

Electronic Systems Design

Prof. Marsi Stefano - University of Trieste
Academic Year 2025/26

Tutorial 3
[image:]

Design of a complete hierarchical system.

Hardware used: Terasic DE1-SoC Board
Software used: Quartus 22.1, System Builder

Tutorial 3
Realization of a simple DE1-SoC "frequency meter"
Description: We want to create a device that, given a digital input signal, is able, by comparing it with a reference signal, to establish the duration of its period and its "duty cycle", displaying this information on the seven-segment display available on DE1-SoC.
Purpose: To develop a complete hierarchical system composed of several synchronous blocks.
To Familiarize with the peripherals available on the board and their interfaces.
To analyze some tools available to force and monitor signals inside the FPGA.
Expected learning:
· Access to GPIO interface signals.
· Development of a hierarchical system using different input tools.
· Deep dive into VerilogHDL code
· To familiarize with the "In System Source & Probe" tool to check and observe internal signals.
Procedure

1. Introductory phase

The company that produces the development board (Terasic) has developed a tool (System Builder), useful for easily starting a project. This software, based on the required periphals, creates the skeleton of a project to be developed later on Quartus, accompanied by constraint files both for the pinout and for the definition of clock constraints.
· run System Builder
· check on the peripherals you intend to use
in particular (LED / SWITCHES / BUTTONS / 7-Segment x6 / CLOCK)
· Decide to use GPIO1 in Default mode and assign it a reference name
[image:]
>> Generate
· Save the project in an appropriate directory
2. Definition of the system architecture

· Open the newly generated project with Quartus

The project already has a VerilogHDL file that represents the "TOP Level Entity" of the final project and a .SDC (Synopsys Design Constraints) which contains the various design constraints. These Files will be used later.

The entire system could be described with the following specifications:

· The signal to be analyzed is processed to establish the instant in which the rising edge and the falling edge occur, generating pulses at these instants
· These pulses can be used to reset an appropriate counter to establish how many clock pulses have elapsed between the various edges.
· This count, to be easily visualized, should be performed in a decimal base
· The numerical value must be thus converted (digit by digit) into the signal with which to illuminate the different LEDs to display with the corresponding character.
· Furthermore, it is correct that the display changes its status ONLY when the count is completed and that it does not continuously show the evolution of the counter, therefore the pulses that determine the arrival of a front will also be used to "freeze" the value to be shown on the display till the arrival of the next front.

The system we want to create should therefore contain the following modules:

· A system designed to recognize the rising and falling edges of a signal
· A 6-digit BCD counter (to take advantage of the entire display) equipped with a synchronous reset that resets the count at each pulse on it.
· 6 modules counting in binary between 0 to 9 (BCD)
· Six BCD_to_7SEG converters to drive the 6 displays capable of storing the data and altering it only in the presence of an appropriate control signal
· In addition, to make the first tests in the absence of an external signal, a signal generator will be created capable of creating a periodic signal where both the frequency and the duty-cycle can be controlled.

The files for the living modules are available on the course website[]:

Then import the following files into the project:

> Project > Add/Remove Files in Project ...

And import the files respectively as shown in the figure.
[image:]

3. Functional simulation of individual blocks

Configure the simulator you intend to use
> Assignament > Settings (Ctl-Shift-E)
[image:]
And under Simulation define simulator, parameters, options mode ...

