

Electronic Systems Design

[bookmark: _GoBack]Prof. Marsi Stefano
University of TriesteAcademic Year 2025/26

Tutorial 5
[image:]

Development of a simple processor with some peripherals based on NIOS II.

Hardware used: Terasic DE1-SoC Board
Software used: Quartus 22.1

Tutorial 5
Creation of a NIOS II processor, equipped with peripherals.
Description: In this tutorial you will create a simple system consisting of a NIOS2 processor, a memory and some peripherals.
Purpose: The aim is to see how an entire computing system can be created within a single FPGA and how this system can be used to interact with the outside world through peripherals already developed by third parties or even by developing the most suitable peripheral to create a certain interface to the outside.
Expected learning:
· Learning of the Quartus tool "Platform Designer" to create a processor together with its interface system
· Configuring the processor and third-party peripherals
· Creation of "ad hoc" peripherals
· Processor programming and code execution in a Codesign "Hardware-Software" process
Premise
The internal resources of an FPGA are sufficient to create a processor that can then be interfaced with the outside world and programmed to perform various operations.
This practice is so developed that most modern FPGAs already contain both embedded processors made in Hardware (Hard-Processors), and some of the most common interfaces (I2C, SPI, IrDA, UART, ...) . The CycloneV is no less and it too already contains a dual-processor ARM and various peripherals, but to practice how a processor can be made, configured, interfaced and programmed in this first tutorial we will create what is commonly called a "Soft-Processor", that is a processor made using the "Generla Purpose" resources inside the FPGA such as logic blocks and memories. The potential of the processor that will be created will be extremely limited, but the purpose of the Tutorial is to familiarize with the development tool. For the use of the Embedded processor (Hard-Processor) please refer the reader to the following Tutorials.
The realization of an entire processor starting from primitive logic blocks would be a task too vast and arduous to be contained in a single tutorial, therefore we will use the system developed by Quartus (Platform Designer) which allows you to define and configure a processing platform with its entire network of interfaces in a rather simple way.
Realization of the architecture

Start by creating the "skeleton" of a system using the "System Builder" tool that involves the use of
· Leds
· 7-segment display
· Swithes
· Keys
· Clock
· GPIO1 (in default mode)
Not all of these peripherals will be used at first, but their presence will be useful later without having to reconsider the project from the beginning.
Open the project thus generated within Quartus.
Inside Quartus:
Tools > Platform Design

This opens up a system that allows you to configure the architecture based on blocks already developed by third parties.
The first block is already present and is a block useful for managing the clock and reset
[image:]
In the left window, organized in submenus, there are several blocks already developed by third parties.
Among these we will search (perhaps using the filter function) and add the following Blocks. For each of them a configuration window will open, but initially for each of them accept the default configuration through the "Finish" button.
· NIOS II Processor (the soft processor)
· On-chip Memory (RAM or ROM) Intel FPGA IP (the memory where data and code will reside)
· JTAG UART Intel FPGA IP (The STDIO serial interface to communicate with the processor)
· Two Intel FPGA IP Parallel I/O (PIO) interfaces
· System ID Peripheral Intel FPGA IP (System Identifier – SysID)

The window with the architecture should look more or less like this:
[image:]

Where in red are indicated architectural errors that we will gradually fix.
The various columns in the "System Contents" tab are used to define:
1. Links between blocks
2. The name of the I/O blocks and signals
3. The description of the precedents
4. The signals that the blocks export to the outside of the architecture (I/O)
5. The Clock Domain
6. The Basic Address
7. The final address
8. The level of interupt
…
By clicking on the various blocks using the "CTRL-R" command you can define the name of the most suitable block, while using "CTRL-E" you can define the specifications. By clicking on the black or white "dots" of the various connections, they can be activated or deactivated.
Rename the various blocks appropriately and configure the connections as follows:
· The clock signal output from the "Clock generator" is connected to all blocks
· The Reset signal output from the clock generator is connected to all blocks
System > Create Global Reset Network
· The data_master line of NIOS2 reaches all blocks
(i.e. the NIOS reads/writes data from all blocks)
· the Line instruction_master reaches the memory block
(i.e. the instructions for in Nios reside only in memory)
· The UART0 interrupt is connected to the processor
We are now going to define appropriate memory addresses for the various blocks. The automatic procedure can be useful in this sense
System > Assign Base Address

