

Electronic Systems Design

Prof. Marsi Stefano - University of Trieste
Academic Year 2025/26

Tutorial 4
[image:]
Design of an SPI interface system.

Hardware used: Terasic DE1-SoC Board
Software used: Quartus 22.1, System Builder

Tutorial 4
Realization of a system for generating an SPI signal
Description: In this tutorial, we will implement on FPGA a modular system designed to generate an SPI signal for controlling any device that uses this protocol. Specifically, the SPI interface will be employed to program the registers of a system managing an LED matrix driven by the MAX7219 chip.
Purpose: The purpose of this tutorial is to familiarize you with external interfaces and with the generation of signals that underlie particular specifications through the definition of a system suitable for this purpose. The use of a tool, developed within Quartus, useful for monitoring the temporal evolution of signals, will also be explored.
Expected learning:
· Definition of a complete SPI interface system through a hierarchical scheme.
· In-depth study of the Verilog language and the Questa/ ModelSim simulator.
· To familiarize with the "Logic Analyzer" tool to monitor the internal signals of the FPGA.
· To familiarize with the In-System Memory Editor to interact with memories.
Premise
Unlike the previous tutorials, this time you will start by defining and simulating the system you want to develop outside the integrated Quartus system, and then import it, once the simulations have given a positive result within the synthesis tool.
Although the SPI protocol can be used for both reading and writing, in this case it will only be used for writing, which leads to a simplification of the complete system.
The system that will be implemented essentially consist of two blocks:
· The first one: in it the whole series of data that has to be sequentially transmitted reside. Data is stored in a LUT (Look Up Table). A control system, through a handshaking protocol provides their values (when required through a i_rdy signal) to a parallel bus interfaced to the second block. The first block provides also a "data valid" information when the data is available and stable.
[image:]
· The second block, interfaced with the first, on the other hand, generates the request for data (i_rdy) and when received, generates the sequence of f.d.o that populate the SPI protocol.
This second block is also designed to be able to read data through the SPI protocol, but this part will not be used in this exercise.
[image:]

Verilog Files and Simulations

The entire project is described in three VerilogHDL files available on the moodle site of the course:
· SPI_Master16b.v: Describes the block that generates SPI signals
· SPI_LUT: Descive block storing data to be sent
· TOP_Spi: Merges the two blocks into the overall device
Use the simulation tool to analyze and validate the operation.
(For detailed operation, please refer to the Specific tutorial).
· Open the simulation tool (ModelSim/Questa)
· Create a suitable project
· Import the three files
· Compile all the files
Simulating SPI_Master16b
Let's now move on to the simulation of the "SPI_Master16b" module
> Simulate > Start Simulation

In the window, select the chosen module and click on "Optimization Options"
[image:]
Select "Apply Full Visibility" which allows you to monitor all signals and processes within the module
[image:]
> OK
> OK
Let's now create suitable signals for all the inputs, in particular:
· A unique negative pulse on the i_Rst_L signal
· A clock on i_Clk
· The data that you would like to transmit on the i_TX_Byte bus (note that due to a bug in the tool these data, when displayed in Octal or Hexadecimal format, are represented, when they appear as "stimuli", only according to their most significant bit. Therefore, they must be also displayed as an "internal signal" to allow a representation with all the significant bits)
· Pulses for the "data valid" signal i_TX_DV interspersed with the previous data (note that these pulses, should be sufficiently spaced to allow the device to complete the transmission before a new transmission is requested .
(If you like you could test what happen if "data_valid" pulses are too close each others)
· Any MISO read signals to test the reading ability of the device i_SPI_MISO
It is now possible to simulate the module by highlighting all the signals both present in the various registers and at the outputs.
[image:]
Note in particular (by zooming in and/or highlighting specific signals) and comparing how it works with the VerilogHDL Source code.
Note about the generation of SPI protocol data, in particular:
· The procedure is initialized when i_TX_DV is put at high level (by resetting the counter r_SPI_Clk_Edges) and it starts only when it passes from the high to the low state
· The "r_SPI_Clk_Count" clock cycle counter with respect to which the pulses relating to the arrival of a Leading_edge or Trailing_Edge r_Leading_Edge are defined, r_Trailing_Edge saved in the appropriate registers
· Register signal generation r_SPI_Clk
· The (backwards) counter of the fronts r_SPI_Clk_Edges
· The generation of "o_TX_Ready" used to request a new data is active only when the previous counter has reached 0

Then note the memorization of two "recorded" versions r_TX_Byte and r_TX_DV of the respective input signals i_TX_Byte and i_TX_DV in order to keep the data to be transmitted stable even if the inputs change.
Note then the counter related to the bit to be transmitted "r_TX_Bit_Count", its reset to the maximum value (0xF = 15) following a global reset or following the "o_TX_Ready" signal and its decrease in correspondence with a "Leading Edge" or a "Trailing edge" depending on the chosen transmission mode, and how based on the value assumed by the latter on the output the desired bit is formed:
191 	o_SPI_MOSI <= r_TX_Byte[r_TX_Bit_Count];

