ef(e) = F(-y)

r=eY
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BF = —F. The operator preserves the spaces of odd and of even functions in L?(R). And
since for every F' € L?(R) we have

Fly)+F(-y) | Fly) — F(-y)

F(y) = 5 + 5

we conclude that we have the splitting
L2(R) = Lgven(R) @ Lgdd(R)

which is preserved by B = ATA~! and in terms of the above splitting
1 (1 0
ATA™ = ( 0o -1 |-

Exercise 19.2. Consider a Banach space X and its dual space X'.

a Prove that the o(X’, X) topology is the weakest topology in X’ which makes the maps
X' 32" — (x,2")  x continuous for all z € X.

b Show that for dim X = +o00 also dim X’ = 400

¢ Show that for dim X = +oo the closure of S := {2’ € X' : ||2/||x» = 1} for the (X', X)
topology coincides with {2’ € X' : ||2/| x < 1}.

d Find a sequence (f,) in L°°([0, 1]) with || ful[ze0([0,1)) = 1 converging weakly to 0 for the
a(L>([0,1]), L*([0,1])) topology.

f Show that if X is a Hilbert space and (z;,) is an orthonormal sequence in X, then x,, — 0
in X.

e Find a sequence (f,,) in L*°([0, 1]) with [|fu|lze(jo,1) = 1 and dist(fn, Vo-1) = 1 for V,,
the space spanned by fi,...f, such that it is not true that f, converges weakly to 0
for the o(L>([0,1]), L'([0,1])) topology.
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Exercise 19.3. Consider a Banach space X and let T' € L(X).

a Show that if A € C is such that |A| > ||T™ for an € N, then A € p(T).

1
120x)

b Consider the space X = LP((0,1),C) for some p > 1, a function m € C°([0,1],C) and
the operator T;,f := mf. Show that it is a bounded operator and that its spectrum
o(T,,) satisfies o(T,) = m([0,1]).

¢ When is the operator 1), of (b) compact?

d Recall the exponential of T’

o0
TTL
€T = —_—.
n!
n=0

Show that if A, B € £(X) commute, that is [A, B] := AB — BA = 0, then eAtF =

EAGB = GBGA.

Exercise 19.4. Recall that H'(T¢, C) is the completion of the set of trigonometric poly-

nomials using the norm
2~
Flps oy = 3 ()2 fim) 2.

nezd

[l ey = 3 InfPlan) .

nezd

Consider

a Show that || - |’H1(Td7(c) is a continuous seminorm in H'(T%, C).

b Prove the following Poincaré inequality:

3C >0s.t. ||u udx

1 1/md
~ Yol(T9) /Td < Cllull ga(pacy¥ u € HY(T?,C).

L2(T4,C)
¢ Let X be a topological vector space which is a Banach space for two distinct norms ||z

and ||z|[2. Show that the norms are equivalent, that is that there exists a C' > 1 such
that

1
6”1‘”1 < |lz|l2 < C||z|; for all z € X.

d Can we drop the hypothesis of completeness implicit in question (c)?
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Exercise 19.5. Consider the operator T'f = / f@t)dt for f € L1(0,1).
0

a Prove by induction the formula

— )"
" f(x / £(t) (z dt.
(n— 1
b Show that the above implies that o(7") = {0}.

¢ Show that for any g € L'(—1,1) then the map

1
f—>g*f=/0 gz — ) (t)dt

is a well defined bounded operator of L!(0,1) into itself.
d Show furthermore that the operator in (c) is a compact operator of L(0,1) into itself.

e Use statement (d) to conclude that T is a compact operator of L'(0,1) into itself.

Exercise 19.6. Let for f € L?(T% R), ¢ (Zd) > f(n) = (277)_d/2/ e M f(2)dx. Then
Td
consider the Leray projection P : L?(T% R%) — L?(T%,R%) defined by

e j w(0)ifn=0
(Pu) (n) = w’ (n) — W S nyni @ () if n = (ny,...,ng) # 0
R
where ||n||]§d =n? + .. +n
a Show P is a projection.

b Discuss in what sense ker P is formed by the conservative fields in L?(T¢, R9).