· By setting (temporarily) the various imported modules as "Top Level Entity" (Ctl-Shift-V)
· Start Analysis & Synthesis (Ctrl-K)
· Tools > Run Rimulation Tool > RTL Simulation

 We then move on to simulate the various modules of interest by providing appropriate input waveforms and analyzing the results provided by them, for example as follows:

1. Edge Detector
[image:]
Note in particular:
· The presence of output pulses when input presents an edge
· But delayed until the first rising edge of the clock
· Duration of exactly one clock period
2. Modular Counter Sync
[image:]
Note in particular:
· The use of reset and enable signals
· The generation of a pulse on the Carry signal when the maximum value has been reached, so that such signal can be used to progress (enable) the count to the next digit.
· The count is in BCD format (from 0 to 9)
3. Counter_6digit_sync
[image:]
[image:]
Note in particular
· How an Enable signal presented at the input causes the output to increase only at the next step
· The importance that all the Enable signals on the various digits occur even at different frequencies but all at the same time (i.e. when all the previous DIGITS are set to 9) Hence the importance of NOT synchronizing the generation of this signal on the clock.
4. SEG7_LUT
[image:]
Note in particular
· The congruity of the figure to be displayed with the LEDs that light up
ex. N=2 0100100 = 2 LEDs (HEXn[2] and HEXn[5]) OFF (1) and the others 5 ON (0)
ex. N=7 1111000 = 3 LEDs ON (0) HEXn[0..2] and the others 4 OFF (1)
· The storage of the output result only in the presence of Enable=1.
[image:]
5. Clock_divider
[image:]
Note in particular
· How through the two input signals it is possible to modify the output signal both in frequency and as a duty-cycle.

4. Blocks Connections

Eventually all the defined blocks are connected together within a final system respecting the planned structure of the circuit. This can be done in two different ways: through a schematic or through a VerilogHDL description. For purely didactic reasons, we will see both solutions hierarchically.
1. Using schematic enter

A system should be created that includes the 6-digit counter developed above with as many BCDto7SEG converters suitable for correctly showing the numbers on the display.
Before proceeding, you need to create a "symbol" for each of the elements to be included in the schematic (in our case for Counter6digit_sync.v and SEG7_LUT.v)
· Inside the "project Navigator" window
· Select the "Files" display mode
· Right-click on the selected file
· Create Symbol File for current File

Or
> File > Create/Update > Create Symbol File for current File

Next, once you have created the necessary symbols
> >New File

[image:]
> Block Diagram /Schematic File
<OK>

With the Graphic System available, draw a scheme similar to the following:
[image:]
· Including the blocks generated in the previous step
· By connecting them appropriately (pay attention to the difference between bit connections (thin) and bus connection (BOLD))
· Adding I/O pins
· Providing them with a correct and appropriately sized name especially in the case of BUSes
Save the schematic with an appropriate name.
Although the schematic thus created is perfectly integrated into Quartus, if you want to simulate or to integrate it into higher level VerilogHDL files, you are forced to generate an alternative version in VerilogHDL.
After highlighting the file in the "Project Navigator" window
> File > Create / Update > Create HDL Files from Current File

Choosing an appropriate name and the correct language (Verilog HDL) in the window that follows
[image:]
<OK>
To simulate this system, however, it is now necessary
1. Include the newly generated VerilogHDL file in your project
2. Remove the .bdf (schematic) file from the project – to avoid duplication
3. Set this element as "Top Level Entity"
4. Analyze & Synthesis
5. Launch RTL simulation
6. Within Questa/Modelsim provide the desired inputs
7. Analyze the results
[image:]
[image:]
[image:] From them we can deduce:
· That the count proceeds correctly (999 1000)
· That the display/update of the digits takes place only when the activation signal (freeze) is HIGH and if it is maintained to High Level the output are updated every cycle.
· That the display on the LEDs is correct (001044 0x40,0x40,0x79,0x40,0x19,0x19) – note that it is a 7 bit sexagesimal representation!
· That the displays are updated with one clock cycle delay with respect to the input data

