

Electronic Systems Design

Prof. Marsi Stefano - University of Trieste
Academic Year 2025/26

Tutorial 2
[image:]

Temporal analysis of a system realized on FPGAs.

Hardware used: Terasic DE1-SoC Board
Software used: Quartus 21.1, System Builder

Tutorial 2
Realization of a hierarchical Sum and Accumulation circuit on DE1-SoC
Description: The projects developed in two parts: In the first part a simple logic circuit is created on DE1-SoC with inputs driven by the switches and output on the LEDs. At each press of a key (Key[0]) system adds the binary value present on the switches to the one present in memory and displays the result on the LEDs. In the second part, we want to investigate the delay times present in a circuit, therefore two adders with different architectures will be created and the results generated by them when the same input data are provided to them will be compared.
Purpose: Introduction to the use of "System Builder" for the realization of systems of a midrange complexity. Familiarize with the realization of a hierarchical system. Explore the tools useful for a temporal analysis of the final device.
Expected learning:
· Using the "System Builder" Tool.
· Hierarchical description and simulation of a system described in Verilog HDL.
· Verification of delay times and implementation constraints (Timing Analyzer)
Procedure

1. Introduction

The company that produces the development board (Terasic) has developed a tool (System Builder), useful for easily starting a project. This software, based on the system required interfaces, creates the skeleton of a project to be developed later on Quartus, but already accompanied by constraint files both for the pinout and for the definition of clock constraints.
· run System Builder
· check the interfaces you intend to use in particular (LED / SWITCHES / BUTTONS / CLOCK)
>> Generate
[image:]
· Save the project in an appropriate directory

2. Definition of the system architecture

· Open the newly generated project with Quartus
(double click on <Your file>.qpf)

The project already has a VerilogHDL file that represents the "TOP Level Entity" of the final project and a .SDC (Synopsys Design Constraints) which contains and will contain the various design constraints. These Files will be used later.

Let's now create a new Verilog file containing 3 modules:
· A Half Adder
· A Full Adder that instantiates the above half-adder
· A 10-bit adder that instantiates the above generated elements.

File > New (Ctrl-N)
Choose Verilog HDL File

module HA (input a, input b, output s, output c);
 assign s = a ^ b;
 assign c = a & b; 	
endmodule

module FA (input a, input b, input c_in, output s, output c_out);
 wire somma_par;
 wire carry1,carry2;

	HA HA1(a,b,somma_par,carry1);
	HA HA2(c_in,somma_par,s,carry2);
	
	assign c_out = carry1 | carry2;
endmodule

module Nbit_adder(input1,input2,answer);
parameter NBIT=10;
input [NBIT-1:0] input1,input2;
 output [NBIT-1:0] answer;
 wire carry_out;
 wire [NBIT-1:0] carry;
 genvar i;
 generate
 for(i=0;i< NBIT;i=i+1)
 begin: generate_N_bit_Adder
 		if(i==0)
 			HA f(input1[0],input2[0],answer[0],carry[0]);
 		else
 			FA f(input1[i],input2[i],carry[i-1],answer[i],carry[i]);
 	end
 assign carry_out = carry[NBIT -1];
 endgenerate
endmodule

Save the file WITH THE SAME NAME as the module at the highest hierarchical level (Nbit_adder) and run Analisys and Syntesis.
>> Right click on the file you just saved
>> Set as Top Level Enity (Ctrl-Shift-V)
Assignement > Settings (Ctrl-shift-E)
And configure the simulation tool with QuestaSim
[image:]
Through the simulator (as in the dedicated tutorial) generate appropriate stimuli and verify the correct functioning of the developed adder

[image:]

Now it is possible to instantiate the adder just created inside the main block by adding the logic that stores the result of the sum and then provide it as input to the adder in a "add and accumulate" operation using the switches as inputs and the LEDs as outputs.
· If necessary, include the Main file (which present the same name as the project)
· Set the "Top Level Entity" property back to it
· Edit the code as shown below
[image:]
Note in particular that in this case the signal coming from a button (Key[0]) is used as a clock for storing the results and the one connected to the Key[1] as a reset, both connected in negated logic (normally high). The outputs, stored in the "mem" register, are connected directly with the LEDs on the board.
Re-simulate everything with Modelsim to verify its congruity by providing the KEYS bus with signals that are congruent with what is expected, i.e. a periodic signal on the KEY[0] and a low pulse on the KEY[1]. The signals on KEY[2] and KEY[3] have no effect on the circuit.