Note the generation of the output signal "o_SPI_Clk" which takes the default value in case of reset or alternatively the value present in the "r_SPI_Clk" register
Finally, note the reading operation of the SPI protocol: on the i_SPI_MISO line, data are sequentially supplied, these, based on a counter r_RX_Bit_Count are continuously supplied directly to the o_RX_Byte output, which therefore continues to settle bit by bit with each change in the input data.
221 o_RX_Byte[r_RX_Bit_Count] <= i_SPI_MISO;

When all the data are present and stable on the output bus, the o_RX_DV signal is activated , which could be used by a receiver to determine the instant at which the complete data is read.

Simulation of SPI_LUT

With the procedure suggested in the previous point, let's now consider how to simulate the "SPI_LUT" module:
Generate the necessary inputs:
· A clock signal
· A negative pulse on the reset
· A series of more or less large pulses on the i_rdy signal
It can therefore be seen, for the way the system has been designed
· That when a request arrives through i_rdy, the procedure to provide the data starts
· This starts a "phase counter" r_fasi that
· At time 2 increments the address of the ROM r_addr from which to take the data
· At time 3 this data is provided as output o_data
· At time 5 the o_valid signal is activated
· When i_rdy lowers again, the phase counter resets and the next time the procedure is requested. Once the data in memory has been exhausted, the transmission starts again from the first.
· Note again that for a correct behavior the i_rdy signal must remain high for a sufficient number of clocks to ensure the generation of the o_valid signal
[image:]
However, it should be emphasized that the i_rdy signal will be generated by the Master_spi16b block and will be brought back to the low state only after when the Master_spi16b block receive from SPI_Lut the data to be transmitted and the "data_valid" signal.
Finally, note that the first data in memory at position 0 is not transmitted, so an empty "dummy" data can be introduced at that position.
To see the joint operation of the two blocks, it is therefore possible to move on to the simulation of the TOP_SPI block which brings together the two previously developed and studied blocks in a single system.

Simulation of TOP_SPI

With the procedure suggested in the previous point, let's now move on to simulate the "SPI_LUT" module:
Generate the necessary inputs
· A clock signal
· A negative pulse on the reset
[image:]
And display the signals considered most significant such as
· The data to be transmitted w_data
· the various synchronisms of handshaking w_data_rdy, w_data_req
· The output signals of the SPI protocol o_SPI_Clk, o_SPI_Data, o_SPI_CS
· Also display the adequacy of the data to be transmitted with its relative serial protocol, for example the first data 0x013C = 0000_0001_0011_1100
Implementation on FPGAs

Using the "SystemBuilder" tool, create the skeleton of a system that uses
· Clock
· Swithes + Buttons
· GPIO1 (Default Mode)

Choose a directory in which to save the project and give it a name (e.g. Tut4SPI)
Copy or move the three VerilogHDL files into the newly generated project directory.
Open the project within Quartus.
Import the three VerilogHDL files
Project > Add/Remove Files in project

Edit the "Project Navigator" Window to Files mode.
Right-click on the file TOP_Spi Create Verilog Instanstation Template File from Current File
The file: TOP_SPI_inst.v appears in the Project Directory and can be examined to see how to instantiate the module.
ReModify the "Project Navigator" Window by putting it in Hierarchy mode
Double click on the Top Level Entity (Tut4SPI)
Include the TOP_SPI_inst module instantiation in the Verilog file (seen in the previous steps)
Change the connections to reflect the connections with the devices. Especially
· Connect the clock with the CLOCK_50 signal
· Connect the reset with the KEY signal[0]
· Connect respectively
· o_SPI_Clk with GPIO1GPIO[0]
· o_SPI_Data with GPIO1GPIO[1]
· o_SPI_CS_L_sig with GPIO1GPIO[2]
Also change the working frequency of the SPI output: considering that the SPI working frequency goes from about 10KHz to 10MHz you need to set the latter by changing the parameter CLKS_PER_HALF_BIT contained inside the SPI_master16b module. For example, by bringing the value to 250 there will be 500 primary clock cycles (at 50MHz) for each SPI clock cycle, thus providing an SPI frequency of 100KHz
This can be done in various ways, but the most convenient is by introducing the
defparam TOP_SPI_inst. SPI_GEN. CLKS_PER_HALF_BIT=250;
which overrides the default parameters in hierarchical form for the modules concerned.
In the end, the code to be provided to the Top Level Entity could be the following:
[image:]

Links & Downloads

The complete system can then be compiled to the final ".sof" file ready to configure the FPGA. Before that, however, the device must be properly connected.
It is controlled through 3 SPI signals (CLK, DIN, CS) and of course is powered by VCC and GND.
The Vdc and GND power supplies can be taken directly from the DE1-SoC board on pins 11 and 12 of the GPIO1 connector respectively, while as arranged in the Verilog code made in the previous step, connect
· CLK with GPIO1GPIO[0]
· DIN with GPIO1GPIO[1]
· CS with GPIO1GPIO[2]
As per the image below
[image:]
[image:]

Note: the system configured in this way continuously sends the configuration data of the 15 registers through the SPI protocol, these values are contained in the ROM included in the SPI_LUT module.