2. Using Structural Description in VerilogHDL

In the previous step, the use of the "schematic editor" was basically used to generate a VerilogHDL file that represent the connections among various blocks (have a look to the generated Verilog File).
Sometimes however it could be much easier to generate a structural file directly in Verilog HDL.
In generating the final file, complete with all the blocks, we will follow this way:
· In the Project Navigator Window, set the view mode to Files
· Define the file that has the name of the initial project (i.e. the one generated by "System Builder") as "Top Level Entity"
· Now switch to the Hierarchy display mode
· Double-clicking on the "Top Entity" opens a Verilog file (generated by "System Builder") which represents a skeleton for the final project (with interface signals and definition of the "TOP module".
· We then move on to define the internal signals and the structural description of the complete system
· To do this it can be useful for the various blocks that make up the project to generate an example of instantiation (In File mode – highlight the file of interest – File > Create/Update > Create Verilog Instanstation ...
· A file named <filename>_inst.v appears in the project directory that provides an example of how to integrate the module.
· Repeat the procedure for all the blocks of interest
· Include these "instances" in the final file by appropriately modifying the input and output signals and creating the appropriate connections.
· Make the final file which as far as the structural part is concerned could be more or less the following:
[image:]
Note in particular
· The definition of signals
· The "clock divider" module is driven by 2 constant values: 123 and 73
· The instantiation of the three modules
· The connection between the modules through signals
· The assign (on line 81) that allows (based on the input on SW[0]) to select which signal to use to update/view the count
· If SW[0] ==0 the positive edge of the reference signal will be used (and since this is also used as a reset of the count, the number of a50MH pulses contained in an entire period will be indicated.
· If SW[0] ==1 the negative edge of the reference signal will be used (and since the positive edge is also used as a reset of the count, the number of a50MH pulses contained between the two edges will be indicated (useful for estimating the duty_cycle)

Eventually the RTL view can be useful to examine if the block are correctly connected:
[image:]
5. Final Simulation

As in the previous steps, it is suggested to simulate the entire circuit to verify its fundamental aspects.
[image:]

6. Download on board

At this point, you can proceed to configure the DE1-SoC board and check its operation. In particular, it will be noted that based on the position assumed by SW[0] on the display, two values will be shown that correspond to the number of 50MHz pulses contained between the two sampling moments (whether they are respectively the rising edges of the low frequency clock or the rising and falling edges)
[image:]

7. Controllability and observability

So far, the values for the signal to be measured have been made fixed and constant through the two assignments:
	.time_tot(8'd123) ,	input [7:0] time_tot_sig
	.time_high(8'd73) ,	input [7:0] time_high_sig

And the only way to modify them is to modify the verilog code and recompile the entire project. Alternatively, external signals (SW, KEY, GPIO) could be used to control them, but first of all these signals are limited, or alternatively they would require some external driving systems.
However, it is possible to interact with the board signals directly within the Quartus system, forcing certain signals to the desired value or even reading the values assumed by certain signals.
The tool that enables this interaction is the "In System Source & Probe Editor" (ISSP)”. To use it, however, additional hardware must be added inside the FPGA fabric to control and observe these signals.
Such hardware is available among the modules developed by "third parties"
> Tools > IP Catalog

Within the window that is added to the Quartus layout windows, search for "Intel FPGA In-System Source & Probes" (you can help with the search line
[image:]
(Double click)

[image:]
In the window that appears, provide a mnemonic name for the entity you are going to create (in this case ISSP)
<Enter>

Now assign the number of signals you want to use as a "Source" (16 or 8+8 in our case) and the Number of signals to be used as a "Probe" (at the moment 1 is enough, for example to monitor the status of the switch)
[image:]
<Generate HDL>
<Generate>
<Close>
<Close>
<Finish>
Take carefully note of what the system suggests:
[image:]
<Close>

Take carefully note of what the system suggests:

[image:]
<OK>
So as suggested: "manually" add the newly generated block among the elements making up the complete system:
> Project > Add/Remove Files in Project

Add the newly generated ISSP.qip file to the System Files.
<OK>
In addition, in the directory in which all the various blocks and elements related to this block have been generated, there is also a file called ISSP_inst.v that can be used as an example for the instantiation of the newly formed block in our project:
	ISSP u0 (
		.source (<connected-to-source>), // sources.source
		.probe (<connected-to-probe>) // probes.probe
);