¢ Show that R(P) is formed exactly by the divergence free fields in L?(T¢, R%), that is the
fields such that
anaj(n) =0, for all n € Z%

d Let X be a Banach space on C and P € £(X) a projection. Show that o(P) C {0,1}.
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Exercise 19.7. Consider in ¢ (N) = {f :N— Cs.t. Z |f(n)] < oo} the operator 1 €
neN
L (¢*(N)) defined by
Oifn=1
mf(n) = {f(n—l) if n > 2.

a Show that, for the spectrum, we have o(71) C D¢(0,1).
b Show that 0 € o(71), because 71 is not algebraically invertible.

¢ Prove that for z £ 0, there exists an algebraic inverse linear operator of 71 — z. In fact,
for (11 — z)f = g, prove that for z # 0 we have the formula

n

F(n) = —2;14 gn+1-10). (19.1)

/=1

d Show that the operator in (19.1) is unbounded for 0 < |z| < 1.

e Prove directly on formula (19.1), that for |z| > 1 it yields a bounded operator.

f What changes about o (1) if we consider instead the operator in ¢! (Z) defined by 71 f(n) :=
f(n—=1) for any n € Z?

Exercise 19.8. Consider Ry 3 A\ — dg\ € L(LP(R?)) defined by 64,5 f () := )\%f()\x).

a Show that Ry > X — d4p0 € L(LP(RY)) is, for p < oo, strongly continuous, that is
Saprf —— Ao, Sdpref for any Ao > 0 and any f € L(LP(R?)).

b Do we have 04 x EmalN Sd.p.xe in norm inside £(LP(RY)) for p < 0o? Justify the answer.

¢ Consider the induced map &1 2\ : L*(Ry) — L?(R4). Show that U : L*(Ry) — L*(R)
defined by Uf(z) = e*/2f(e®) is an isomorphism . Show that U2 U™t = 7 1082,
where 7,g(z) := g(x — h) for g € L? (R).

Answer to d. For y > 1 consider

1
z P 1 - St
1 <j)<pll o ey = (/1 Td_ldr> ST = (Md—ﬂ d)”d PS4 = C(p)

m

and set x, := C‘l(,u)ll<‘1,|<u. Next for any fixed A > 1 choose 1 < p < v/A. Then
& <le|<

”5d,p,>\Xu XuHLp Rd) — ||5d,p,>\Xu”Lp Rd) + ”XMHLP (RD) — 2
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because the supports of these two normalized functions are disjoint. Indeed 452X, is
supported where

while ,, is supported where

So for A > 1 we have (645 — 1| z(zp(ra)) > {/2 . A similar argument works with A < 1.
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Exercise 19.9. Consider a p € C°(R%,R) s.t. [ p(z)dr = 1.

a Establish if the map L? (R?) 3 f — pf € LP(RY), where (pf)(z) := p(x) f(z), is compact
for any 1 < p < o0.

b Establish if the map L? (R?) > f — px* (pf) € LP(R?) is compact for any 1 < p < occ.
¢ Consider p(z) := ¢ p(x/¢). Establish if in the space

CORY) := {f € C°(RL,R) : lim f(x) =0} C L®(RY)

+
we have pg*fi>f.

d Establish if we have p+ 2 Identity, in £ (CO(R?)).

e—0t

e Establish if we have p. * f —— f in the space BC?(RY) := CO(R? R) N L>®(R?) C
L>®(RY).

Exercise 19.10. Consider the space £*°(N) = {f : N — R : sup, | f(n)| < oo}

a Show that ¢*°(N) is not separable.
b Show that there exists an isometric embedding ¢*°(N) < BCY(R) := L*°(R) N C°(R).

¢ Show that BC°(R) is not separable.
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Exercise 19.11. Let X be a Banach space, X’ its dual space, (-, -) x/x x the duality product,
and Dx/(0,1) the unit ball in X*. Consider a bounded sequence {z,,n € N} C X such
that

Va' € ODx/(0,1) the sequence (', x,)x/«x converges.

a Show that if X is reflexive, then x,, is weakly convergent in X.

b Is the above conclusion necessarily true if X is not reflexive? Prove if it is true, or find
a counterexample if it is false.