To change the image displayed, please note that:
· Registers between 1 to 8 contain the data to be displayed in each column, respectively
· Register 9 represent the decoding Mode (Normal = 0x00)
· Register 10 control the light intensity (on the 4 least significant bits) between 0x00 and 0x0F
· Register 11 is the number of columns to be scanned during the led visualization
· Reg 12 is used for Shutdown/Normal mode register controlling the least significant bit (Normal=0x01)
· Unused registers 13 and 14
· The 15 Register is used for Test/Normal Mode controlling the least significant bit (Normal=0x00)

Logic Analizer

A particularly interesting tool available within Quartus is the Signal Tap Logic Analyzer. This system is designed to monitor both internal and, if necessary, external signals in the FPGA, in order to validate their correct format and temporal behavior.
In short, once the signals to be monitored are selected, the tool stores their data internally in the FPGA and displays their evolution graphically through an interface window. To achieve this, however, the system must define a sampling clock and, most importantly, reserve suitable internal FPGA resources both to store the sampled signals and to transfer them to the interface tool. These resources can significantly impact the implementation of the final circuit; therefore, careful use of this tool is strongly recommended.not to exceed the memory depth or sampling rate to use this tool only during debugging and to delete it from the final system when it has been verified that it has worked correctly.
Let's start by taking note of the resources currently used for the implementation of the system
· analyzing both the various "report logs"
· using the "Chip Planner" tool
(in particular how many ALMs, Memories and registers were used)
First of all, to avoid having to sample the signals of interest too densely (i.e. at 50MHz), create a "frequency divider" or a cyclic binary counter which, by receiving the 50MHz system clock as input, provides different signals in outputs, each with half the frequency compared to the previous one, so at the fifth output of the counter we will find a signal at about 1.5 MHz useful for sampling the SPI signals that we have chosen to have a frequency of about 100 KHz.
Therefore, modify the code by inserting a new module, either within one of the files already part of the project or through a new file
[image:]

and then instantiating it in the Top Level Entity by creating appropriate signals (subfreq) and appropriately connecting all the signals.
[image:]

> Processig > Start > Start Analysis and Syntesis (Ctrl-K)

Then open the "Signal Tap Logic Analyzer" tool:
> Tools > Signal Tap Logic Analyzer

In the window that initially opens, define which signal to use as a clock (i.e. to sample the signals).
[image:]
In the "Signal Configuration" tab, click on the "..." next to the clock cell, a new window will open.
By setting the "Filter" parameter in "Registes:pre-synthesis" mode and then clicking on <List> a series of signals will appear that can be chosen as a sampling clock.
[image:]

For example, choose the output[4] of the counter

<OK>

Complete the previous screen by fixing the memory depth (e.g. 2K) and which signals you want to analyze (e.g. the three SPI outputs and the internal handshaking parameters between the two blocks) by double-clicking in the left window and using the same mechanism seen above to filter and identify the signals of interest.

[image:]

<Insert>

In the next window, right-clicking on the "Trigger condition" cell of the GPIO1GPIO[2] signal connected to the CS of the SPI signal sets this condition to the Raising Edge state.
Save the file (automatically suggested name stp1.stp) and when you ask if you want to include it in the Quartus project, answer in the affirmative way (Alternatively, manually include the file you just saved among the project files)

[image:]

[image:]

· Complete the project (The operation can be carried out directly within the "Signal Tap Analyzer" tab).
Processing > Start Compilation
· Re-download to the DE1-SoC board
(this part can also be executed directly from within the "Signal Tap Analyzer" window) by configuring the JTAG chain and the configuration file.
[image:]

At this point (possibly re-opening the Signal Tap Analyzer Tool) if you have closed it by going to the Data tab and using the shortcuts F5 for a point analysis and F6 for a continuous analysis, the data physically read on the FPGA will be available synchronized as required on the CS rising edge
[image:]
It should be noted in particular, however, that the two hand-shaking signals are sometimes sampled, and sometimes they are not detected, moreover even their temporal succession is not well defined. This is due to the fact that the sampling frequency chosen is too low to have a good sampling, on the other hand increasing the frequency would have decreased the number of samples.