Therefore, it is suggested to follow this example to integrate the block into our project, making sure that the "source" signals provided by ISSP connect to the signals driving the "clock divider" while the Probe signals connect to SW[0].
For example, add the instantiation of the newly generated ISSP module to the Verilog code for the "Top Level Entity" block
ISSP u0 (
		.source ({t_tot,t_high}), // sources.source
		.probe (SW[0]) // probes.probe
);
After having opportunely
- defined the two new signals t_tot and t_high 8-bit !
- connected them to the "clock divider" device

 [image:]
Recompile the complete system and download it to the card. It is also suggested to analyze the various "reports" and the occupation of resources before and after the inclusion of the ISSP block.
At this point, to interact with the signals inside the FPGA, you need to use a specific tool: "In System Source & Probe Editor".
> Tools > In System Source & Probe Editor

In the window that opens, activate the data acquisition:
> Processing > Continuosly Read Probe Data (F6)
[image:]
Change the data as desired and check the result on the card:
Note in particular: - that the P0 bit is pure acquisition and displays the status of the SW[0]- that the S[15:8] bits define the period of the signal to be measured.- that the S[7:0] bits define the period for which the signal to be measured is high (and that the last one must be obviously lower than the previous one for correct operation)

8. Real Signal

As a last step, try now to interface the circuit with a real signal. A low-frequency signal can be generated through an external device. And connect this through one of the I/O ports (GPIO1GPIO[0]).
Modify the system so that the edge detector block uses this signal as input:
[image:]
The rest of the circuit can remain unchanged, although some blocks such as "ISSP" or "clock divider" are obviously redundant and therefore can be eliminated from both the project and the "top Level Entity" if desired.
The circuit shown in the figure based on the NE555 integrated chip can be used for generating the digital periodic signal.
[image: NE555 Pulse Frequency Duty Cycle Adjustable Module Square Wave Signal Generator In Pakistan – Digilog.pk]
Adjustments: It has some adjustments:
· The Jumper allows you to define the frequency range (it is recommended to put it in the maximum frequency position (10 kH – 200 kH) so that the number of 50MH pulses contained are in the order of hundreds/thousands (but other solutions can also be analyzed)
· A Trigger to change the frequency. Note: this trigger scales proportionally both the high and low parts of the signal in order to keep the duty-cycle constant, but in doing so its adjustment changes both the duration of the overall period of the signal and the duration of the signal at high level.
· An additional trigger that modifies the duration for which the output signal is high, effectively altering both the duty-cycle and the frequency of the signal itself
Connections: The external clock generator needs a power supply and an interface signal.
· The power supply can be taken directly from the DE1-SoC, at pins [11] for Vcc and [12] or [30] for GNDs from both JP0 and JP1 (as shown in the image)
[image:]
· [bookmark: _GoBack]Instead, the signal to be measured can be connected, as described in the Verilog code previously developed, from pin [1] (i.e. GPIO1GPIO[0]).

If all connections have been made correctly, the display should now show a number representing the number of 50MHz pulses contained
· In a complete period of the signal when SW[0] is set to 0.
· In the high phase of the signal when SW[0] is set to 1.

[image:]

image1.jpeg
TN OB NG AU OE AN LGN ORI s RO ome g

1 ’\‘ .
L3 r
- [

i,

Iy

n
VAV U8 S
b A
Sal 3
£ XATLUVN Sy
S Luv s,

Viva gsn-
SN ANOD "