Exercise 19.12. Let [ := [0,1] and let I} := [}, £] for k € Nand i = 1,..., k. For every
k€ Nlet T): L*(I) — L'(I) be the linear operator defined by

k
(TUN)a) = kY xigla) [ Sy tor every f € LD,
=1 k

a Prove that
1Tk (P ey < Nl
for every f € L(I).

b Prove that
Ti(f) = f in L*(I)

for every f € CO(I).

c Prove that
T(f) = f in L'(1)
for every f € LY(I).

d Is it true that

lim  sup || Tk(f) = fllpygy =07
k—+o0 feL (1)
Hf”Ll([)Sl
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Exercise 19.13. Consider the operator T : CY([0,1]) — C°([0, 1]) defined by

Tf(z) = /Ox e’ f(t)dt.

1. Compute the norm ||T°|.
2. Prove that T is compact.
3. Compute the spectrum of T

Exercise 19.14. 1. Consider the space CY([0, 1], L*(T, C)) with norm

1Glcogo,y,2(r,c)) = sup{l|G(®)l| 21, < T € [0,1]}.
Show that it is a Banach space.

2. Denote by S, : L?*(T) — L?(T) the operator that associates to any f € L*(T) its
Fourier polynomial of order n € N and consider an F € C°([0, 1], L?(T)). Show that

SpF 2% Fin €0([0, 1], L2(T)).
3. Consider for any n € N the ordinary differential equation (ODE) in L?(T),

Uy = Sp02up + Sy F
u,(0) = 0.

Show that S,,02 is a bounded operator from L?(T) into itself and that the solution of
the ODE can be written as

t
U (t) = /0 =952 g F(s)ds. (19.2)

Show that u,, € C°([0, 1], L*(T)).
4. Show that there exists u € C°([0, 1], L2(T, C)) so that u, ———=% v in C°([0, 1], L%(T, C)).
5. Check for the equation

i, = Sp0%u, + Sy F
un(0) =0

what the analogue of (19.2) is and if statement 4 continues to be true.
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Exercise 19.15. Consider the operator T : CY([0,1]) — C°([0, 1]) defined by

716 = (155 )

1. Compute the norm ||T°||.

2. Show that 1 is an eigenvalue and determine explicitly ker(7 — 1)

3. Show that 0 is an eigenvalue of T and determine explicitly all elements of ker T'.
4. Check if T is a compact operator (without using any of the statements below).
5. Check that if A € C is an eigenvalue and if A # 1, then |A| < 1.

6. Show that any A € C with || < 1 is an eigenvalue.

7. Find the spectrum o(T).

Answer. Tt is obvious that ||T'|] < 1 and by T'1 =1 it follows ||T'|| = 1. Notice that we
have shown that 1 is an eigenvalue. Notice that if T'f = f, then for any x € [0, 1] we have
T"f(z) = f (zn(x)) = f(x) for the continuous fraction

xo(z) =2
_ 1
14 a(z)

5—1 ~
\[2 . So by continuity f (z) = f(z)
for any x € [0,1]. So ker(7' — 1) is formed exactly by the constant functions.

mn—l—l(x)

This sequence for any x converges to the value T :=

1
Notice that z — ¢(x) = T is a homeomorphism from [0, 1] into [1/2,1]. So
x
Tf(x)=f (1%}:) = 0 if and only if f|[1/271} = 0. So ker T can be identified with the space

of all continuous functions in [0,1/2] equal to 0 at the extreme point 1/2. In fact, each of
these functions can be extended into a function in C°([0, 1]) identically equal to 0 in [1/2, 1].