As a last step, it is suggested to verify the resources used for the implementation of the system
· analyzing both the various "log reports" (in particular looking at how many ALMs, memories and logs were used)
· using the "Chip Planner" tool
Comparing the results with those obtained previously, it will be noted how the resources used have increased considerably and that the system use blocks of BRAM memory to store and evaluate continuously the analyzed data before sending them to the visualization tool through the JTAG protocol.
Memory Editor

The project developed so far generates a repetitive sequence of SPI signals based on the contents of a memory. Whenever a change to the transmitted code was required, the only option was to modify the memory contents and recompile the entire project.
Quartus, however, provides a tool called In-System Memory Content Editor, which allows interaction with memories via the JTAG protocol, enabling read and write operations. Since this tool effectively converts single-port memories into dual-port memories—using one of the ports to update the contents—it requires specific types of memories designed for this purpose. The goal, therefore, is to modify the design by integrating a general-purpose memory, which can then be updated through this tool to dynamically alter the transmitted signal.
First of all, access the IP Catalog window (Alt-7) where it is not already open and search, perhaps using filters, for the primitive ROM: -1PORT
[image:]
By double-clicking the generation window opens:
[image:]
Provide an appropriate name and choose to generate the Verilog code
>OK
In the configuration windows choose the size of the memory, in this case 32 words of 8 bits each (it is not possible to use memories with less than 32 words, so we will use only the first 16)
[image:]
Configure the output to be register-free
[image:]
Configure the memory to be accessible to the system "In-System Memory Control Editor" by providing a 4-character mnemonic name and provide a memory configuration file (An example is available on the course page).
[image:]
> Finish

If necessary, it may also be useful to generate an example of "instantiation" of the newly generated element.
Make sure that the .qip file you just generated belongs to the overall project in which you want to include it.
[image:]
We must now move on to modify the design to replace the LUT created as a combinatorial circuit with the newly generated ROM.
The Verilog file "SPI_LUT" for the part relating to the data memory by instantiating the ROM just generated and concatenating the address with the output data, not before having changed the type of the variable o_data from "reg" to "net" and having declared the new intermediate signal "lut_data".
[image:]
Then recompile the entire project and use it to configure the Board.
You can now open the In-System Content Memory Editor Tool:
> Tool > In-System Content Memory Editor
[image:]

Click on the appropriate "Instance ID" in this case only one and choose
> Processing > Read Data From In-System Memory (F5)

And the window is populated with data obtained from memory
[image:]
Or modify the data (Writing congruous data) and activate the writing of the data:
> Processing > Write Data To In-System Memory (F7)

By doing so, you can try to alter
[bookmark: _GoBack]
- the data displayed (in the [1:8] positions) - the brightness of the display [10]- in the number of columns on which to write the data [11]- the Shutdown/Normal mode [12]- the Normal/Test mode [14]

image1.jpeg
TN OB NG AU OE AN LGN ORI s RO ome g

1 ’\‘ .
L3 r
- [

i,

Iy

n
VAV U8 S
b A
Sal 3
£ XATLUVN Sy
S Luv s,

Viva gsn-
SN ANOD "

2100%3 5 Aoy
23003 “Ms.
2l0dxa " apo|

image2.png
wr

X (MOSI)
Signals

image3.png
—LRsLLﬁ

LTX DV —o_SPI_MOSI—>

——o_SPI_Clk—>
«—i_SPI_MISO—
—o_SPICS_L—

X (MOSI)
Signals

«—0_TX_Ready—

«—o_RX_DV—

SPI Signals

RX (MISO)
Signals

]

i Clk-

image4.png
[l start Simulation X

- Design Unit(s)
|work.SPI_Masterlépit

—
[V Enable optimization

image5.png
[l Optimization Options

vt s | oo | coeoe |

ign Object Visibility (+acc)
" No design object visibility
& Apply full visiility to all modules(full debug mode)
€ Customized visiility

*lvodie [Access Fiags [chidren g |
_oekte |
o] =

image6.png
- Default

X000 o0 T 20 K oo Y 00000 oo YOO ounnn0iiion
DD Y G 0 D v G DY O N

7 ‘ ‘ ‘ T T 7 ‘ ‘ T 7

‘ T I t 1 | I T t | I

no

N T T -

7D Jodf6 Jaee3 JEYY
ISESESERERS RS (NECENSSISEERsISNEISE (BCNIIEEEEaaasesnsNIBCISISEeEsIeasnain (3
OOOON000000000F ISS0SEEEEENEEENN ODOOOCOODOOO0O0F poO0000p000000E

o
o

-

image7.png
=%

), Edit:/SPI_Lut/i_rdy

0o
o
£

“

1

12

3] 14

5

()