2100%3 5 Aoy
23003 “Ms.
2l0dxa " apo|

image2.png
V1.1.1
ety [asic
UNIVERSITY

PROGRAM

DE1-SoC FPGA Board

Save Setting Generate

Load Setting Exit

System Configuration

Project Name
Tut3

@ CLOCK

@LEDX10

@ Button x 4

OVGA

O Audio

D SDRAM. 32MB

OHPS

GPIO-0 Header
None

Prefix Name

GPIO-1 Header
GPIO Default
Prefix Name: GPIO1

@ 7-Segment x 6
@ Switchx 10

O IR TX/RX

O Video-In
OADC

OPs2

image3.png
Settings - Tut3 = [u] X

Category: |Device/Board...
[Genera |
E:)ersaries Select the design files you want to include in the project. Click Add All to add all design files in the project directory to the project.
~ 1P Settings) File name: 1 add
IP Catalog Search Locations =
Design Templates « % | [add Al |
~ Operating Settings and Conditions
Voltage File Name Type Library Design Entry/Synthesis Tool HDL Version —
Temperature SEG7_LUT.v Verilog HDL File <None> Default - |
~ Compilation Process Settings Modular_counter_sync.v Verilog HDL File <None> Default Up
Incremental Compilation edge_detector.v Verilog HDL File <None> Default
~ EDA Tool Settings Counter6digit_sync.v Verilog HDL File <None> Default Down
Design Entry/Synthesis clock_divider.v Verilog HDL File <None> Default -
Simulation Tut3.5DC Synopsys Design Constraints File <None> Properties
Board-Level
~ Compiler Settings
VHDL Input

Verilog HDL Input
Default Parameters

Timing Analyzer

Assembler

Design Assistant

Signal Tap Logic Analyzer

Logic Analyzer Interface

Power Analyzer Settings

SSN Analyzer

W Buy Software oK Cancel || Apply | Help

image4.png
Y

£ Settings - Tut3 = (m] X
Category: Device/Board..
General (simutation __|
Files Specify options for generating output files for use with other EDA tools.
Libraries
IP Settings.

IP Catalog Search Locations
Design Templates
Operating Settings and Conditions
Voltage
Temperature
Compilation Process Settings
Incremental Compilation
EDA Tool Settings
Design Entry/Synthesis
Simulation
Board-Level
Compiler Settings
VHDL Input
Verilog HDL Input
Default Parameters
Timing Analyzer
Assembler
Design Assistant
Signal Tap Logic Analyzer
Logic Analyzer Interface
Power Analyzer Settings
SSN Analyzer

Tool name: | QuestaSim ~

Run gate-level simulation automatically after compilation

EDA Netlist Writer settings
Format for output netlist: | Verilog HDL v Time scale: | 1ps v
Output directory: simulation/questa
Map illegal HDL characters Enable glitch filtering

Options for Power Estimation

Generate Value Change Dump (VCD)file script Script Settings...

Design instance name:

More EDA Netlist Writer Settings...
NativeLink settings
© None
Compile test bench: Test Benches...

Use script to set up simulation:

Script to compile test bench:

More NativeLink Settings... Reset

W Buy Software oK Cancel || Apply | Help

image5.png

image6.png
10

1 S) 13 & 1516

12 *5 e 7 E 1

image7.png

image8.png
>~

nononono

ReXe RNl al sl T el A 2S5 ¢

image9.png
10

Id

b

14

18]

16

J 0011001

18

16

w,\\ \
e |8
| WEYA
g
I
] |

!
(omimoo
|

1

()

image10.png
HEXO[0]

HEXO[1]

HEXO0[2]

HEXO[3]

HEXO[4]

HEXO[5]

$333333

HEXO0[6]

/AYOTS RVA),

Cyclone,@,V
SoC

image11.png
[evkge 9 ¢
v cEle e

image12.png
New Quartus Prime Project

~ Design Files
AHDL File
Block Diagram/Schematic File
EDIF File
Qsys System File
State Machine File
SystemVerilog HDL File
Tcl ScriptFile
Verilog HDL File
VHDL File

~ Memory Files
Hexadecimal (Intel-Format) File
Memory Initialization File

~ Verification/Debugging Files
In-System Sources and Probes File
Logic Analyzer Interface File
Signal Tap Logic Analyzer File
University Program VWF

~ Other Files
AHDL Include File
Block Symbol File
Chain Description File
Synopsys Design Constraints File
Text File

oK Cancel || Help

image13.png
EReQ¥AD -0 NNNODoN G A <A

freeze
clk

res.