By a general result we know that o(7") C Dc(0, ||T]|) = Dc(0,1). So all eigenvalues
satisfy |A| < 1. Next, suppose that A # 1 and |A| = 1. Then, since the sequence z,(7) is
constant, from T'f(z) = f () = Af(Z), we have necessarily f(z) = 0. But now, since by
continuity, for a nontrivial eigenfunction we have

P o n _ . n
0= S@) = Jim ] aufe) = lim T"f(e) = J(o) i X"
which in turn requires that f(z) = 0 for all € [0,1], that is a contradiction. So we need
to have |\| < 1.
So, now let us pick a 0 < |A\| < 1 and let us set Iy := (0,1/2) and I, := " ({p).
Notice that I, NI, = 0 for n < m. For n = 0 < m follows immediately from the fact that
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In N ([0,1]) = 0 and that ™ (Iy) € ¢ ([0,1]) for m > 1. On the other hand, if n > 0, for
y € I, N I, there exists a unique z s.t. y = ¢(x). We need to have x € I,,_1 N I,,,—1 and so,
going backwards, we reduce to the case n = 0.

Having established that I, N I,,, = 0 for n < m, let 0 # fy € C? (Ip,R). Then let

fo(z) for z € I
f(x) == < A" fo(y) for z € I, with x = ¢"(y) with y € I
0 for z € [0, 1)\ Uy~ In-
Then we have f € C?([0,1],R). Indeed, either a point z is in the interior of (J}2, I, or
of its complement, and then f is continuous at that point, or in the frontier, where f has
value 0. In this last case, if 2o, =% z, it is enough to focus on the case when f(za) #0.

Then we must have o € I,(o) With n(a) 27H%0, | 0. But then

[F@a)l < A foll oo () <= 0 = f ().
It is possible to show that T'f = Af. Indeed, T'f(z) = f (¢(x)) and p(z) € 141 <=z € I,
and, by the definition
Tf(z) = A" fo(y) = Mf(x) for z € I, with 2 = ¢"(y) with y € I,.

At other points, T'f(x) = f(z) = 0.
Finally, since the spectrum o (7)) is closed, we have o(T) = D¢(0,1). This implies that
T cannot be compact.

Exercise 19.16. Let [ := [0,1] and let I} := [}, £] for k € Nand i = 1,..., k. For every
k € Nlet T},: L*(I) — L'(I) be the linear operator defined by

k
TUN)@) = kY @) [ )y for every £ € L1(D).
=1 k

a Prove that
1T (Nlzr oy < 1fllzra
for every f € LY(I).
b Prove that
Ti(f) = f in LY(I)
for every f € CO(I).

¢ Consider the space C°(I, L*(I)) with the norm sup ||F(t, ) |21 (r)- Show that if we define
te(0,1]

for any function F(t,z) in C°(I, L*(I))

k
T F(t,x) =k Z X1i (x)/ F(t,y)dy
i=1

I

k

this defines a bounded operator of CO(I, L!(I)) into itself.
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d Show that
Tw(F) — F in C°(I, L}(1)).
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Exercise 19.17. Show the following
1. Both /2(N) and L?(R%) are separable for any d > 1.
2. Show that for any d > 1, the spaces £2(N) and L?(R%) are isomorphic.

3. Establish, justifying the answer, which of these pair of spaces are formed by isomorphic
spaces.

a co (N) and ¢%(N)
b ¢ (N) and ¢}(N)
¢ ?(N) and /}(N)

4. Show that for 1 < p < oo a bounded linear operator T : ¢’ (N) — ¢(N) is compact
(Hint: exploit that a sequence in ¢}(N) converging o (¢! (N), £>°(N)) weakly to 0, does
so also strongly?).

Answer to the fourth question. Let Y := TDgp(0,1) be the closure in ¢*(N) of
T Do (0,1). Since TDyo(ny (0, 1) is bounded in ¢*(N), also Y is bounded. Let {yn} be a se-

quence in Y. Then there exists a sequence z,, in Do) (0,1) 8.t [|yn — Tznll g ) UinaskoNy}

On the other hand, since ¢? (N) is reflexive and separable, and so Dy (0, 1) is a relatively

compact metrizable space for the o(¢7(N), /7' (N)) topology, there exists a subsequence of
Ty, that it is not restrictive to assume the whole sequence, such that z, — T € D) (0, 1)

weakly o(¢?(N), " (N)). Then, by the continuity of T : (ﬁp (N),a(zp(N),ep’(N))> =
(¢* (N),o(¢1(N),=(N))), it follows that Tz, — TT weakly o(¢*(N),¢>°(N)). But this
implies that || TZ — T'xp || () D272, 0. In turn, this means that y, ——— T7F in (* (N).