02

10242

image8.png
0o +

nnn

*
4,
22
22
“
“
“
5
¢
5
¢
22
o
22
“
“
7
2
-,
5
-,
2
¢
42

- Default

HLLU UYL UL U MUy I UL UL UL
] M | M_n Il
I i Il i 1 1
013¢ i w242 i 03a5 i i 0481 \ 0535 i
X 103 104 05
#2452 J03a5 Y081 J05a5
DI BN NI GO INIIN TN DN PN
bESOPERERORRPEREOEORPREEOIDEPEEEE VEREOOVOPEREOOVEREREOIPRREEIOIDEMIBIORIREOOVIREROEOPEREEOVOPEREEOVIMBIORPEERELORPREROIORIREIOIIRIREEOMIBIDEORIREIDI
3¢ 024] J03a5 0481 J05a5
OO OO OO OO O OO0 OO OO0 OO O00E OO
ISSEESEEEERIEN (ISR NINEEERN (IS0 EEEEEEEEERZNEENEEEREEENEEEE (3NEEE!

image9.png
1/
// Structural coding

/7

TOP_SPI TOP_SPI_inst

C
.i_c1k(CLOCK_50) , // input i_clk_sig
.i_res_L(KEY[0]) , // input i_res_L_sig
.0_SPI_CTk(GPIO1GPIO[0]) , // output o_SPI_Clk_sig
.0_SPI_Data(GPIOLGPIO[1]) , // output o_SPI_Data_sig
.0_CS_L(GPIO1GPIO[2]) // output o_CS_L_sig

P

[defparam TOP_SPI_inst.SPI_GEN.CLKS_PER_HALF_BIT=250;

image10.png
CLK

DIN GND

PIN_Y1S| GPIO_1[0] 2 GPIO_101] PIN_A24
PIN_AAL: » 4 GPIO_1(3] PIN_AP26
PIN AG28 GPIO_1l4] 5 6 GPIO_15] PIN_A28
PIN_AE25 GPIO_1[6] 7 8 GPIO_1[7] PIN_A27
PINAG26 GPIO_1[8] 9 10 epio_1[9] PIN_AH27
PIN.AG25 ~ GPIO_1[10] 13 14 GPIO_1[11] PIN_AH26
PIN_AH24 GPIO_1[12] 15 16 GPIO_1[13] PIN_AF25
PIN.AG23 GPIO_1(14] 17 18 GPIO_1[15] PIN_AF23
PIN.AG24 GPIO_1[16] 19 20 GPIO_1(17] PIN_AH22
PIN_AH21 GPIO_1[18] 21 22 GPIO_1(19] PIN_AG21
PIN_AH23 GPIO_1[20] 23 24 GPIO_1[21] PIN_AA20
PIN.AF22 GPIO_1[22] 25 26 GPIO_1[23] PIN_AE22
PIN.AG20 GPIO_1[24] 27 28 GPIO_1[25] PIN_AF21
33v 29 30 GND
PIN.AGIS GPIO_1[26] 31 32 GPIO_1[27] PIN_AH19
PIN.AGIS GPIO_1[28] 33 34 GPIO_1[29] PIN_AH18
PIN_AF18 GPIO_1(30] 35 36 GPIO_1(31] PIN_AF20
PIN.AGIS GPIO_1(32] 37 38 GPIO_1(33] PIN_AE20
PIN_AE19 GPIO_1(34] 39 40 GPIO_1[35] PIN_AE17

image11.jpeg

image12.png
module Counter (
input clk, n_rst,
output reg [7:0] counterout

always @(posedge(cl1k) or negedge(n_rst))
begin
if (!n_rst) counterout <= 0;
else counterout <= counterout + 1;

end
endmodule

image13.png
wire [7:0] subfreq;

// Structural coding

Counter Counter_inst

.c1k (CLOCK_50),
.n_rst (KEY[0]),

.counterout(subfreq)

P

TOP_SPI TOP_SPI_inst
.i_c1k(CLOCK_50) , // input i_clk_sig
.i_res_L(KEY[0]) , // input i_res_L_sig
.0_SPI_CTk(GPIO1GPIO[0]) , // output o_SPI_Clk_sig
.0_SPI_Data(GPIOLlGPIO[1]) , // output o_SPI_Data_sig

.0_CS_L(GPIO1GPIO[2]) // output o_CS_L_sig
P

defparam TOP_SPI_inst.SPI_GEN.CLKS_PER_HALF_BIT=250;
endmodule

image14.png
@ Signal Tap Logic Analyzer - C-/Altera/TuotialsQuartus22/Tut4SPI/Tut4SPl - Tut4SPl - [stp1.stp]* = O X

File Edit View Project Processing Tools Window Help

EH»»C X »2 O
mstance Manager: "3 | ©|| 4| & [addnodesto the currentinstance = |TAGChain Confisurarion: TAGready E

search intel FPGA

Instance Status Enable(LEs: 0 Memory: 0 Small: NA Medium: NA Large: NA e ‘DE—SOC [USB-1] - ‘ ‘ Setup... ‘
auto_signaltap_0 Notrunning 0 cells 0 bits NA NA NA