[image:]
The architecture could look more or less like this with still some errors.
Then go to configure (CTRL-E) on the various blocks
Nios:
· Type Nios II/e
· Reset Vector Memory must refer to "On-chip Memory"
· Exception Vector Memory must refer to "On-chip Memory"
[image:]

Leds
· Have a length of 10 bits and are configured as an output
[image:]

SWITCHES
· Have a length of 10 bits and are configured as input

SYSID
· Provide a unique identifier value
[image:]

Finally, with a double click on the "conduit" signal of "leds" and "switches" you can define the name with which these blocks interface with the outside of the architecture.
[image:]
The architecture is fully defined and saved with an appropriate name (e.g. "Nios2_archie")
and its respective HDL code can be generated, using in this case the "Verilog HDL" choice
When the build is completed
< Close >
Before closing the procedure, take note of the memory locations of the various devices
[image:]
And it might be useful to see an example of how to instantiate the component:
Generate > Show Instanstation Template

Copy the code
[image:]
< Copy >

< Finish >

A similar window will probably appear reminding you where the files to be manually included in the project have been stored.
[image:]

Instantiation of the architecture within the project

The architecture generated in the previous step must now be imported at the global system level and interfaced with any other blocks and signals.
For example, it is necessary to ensure that the clock and an appropriate reset signal arrive at the architecture and its I/O signals related to LEDs and switshs connect to the corresponding pins inside the DE0-SoC board
At the level of the "Top Level Entity" generated with the "system builder" tool at the beginning of the tutorial, taking inspiration from the newly generated instantiation model, you can integrate the code with:
[image:]
While at the system level you still need to include the generated ".qip" file in the project.
Project > Add/Remove files in project

Click on the three dots
Go to find the file where it was previously indicated by the dialog box and import it.
<OK>
At this point the entire system can be compiled and loaded onto the DE1-SoC board.
The Hardware Part inherent in the realization of the system is finished and you can ask for Quartus.
Intel FPGA Monitor Program

Launch "Intel FPGA Monitor Program"
File > New Project

Define an appropriate directory, a name for the project, and choose which NiosII processor
[image:]
> Next
As the type of architecture, choose <Custom>, then indicate the files that characterize the hardware system .sopcinfo and .sof located in the directory where the hardware of the project resides, as a pre-loader the one relating to the DE1-Soc card
[image:]
> Next >
As a type of programming at the moment choose <No Program>
[image:]
> Next >

Then define the Processor and communication interface
[image:]
> Save

The system will ask if you want to load the configuration file on the board, but if you have a small bug of the system it is better to skip this point and use Quartus to program the board (as already done).
Action > Connect to System

Access the Memory tab
Goto Address go to the addresses where LEDs, Swithes and SysIDs have been mapped (e.g. 0x3000), check "Query Device"
> GO

At this point you can see the various peripherals through their memory addresses:
- by writing some data (e.g. 0x2AA to the relative location of the LEDs) you will see the LEDs light up alternately)
- by activating a configuration on the switches and clicking <Refresh> you will see this configuration mapped in memory

- the SysID location will be mapped to the value set via Hardware during the architecture definition phase

- By pressing the Reset button (Key[3]) the LEDs will turn off

The values changed since the previous reading are shown in red.

[image:]

So far, the read and write operations to the peripherals have been done manually through the JTAG interface and the processor has not taken part in it.
Software

Now let's write a C program that by performing an infinite loop reads the data from the switches and copies them to the LEDs.
A good code might be the following
[image:]
Obviously changing the locations of the pointers appropriately
Create a new project within the Intel FPGA Monitor Program, but this time at the tab for the programming type choose "C program" and at the next tab import the program previously written through a text editor and select "Use Small C Libraries"
[image:]
The other tabs that characterize the software configuration of the project can remain unchanged.
Once the configuration is complete
Action > Compile & Load (F5)

The software is compiled and loaded into the processor's memory

Action > Continue (F3)

It starts the program that continuously reads the data from the swithes and copies them to the leds.