(=K -]

SEG7_LUT

iDIG[3..0]

clk

iCountersdigit_sync”

enable

0SEG[6..0] f———————BUFEIT S SECoie 0]

inst2
SEG7_LUT

iDIG[3..0]

iV et
hiER ck DIGO3.0]
Hek res DIG1[3.0]

clk

®-——— enable

0SEG[6.0]

inst3.

SEGT LUT

DIG2[3.0]

iDIG[3..0]

DIG3[3.0]

clk

: DIGA[3. 0] —

DIG5[3.0]

inst

enable

0SEG6..0] 08 HFTS SECor6.0]

inst4
SEG7_LUT

iDIG[3..0]

+inst.

clk

. enable

0SEG6..0] {08 SEc3re 0]

SEG7_LUT

iDIG[3..0]

clk

. enable

0SEG[B.0] %I SEGal6.0]

insth,
{SEG7_LUT

iDIG[3..0]

clk

enable

O0SEG(6..0] =R SEGh16.0]

Linst7.

image14.png
Create HDL Design File for Current File X

/Altera/Tutorials Quartus22/Tut3/Counter_and_Visual.y |

VHDL

Verilog HDL

Add VHDL Statements...

| ok || cancel || Hep |

image15.png
eDefalt —07 —0 —

>~

SiEiEEEE

noooooonoonnn

NNNRANAAAA A eSS S |

image16.png
a
a
a
&
-
=
-
&
&

image17.png
) ST EEEUEESSSSS

v rooocoCcoCoEEE

image18.png
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
Sc

// REG/WIRE declarations

wire edgeH_pulse,edgelL_pulse;
wire Towfreq_clk;
wire edge_select;

1/
// Structural coding

//=

clock_divider clock_divider_inst
=[¢
.c1k_in(CLOCK_50) , // input
.time_tot(8'd123) , // input
.time_high(8'd73) , // input

bH

edge_detector edge_detector_inst
=[¢

bH

=[¢
.res(edgeH_pulse) , // input

// output [6:0]
// output [6:0]
output [6:0]
.SEG3(HEX3) // output [6:0]
.SEG4 (HEX4) // output [6:0]
.SEG5 (HEX5) // output [6:0]

. SEGO (HEX0)
.SEGL(HEX1)
.SEG2 (HEX2)

~
~N

bH

assign edge_select

(sw[0] == 0)

.cTk_out(lowfreq_c1k) // output

clk_in_sig
[7:0] time_tot_sig
[7:0] time_high_sig

.c1k(CLOCK_50) , // input clk_sig

.signal(lowfreq_clk) , // input signal_sig
.edgeH (edgeH_pulse) , // output edgeH_sig
.edgeL (edgeL_pulse) // output

edgel_sig

Counter_and_visual Counter_and_visual_inst

.c1k(CLOCK_50) , // input clk_sig

res_sig

.freeze(edge_select) , // input freeze_sig

SEGO_sig
SEGl_sig
SEG2_sig
SEG3_sig
SEG4_sig
SEG5_sig

? edgeH_pulse :

clk_out_sig

edgelL_pulse;

image19.png
CLOCK_50
CLOCKZ2 50[*»
CLOCK3 50 >
CLOCK4 50[>

KEY[3.01[>

clock divider:clock_divider inst

clk_in

8'h49 time_high[7..0] clk_out

edge detector:edge detector inst

edgeH

edgel

8'h7b time tot[7.0]

SWI9.01[C>

edge select

Counter_and Visual:Counter_and Visual inst

SEGO[6..0]

"> GPIO1GPIO[35.0]

SEG1[6.0]

[> HEX0[6.0]

SEG2[6.0]

[> HEX1[6.0]

SEG3[6.0]

[> HEX2[6.0]