Device: | @2: SCSE(BAS|MAS)/5C ~ | Scan Chain |

|>>| SOF Manager: 0| |
trigger: 2023/08/29 16:23:48 #1 | Lockmode: | ' Allowall changes ~ signal Configuration: x
Node Jata Enablfrigger Enabligger Conditio)
ypdaliad Name [o [1 Basic, ¥ Clock:
Double-click to add nodes,
Data

Sample depth: | 1K ~ | RAM type: |Auto -

| | segmented: 2 512 sample segments -

Nodes Allocated: ®) Auto) Manual: lo 2

Pipeline Factor: 0 -

Storage qualifier:

Type: | E Continuous -

Input port: |auto_stp_external storage_qualifier | ..

Nodes Allocated: (@ Auto O Manual: lo 2

Record data discontinuities

[pisable storage qualifier

Trigger

Nodes Allocated: @ Auto) Manual: lo SREE

> Data ‘ & Setup ‘

Hierarchy Display: x || Datalog: ||
auto_signaltap_0

auto_signaltap_0

image15.png
-0

e Finder

Named: |*

Options

Filter: |Registers: pre-synthesis
Lookin: |[TutasPI|

Matching Nodes:
Name Y
TutdsPl
~ Counter:Counter_inst
counterout[0]~reg0d
counterout[1]~reg0d
counterout[2]~reg0d
counterout[3]~reg0d
counterout[4]~reg0
counterout[5]~reg0d
counterout[6]~reg0d
counterout[7]~reg0d
» TOP_SPLTOP_SPI_inst

U S

Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned

Assignments

= List x

~ | |Customize...

~ || ..| V| Include subentities V' Hierarchy view
Nodes Found:
" Name ¥ Assignments
s Counter:Counter_inst|counterout[4]~reg0 Unassigned
>
>>
<
<<
Te ¢ >

OK Cancel

image16.png
Node Finder

Named: |*

Options

Filter:

Lookin:

Registers: pre-synthesis

|TutasPI|

Matching Nodes:

Name
‘s 0_RX_Byte[3]~reg0
‘s 0_RX_Byte[4]~regO
‘s 0_RX_Byte[5]~reg0
‘s 0_RX_Byte[6]~reg0
‘s 0_RX_Byte[7]~reg0
‘s 0_RX_Byte[8]~reg0
‘s 0_RX_Byte[9]~reg0
‘s 0_RX_Byte[10]~reg0
‘s 0_RX_Byte[11]~reg0
‘s 0_RX_Byte[12]~reg0
‘s 0_RX_Byte[13]~reg0
‘s 0_RX_Byte[14]~reg0
‘s 0_RX_Byte[15]~reg0
‘s 0_RX_DV~reg0

‘s 0_SPI_Clk~reg0

‘s 0_SPI_MOSl~reg0d
‘s 0_TX_Ready~reg0
r_Leading Edge
r_SPI_Clk

r TX DV

‘s r_Trailing_Edge

% r_RX_Bit_Count

% r_SPI_Clk_Count

% r_SPI_Clk_Edges

% r_TX_Bit_Count

% r_TX Byte

MU

Assignments
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned

@

= List x

~ | |Customize...

~ | |..| V! Include subentities V| Hierarchy view

= Nodes Found:
Al Name ¥ Assignments

% GPIO1GPIO[0] PIN_AB17

% GPIO1GPIO[1] PIN_AA21

% GPIO1GPIO[2] PIN_AB21

‘e TOP_SPLTOP_SPI_inst|SPI_LutDataGEN|o_valid~regO Unassigned

‘e TOP_SPLTOP_SPI_inst|SPI_Master16bitSPI_GEN|o_TX_Ready~reg0 Unassigned

>>

<<

Insert Close

image17.png
EmH» e]

Hardware: DE-SoC [USB-1] M

Instance Status

auto_signaltap_0 Not running

trigger: 2023/08/29 17:14:28 #1

> 0O

Enable(LEs: 552
v 552 cells

Lockmode: | " Allow all changes

Memory: 10240 Small: 0/0
10240 bits.

Node Jata Enablfrigger Enabl] Trigger Conditions

Typdaliad Name 5 5 1 Basic AND

% GPIO1GPIO[0] v v =

% GPIO1GPIO[1] v v =

% GPIO1GPIO[2] v v s

EY DataGEN|o valid~regd | v =

EN GEN[o TX Ready~regd| V' v =

> Data & Setup

Hierarchy Display: x Datalog:| 7

v V| ® Tutaspl
~ V| ® TOP_SPLTOP..
V * SPI_LutDat
V * SPI_Master...

auto_signaltap_0

auto_signaltap_0

Search Intel FPGA |@

Medium: 1/3¢
1 blocks
Device:

>>| SOF Manager: & 0

signal Configuration:

Clock: Counter:Counter_inst|counterout[4]~reg0
Data
Sample depth: 2K ¥ | RAMtype: Auto
Segmented: |2 1Ksample segments

Nodes Allocated: (®' Auto Manual: 3

0%

@2: 5CSE(BAS5|MA5)/5C: ¥

Setup...