If you press the Reset button (KEY[3]) on the card, the cycle stops and the LEDs go out

Action > Continue (F3)

Restart the system

Action > Stop (F4)

It stops the processor that no longer performs the prescribed cycle but does NOT reset the LEDs.

NOTE1: Interesting is the use of the "Disassembly" window which proposes the code executed by the processor in "Assembly" form and which can also be executed one step at a time by displaying the position within the code as well as the contents of all the registers.
[image:]

Tip: Change the definition of pointers from "volatile int" to "int", what changes at the execution level ? and at the assembly code level ?

NOTE2: note that as the system is designed it has a memory of 4Kb, extremely small for any program, if you tried to write a code even slightly more complex than the present one or that required the use of libraries the system would NOT be able to support it. The size of the ON-Chip Memory could be increased, but the blocks made available inside the FPGA are still quite limited, so the only solution is to interface with external memories of the FPGA itself using appropriate interfaces.

image1.jpeg
TN OB NG AU OE AN LGN ORI s RO ome g

1 ’\‘ .
L3 r
- [

i,

Iy

n
VAV U8 S
b A
Sal 3
£ XATLUVN Sy
S Luv s,

Viva gsn-
SN ANOD "

2100%3 5 Aoy
23003 “Ms.
2l0dxa " apo|

image2.png
& Platform Designer - unsaved.gsys* (C:\Altera\TuotialsQuartus22\TUTSNios\unsaved.qsys)

File Edit System Generate View Tools Help

[F P Catalog | — o | [T System Contents 0| Address Map &% | Interconnect Requirements & | oo
[C—

= - W System: unsaved

; Description Export Clock Base End 1. Tags Opcode
S (Clock Source
- (Clock Input lic
Reset Input reset
=B Clock Output dk_0
- IReset Output
-
x

4t ¥ % Current filter:

[Messages” 71| -oo

Type Path Message

e o o e

image3.png
| & Platform Designer - unsaved.gsys* (C:\Altera\TuotialsQuartus22\TUTSNios\unsaved.qsys)

