NMR DI ETERONUCLEI

Nuclei di atomi presenti nei composti organici

TABELLA 6.1 Dati di risonanza magnetica nucleare utili relativi ad alcuni nuclidi discussi in questo capitolo.

130 isotopi con | >0
33 isotopiconl=7%

Isotopo  Numero quantico Abbondanza Ricettiviti  Frequenza (MHz) Composto Intervallo tipico di
di spin naturale % relativa® a7046 T di riferimento primario chemical shift (ppm)

'H % 99.9885 1.000 300.000 Si(CH,), da10a0

H 1 0.0115 37x107% 46052 $i(CD;), dal0a0

*H Y 0 0 319.993 Si(CTy), dal0a0

LI % 80.1 0.132 96.269 BF; - Et,0 in CDCl, da1352-130

G % 1.07 L70x 10 75451 Si(CH,), da220a0

N 1 99.632 L00x 10 21.686 NH,(1)° da 90020

BN 1 0.632 384x 10 30419 15NH;(1)b da900a0

0 % 37x 107 281x107% 40670 H,0 da 1700 2-50

BE v» 100 0.834 282.387 CECl, da 276 2280

Al ) 100 0.207 78.232 Al(NO,), (aq) da 2502 -200

) % 4,6832 368x 10 59648 Si(CH,), da 1752 -380

3p 1 100 6.65x 107 121.554 85% H,PO, (aq) da 270 a -480

Bpr oy 33.832 351x107° 65473 Na,PtCl (aq) da 7500 a-6500

*Relativoa 'H

bA25°C

15N, 1°F, 3P, 29Si i piu usati dal chimico organico



15SN-NMR

Azoto importante in chimica organica delle sostanze naturali, farmacologia, biochimica
Molti composti azotati di interesse biologico (alcaloidi, peptidi, proteine, acidi nucleici)

1N, =1, y=1.9338 10’ rad T''s!, bassa frequenza di Larmor, nucleo quadrupolare,
segnali molto allargati, non usato in NMR

BN, I=%,v=-2.7126 107 rad T-!s%, bassa frequenza di Larmor, scarsa abbondanza isotopica
bassa sensibilita (superabile con arricchimento isotopico e tecniche inverse).
Lunghissimi tempi di rilassamento, ridotti con I'aggiunta di Cr(lll) paramagnetico.

NOE nel disaccoppiamento dal protone
NOE max =v,/2yy =-5
Posta = 1 l'intensita del segnale originale si ha:

Aumento max di sensibilita= -4 (1-5)
Molti fattori concorrono al rilassamento dipolare,

per cui se per es NOE = -1 si ha scomparsa del segnale. mm®) |nverse Gated decoupling



15SN-NMR CHEMICAL SHIFT

Intervallo: 0 — 900 ppm
Riferimento: NH; liquida (standard esterno)

Da 0 a 500 la maggior parte delle risonanze

La presenza del doppietto elettronico conferisce proprieta peculiari al comportamento NMR
dell’azoto.

Es:
sensibilita alle variazioni di solvente maggiore rispetto al 13C (intervallo di 45 ppm)

Comportamento alla protonazione diverso per N eterociclici (schermaggio)
o ammine alifatiche (deschermaggio)



15N;NI\N{IR — CHEMICAL SHIFT
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FIGURA 6.1 Intervalli di spostamenti chimici per vari composti e gruppi funzionali azotati. Adattata da Levy e Lichter (1979).



15N NMR - ACCOPPIAMENTI

Tabella 6.2 Tipiche costanti di accoppiamento J relative a "N

Costante Intervalle tipico di valori (Hz)
di accoppiamento

leH da -40a-136

:_Z})\TH da-15a+15

Ve da-77.52+36

an da-252a+15

l]Np da-82a+92

s <20

2 Vedi Witanowski ef al. (1986, 1993) e Berger et al. (1997).

Accoppiamenti >N — 1H non osservabili negli spettri tH NMR
Accoppiamenti >N — 1H, 1N — 19F, 15N — 31p osservabili negli spettri 1°N NMR

Accoppiamenti >N — 13C non osservabili nei rispettivi spettri



SPETTRI >N -NMR

N NMR 30.4 MHz
1
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FIGURA 6.2 Spettro 1SN NMR disaccoppiato dal protone della formammide in CDCl, usando NH 5(1) come riferimento esterno.