Scan Chain

00:00:00

image18.png
IP Catalog
+
>
2
&

Project Navigator
I Files

% SPI_Sim/TOP_Spi.v

B SPI_Sim/SPI_Master16b.v

8 SPI_Sim/SPI_LUT.v

% Tut4SPLSDC

B Tutd4SPLY

E stp1stp

Tasks
Task

~ P Compile Desien

Time

E Files

Compilation

v _Ee®

<

Tat

image19.png
Search Intel FPGA | @

JTAG Chain Configuration: JTAG ready

| x

Hardware: DE-SoC [USB-1]

~ || setp. |

Device: ‘@2: 5CSE(BA5|MAS5)/5CSTFD5D5/.. (0x02D120DD)

~ || scan chain |

\E\ SOF Manager: |

0 | Cy/Altera/TuotialsQuartus22/TutaSPI/TutaSPLsof | -]

Attached SOF File auto_signaltap_0

image20.png
Search Intel FPGA |@
B H *e8 > ¥ O

Instance Manager: | "% || © | @ | k1| Ready to acquire x

JTAG Chain Configuration: |JTAG ready x
Instance Status Enable: LEs: 552 Memory: 10240 Small: 0/0 Medium: 1/397 | |\ oo DE SoC [USBA] <[setup..
auto_signaltap_0 Notrunning Vvl 552cells 10240 bits 0blocks 1 blocks
Device: @2: 5CSE(BAS|MA5)/5CSTFD5D5/.. (0x02D120DD) ~ | Scan Chain

<< SOF Manager: | & || 0 | C/Altera/TuotialsQuartus22/Tut4SPI/Tut4SPl.sof

Attached SOF File auto_signaltap_0

log: Trig @ 2023/08/29 17:39:14 (0:0 = elag =

rype\lmJ Name L—254l253 256 -128 Q 128 256 384 512 640 768 896 1024 1152 1280 1408 1536 1664 1792,
EY GPIO1GPIO[0] T U PUUU UL U ULUS UUUUUUU U WU UUUU U UU U UUUU U ST UL UUU U UUUU U TS UUT U ULy
P GPIO1GPIO[1] 1 1 Ml T 1 1 1 M1

EY GPIO1GPIO[2] 0 | 1

EY tDataGEN|o valid~reg0 |0 : 1

Y .. GENJo TX Ready~reg0l 0 I 1

7 Data & Setup

Hierarchy Display: x Datalog:| 7
v V| ® Tutaspl
~ V| ® TOP_SPLTOP..

auto_signaltap_0

auto_signaltap_0

100% 00:06:50

image21.png
NDEdA [3 TutdSPI - :/960 > % $

* ROM

~ 4@ Installed IP
~ Library
~ Basic Functions
~ On Chip Memory
ROM: 1-PORT
ROM: 2-PORT

~ University Program

®
1

~ Generic IO
* Accelerometer SPI Mode

® search for Partner IP

+ Add...

P Catalog

image22.png
S

IP variation file name:

C:/Altera/TuotialsQuartus22/Tut4SPI/MyROM .| ok
IP variation file type Cancel
VHDL

o) Verilog

image23.png
X MegaWizard Plug-In Manager [page 1 of 5] ?

BIocK type: AUTO

Resource Usage
TMI0K

<2 ROM: 1-PORT

Currently selected device family: [Cycdonev <]
[Match project/default

How wide should the 'q" output bus be? 8 | bits

How many 8-bit words of memory? 32 | words

Note: You could enter arbitrary values for width and depth
~What should the memory block type be?

@ Auto C MLAB © M10K

C M-RAM C 1Cs Options...

Set the maximum block depth to [Auto ¥ | words

What dlocking method would you like to use?
@ Single dlock
€ Dual dock: use separate ‘input’ and ‘output’ clocks

image24.png
X MegaWizard Plug-In Manager [page 2 of 5] ? X

<2 ROM: 1-PORT

Which ports should be registered?
™ 'data’ input port

[V 'address’ input port

BIoK type: AUTO ['q' output port

Create one clock enable signal for each dlock signal.

[Note: All registered ports are controlled by the More Options...
enable signal(s)

™ Create byte enable for port A

What is the width of a byte for byte enables? |8 | bits

Create an 'aclr’ asynchronous lear for
-
the registered ports

[Create a 'rden’ read enable signal

More Options...

