Zeri di polinomi

Zeri. Un numero $\alpha \in \mathbb{K}$ è detto zero o radice di $f \in \mathbb{K}[x]$ se $f(\alpha) = 0$. Di un polinomio reale possiamo considerare sia gli zeri reali che quelli complessi.

Oss. Se $\alpha \in \mathbb{C}$ è zero di $f \in \mathbb{R}[x]$ allora anche $\bar{\alpha}$ è zero di f. Infatti se $f=a_0+a_1x+\cdots+a_nx^n$ con a_0,\ldots , $a_n\in\mathbb{R}$ si ha $ar{a}_i=a_i\;orall\, i=0,\ldots$, nda cui

$$0 = f(\alpha) = \overline{f(\alpha)} = f(\bar{\alpha}) \implies \bar{\alpha} \text{ zero di } f.$$

Oss. Non è detto che un polinomio reale abbia zeri reali, ad es. $x^2 + 1$.

Teor. $\alpha \in \mathbb{K}$ è zero di $f \in \mathbb{K}[x] \Leftrightarrow f$ è divisibile per $x - \alpha$.

Dim. \Rightarrow Divisione di f per $x - \alpha \rightsquigarrow q, r \in \mathbb{K}[x]$ t.c. $f = (x - \alpha)q + r$ e deg $r < \deg(x - a) = 1 \Rightarrow r = \text{costante} \Rightarrow 0 = f(\alpha) = r$.

$$f = (x - \alpha)q$$
 per un certo $q \in \mathbb{K}[x] \Rightarrow f(\alpha) = 0$.

Gli zeri si determinano nel modo usuale risolvendo un'equazione a coefficienti reali o complessi. Consideriamo $a, b, c \in \mathbb{C}, a \neq 0$.

Grado 1.
$$ax + b = 0 \iff x = -\frac{b}{a}$$

Grado 1.
$$ax+b=0 \iff x=-\frac{b}{a}$$

Grado 2. $ax^2+bx+c=0 \iff x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$

Oss. Se l'equazione è nella forma $ax^2 + 2bx + c = 0$ possiamo usare la formula ridotta $x = \frac{-b \pm \sqrt{b^2 - ac}}{c}$

Esempio.
$$ix + 4 - i = 0 \Rightarrow x = 1 + 4i$$
.
 $x^2 + 1 = 0 \Rightarrow x = \pm i$.
 $x^2 + 2ix - 1 = 0 \Rightarrow x = -i \pm \sqrt{i^2 + 1} = -i$.

Molteplicità. Se $\alpha \in \mathbb{K}$ è zero di $f \in \mathbb{K}[x]$, con deg $(f) \geqslant 1$, abbiamo visto che f è divisibile per $x-\alpha$ ovvero $\exists q_1 \in \mathbb{K}[x]$ t.c. $f=(x-\alpha)q_1$. Può succedere che α sia zero anche di q_1 , cioè $q_1(\alpha) = 0$ e quindi q_1 è divisibile per $x-\alpha$. Si ha $f=(x-\alpha)^2q_2$. Si può continuare in questo modo al massimo un certo numero m di volte, ottenendo alla fine $f=(x-\alpha)^mq$ per un certo $q \in \mathbb{K}[x]$ t.c. $q(\alpha) \neq 0$. Si noti che $\deg(f) = m + \deg(q)$ quindi $m \leq \deg(f)$.

Def. Supponiamo che $\alpha \in \mathbb{K}$ sia zero di $f \in \mathbb{K}[x]$ con deg $(f) \geqslant 1$. Si chiama molteplicità di α il massimo intero $m \in \mathbb{N}$ t.c. f sia divisibile per $(x-\alpha)^m$.

Oss. Per la molteplicità m di uno zero di f si ha $1 \le m \le \deg(f)$.

Polinomi interi. Per un polinomio a coefficienti interi

$$f = a_0 + a_1 x + \cdots + a_n x^n,$$

 $a_0, \ldots, a_n \in \mathbb{Z}$, $a_n \neq 0$ gli zeri *razionali* se esistono vanno cercati tra le frazioni del tipo $\frac{p}{q}$ dove il numeratore p è divisore (positivo o negativo) del termine noto a_0 , e il denominatore q è divisore positivo di a_n . Questo in certi casi consente di trovare zeri di polinomi di grado $\geqslant 3$.

Esempio. $x^3 - x^2 - 7x - 2 = 0$ cerchiamo zeri interi tra i divisori di 2 cioè ± 1 , ± 2 e con qualche tentativo si trova lo zero x = -2. Successivamente si divide il polinomio dato per x + 2 e se ne ottiene uno di secondo grado di cui sappiamo calcolare gli zeri. Nel caso specifico si ha

$$\frac{x^3 - x^2 - 7x - 2}{x + 2} = x^2 - 3x - 1.$$

Esempio. $2x^3-x^2+x+1=0$ cerchiamo zeri interi tra i divisori di 1, cioè ± 1 , e poi tra le frazioni $\pm \frac{1}{2}$ e con qualche tentativo si trova lo zero $x=-\frac{1}{2}$. Si esegue quindi la divisione

$$\frac{2x^3 - x^2 + x + 1}{x + \frac{1}{2}} = 2(x^2 - x + 1).$$

Questo metodo non funziona se il polinomio non ha coefficienti interi o non ha radici razionali. Esistono formule per risolvere equazioni di terzo e quarto grado, ma non trattiamo questo argomento.