So we have shown that Y is sequentially compact. This implies that Y is compact and the
operator T' is compact.

Exercise 19.18. It is a known fact, called Pitt’s Theorem (partially contained in the
previous exercise and proved in the general case in [1]), that if T : ¢4 (Z) — (°(Z) with
oo > a > b >1is a bounded linear operator, then 7' is compact.

1. For 1 < p < 2 give at least one example of non compact bounded linear operator
defined in LP(T) with values in L?(T).

2. Use Pitt’s Theorem and the conclusion of the previous answer to show that the map
LP(T) 3 f — {f(n)}nez € £ (Z) is not an isomorphism for 1 < p < 2.

Answer to Exercise 19.18. Consider the map, (where T is identified to [0, 27],

27
SF(x) == Xpo.2n /0 © — o F (9)dy

3See Exercise 10.30
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This operator is not compact by an analogue of the scaling argument given in Example
17.7 . If now the map LP(T) 3 f — {f(n)}nez € ¢ (Z) is an isomorphism, then we

L/(T)  L*(T)
would have a commutative diagram

/

w2 22



Exercise 19.19. 1 Let X := {f € L*([0,1)) : f(z) € {1,—1} for almost any = € [0, 1]}.
Show that X is a closed subset of L?(]0,1]).

2 Consider in L?([0,1]) for k > 0 integer the family of Rademacher functions, which are

defined as
() = 1, if k= 0;
S sign (sin (kar)) , if k>1.
where sign(z) = 1 if 2 > 0 and sign(z) = —1 if # < 0. Show that {ry}x>1 is an

orthonormal set in L?([0, 1]).

k—+o00

3 Show that for any g € L?([0,1]) we have (ry, g) ——— 0.
4 Show that the set X is not weakly closed in L?([0, 1]).

5 Prove whether or not X is a convex subset of L?([0, 1]).

6 Let I € span {ry : k > 0} in L?([0,1]). Prove that F € L*([0,1]).
Check Example 16.12 for more on Rademacher functions.

Exercise 19.20. 1. Let

1 1
for any v € (0,1) the number p* defined by preinlin +v-1
p p

and consider the operator

1
Tf(z) = /0 = — 4| (y)dy

Show that 7" € £ (LP(0,1),L"(0,1)) for any r < p*.
2. Show that T : LP(0,1) — L"(0,1) is a compact operator for any r < p*.

3. It is known, and we take it for granted, that T' € £ (LP(O, 1), L7 (0, 1)) when 1 < p <
p* < oo. In this case is there any ¢ > p* such that 7' € £ (LP(0,1),L%(0,1))? Hint:
use scaling.

4. Check if T is a compact operator from LP(0,1) to LP (0, 1).
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Exercise 19.21. We will consider the space L%([0, 1]).

1 Show that if K is a selfadjoint operator in L?([0,1]) then it preserves the orthogonal
decomposition

L*([0,1]) = ker K @ ker" K where ker" K :={f € L*([0,1]) : (f, ) 12(pg.y)) = 0 for all u € ker K’}

1
2 Consider now the operator K f(x) = / (zy? + 2%y) f(y)dy in L?([0,1]). Show that K is
0
selfadjoint.

3 Show that K is compact.

4 Find the spectrum o(K).

5 Find explicitly the eigenfunctions corresponding to all the nonzero eigenvalues of K.

6 Let \ € o(K) with A # 0 and for given f € L?(]0,1]) consider the equation
AN=K)u=f.

For which f the equation has a solution? If there are solutions, what are all the
solutions?

Exercise 19.22. Let ¢ : £2(Z) — R be the nonlinear map given by
O(f) = f(0) + 1 £ 1172z

1 Show that ¢ is a continuous map, that is ¢ € C° (EQ(Z),R).

2 Show that ¢ is lower semicontinuous for the weak topology in 2(Z).

3 Show that ¢ has exactly one point of absolute minimum and find it explicitly.

4 Consider for fo € £%(Z) with compact support (that is fo(n) # 0 for at most finitely
many n € Z)

O(f) = {f, fo)ee@) + Hf||?4(z)-
Show that also 1 has an absolute minimum.

5 If in the previous question we still have fo € £2(Z) but we drop the hypothesis that fg
has compact support, does 1 still necessarily have absolute minima?
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ANSWER. Here I answer at question 5 only. In general there is no absolute minimum.
Take

foln) = =N e N = {1,2,3,..}

Vvnlog(1l+n)

and for o € N consider

ga(n) = —W
Then
= 1 1
¥(ga) = _;rmg(l+m+;m — I, +1I,
where

a——+00 = 1
11, 2272, Zﬁ < 400

n=1

while I, 2= —c0. So ¥(ga) Lma N
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Exercise 19.23. Let I = [0, 1].

1. For a kernel K € L*°(I x I) show that the operator

Tf(z) = /0 " Ko, y)f)dy

I

as an operator from L°°(I) into itself satisfies |17z (o (1)) < p~
2. Show that the spectral radius of T" equals 0, where the spectral radius is limy, 100 /| T" || £(zo0(1))-
3. What is the spectrum of 77

4. Let K(x,y) = e®+v* 15 0 an eigenvalue of T'7 Justify the answer.

5. Is there some nonzero K € L>(I x I) (beside possibly the above example), such that
0 is an eigenvalue of T'7

6. In the case K(x,y) = e is T a compact operator?

7. Is there a general class in L*°(I x I) of kernels K such that for any K in this class
the operator T is a compact operator from L°°(I) into itself? Justify the answer.

Exercise 19.24. 1. Show that C%%(I) for I = [0,1] and # € (0,1) defined by
CI) = {feC’): [flco.e(ry < 400} with norm

Ifllcoewy = Il + [flcoe ) with
[flcoo(ry == sup 1f(@) = f(y)l

z#y in 1 |‘/E - y|9
is a Banach space.

2. Show that C°°(I) with the topology defined by the seminorms {py},enufoy, With
on(f) = ”f(n)HLoo(I) for any integer n > 0, is a complete metric space but not a
Banach space.
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Exercise 19.25. Let I = [0, 1].

1. Show that
T =gt : d
f(x) T /0 f(t)dt

defines a bounded operator of L?(I) into itself. Hint: write

T 1
Tf(x)—ac_l/ f(t)dt—/ Fltx)dt
0 0
and proceed from here.

2. Consider the scaling operator 6y defined by (0 f)(x) :== A/2f(\x) for X € (0,1). Show
that

TO(S/\:(S)\OT. (193)

3. Use equality (19.3) to prove that T is not a compact operator of L?(I) into itself.
4. Show directly that ker ' = {0}.

5. More generally, show that z € C is an eigenvalue of T if and only if z € D¢(1,1) (the
open ball of center 1 and radius 1 in C).

6. Are there elements of the spectrum o(7") which are not eigenvalues of 77

7. Show that if for n € N we define the operator

Tof(z) = — /O " f(t)at

1

then it is not true that || T°— T || (z2(1)) LimasNy()

For the answers on the most important points check Example 15.39 and the answers
in Exercises 17.29 and 17.30.

Exercise 19.26. 1. Let § € (0,1) and let V' C L*°(R) be the subspace of functions
f R — R which besides being bounded satisfy

3 o+ 2h) — 2f (x4 h) + (@)
f] = sup sup )7

< Q.

Show that V is a vector space and that

1 fllv = [ fllLos(m) + [f]
is a norm on V.

2. Show that V with the above norm is a Banach space.
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