- (m] X
File Edit System Generate View Tools Help
[P Catalog = — o | [T System Contents 57| Address Map &3 | Interconnect Requirements &< _go
= - W System: unsaved Path: pio_1
o\ Sysi x| %3 o - C
Project |Use Connections Name Description Export Clock Base End L. Tags Opcode Name
LiaaNew Component... « | @ 8 dk 0 (Clock Source
E ey Functions = o dkin (Clock Input clk exported
EiSimulation; Debug and Verification of dkin_reset [ResetInput reset
=B dk Clock Output dk_0
- clk_reset Reset Output
M] 81 nios2_gen?2... Nios II Processor
= dk (Clock Input unconnet
reset Reset Input [ck]
data_master |Avalon Memory Mapped Master [ck]
instruction_m... | Avalon Memory Mapped Master [ck]
irq Interrupt Receiver [clk] IRQ 0| IRQ 31
debug_reset_r...|Reset Output [ck]
‘debug_mem_... |Avalon Memory Mapped Slave [clk] 0x0800 0X0EEE
custom_instru... (Custom Instruction Master
(-] & onchip_mem... |On-Chip Memory (RAM or ROM) Intel FPGA IP
ki Clock Input unconnet
s |Avalon Memory Mapped Slave [clk1]
resetl Reset Input [clk1]
(-] © jtag_uart_0 [JTAG UART Intel FPGA IP
dk (Clock Input unconnet
reset Reset Input [ck]
avalon_jtag_sl...|Avalon Memory Mapped Slave [ck]
irq Interrupt Sender [ck]
(-] B pio_0 PIO (Parallel 1/0) Intel FPGA IP
dk Clock Input unconnet
reset Reset Input [ck]
s1 |Avalon Memory Mapped Slave [ck]
external_conn.... (Conduit
) (-] B pio_1 PIO (Parallel 1/0) Intel FPGA IP
New... | Edit... + Add... dk Clock Input unconne(
reset Reset Input [ck]
[F Fierarchy 5| Device Family oo s1 \Avalon Memory Mapped Slave [clk]
nsaved Tunsaved asyerl external_conn.... (Conduit
- dk . = sysid_gsys_0 m ID Peripheral Intel FPGA 1P
= reset dk (Clock Input nconne
o dk 0 reset Reset Input [clk]
2 :‘%u?gﬁ‘z) o control_slave | Avalon Memory Mapped Slave [ck]
= onchip_memory2_0
SHS 4 ¥ ¥ Current filter:
S []
= Connections =E7E
Type Path Message ®
B 15 Errors
© |unsaved.nios2_gen2_0 Instruction Cache is larger than the Instruction Address. Please reduce the Instruction Cache Size. Current Tag Size is 0
© |unsaved.nios2_gen2_0 Reset slave is not specified. Please select the reset slave
© |unsaved.nios2_gen2_0 Exception slave is not specified. Please select the exception slave
© |unsaved.nios2_gen2_0 nios2_gen2_0.clk must be connected to a dlock output
© |unsaved.onchip_memory2_0|onchip_memory2_0.clk1 must be connected to a dlock output
© |unsaved.jtag_uart_0 [jtag_uart_0.clk must be connected to a clock output
© [unsaved.pio_0 pio_0.clk must be connected to a dock output
© [unsaved.pio_1 pio_1.clk must be connected to a dock output
© [unsaved.sysid_asys_0 'sysid_asys_0.clk must be connected to a dlock output
© |unsaved.nios2_gen2_0 nios2_gen2_0.reset must be connected to a reset source
© [unsaved.onchip_memory2_0|onchip_memory2_0.reset1 must be connected to a reset source
© |unsaved.jtag_uart_0 [jtag_uart_0.reset must be connected to a reset source
© [unsaved.pio_0 pio_0.reset must be connected to a reset source
© [unsaved.pio_1 _L.reset must be connected to a reset source
© [unsaved.sysid_asys_0 I_asys_0.reset must be connected to a reset source

15 Errors, 9 Warnings

Generate HDL... Finish

image4.png
[& Platform Designer - unsaved qsys* (C\Altera\TuotialsQuartus22\TUTSNios\unsaved.qsys)