SEGA[6.0]

[> HEX3[6.0]
[> HEX4[6.0]

SEGS[6..0]

[> HEX5[6.0]

100,
[> LEDR[9..0]

image20.png
*
+
*
*
*

SRR S SR

sim:/Tut3/Counter ...
sim:/Tut3/Counter _...
sim:/Tut3/Counter_,
sim:/Tut3/Counter _.
sim:/Tut3/Counter_...
sim:/Tut3/Counter _.

image21.png
123 |

72—

image22.png
) &insys

~ & Installed IP
~ Library
~ Basic Functions
~ Simulation; Debug and Verification
~ Debug and Performance
* Intel FPGA In-System Sources & Probes
® Search for Partner IP

image23.png
Edit System Generate View Tools Help

ST oo

tem: unsaved _Path: in_system_sources_probes_0
el FPGA In-System Sources & Probes m

ra_in_system_sources_probes

Block Symbol & [

Intel FPGA In-System
Sources & Probes

nstance Info Bl | Name
9 Automatic Instance Index Ass & New IP Variation X
nstance Index:
Your IP settings will be saved in a .qsys file.
"he 'Instance ID' of this instance (
Create IP Variation
>robe Parameters
robe Port Width [0..512]: Entity name: | ISSP i1
ource Parameters | Savein folder: C:\Altera\Tutorials Quartus22\Tut3
ource Port Width [0..512]: Target Devi |
arget Device !
lexadecimal initial value for the § s sources probe
_J Use Source Clock Family: Cyclone V V|
Use Source Clock Enable Device: 5CSEMASF31C6 v| |to create a preset.

1 No presets for Intel FPGA In-Sys

pe Path Message

image24.png
A IP Parameter Editor - ISSP.qsys* (C:\Altera\Tutorials Quartus22\Tut3\ISSP.qsys) (] X
File Edit System Generate View Tools Help
[Parameters | _ o o| [0 Details " #7] Block Symbol & | =
[System: ISSP__Path: in_system_sources_probes_0
Intel FPGA In-System Sources & Probes
Intel FPGA In-System Sources & Probes
altera_in_system_sources_probes Source Port Width [0..512]
Flnstancelnfo | e orine souree port
(@ Automatic Instance Index Assignment
e I —
The TInstance ID' of this instance (optional): - NONE]
["ProbeParameters
Probe Port Width [0..512]:
[X < >
["Source Parameters
Source Port Width [0..512]: [Presets 1| oo
: | Presets for in_system_sources_probes_0
& x
[Use Source Clock Enable Project

[viege 5] oo

Type Path Message

LLibrary

Click New... to create a preset.

No presets for Intel FPGA In-System Sources & Prol

Apply

Update...

Delete

New...

- e

image25.png
iartus Software

The following new files were created:

| C:\Altera\Tutorials Quartus22\Tut3\ISSP.qsys

To edit or modify a .qsys file in your design, do one of the following in the Quartus
' software main window:
|~ Open the .qsys file with the Open command on the File menu
- Double-dlick the .qsys file on the Files tab in the Project Navigator
| - Open Platform Designer from the Tools menu
- Use the qsys-edit command at the command line

To generate HDL files from a .qsys file, do one of the following in the Quartus software:
- Open Platform Designer from the Tools menu

- Use the qsys-edit command at the command line
- Open Platform Designer from the Quartus software and dick on the 'Generate HDL..." button

[C) Do not show this message again

Close

image26.png
& Quartus Prime X

You have created an IP Variation in the file C;/
Altera/Tutorials Quartus22/Tut3/ISSP.qsys.

To add this IP to your Quartus project, you must
manually add the .qip and .sip files after

generating the IP core.