[image:]
3. Download on board

If the simulation is correct, you can complete the compilation up to the generation of the .sof file and then download it to the board to verify that the entire system works correctly.

4. Time Analysis

We now want to examine a different circuit that can highlight the problems related to the creation of a Ripple Carry adder, and in particular its propagation delays.
Let's now modify the project to create a system that presents critical issues regarding signal propagation and see what tools we have available to analyze these critical issues.
The adder realized in the previous point uses a "Ripple Carry" architecture so under particular conditions the adder may have to wait for the "carry" signal to propagate for many consecutive cells, thus reducing the maximum frequency at which the device can operate.
To highlight this criticality, the idea is to create a circuit equipped with two adders: The first will be made with the "ripple carry" technique just seen, while the second will be automatically synthesized by Quartus using an "a+b" (inferred) operation which exploit the internal resources made available by the FPGA and controlled by "Quartus". Both adders will be fed with the same inputs provided as input at the maximum frequency of the board (50MHz) and the results will be compared with each other at the next cycle. If they are different from each other, an error signal will be generated that will be accumulated in a suitable counter.
Therefore, let's first create a module that compares two NBIT bit buses, generates a signal equal to 1 if they differ, and accumulates the results in a suitable register.

module Comparator(clk,rst_n,data1,data2,accum,err);
parameter NBITS=128;
input clk,rst_n;
input [NBITS-1:0] data1,data2;
output reg [9:0] accum;
output reg err;

reg [NBITS-1:0] diff;

always @(posedge clk or negedge rst_n)
 if (~rst_n)
	 begin
		err <= 0;
		accum <= 0;
	 end
 else
	 begin
		err <= (data1 != data2);
		accum <= accum + err;
	 end
endmodule

Then we should also create a system to generate the test signals.
On this point, however, some clarifications must be made: the purpose of the exercise is to verify the criticality of a RC adder. However, this is highly dependent on the data provided as input and not all data are processed with long propagation delays: for example, if you have to add the following two values:
0 1 0 0 1 0 1 1 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 +
1 0 1 1 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 1 0 1
The propagation delay in this case corresponds to the time required for the carry signal to traverse 7 cells (despite the data being 24 bits wide). This occurs because, when the two input bits of a given cell are equal, the carry for that cell is immediately known without waiting for the propagation from the preceding cells. As a result, subsequent cells can determine their outputs without depending on earlier carry signals.
This illustrates that when truly random numbers are used, the probability of encountering pairs of operands whose sum requires propagation across many cells is quite low. To clarify with an analogy: if we consider N-bit words and ask for the probability that the carry must propagate through more than m consecutive cells before settling, this probability is equivalent to flipping a coin N times and obtaining m consecutive identical outcomes (i.e.)
One might therefore consider generating on each test special pairs of words in which the bits at corresponding positions are never equal, thereby forcing the carry to propagate across the entire adder before the final result is available. While this approach could work, an important caveat must be noted: the propagation delay only becomes visible when the adder’s output differs from that of the previous operation (otherwise no propagation can be noted). Consequently, the test data must be carefully crafted to ensure that successive words not only differ in their bit patterns, but also produce a different carry in the first stage, guaranteeing that the carry chain is exercised throughout.
To do this, taking a cue from a generator of pseudo random Fibonacci numbers, the following code was drawn up.