Prop. Un polinomio reale o complesso di grado $n \geqslant 1$ ha al massimo n zeri distinti.

Dim. Per induzione su n.

Base dell'induzione n=1. Il polinomio ax+b, con $a,b\in\mathbb{K}$ e $a\neq 0$ ha soltanto lo zero $x=-\frac{b}{a}$ e quindi l'enunciato è vero.

Ipotesi induttiva Supponiamo vero l'enunciato per tutti i polinomi di grado $n-1\geqslant 1$ e dimostriamolo per i polinomi di grado n.

Sia $f \in \mathbb{K}[x]$ con $\deg(f) = n$. Se f non ha zeri allora non c'è nulla da dimostrare. Se $\alpha \in \mathbb{K}$ è zero di f allora $\exists q \in \mathbb{K}[x]$ t.c. $f = (x - \alpha)q \Rightarrow \deg(q) = n - 1$. Per l'ipotesi induttiva q ha al massimo n - 1 zeri, che sono anche zeri di f. Pertanto f ha al massimo n zeri (incluso n).

Oss. Se $f \in \mathbb{K}[x]$ è un polinomio di grado $\deg(f) \leqslant n$ con più di n zeri allora f = 0 (polinomio nullo).

Principio d'Identità dei Polinomi. Due polinomi reali o complessi sono uquali se e solo se sono uquali le corrispondenti funzioni polinomiali.

In altre parole $f = g \Leftrightarrow f(u) = g(u) \ \forall u \in \mathbb{R} \ (o \ \mathbb{C})$.

Dim. Siano $f, g \in \mathbb{K}[x]$. Se f = g allora è ovvio che $f(u) = g(u) \ \forall \ u \in \mathbb{K}$.

Viceversa, se $f(u) = g(u) \ \forall \ u \in \mathbb{K}$ allora il polinomio $h = f - g \in \mathbb{K}[x]$ soddisfa $h(u) = f(u) - g(u) = 0 \ \forall \ u \in \mathbb{K}$ e quindi h ha infiniti zeri $\Rightarrow h = 0 \Rightarrow f = g$.

N.B. Non è un enunciato banale perché l'uguaglianza di polinomi è espressa in termini dei coefficienti e del grado, concetto diverso dall'uguaglianza di funzioni.

Enunciamo senza dimostrare il seguente importante teorema.

Teorema Fondamentale dell'Algebra. Ogni polinomio complesso di grado $\geqslant 1$ ha almeno uno zero complesso.

Dato $f \in \mathbb{C}[x]$ con $\deg(f) = n \geqslant 1$, il Teorema fondamentale dell'Algebra garantisce l'esistenza di almeno uno zero $\alpha_1 \in \mathbb{C}$ e quindi $f = (x - \alpha_1)q$ con $\deg(q) = n - 1$. Se $n - 1 \geqslant 1$ allora q ha uno zero α_2 che è anche zero di f. Procedendo in questo modo si arriva ad un quoziente di grado 0, cioè costante. Alla fine f risulta scomposto in fattori di primo grado. Raccogliendo i fattori simili si ottiene la fattorizzazione

$$f = a(x - \alpha_1)^{m_1} \cdots (x - \alpha_k)^{m_k}$$

dove $\alpha_1, \ldots, \alpha_k$ sono gli zeri distinti di f, $a=a_n\neq 0$ è il coefficinete di x^n , e $m_1, \ldots, m_k\in \mathbb{N}$ sono le molteplicità degli zeri corrispondenti.

Oss. Questa fattorizzazione è unica a meno di riordinare i fattori.

Oss. $m_1 + \cdots + m_k = \deg(f) = n$.

Oss. Una fattorizzazione simile si ottiene per polinomi reali che abbiano tutti gli zeri reali.

Teor. Sia $f \in \mathbb{R}[x]$ un polinomio reale di grado dispari. Allora f ha almeno uno zero reale.

Dim. Supponiamo per assurdo che f non abbia zeri reali. Allora gli zeri di f sono tutti numeri complessi non reali $\alpha_1 \ldots, \alpha_k$. Dato che f è reale per ogni zero α_j c'è anche il coniugato $\bar{\alpha}_j \neq \alpha_j \Rightarrow k$ pari $\Rightarrow f$ è prodotto di un numero pari di fattori di primo grado $\Rightarrow \deg(f)$ pari, contraddizione.