The .qip will be located in
<generation_directory>/synthesis/ISSP.qip

The .sip will be located in
<generation_directory>/simulation/ISSP.sip

o |

image27.png
//==
// REG/WIRE declarations

wire edgeH_pulse,edgelL_pulse;
wire Towfreq_clk;

wire edge_select;

wire [7:0] t_tot,t_high;

clock_divider clock_divider_inst

1(
.c1k_in(CLOCK_50) , // input clk_in_sig
.time_tot(t_tot) , // input [7:0] time_tot_sig
.time_high(t_high) , // input [7:0] time_high_sig
.cTk_out(lowfreq_c1k) // output clk_out_sig

image28.png
ol

Search Intel FPGA |@

nstance Manager 2. e @ - | JTAGChain Configuraton: JTAG ready x
e — Hardware: DE-SoC[USB-1] ¥ || Setup..
Currentinterval: 0 samples per second Maximum size: |8 - DS E2aoCoEmas i o)ise | Scanchain
®) Automatic V| Save data to event log Licl &
Manual |1 s
Write source data: | Continuously ~
Index Instance ID Status Sources: 16 Probes: 1 Name
o NONE Notrunning 16 1 15SP:uO]altsource_probe._topin_system_sources_probes_Olaltsource_pro...
[#o NONE
Index Tune Alias Name Nata -8 -7 -6 =2 =2 =3 -2 Sl 0
o IssPuofaltsource prol o
&5 source[15] o
s1a| source[14] B
s3] source[13] °
sz source[12] B
si| source[11] °
st0] source[10] °
s | source[9] B
sa | source[8] B
s | source[7] °
s | source[6] °
s | source[5] °
= source[4] o
sa | source[3] °
sz | source[2] B
s1 | source[1] °
so | source[0] B

0% 00:00:00

image29.png
61
62
63
64
65
66
67
68

L

edge_detector edge_detector_inst

¢

1/

.c1k(CLOCK_50) , // input clk_sig
.signal(GPIO1GPIO[0]) , // input signal s1g
.signal(lowfreq_clk) , // input signal_:
.edgeH (edgeH_pulse) , // output edgeH_sig
.edgeL(edgeL_pulse) // output edgelL_sig

)

image30.jpeg
Clockwise, frequency increases Clockwise, duty cycle decreases

10kHz ~ 200kHz
1KHz ~ 10kHz.
50Hz ~ 1kHz

Signal output indicator
1Hz ~ 50Hz

Output

image31.png
Vee out GND
1(P7)
pIN.YIS GPIO_1(0] 2 GpPio1l] PN A4
Pl aals GPIO12 3 4 P03 PIN_AD2G
PIN_AG28 GPIO_1[4] 5 6 GPIO_1[5] PIN_AF28
el ae2s Gpio_alel 7 s opoa] PN A7
Pl AG26 GPIO_1(8 9 10 GPioals] PN A7
PINAG2S GPIO_1(10] 13 14 GPIOIM1] PIN_AH2G
PIN_AH24 GPIO_1(12] 15 16 GPIO_1[13] PIN_AF25
PINAG2E GPIO_1(14] 17 18 GPIOINS] PIN_AFZ3
PINAG24 GPIO_1(16] 19 20 GPIOI07] PIN_AH22
PIN_AH21 GPIO_1(18] 21 22 GPIO_1119] PIN_AG21
PINAH23 GPIO_1(20] 23 20 GPIO1[21] PIN_AA20
PIN_AF22 GPIO_1[22] 25 26 GPIO_1[23] PIN_AE22
PIN.AG20 GPIO_1(24] 27 28 GPIO_I2S] PIN_AR2L
33v 2 0 GND
PINAGIS GPIO_1[26] 31 32 GPIO127] PIN_AHIS
PINAGIS GPIO_1[28] 33 3 GPIO_IR9) PIN_AHIS
PIN_AF18 GPIO_1(30] 35 36 GPIO_1(31] PIN_AF20
PINAGIS GPIO_1(32] 37 38 GPIO_I[33] PIN_AE20
PIN_AE19 GPIO_1[34] 39 40 GPIO_1[35] PIN_AE17

image32.jpeg