module fibonacci_double(clk,rst_n,data1_out,data2_out);
parameter NBITS=16;
input clk,rst_n;
output [NBITS-1:0] data1_out,data2_out;

reg [NBITS-1:0] data1,data2;
wire feedback,firstbit;

assign feedback = data1[NBITS-2]^ data1[10] ^ data1[4] ^ data1[2] ;
assign firstbit = data1[13];

always @(posedge clk or negedge rst_n)
 if (~rst_n)
 data1 <= 1;
 else
 begin
 	 data1 <= {data1[NBITS-2:0], ~feedback,firstbit} ;
	 data2 <= {~data1[NBITS-2:0], feedback,firstbit} ;
	end
	
assign data1_out=data1;
[bookmark: _GoBack]assign data2_out=data2;	
endmodule

This code generates a pseudorandom word and its conjugate at each clock pulse, but with the bit placed in the least significant position the same for both words. By doing so, adding the two words will activate the entire chain of the carry for the entire length of the adder, but this will be (pseudorandomly) sometimes composed only of zeros and sometimes composed completely of ones.
We can now define the complete circuit that performs the sum of the two words through the two different methods and compares the results.
Keeping the "skeleton" provided by the "System Builder" you can modify the source as described below:
//===
// REG/WIRE declarations
//===

parameter NBITS = 256; //128 OK //256 Error

wire clk,clk_num,res_n;
reg error;

wire[NBITS-1:0] data1,data2;
wire[NBITS-1:0] datafast,dataslow;

reg[NBITS-1:0] diff_r,data1_r,data2_r;
reg[NBITS-1:0] datafast_r,dataslow_r;

//===
// Structural coding
//===

assign clk=CLOCK_50;
assign clk_num=KEY[1];
assign res_n=KEY[0];

fibonacci_double	#(.NBITS(NBITS)) randgen (clk_num,res_n,data1,data2);

always @(posedge clk)
begin
 data1_r <= data1;
 data2_r <= data2;
 datafast_r <= datafast;
 dataslow_r <= dataslow;
end

 // Adders
Nbit_adder #(.NBIT(NBITS)) RC_adder(.input1(data1_r),.input2(data2_r),.answer(dataslow));
assign datafast=data1_r+data2_r;

// Comparator
Comparator #(.NBITS(NBITS)) accumulatore(.clk(clk),.rst_n(res_n),.data1(dataslow_r),.data2(datafast_r),.accum(LEDR),.err());

endmodule

The entire project structure can be depicted using:
>> Tools > Netlist Viewers > RTL Viewer

[image:]

Build now the entire project. And test it on the board:
· KEY[0] resets the system and puts it in its initial condition
· KEY[1] modify the input samples providing pseudo random inputs
It will be noted that the error counter (which provides its output directly on the LEDs) will sometimes detect an error when generating samples, i.e. the two adders, operating with a frequency of 50MHz, were not able to provide the same result, as at least one of the two was driven with a frequency higher than its maximum working frequency.
Now try to change the number of BITs of the adders, bringing it to 128 for example and recompile the system. During the on-board test you will notice that now the system does NOT detect any errors and both adders work correctly.

5. Using the "Timing Analyzer"

The system created is particularly suitable for analysis through a tool that helps the designer to identify the critical issues related to signal propagation: the "Timing Analyzer".
Start by removing from the project any files with the *.sdc extension that may already be present, usually generated by the "System Builder". These are constraint files that are used in the synthesis phase to verify whether the time constraints are respected and possibly to guide the synthesis and "Place & Route" process and recompile the complete system.
Open the "Timing Analyzer" tool
> Tools > Timing Analyzer
Inside the Tool:
> Netlist > Create Timing Netlist

[image:]
Choose the condition "Slow Corner" and "post-fitting" - <OK>
It is now necessary to indicate to the system what the implementation constraints are, first of all what the clock signals are and at what frequency they act:
> Constraints > Create Clock
[image:]
Provide a name for the clock network (e.g.: fast_clock), its specifications (Period = 20 ns) and the signal to which it is associated (Target = CLOCK_50) To do this click on " ..." in the window that opens, click on the "List" button and select the appropriate target <OK" with the ">" button>
[image:]
<OK> <Run>
Repeat the operation by creating a second clock network associated with the clock that generates the random inputs (assuming its period is 100 ns) associated with the KEY[1] port.
[image:]
<Run>

> Netlist > Update Timing Netlist

Now there are several "reports" related to the project made, of which we will analyze some of them, however leaving the reader the faculty and advice to analyze other information that the tool provides.