Formammide
Il segnale prima del processamento dello spettro & negativo causa effetto NOE.



SPETTRI >N -NMR

>N NMR 30.4 MHz
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FIGURA 6.3 Spettro >N NMR disaccoppiato dal protone della etilendiammina in CDCl; usando NH;(1) come riferimento esterno.
Lo spettro N NMR accoppiato con il protone € mostrato nell'inserto.

Etilendiammina spettro disaccoppiato e accoppiato



SPETTRI >N -NMR

N NMR 30.4 MHz
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FIGURA 6.4 Spettro '*N NMR disaccoppiato dal protone della piridina in CDCl; usando NH,(1) come riferimento esterno.

Piridina spettro disaccoppiato



SPETTRI >N -NMR

15N NMR 30.4 MHz
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FIGURA 6.5 Spettro >N NMR disaccoppiato dal protone della chinina in CDCl; usando NH;(1) come riferimento esterno.

Chinina



SPETTRI 2D >N NMR

1H- 15N HSQC peptide VGSE
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SPETTRI 2D >N NMR

1H- 15N HSQC peptide VGSE

Proiezione °N derivata dallo spettro 'H-'"N HSQC 600 MHz (1 ora)
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N NMR 60 .8 MHz (15 ore)
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FIGURA 6.6 Spettro "H—"N NMR HSQC e sua proiezione del tetrapeptide VGSE (mostrato in figura) in soluzione diluita. L'acquisizione dello

spettro 2D ha richiesto un’ora di tempo macchina. In basso & mostrato il tentativo fallito di ottenere uno spettro 1D N NMR acquisito in 15 ore.



SPETTRI °N di correlazione

1H- 15N HSQC mioglobina (153 amminoacidi) marcata al 99%

Aumento di sensibilita di 240 volte con la marcatura, di 84000 volte grazie alla tecnica
inversa

Studiate proteine fino a 50 KDa
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FIGURA 6.7 Spettro 'TH—!*N NMR HSQC della mioglobina N marcata.



15F NMR

Elemento monoisotopico, non presente in composti naturali
Applicazioni in chimica dei polimeri, studi metabolismo, scienze biofarmaceutiche,

Proteine marcate con fluoro

[=1%,y=25.1815 rad T-'s"\ monoisotopico
Sensibilita 83% rispetto all’1H
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FIGURA 6.8 Intervalli di spostamenti chimici 19-fluoro per composti contenenti gruppi funzionali fluorurati



15SF NMR - SPETTRI

FLUOROACETONE
FENMR 282.4 MHz O “F NMR 282.4 MHz
____________ H, C/U\CHZF Disaccoppiato da 'H
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Spettri °F del fluoroacetone accoppiato e disaccoppiato



15SF NMR - SPETTRI

FLUOROACETONE 43 Hz
'"H NMR 300 MHz -'
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Spettri H e 13C del fluoroacetone, sono visibili gli sdoppiamenti dovuti all’accoppiamento con

19|:



15SF NMR - SPETTRI

FLUOROBENZENE

F NMR 282.4 MHz F F NMR 282.4 MHz

© Disaccoppiato da 'H

Spettri 1°F del fluorobenzene accoppiato e disaccoppiato al 1H

Sistema AA'GG’'MX (X = 19F)



15SF NMR - SPETTRI

'H NMR 300 MHz
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Sistema AA’GG’MX Spettri 'H NMR e 13C del fluorobenzene



15F NMR — CHEMICAL SHIFT

Difficili da prevedere perché il contributo maggiore non e lo schermo diamagnetico
ma guello paramagnetico, necessari i calcoli quantomeccanici.

Tabella 6.3 Spostamenti chimici per vari composti fluorurati.