File Edit System Generate View Tools Help

[T Catalog | — o o|[T757tem Contents #1] Address Map % | Interconnect Requirements ¢ - o o[Parameters 1|
; =+ W System: unsaved Path: NIOS2 |System: unsaved _Path: NIOS2
. Sysi X 4 o .
Project " |Use Connections Name Description Export Clock Base End NI:“ 1 _szz
altera_nios2_gen
Libaaew Component... « | @ @ CLOCK_GEN (Clock Source -nios2ge
E ey Functions = o dkn (Clock Input clk exported
£ Simulation; Debug and Verification o1 dk_in_reset Reset Input reset Main Vectors Caches and Memory Interfaces Arithmetic Instructions MMU and MPLU
[=/Debug and Performance = Clock Output CLOCK...
= System ID Peripheral Intel FPGA IP - E Reset Output - Reset Vector
; Reset vector memory: None >
(Clock Input CLOCK... .
Reset Input oKl Reset vector offset: 0x00000000
——+—— data_master |Avalon Memory Mapped Master [k] Reset vector: 0x00001000
—+——| instruction_master |Avalon Memory Mapped Master [k]
~+——| i Interrupt Receiver [k] IR0 0| - Exception Vector
——— debug_reset_request Reset Output [k] h :
debug_mem_slave \Avalon Memory Mapped Slave k] 0x2800 O0x2£EF I Uz DIETERE None e
custom_instruction_master |Custom Instruction Master Exception vector offset: 0x00000020
2 a n:ﬁ(nln (C)Ir(;g;.xpr:lnemmy (RAM or ROM) Intel FPGA IP oo B R Soxti00
s1 \Avalon Memory Mapped Slave [clk1] 0x1000 0X1EEE - -
resett Reset Input [ck1] [~ Fast TLB. P"s Exn:quloll Vector
(-] 5 UARTO TAG UART Intel FPGA IP Fast TLB Miss Exception vector memory: |None
dk Clock Input CLOCK... Fast TLB Miss Exception vector offset: [0x00000000
reset Reset Input [clk])])
avalon_jtag_slave \Avalon Memory Mapped Slave [clk] 0x3028 0x302£ Fast TLB Miss Exception vector: 0x00000000
irq Interrupt Sender [ak]
(-] 5 LEDS PIO (Parallel 1/0) Intel FPGA IP
dk Clock Input CLOCK...
reset Reset Input [k]
s1 \Avalon Memory Mapped Slave [clk] 0x3010 0x301f
external_connection (Conduit
New... Edit... + Add... (] 5 SWITSHES PIO (Parallel 1/0) Intel FPGA IP
dk (Clock Input CLOCK...
[FT Fierarchy | Device Family oo reset Reset Input akl
- 7 s1 |Avalon Memory Mapped Slave [clk] 0x3000 0x300F
w dk_in external_connection (Conduit
= ﬂt’:’é&?ﬁ 2 @ SYSID 'System ID Peripheral Intel FPGA IP.
S LEDS dk (Clock Input CLOCK...
- dk) reset Reset Input [k]
- MG{NBLCONNMIO" —————— control_slave \Avalon Memory Mapped Slave [clk] 0x3020 0x3027
= rese
- st
o MEM
» cki
o resetl
=51 =
S8e) NIOZ -4t ¥ ¥ Current filter: D E———————
- d
=« custom_instruction_master [5= Messages 0| oo
~« data_master T
»- debug_mem_slave Type Path Message
- debug_reset_request
~« instruction_master 5@ [2Ermors
- vt © |unsaved.NIOS2 Reset slave is not specified. Please select the reset slave
b4 gllguckfbridﬂe © |unsaved.NIOS2 Exception slave is not specified. Please select the exception slave
o reset_bridge EA |2 Wamings
o o Connections /. |unsaved.LEDS LEDS.external_connection must be exported, or connected to a matching conduit.
- dk) /i |unsaved.SWITSHES SWITSHES.external_connection must be exported, or connected to a matching conduit.
» external_connection
- reset 5@ |3 1nfo Messages
LEnsl © |unsaved.UARTO JTAG UART IP input clock need to be at least double (2x) the operating frequency of JTAG TCK on board
= dk © |unsaved.sysid_gsys_0 System ID s not assigned automatically. Edit the System ID parameter to provide a unique ID
+ control_slave © |unsaved.sysid_qsys_0 Time stamp will be automatically updated when this component is generated.
£ UARTO
» avalon_itaq_slave
= dk
=i
o reset
M Connections D255
2 Errors, 2 Warnings Generate HDL... Finish

image5.png
Main Vectors Caches and Memory Interfaces Arithmetic Instructions MMU and MPU Settings T,

[Reset Vector
Reset vector memory: MEM.s1 v
Reset vector offset: 0x00000000
Reset vector: 0x00001000

[~ Exception Vector
Exception vector memory: MEM.s1 v
Exception vector offset: 0x00000020
Exception vector: 0x00001020

[Fast TLB Miss Exception Vector
Fast TLB Miss Exception vector memory: |None

Fast TLB Miss Exception vector offset: |0x00000000
Fast TLB Miss Exception vector: 0x00000000

image6.png
& PIO (Parallel I/0) Intel FPGA IP - LEDS

“ PIO (Parallel 1/O) Intel FPGA IP
Megetor:

altera_avalon_pio

[Block Diagram
() Show signals
LEDS
s clock
reset
reset
st
avalon
external_connection
iconduit
altera_avalon_pio

