Lezione 8 Matrici

Matrici

Def. Dati due numeri positivi $m,n\in\mathbb{N}$, una matrice di tipo $m\times n$ è una tabella di numeri reali o complessi con m righe e n colonne. Se m=n la matrice è detta quadrata. I numeri che formano la matrice sono detti entrate o elementi.

Una matrice quadrata $n \times n$ è detta anche matrice quadrata di ordine n.

Esempio.

$$A = \begin{pmatrix} 3 & 2 & -5 \\ 0 & 1 & 4 \end{pmatrix}$$

è una matrice 2 x 3.

L'insieme delle matrici $m \times n$ a entrate reali si indica con $M_{m,n}(\mathbb{R})$ o anche $\mathbb{R}^{m \times n}$. Analogamente l'insieme delle matrici $m \times n$ a entrate complesse si indica con $M_{m,n}(\mathbb{C})$ o anche $\mathbb{C}^{m \times n}$. L'insieme delle matrici quadrate di ordine n si indica con $M_n(\mathbb{R}) = M_{n,n}(\mathbb{R})$ e similmente per quelle complesse $M_n(\mathbb{C}) = M_{n,n}(\mathbb{C})$. Si ha $M_{m,n}(\mathbb{R}) \subset M_{m,n}(\mathbb{C})$.

Esempio.

$$B = \begin{pmatrix} 2 & i \\ -1 + 3i & -1 + 7i \end{pmatrix} \in M_2(\mathbb{C}).$$

Le entrate di una matrice $m \times n$ si numerano a partire da quella più in alto a sinistra, mediante una coppia di indici (i,j) con $i \in \{1,\ldots,m\}$ (indice di riga) e $j \in \{1,\ldots,n\}$ (indice di colonna). Quindi i numera le righe dall'alto verso il basso, e j numera le colonne da sinistra verso destra. Indichiamo l'entrata di posto (i,j) di una matrice A con A_{ij} .

Esempio. Per la matrice A del primo esempio si ha $A_{11}=3$, $A_{13}=-5$, $A_{21}=0$, $A_{23}=4$.

Una matrice A di tipo $m \times n$ la cui generica entrata sia un numero a_{ij} si indica con $A = (a_{ij})$, ossia $A_{ij} = a_{ij}$.

Addizione. Nel seguito indicheremo con \mathbb{K} uno dei campi \mathbb{R} o \mathbb{C} . Date $A, B \in M_{m,n}(\mathbb{K})$ definiamo la somma $A + B \in M_{m,n}(\mathbb{K})$ ponendo

$$(A+B)_{ij}\stackrel{\text{def}}{=} A_{ij}+B_{ij}$$

ossia si sommano le entrate corrispondenti di A e B.

Moltiplicazione scalare. Dati $\alpha \in \mathbb{K}$ e $A \in M_{m,n}(\mathbb{K})$ definiamo la moltiplicazione scalare $\alpha A \in M_{m,n}(\mathbb{K})$ ponendo

$$(\alpha A)_{ij} \stackrel{\text{def}}{=} \alpha A_{ij}$$

ossia si moltiplicano le entrate di A per il numero α .

Lezione 8 Matrici

Prodotto righe per colonne

Abbiamo visto la definizione di matrice e le operazioni di somma e moltiplicazione scalare. Vedremo oggi una ulteriore operazione, prima in un caso speciale e poi in generale. Il campo sarà \mathbb{R} o \mathbb{C} , che come sempre indicheremo con \mathbb{K} (le cose che vedremo valgono su qualunque campo). L'insieme delle matrici $m \times n$, ovvero con m righe e n colonne, a entrate nel campo \mathbb{K} , è stato indicato con $M_{m,n}(\mathbb{K})$.

Def. Dati un vettore riga e un vettore colonna con n componenti

$$A=egin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix} \in M_{1,n}(\mathbb{K}) \quad \mathrm{e} \quad B=egin{pmatrix} b_1 \ b_2 \ dots \ b_n \end{pmatrix} \in M_{n,1}(\mathbb{K})$$

chiamiamo prodotto di A per B lo scalare

$$AB \stackrel{\mathrm{def}}{=} \sum_{k=1}^n a_k b_k = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n \in \mathbb{K}.$$

Esempio.

$$(3 -2) \begin{pmatrix} 1 \\ 4 \end{pmatrix} = -5$$
 $(1 \ 0 \ 1+i) \begin{pmatrix} -2i \\ 3 \\ 1 \end{pmatrix} = 1-i.$

Data $A \in M_{m,n}(\mathbb{K})$ indichiamo con $A^{(i)} \in M_{1,n}(\mathbb{K})$ la i-esima riga di A, con $A_{(j)} \in M_{m,1}(\mathbb{K})$ la j-esima colonna di A e con $A_{ij} \in \mathbb{K}$ l'entrata di posto (i,j) di A, per $i=1,\ldots,m$ e $j=1,\ldots,n$.

Esempio.

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 5 & -3 \\ 0 & 7 & 0 \end{pmatrix} \iff A^{(1)} = \begin{pmatrix} 2 & 0 & 1 \end{pmatrix}, \ A_{(2)} = \begin{pmatrix} 0 \\ 5 \\ 7 \end{pmatrix}, \ A_{32} = 7.$$

Generalizziamo l'operazione di moltiplicazione vista sopra.

Def. Consideriamo due matrici $A \in M_{m,n}(\mathbb{K})$ e $B \in M_{n,\ell}(\mathbb{K})$. Il prodotto righe per colonne di A per B, è la matrice $AB \in M_{m,\ell}(\mathbb{K})$ avente come entrata di posto (i,j)

$$(AB)_{ij} \stackrel{\text{def}}{=} A^{(i)}B_{(j)} = \sum_{k=1}^n A_{ik}B_{kj}$$

 $\forall i = 1, \ldots, m, \forall j = 1, \ldots, \ell.$

Oss. Il prodotto righe per colonne è definito solo se il numero di colonne della prima matrice è uguale al numero di righe della seconda.

Oss. Se A è di tipo $m \times n$ e B è di tipo $n \times \ell$ allora AB è di tipo $m \times \ell$.

Oss. Due matrici quadrate $n \times n$ sono moltiplicabili e il risultato è una matrice quadrata $n \times n$.

Lezione 8 Matrici

Esempio.

$$\begin{pmatrix} 1 & 0 & -2 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 0 & 4 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -2 & 3 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 4 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \end{pmatrix} = \begin{pmatrix} -5 \\ 5 \end{pmatrix}$$
$$\begin{pmatrix} 2 & 1 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 7 & 4 \end{pmatrix}$$

Oss. Una matrice $m \times n$ è moltiplicabile per un vettore colonna a n componenti. Il risultato è un vettore colonna a m componenti.

Oss. Un vettore riga a m componenti è moltiplicabile per una matrice $m \times n$. Il risultato è un vettore riga a n componenti.

Oss. Il prodotto righe per colonne in generale non è commutativo, nemmeno per matrici quadrate $n \times n$, con $n \ge 2$.

Esempio.

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$
$$AB = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} \quad BA = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$$
$$AB \neq BA.$$