> Report > Datasheet > Fmax Summary Report

Which returns information on the maximum working frequency related to the two clock circuits
[image:]
> Report > Report Timing
[image:]
Choose some paths of interest, such as those that involve both adders from the least significant bits as inputs to the most significant bits as outputs (as in the example)

<Report Timing>

On the following page you will be reported the 4 paths identified and by clicking on each of them the timing of signal propagation, any violations, the location of the path, statistics etc. etc.
[image:]
It can be seen how the "fast" adder is able to switch the entire carry chain in less than 4ns, while the Ripple Carry adder made in a hierarchical form with separate elements takes more than 18ns.

By clicking with the right button on the path of interest you can locate the path in the various views (Chip Planner – Technology Map Viever – Resources Property Editor)

For example, compare the different paths in the "Chip Planner"

[image:][image:]

Now suppose that our system, instead of being driven by a 50MHz frequency, was synchronized by a 100MHz frequency.
Erase the time data found so far
> Netlist > Delete Timing Netlist

And repeat the above operations but modifying, for example, the period of the "fast_clock" setting it to 10ns.
Now the report will highlight the violations that will highlight how certain signals, in particular those that travel through the "ripple carry" adder, arrive too late compared to the clock front that has to sample them:
[image:]

Particularly interesting is also the tool:
> Reports > Custom Reports > Report Timing Closure Recommendations...

Which opens a page where, for the most critical routes, it recommends the most suitable actions to be taken to avoid critical issues.
The file containing all the constraints set (with the extension .sdc) can now be saved and included in the project.
> Constraints > Write SDC File ...

Its usefulness within the project is twofold:
· on the one hand, it serves to guide the "mapping and fitting" process to better organize the positioning of the logic within the FPGA in an attempt to reach in imposed constraints
· on the other hand, the system, if it is ever unable to meet the constraints, will report this lack with special messages.
It should also be emphasized that the use of a constraint file cannot improve so much the performance of a system. More or less it will be able to improve by a maximum factor of among 10% (and always assuming that the constraints imposed are reasonable). To achieve significantly higher performance, it is necessary to start from the project itself by using, for example, pipelined systems or parallelizing the operations to be performed, or using at the best the available resources.

[image:]

image1.jpeg
TN OB NG AU OE AN LGN ORI s RO ome g

1 ’\‘ .
L3 r
- [

i,

Iy

n
VAV U8 S
b A
Sal 3
£ XATLUVN Sy
S Luv s,

Viva gsn-
SN ANOD "

2100%3 5 Aoy
23003 “Ms.
2l0dxa " apo|

image2.png
UNIVERSITY
PROGRAM

DE1-SoC FPGA Board

Save Setting

Load Setting

Generate

Exit

System Configuration

Project Name

Tut2

@ CLOCK O 7-Segment x 6
@LEDxX10 8 Switchx 10

@ Buttonx 4 OIR TXRX
OVGA O Video-In

O Audio JADC

O SDRAM. 32MB 0oPs2

OHPS

GPIO-0 Header
None
Prefix Name:

GPIO-1 Header
None
Prefix Name:

image3.png
ttings - Tut1B

Category:

General
Files
Libraries
IP Settings

IP Catalog Search Locations

Design Templates

Operating Settings and Conditions

Voltage
Temperature
Compilation Process Settings
Incremental Compilation
EDA Tool Settings
Design Entry/Synthesis
Simulation
Board-Level
Compiler Settings
VHDL Input
Verilog HDL Input
Default Parameters
Timing Analyzer
Assembler
Design Assistant
Signal Tap Logic Analyzer
Logic Analyzer Interface
Power Analyzer Settings
SSN Analyzer

Specify options for generating output files for use with other EDA tools.

Tool name: | QuestaSim

Run gate-level simulation automatically after compilation
EDA Netlist Writer settings

Format for output netlist: | Verilog HDL
Output directory: simulation/questa

Map illegal HDL characters

Options for Power Estimation

Generate Value Change Dump (VCD)file script Script Settings...