[Basic Settings

Width (1-32 bits): 10

Direction: O Bidir
(O Input
(O InOut
© output

Output Port Reset Value: |0x0000000000000000

[Output Register
() Enable individual bit setting/clearing

I~ Fdae cantiire reqaictor

image7.png
' Anknmanebae

& System ID Peripheral Intel FPGA IP - SYSID

“ System ID Peripheral Intel FPGA IP
v altera_avalon_sysid_gsys

[Block Diagram | i [Parameters
o () Show signals 32 bit System ID: |0x12345678
1 [Description
| SYSID
ok Please use hexadecimal numbers only in System ID.
1 clock
o [reset
reset
control_slave
avalon
| altera_avalon_sysid_qsys

image8.png
[& Platform Designer - unsaved qsys* (C\Altera\TuotialsQuartus22\TUTSNios\unsaved.qsys)

- (m]
File Edit System Generate View Tools Help ‘
[P catlog | - o o] [EEISVtemICORteEIN Address Map :* | Interconnect Requirements & — o o[Parameters |
; = - W System: unsaved Path: SYSID.ck System: unsaved _Path: SYSID.clk
L Sysi X%,
Project " |Use Connections Name Description Export Clock Base End Tags ﬁbik 1_"5”‘
dlock_sin
uh:a’r"vew Component... « | @ @ CLOCK_GEN (Clock Source =
= Basie Functions. = o dk.in (Clock Input dk exported [~ Parameters
[=Simulation; Debug and Verification o1 dkin_reset Reset Input reset Cockrate:p |
[=Debug and Performance e — ok Clock Output ICLOCK.... .
« System ID Peripheral Intel FPGA IP - — L0k reset Reset Output
ML] 21 NIOS2 Nios II Processor
= dk (Clock Input CLOCK...
reset Reset Input [ck]
————| data_master \Avalon Memory Mapped Master [ck]
———| instruction_master \Avalon Memory Mapped Master [ck]
| irq Interrupt Receiver [clk] IRQ 0| IRQ 31
| debug_reset_request Reset Output [ck]
debug_mem_slave |Avalon Memory Mapped Slave [clk] 0x2800 0x2££E
custom_instruction_master |Custom Instruction Master
[] @ MEM On-Chip Memory (RAM or ROM) Intel FPGA IP
ki Clock Input CLOCK...
s1 \Avalon Memory Mapped Slave [clk1] 0x1000 0X1EEE
resetl Reset Input [ck1]
[] 8 UARTO ITAG UART Intel FPGA IP
dk (Clock Input CLOCK...
reset Reset Input [ck]
avalon_jtag_slave |Avalon Memory Mapped Slave [clk] 0x3028 0x302F
irq Interrupt Sender [ck]
[] & LEDS PIO (Parallel 1/0) Intel FPGA IP
dk Clock Input CLOCK...
reset Reset Input [ck]
s1 \Avalon Memory Mapped Slave [clk] 0x3010 0x301f
external_connection Conduit leds_external_connection
New... Edit... + Add [] @ SWITSHES PIO (Parallel 1/0) Intel FPGA IP
dk (Clock Input CLOCK...
[FT Fiierarchy #| Device Family oo reset Reset Input akl
- — 7 s1 |Avalon Memory Mapped Slave [clk] 0x3000 0x300F
= CLOCK_GEN external_connection Conduit switshes_external_connection
<dk & SYSID 'System ID Peripheral Intel FPGA TP
= dk_in g . —
» dkCin_reset Clock Input Double-click to export
-a dlk_reset — reset Reset Input [clk]
=y LED& control_slave \Avalon Memory Mapped Slave [clk] 0x3020 0x3027
- d
» external_connection
- reset
- si
= MEM
= ki
> resetl 4t ¥ % Current filter:
- si
EBNIOS2 [Messages | oo
- dk
~ custom_instruction_master Type Path Message
= data_master
» debug_mem_slave E©@ [3Info Messages
= debugresel_request © |unsaved.UARTO JTAG UART TP input clock need to be at least double (2x) the operating frequency of JTAG TCK on board
S © |unsaved.sysid_asys_0 System ID s not assigned automatically. Edit the System ID parameter to provide a unique ID
= dock_bridge © |unsaved.sysid_asys_0 Time stamp will be automatically updated when this component is generated.
T cpu
4 reset_bridge
I Connections
43 SWITSHES
- dk
» external_connection
- reset
- si
=43 SYSID
-
= control_slave
» reset
43 UARTO
= avalon_jtaq_slave
= dk
- irq D255
0 Errors, 0 Warnings Generate HDL... Finish