Resource Usage
TMI0K

image25.png
X MegaWizard Plug-In Manager [page 3 of 5] ? X

<2 ROM: 1-PORT

Do you want to specify the initial content of the memory?
€ No, leave it blank

[Initalize memory content data to XX..X on
power-up in simulation

BIocK type: AUTO

(® Yes, use this file for the memory content data
(You can use a Hexadecimal (Intel-format) File [hex] or a Memory

Tnitalization File [.mif])
Browse...
File name: [MemContent.mif
The initial content file should conform to which ports —
dimensions? PORT A~

v Allow In-System Memory Content Editor to capture and
update content independently of the system clock

The 'Instance ID' of this ROM is: LT

Resource Usage
TMI0K

image26.png
Z Settings - Tut4SPI = [m] X

Category: |Device/Board.
General
Ef;ries Select the design files you want to include in the project. Click Add Al to add all design files in the project directory to the project.

N IP Settings) File name: Add
IP Catalog Search Locations e
Design Templates o %] [ada Al
~ Operating Settings and Conditions
Voltage File Name Type Library Design Entry/Synthesis Tool HDL Version emove
Temperature SPI_Sim/TOP_Spi.v Verilog HDL File <None> Default B
~ Compilation Process Settings SPI_Sim/SPI_Master16b.y Verilog HDL File <None> Default up
Incremental Compilation SPI_Sim/SPI_LUT. Verilog HDL File <None> Default
~ EDATool Settings Tut4sPLSDC Synopsys Design Constraints File <None> Down
Design Entry/Synthesis TutasPLy Verilog HDL File <None> Default -
Simulation SPI_Sim/SP_ROMy Verilog HDL File <None> Default Properties
Board-Level » myROM.qip 1P Variation File (.qip) <None>
~ Compiler Settings
VHDL Input

Verilog HDL Input
Default Parameters

Timing Analyzer

Assembler

Design Assistant

Signal Tap Logic Analyzer

Logic Analyzer Interface

Power Analyzer Settings

SSN Analyzer

W Buy Software oK Cancel | Apply || Help

image27.png
////dato in uscita

//always @(posedge i_c1k)

// begin

// ROM[0]= 8'h00; // dummy

// RoM[1]= 8'h3c; // Digit 1
// RoM[2]= 8'h42; // Digit 2
1/ ROM[3]= 8'hA5; // Digit 3
/7

// 8'h8l; // Digit 4
// 8'hA5; // Digit 5
// 8'h99; // Digit 6
// 8'h42; // pigit 7
/7

// ROM[8]= 8'h3c; // Digit &
1/ ROM[9]= 8'h00; // Decode 9

// ROM[10]=8'h03; // Intensity 10
/7 ROM[11]=8"h07; // Scan 11

// ROM[12]=8'h0l; // Shutdown/Normal 12
// ROM[13]=8'h01; // Dummy

// ROM[14]=8'h01; // Dummy

// ROM[15]=8'h00; // Test/Normal

// o_data={r_addr[7:0],ROM[r_addr]};

// end

ImyROM myROM_inst (
.address (r_addr),
.clock (i_clk),

.q (Tut_data)

assign o_data={r_addr,lut_data}

image28.png
= |n-System Memory Content Editor - C:/Altera/TuotialsQuartus22/Tut4SPI/Tut4SPI - Tut4SPI

File Edit View Processing Tools Window Help

search intel FPGA |@

(m]

X

Instance Manager: |Bt| | 8| ® |2t/ |Readyto acquire

JTAG Chain Configuration: JTAG ready

| =

. Hardh : DE-SoC [USB-1 v Set
Index Instance ID Status Width Depth Type Mode ardware: | [Use-1] | sewp... |
0 LuT Notrunning 8 32 RAM/ROM Read/Write Device: | @2: SCSE(BAS|MAS)/! ~ || Scan Chain |
File: & |
Instance 0: LUT
000000 2222222222222222222222222222222?2

0% 00:00:00 Instance: Word: Bit:

image29.png
= |n-System Memory Content Editor - C:/Altera/TuotialsQuartus22/Tut4SPI/Tut4SPI - Tut4SPI

File Edit View Processing Tools Window Help

- [m] X

search intel FPGA |@

(=1 [=n | (= JTAG Chain C¢ tion: JTAG read! x
instance Maneger: (3] [#] (2] eaty to mcaire ain Configuration: TTAGready
: DE-SoC [USB-1 v
Index Instance ID Status Width Depth Type Mode Hardware: |DE-SoC [USB-1] | sewp.. |
o LuT Not running 8 32 RAM/ROM Read/Write

Device: | @2: SCSE(BAS|MAS)/! ~ || Scan Chain |

Instance 0: LUT

000000 00 3C 42 A5 81 A5 99 42 3C 00 00 07 01 01 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0O

0% 00:00:00 Instance: Word: Bit:

.<B....B<..

