Lezione 16 Coordinate

Coordinate

Teor. Sia V un \mathbb{K} -spazio vettoriale. I vettori $b_1, \ldots, b_n \in V$ formano una base per $V \Leftrightarrow \forall v \in V$ esistono unici $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ t.c.

$$v = \alpha_1 b_1 + \cdots + \alpha_n b_n$$
.

 $Dim. \implies b_1, \ldots, b_n \in V$ generatori $\Rightarrow \forall v \in V \exists \alpha_1, \ldots, \alpha_n \in \mathbb{K}$ t.c.

$$v = \alpha_1 b_1 + \cdots + \alpha_n b_n$$
.

Mostriamo che i coefficienti sono unici. Supponiamo che

$$v = \alpha_1 b_1 + \dots + \alpha_n b_n$$

$$v = \beta_1 b_1 + \dots + \beta_n b_n$$

da cui sottraendo membro a membro

$$(\alpha_1 - \beta_1)b_1 + \cdots + (\alpha_n - \beta_n)b_n = 0_V.$$

Dato che b_1, \ldots, b_n sono lin. indip. i coefficienti sono tutti nulli

$$\begin{cases} \alpha_1 - \beta_1 = 0 \\ \cdots \cdots \\ \alpha_n - \beta_n = 0 \end{cases} \Rightarrow \begin{cases} \alpha_1 = \beta_1 \\ \cdots \\ \alpha_n = \beta_n \end{cases}$$

Quindi i coefficienti corrispondenti sono uguali, da cui si ha l'unicità.

Per ipotesi b_1, \ldots, b_n sono generatori di V. Inoltre 0_V si scrive in un unico modo come combinazione lin. di b_1, \ldots, b_n : la combinazione lin. banale. Quindi b_1, \ldots, b_n sono linearmente indipendenti.

Def. Sia $\mathcal{B} = (b_1, \ldots, b_n)$ una base per V e sia $v = \alpha_1 b_1 + \cdots + \alpha_n b_n \in V$. I coefficienti $\alpha_1, \ldots, \alpha_n$ sono detti *coordinate* o *componenti* di v rispetto alla base \mathcal{B} . Le scriviamo come n-upla

$$\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \in \mathbb{K}^n.$$

Scriviamo anche

$$v = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}^{\mathcal{B}} = \alpha_1 b_1 + \cdots + \alpha_n b_n.$$

N.B. Le componenti di un vettore dipendono dalla base, oltre che dal vettore stesso.

Oss. Le componenti del vettore nullo sono tutte nulle:

$$0_V = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}^{\mathcal{B}}.$$

Lezione 16 Coordinate

Oss. Fissata una base $\mathcal{B}=(b_1,\ldots,b_n)$ e dati $u,v\in V$ e $\lambda\in\mathbb{K}$ abbiamo

$$u = \alpha_1 b_1 + \dots + \alpha_n b_n$$

$$v = \beta_1 b_1 + \dots + \beta_n b_n$$

$$u + v = (\alpha_1 + \beta_1) b_1 + \dots + (\alpha_n + \beta_n) b_n$$

$$\lambda u = (\lambda \alpha_1) b_1 + \dots + (\lambda \alpha_n) b_n$$

Segue che le combinazioni lineari di vettori di ${\it V}$ corrispondono a combinazioni lineari dei vettori delle coordinate.