Design instance name:

More EDA Netlist Writer Settings...

NativeLink settings
© None
Compile test bench:
Use script to set up simulation:

Script to compile test bench:

More NativeLink Settings..

Time scale: | 1ps

Enable glitch filtering

W Buy Software

OK

Cancel

X

Device/Board...

Test Benches...

Apply

Reset

Help

image4.png

image5.png
©RONO VA WN

// This code is generated by Terasic System Builder

Emodule Tutorial2(

/11111111111 o<k /771111117

input CLOCK2_50,
input CLOCK3_50,
input CLOCK4_50,
input CLOCK_50,
/11111171711 KEY /11111117

input [3:0] KEY,
/11111171717 LED [1/1]11117

output [9:0] LEDR,
111111177777 sw /171111117

input [9:0] sw

// REG/WIRE declarations

reg [9:0] mem;
wire [9:0] sum;
wire clk,res;

// Structural coding

assign LEDR = mem;

assign clk
assign res

KEY[0];
KEY [1];

Nbit_adder adderl(.inputl(sw),.input2(mem),.answer(sum));

always @(negedge clk or negedge res)
begin
if (!'res) mem <= 10'b0000000000;
else mem <=sum;
end

endmodule

image6.png

image7.png
CLOCK2_50 [>
CLOCK3_50 [>
CLOCK4_50 [>

SWI9.0][>

fibonacci_doublerrandgen

KEY[3.0] 1 clk| datal_out[127.0]
0 rstn data2_out[127..0]

CLOCK_50 >

datal_r[127.0]

128'h0]

Nbit_adder:RC_adder

input1[127..0] answer[127..0]

dataslow_r{127..0]

input2[127..0]

Tho ciN - AddO

A[12 0UT[127.0]
B[12

128'h0]

Comparatoraccumulatore

datal[127.0] accum(9..0]

data2[127.0]

rst.n

data2_r[127.0]

128'h0]

datafast_r{127.0]

128'h0]

[LEDR[9.0]

image8.png
© Create Timing Netlist

Input netlist Delay model

@ Slow-corner

) Postfit Specify Speed Grade
Speed grade:
Post-map Fast-corner
Zero IC delays
Tclcommand: create_timing_netlist -model slow

[ok [cancet | [rete |

image9.png
Clock name: [fast_clock
Period: 20.000 ns

Waveform edges

Rising: ns
Falling: ns
0.00
Targets: [get_ports {CLOCK_50}]

Don't overwrite existing clocks on target nodes

SDC command: create_clock -name fast_clock -period 20.000 [get_ports {CLOCK_50}]

10.00

Run

Cancel

20.0¢

Help

image10.png
© Name Finder X

Collection: |get ports ~ | Filter: *

Options
[Case-insensitive
[Hierarchical

Compatibility mode

["] No duplicates

Matches

E

|28 matches found |1 selected name

CLOCK2_50
CLOCK3_50
CLOCK4_50
CLOCK 50
KEY[0]
KEY[1]
KEY[2]
KEY[3]
LEDR[0]
LEDR[1]
LEDR[2]
LEDR[3]
LEDR[4]
LEDR[5]
LEDR[6]
LEDR[7]
LEDR[8]
LEDR[9]
Sw[o]
SW[1]
sw[2]
SW[3]
sw[4]
SW[5]
sw[e]
Sw(7]
Sw[s]
Sw[9]

CLOCK 50

SDC command: [get_ports {CLOCK_50}] |

[ox_|[_cancet] [tetp |

image11.png
Clock name: slow_clock

Period: 100.000 ns
Waveform edges 1
Rising: ns
Falling: ns
0.00 50.00 100.¢
Targets: [get_ports {KEY[1]}]

Don't overwrite existing clocks on target nodes

SDC command: |create_clock -name slow_clock -period 100.000 [get_ports {KEY[1]}]

Run || Cancel | Help

image12.png
Fmax Restricted Fmax ClockName Note
1 52.2 MHz 52.2 MHz fast_clock
2 329.49 MHz 329.49 MHz slow_clock

image13.png
Clocks
From clock:
To clock:

Targets
From: |[get_keepers {data1_r[0] data2_r[0]}]
Through:

To: [get_keepers {datafast_r{127] dataslow_r[127]}]

Analysistype Paths

) Setup Report number of paths: 10
Hold Maximum number of paths per endpoint:
Recovery Maximum slack limit: ns
Removal Pairs only
Output
Detail level: Full path ~¥ | SetDefault

Show routing
V| Report panel name: Report Timing
V| Enable multi corner reports
File name:
File options

(o]
® Overwrite () Append BSn

Console

Tcl command: 1{127]}] -setup -npaths 10 -detail full_path -panel_name {Report Timing} -multi_corner

- Report Timing| | Close | Help

image14.png
Command Info ‘ Summary of Paths

slack From Node To Node Launch Clock Latch Clock | Relationship Clock Skew Data Delay
1 0905 data2_r[0] dataslow_r[127] fast_clock fast_clock 20.000 -0.422 18.503
2 1790 data1_r[0] dataslow_r[127] fast_clock fast_clock 20.000 -0.094 17.946
3 15.908 data1_r[0] datafast_r[127] fast_clock fast_clock 20.000 -0.415 3.507
4 data2_r[0] datafast_r[127] fast_clock fast_clock 20.000 -0.083 2.856

Path #4: Setup slackis 16.891

| [Path #4: Setup slack is 16.891

Path Summary ~ Statistics ~ DataPath | Waveform

1.862 ns

Extra Fitter Information

Launsh Clock Launch

Setup Relationship

Latch Closk

Data érrival

Clack Delay

2% ne

Data Delay

Slack

Data Required

Clack Delay

Clack Pessinisn

Clack Uncertainty

Tine () 0.0 125 25 375 5.0 625

7.5

875

Path Summary Statistics Data Path Waveform Extra Fitter Information
Data Arrival Path
Total Incr RF Type Fanout Location Element
1 0.000 0.000 launch edge time
2 v 379 3.791 clock path
1 0.000 | 0.000 source latency
SR 2 0000 0.000 1 PIN_AF14 CLOCK 50
L 3 0000 0000 RR IC 1 I0IBUF_X32_YO N1 CLOCK_50~input]i
4 0661 0661 RR CELL 1 I0IBUF_X32_YO N1 CLOCK_50~input|o
5 1.008 0347 RR IC 1 CLKCTRL_G6 CLOCK_50~inputCLKENAO[inclk
6 1281 0273 RR CELL 521 CLKCTRL G6 CLOCK_50~inputCLKENAO|outclk
7 3341 | 2060 RR IC 1 FF_X43_Y7_N32 data2_r[0]|clk
8 3791 0450 RR CELL 1 FF_X43_Y7_N32 data2_r[0]
o vn 3~ 6647 2.856 data path
1 3791 0.000 uTco 1 FF_X43_Y7_N32 data2_r[0]
2 3791 | 0000 FF CELL 4 FF_X43_Y7_N32 data2_r{0]|q
3 3995 0204 FF IC 2 LABCELL X43 Y7 N30 AddO~510|datab
RIS 4 5089 1094 FF IC 3 LABCELL_X43_Y7 N57 AddO~512
076 s 15 5277 0188 FF IC 3 LABCELL X43 Y6 N57 Addo~513
6 5465 | 0188 FF IC 3 LABCELL X43_Y5 N57 Addo~514
Mz 5653 0188 FF IC 3 LABCELL_X43_Y4_N57 Add0~515
10.0 e 12 5.7 15.0 1.2 7. 1.7 2.0 s 25 8 5841 | 0188 FF IC 3 LABCELL X43 Y3 N57 Addo~516
9 6029 0188 FF IC 2 LABCELL X43 Y2 N57 AddO~517
10 6029 | 0000 FF IC 2 LABCELL X43 Y1 N30 Addo~93|cin
11 6132 0103 FF CELL 1 LABCELL X43 Y1 N30 Addo~93|cout
12 6132 | 0000 FF IC 2 LABCELL X43 Y1 N33 Addo~117|cin
13 6132 0000 FF CELL 1 LABCELL X43 Y1 N33 AddO~117|cout
14 6132 | 0000 FF IC 2 LABCELL X43 Y1 N36 Addo~81|cin
15 6174 0042 FF CELL 1 LABCELL X43 Y1 N36 Addo~81|cout
16 6174 | 0000 FF IC 2 LABCELL X43 Y1 N39 Addo~121|cin
17 6174 0000 FF CELL 1 LABCELL_X43_Y1_N39 Add0~121|cout