Composto 8('°F) (ppm)
CFCl, 0.0
CF,Cl, 8.0
CEF;Cl1 28.6
CFBrjy 7.4
CF,Br, 7.0
CFBr, 7.0
CFH; 271.9
CF,H, 1436.0
CF;H 78.6
CF; 62.3
Gy Fy 135.15
CsFg 132.9
(CF;),CO 84.6
CE;C(O)0H 76.5
CF;C(O)0OCH,; 74.2
CF;COOEt 78.7
(CF;)sN 56.0
CH,FCN 2510
FCH=CH, 114.0
F,C—CH, 81.3
E,C=CF, 135.0
CeFs 164.9
C¢H.F 113.5
p-CcH4F, 106.0
CgH;CFH, 207.0
CsHs;C(O)OCF, 73.9
CgHsC(CF;),0OH 74.7
CgH;CF; 63.7
F, (elementare) 422.9
SEg 57.4
SiF, 163.3
HF (acquoso) 204.0

KF (ione fluoruro acquoso F) 125.3




19F NMR - Costanti di accoppiamento

Tabella 6.4 Tipiche costanti di accoppiamento J relative a 1°F2,

Composto Costante di accoppiamento
*Jur (Hz)

ECH,CH,CI] 46

CFH, 46

CF,H, 50

CF;H 79

cis-C,F,H, 72.7

cis-C,F,H, 74.3 -l|.||:
3]1-{1: (Hz)

p-fluorobromobenzene 8.62

FCH,CH,(C] 23

F,CCH; 12.8

cis-C,F,H, 20.4

trans-C,F,H, 4.4

FC=CH 21



19F NMR - Costanti di accoppiamento

CF,BrCHBrCl
CECICH,Cl
CF,=CBr(Cl

o-difluorobenzene
m-difluorobenzene
p-difluorobenzene

CFBr,

CFCl,

CF,H,

CF,

FCIC=CC(I,
p-idrossifluorobenzene

NF,
CH,SiF,
CICH,PF,

2]1:1: (Hz)
154
170
30
Je
*Jeg =21 Hz
Yfep =6 Hz
S]FF = 18 Hz
l]cp (Hz)
372 ]
337 CF
235
257
303
I]CP = 273 Hz
2Jop =23 Hz
Jecrp=7.9 Hz
‘Jep=2.1Hz
e = 160 Hz [
ljsuz = 267 Hz NF

1]1)1: = —-1203 Hz




1P NMR

Molecole organiche contenenenti fosforo: fosfine, sali di fosfonio, ilidi del P, ...
Biochimica: acidi nucleici, ATP, ADP
Monoisotopico, | =%, y= 10840 107 rad T s

Tabella 6.7 Spostamenti chimici di *'P per vari composti

fosforati®.

Composti 8 (ppm)® Composti 8 (ppm)P
del fosforo (II1) del fosforo (V)

PMe, 62 Me,PO 36.2
PEt, 20 Et;PO 48.3
P(n-Pr)s 33 [Me,P]* 24.4
P(i-Pr), 19.4 [PO,I3- 6
P(n-Bu), 32.5 PF; 80.3
P(i-Bu), 45.3 PClg 80
P(s-Bu); 79 MePF, 29.9
P(¢-Bu), 63 Me;PF, 158
PMeF, 245 Me;PS 59.1
PMeH, 163.5 Et,PS 54.5
PMeCl, 192 (Et,P]* 40.1
PMeBr, 184 [PS4)*~ 87
PMe,F 186 (PF¢l™ 145
PMe,H 99 (PCl,]* 86
PMe,Cl 96.5 (PClgl™ 295
PMe,Br 90.5 Me,PF, 8

2 Adattato da Bruker Almanac (1995).
b Riferito a H;PO, all’85% (aq), 0.0 ppm.

Figure : ch sh molto simili nonostante i diversi stati di ossidazione, difficile da spiegare
con metodi empirici



1P NMR

Tabella 6.8 Tipiche costanti di accoppiamento ] relative a *'P2.

Costante Intervallo tipico di valori (Hz)
di accoppiamento

oy da 14021115

pp da -6202a +776

Yop dal13al75

e da -43 2 448

Upp da 550 a 1441

Uon da -82 a +92

Upig da 140 a 17 500

1prg da 21021100

% Vedi Verkade e Quin (1987) e Berger et al. (1997).
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31P NMR -SPETTRI Dpietilclorofosfato

*P NMR 242.9 MHz Disaccoppiato da 'H

(C,H;),P(0)C

%

*'P NMR 242.9 MHz Accoppiato a 'H

'H NMR 600 MHz Disaccoppiato da *'P
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