image9.png
=
X

System Contents_* [FTAAGAGSSIMAPIIN Interconnect Requirements

Path: CLOCK_GEN

NIOS2.data_master
0x3010 - 0x301f

NIOS2.instruction_master

.51
ﬁEM.sl 0x1000 - Ox1fff 0x1000 - Ox1fff
10S2.debug_mem_slave [0x2800 - 0x2fff 0x2800 - Ox2fff
|SWITSHES 51 0x3000 - 0x300f
SID.control_slave 0x3020 - 0x3027
/ARTO.avalon_jtag_slave [0x3028 - 0x302f

image10.png
& Instantiation Template

You can copy the example HDL below to declare an instance of Nios2_archie.

HDL Language: |Verilog

Example HDL
Nios2_arcnie w (
et (<connected-to-cli_cli>), " clkcik
{leds_excernal comnection sxport (<comnected-co-leds_external comection exports), | // leds sxcernal commection.export
J— (cconnscted-to-reset_reser), Vi reset.zessc n

.switshes_excernal_connection export (<comnected-to-switshes_external Comnection eXporty)

/1 switshes_external_connection.export.

Copy

Close

image11.png
| @ Quartus Prime X

You have created an IP Variation in the file C:/
Altera/TuotialsQuartus22/TUT5Nios/ |
Nios2_archie.qsys.

To add this IP to your Quartus project, you must
manually add the .qip and .sip files after
generating the IP core.

The .qip will be located in
<generation_directory>/synthesis/
Nios2_archie.qip

The .sip will be located in
<generation_directory>/simulation/
Nios2_archie.sip |

OK

image12.png
//=
// Structural coding

1/
Nios2_archie u0 (
.clk_cTk (CLOCK_50), // clk.clk
.Teds_external_connection_export (LEDR[9:01), // Teds_external_connection.export
.reset_reset_n (KEY[31), // reset.reset_n
.switshes_external_connection_export (SW[9:0]) // switshes_external_connection.export

image13.png
Project directory:

Project name:

Architecture: | Nios I -

image14.png
| B NewP

Specify a system
Select a system
| <Custom system>.

3 [Documentation

'Specify a system by selecting a system description (SOPCInfo) file, preloader and

loptionally a programming file (SOF).

System details
System description file (SOPClnfo):
|C:/Altera/TuotialsQuartus22/TUTSNios/Nios2_archie.sopcinfo | Browse...|
FPGA programming (SOF) file:

|/ Browse..|

‘C:/Altera/TuotiaIsQuartusZZ/TUTSNioS/TutSNios.sof

The SOF file represents the FPGA programming file for the hardware system. If it is
specified here, then the Monitor Program can be used to download this programming
l file onto the board. Otherwise, the system will need to be downloaded using some

other method (for example, by using Quartus Il).

| | Prefoader
[DE1-S0C

image15.png
I Program Type: |No Program -

Specifies that this project does not have an associated program. This type of project can be
used to debug a system without loading a program into it first.

DInclude a sample program with the project

image16.png
| Specifysystemparameters |

System parameters
| Host connection DE-SoC [USE-1] || Refresh

Processor:

Terminal device: (UARTO -

image17.png
@ Intel FPGA Monitor Program - LedAndSwitches : Connect to System [Paused] — (]
File Edit Actions Windows Help
O BB Yhd 20k G
cowatiressGexorsymbotnomer| s Go| ¥ Query Devices gl Rvalie
e omsoootono
TR — | e
5xc0003000 000003 00000 0006000 00000036 a—reTTT
500003010 0000024 00000000 00000000 00000080 = oaooooooo
GiO000G020 1254678 65085578 00002400 00402450 % oaooooooo
0000305 : : i i % oaooooooo
seooonsos % oaooooooo
000050 & oaooooooo
oxanoanes ER——re T
0x00003070 ; ; ; . e 0200000000
0x00003080 2 ; ; 2 = 0x00000000
oxon0nansn : : : : e
I
fisoaooooooo
[. . . . CENMNC
sx0oogsono Eisos0oos0og
[. . . . e [omsossonod
[. . . . FEREEE
0000100 ; ; ; ; fi6oaooooooo
0000110 ; ; ; ; k15 oaooooooo
[. . . . © [
e 517|721 loxoooo0oo0
t2 oaooooooo
Disassembly | Breakpoints , Memory | Watches | Trace | r2 oxoooooono
STAG UART Link established using cable "DE-SoC [USB-1)%, device 2, instance 0x00 20F0: emory - MEN (6x1000 - Gx1ED)
IWFO: Nonomemory - LEDS 03010
RURD: Non-emory — STICEES 013000
Reading: 0x00003010-0x00003013
Info & Errors | GDB Server

image18.png
my_Leds.c
1 int main(void)

2 {

3 /* Declare volatile pointers to I/O registers (volatile means that the locations
a * will not be cached, even in registers) ¥/

H volatile int * LED_ptr = 0x3010;

6 volatile int * SW_switch_ptr = 0x3000;

7 int SW_value;

8

9 while (1)

10 {

11 SW_value = *(SW_switch_ptr); // read the SW slider switch values
12 *(LED_ptr) = SW_value; // light up the red LEDs

13 3

14 }

15

image19.png
New Project Wizard X

} Specify program details ‘

Source files
|| First source file is used to determine the name of the binary program file.

my_Leds.c

| =

Program options

Additional compiler flags: xction-sections -fverbose-asm -fo-inline -mno-cache-volatile|

Additional linker flags: | |

Use small C library Emulate unimplemented instructions

image20.png
@ Intel FPGA Monitor Program - LedsAndSwithesSoftware : my_Leds.srec [Paused]

0x0000102C 10005574

oz

int 5U_value;

hile (1)
¢
SU_value = *(SU_svitch ptr];

0x00001034 00800435

Ox00001038 003FD0S

Ox0000103C 005855

0x00001040 0000525

*(LED ptr] = 5U_value;
stwio rz, l2304(zera)

hile (1)

br -0xC (0x00001030: main]

#include <stdio.h>

#ifde _JTAG_UART_BASE

77 read the SV slider svitch values

77 light up the red LEDs

size_t vrite(int £, const veid® buf, size_t mbytes) {

wrice!
aa xz, x6, zero
int i

const char® cbuf = (const char®] buf ;

For(i=0 ;i< mbyres ; +H |

beq 16, zero, 0x20 (0x00001064]

TAG URRT link established using cable "DE-SoC [USB-1]", device 2, instance 0X00

000000000

000000005

000001780

000000000

000000000

000000000
000000000

000000000

000000000

000000000

000000000

000000000

000000000

000000000

000000000

000000000

000000000

000000000

000000000

000000000

000000000

000000000

000000000

000001780

000009770

0x00001FFC

000000000

000000000

make £ amp.mk COMPILE
make: Nothing to be done for 'COMPTLE'.
|make -£ amp.mk CHECK_JTAG_ID

|make -£ amp.mk CHECK_JTAG_ID

Using cable "DE-SoC [USB-1]", device 2, instance 0x00
Resetring and pausing target processor: OK

Reading System 1D at address 0x00003020; verified
Initializing CU cache (if present)

ok

Downloading 00001000 (0%)
Downloaded 2K in 0.0s

|veritying 00001000 (0%)

|Veriried ok

Connection established to GDB server at localhost:3068
Symbols loaded.

Source code loaded.

NFO: Non-memory - <none> 0x0

INFO: Non-memory - UARTO 0x3028
INFO: Non-memory - SYSID 0x3020
NFO: Memory - MEM (0x1000 - Oxlfff)
INFO: Non-memory - LEDS 0x3010
INFO: Non-memory - SWITCHES 0x3000
Program stopped @ 0x00001034