image15.png
m |

ﬁ]&mumumu&w\
I
I =

[gnsniaiian| e

Hinind)

n

image16.png
s ey Lol S

uumummﬂﬁ BT t LEEEELE

=

s

T~

//

EARAIEESAA A AETEATRAN

A A

I
I -

image17.png
HwoN =

-1.355ns

Laun

Latet

Data

Stact

Data

Slow 1100mV 85C Model

Relationship = Clock Skew

Commandinfo | Summary of Paths
Slack From Node To Node Launch Clock Latch Clock
-9.095 data2_r[0] dataslow_r[127] fast_clock fast_clock 10.000
-8.210 data1_r[0] dataslow_r[127] fast_clock fast_clock 10.000
5.908 data1_r[0] datafast_r[127] fast_clock fast_clock 10.000
6.891 data2_r{0] datafast_r[127] fast_clock fast clock 10.000
Path #1: Setup slack is -9.095 (VIOLATED)
Path Summary Statistics Data Path Waveform Extra Fitter Information
Clock Launeh
Clock Laten
rrival
-9.095 ns
equired
k> 0.0 125 25 575 5.0 6.2 75 6.7 0.0 w2 25 1578 5.0 15,25 7.5 1.7 2.0 s

Tine

-0.422
-0.094
-0.415
-0.083

Data Delay

18.503
17.946

3.507
2.856

Path #1: Setup slack is -9.095 (VIOLATED)

Path Summary | Statistics
Data Arrival Path
Total Incr
1 0.000 0.000
2 v 3791 3.791
1 0.000 0.000
2 0.000 0.000
3 0.000 0.000
4 0661 0.661
5 1.008 0347
6 1281 0273
7 3341 2.060
8 3791 0450
3 v 22294 18.503
1 3791 0.000
2 3.791 | 0.000
3 4986 1195
4 5.060 | 0074
5 5244 0184
6 5320 | 0076
7 5505 0.185
8 5589 0.084
9 5812 0223
10 6070 0258
11 6261 0191
12 6342 0081
13 6630 0288
14 6716 0.086
15 6909 0.193
16 6.993 | 0084
17 7221 0228

Data Required Path

b o N O S WN N o

Total

10.000

¥ 13.369
10.000
10.000
10.000
10.661
10.989
11.241
12.919
13.329

Incr
10.000
3.369

0.000
0.000
0.000
0.661
0.328
0.252
1.678
0.410

Data Path
RF Type
RR IC
RR CELL
RR IC
RR CELL
RR IC
RR CELL
uTco
FF CELL
FFIC
FF CELL
FFIC
FF CELL
FFIC
FR CELL
RR IC
RF CELL
FFIC
FR CELL
RR IC
RF CELL
FFIC
FR CELL
RR IC
RF Type
RR IC
RR CELL
RR IC
RR CELL
RR IC
RR CELL

Waveform Extra Fitter Information
Fanout Location Element
launch edge time
clock path
source latency
1 PIN_AF14 CLOCK 50
1 I0IBUF_X32_YO N1 CLOCK_50~input]i
1 I0IBUF_X32_YO N1 CLOCK_50~input|o
1 CLKCTRL_G6 CLOCK_50~inputCLKENAO[inclk
521 CLKCTRL G6 CLOCK_50~inputCLKENAO|outclk
1 FF_X43_Y7_N32 data2_r[0]|clk
1 FF_X43_Y7_N32 data2_r[0]
data path
1 FF_X43_Y7_N32 data2_r[0]
4 FF_X43_Y7_N32 data2_r{0]|q
1 LABCELL X46 Y5 N15 RC_adder|generate N_bit Adder[2]f|c_out|dataf
3 LABCELL X46_Y5 N15 RC_adder|generate N_bit Adder[2].flc_out|combout
1 LABCELL X46 Y5 N24 RC_adder|generate N_bit Adder[5].flHA2|c|dataf
2 LABCELL X46_Y5 N24 RC_adder|generate N_bit Adder[5].flHA2|c|combout
1 LABCELL X46 Y5 N54 RC adder|generate N_bit Adder{7]f|c_out|dataf
3 LABCELL X46_Y5 N54 RC_adder|generate N_bit Adder[7].flc_out|combout
1 LABCELL X46 Y5 N18 RC_adder|generate N_bit Adder[10].f|HA2|c|datae
2 LABCELL X46_Y5 N18 RC_adder|generate N_bit Adder[10].f|HA2|c|combout
1 LABCELL X46_Y5_NO RC_adder|generate N_bit Adder[12]f|c_out|dataf
3 LABCELL X46_Y5_NO RC_adder|generate_N_bit_Adder[12].flc_out|combout
1 MLABCELL X47 Y5 N48 RC adder|generate N_bit Adder[15].f|HA2|c|dataf
2 MLABCELL X47 Y5 N48 RC adder|generate N_bit Adder[15].f|HA2|c|combout
1 MLABCELL X47 Y5 N42 RC adder|generate N_bit Adder[17]f|c_out|dataf
3 MLABCELL X47 Y5 N42 RC_adder|generate N_bit Adder[17].flc_out|combout
1 MLABCELL X47 Y5 N6 RC adder|generate N_bit Adder[20].f|HA2|c|dataf
Fanout Location Element
latch edge time
clock path
source latency
1 PIN_AF14 CLOCK 50
1 I0IBUF_X32_YO N1 CLOCK_50~input]i
1 I0IBUF_X32_YO N1 CLOCK_50~input|o
1 CLKCTRL_G6 CLOCK_50~inputCLKENAO[inclk
521 CLKCTRL G6 CLOCK_50~inputCLKENAO|outclk

1

FF_X50_Y3_N37
FF_X50_Y3 N37

dataslow_r[127]|clk
dataslow_r[127]

image18.png
[Re

Overview

The Aggregate Results section summarizes the number of issues flagged. You can sort the table by clicking the column header.

The Top Recommendations section lists recommendations for the most serious issues identified by the analysis. The number of stars indicates the relative importance of each recomr
listed path.

Report Timing Closure Recommendations supports only setup analysis.

Number of paths analyzed: 20.

IAggregate Results

Issue Category Paths Affected
1Unbalanced Combinational LogicHDL 20
2Long Combinational Path HDL 20

[Top Recommendations
*hkkk

Move 6 combinational nodes before the source and 3 after the destination for the path from data1_r[0] to dataslow_r{30]

e lIssue: Unbalanced Combinational Logic
©From: data1_r[0]
o To: dataslow_r{30]
o Timing Analysis: report timing
©Nodes to move after dest:
*3
©Nodes to move before source:
*6
KhKKK

Reduce the levels of combinational logic for the path from data1_r[0] to dataslow_r{30]

e Issue: Long Combinational Path
©From: data1_r[0]
o To: dataslow_r{30]
o Timing Analysis: report timing
o Extra levels of combinational logic:
®13
KhKKK

Move 6 combinational nodes before the source and 3 after the destination for the path from data2_r[0] to dataslow_r{30]

e lIssue: Unbalanced Combinational Logic
© From: data2_r[0]
o To: dataslow_r{30]
ing Analysis: report timing
©Nodes to move after dest:
*3
©Nodes to move before source:
*6
KhKKK

Reduce the levels of combinational logic for the path from data2_r[0] to dataslow_r{30]

e Issue: Long Combinational Path
© From: data2_r[0]

o To: dataslow_r{30]

ming Analysis: report timing

o Extra levels of combinational logic:

