Lezione 30 Geometria affine

Sottospazi affini

V spazio vettoriale reale o complesso ($\mathbb{K} = \mathbb{R}$ oppure \mathbb{C}).

Def. La traslazione di vettore $v \in V$ è la funzione

$$t_v: V \to V$$

 $t_v(u) = u + v$.

Oss. $t_{v}(0_{V}) = v$.

Prop. Valgono le seguenti proprietà:

$$t_{0_V}=\mathrm{id}_V$$

$$t_v \circ t_w = t_{v+w}$$

$$t_v^{-1} = t_{-v} \Rightarrow t_v$$
 bijettiva.

Dato $A \subset V$ e $v \in V$ definiamo il traslato

$$A + v \stackrel{\text{def}}{=} t_v(A) = \{a + v \mid a \in A\} \subset V.$$

Def. Un sottoinsieme $A \subset V$ è detto sottospazio affine di V se $\exists A_0 \subset V$ sottospazio vettoriale e $\exists v \in V$ t.c. $A = A_0 + v$. A_0 è detto giacitura di A. Poniamo dim $A \stackrel{\text{def}}{=} \dim A_0$. Gli elementi di A si chiamano punti.

In particolare V stesso è sottospazio affine e si chiama spazio affine.

Oss. I sottospazi affini sono non vuoti.

 $\dim A = 0$ Punto.

 $\dim A = 1$ Retta affine.

 $\dim A = 2$ Piano affine.

Oss. I sottospazi affini sono i traslati dei sottospazi vettoriali.

I sottospazi vettoriali sono anche sottospazi affini. Un sottospazio affine $A \subset V$ è vettoriale $\Leftrightarrow 0_V \in A$.

Oss. Ogni punto $a \in A = A_0 + v$ si può scrivere come $a = a_0 + v$ per un unico $a_0 \in A_0$.

Dati due punti qualsiasi $a=a_0+v$ e $b=b_0+v$ di un sottospazio affine $A\subset V$ con giacitura $A_0\subset V$ si ha

$$b - a = b_0 - a_0 \in A_0$$
.

Dato un vettore $u \in A_0$ si ha

$$a + u = a_0 + u + v \in A$$

perché $a_0 + u \in A_0$. Dunque la differenza di due punti di A è un vettore di A_0 , e la somma di un punto di A e di un vettore di A_0 è un punto di A.

Def. $b - a \in A_0$ è detto *vettore ab*.

Prop. Sia $A_0 \subset V$ un sottospazio vettoriale e sia $\alpha \in V$. Allora esiste un unico sottospazio affine $A \subset V$ passante per α con giacitura A_0 .

Dim. Esistenza. Basta porre $A := A_0 + a \Rightarrow a = 0_V + a \in A$.

<u>Unicità</u>. Se $A' = A_0 + v \subset V$ è un qualunque sottospazio affine passante per a con giacitura $A_0 \Rightarrow a = a_0 + v$ per un certo $a_0 \in A_0 \Rightarrow A = A_0 + a = A_0 + a_0 + v = A'$ perché $A_0 + a_0 = A_0$.

Lezione 30 Geometria affine

Teorema di struttura per sistemi lineari. Sia S: AX = B un sistema lineare compatibile, con $A \in M_{m,n}(\mathbb{K})$, $B \in \mathbb{K}^m$. Allora $\Sigma_S \subset \mathbb{K}^n$ è un sottospazio affine con giacitura lo spazio delle soluzioni Σ_{S_0} del sistema omogeneo associato $S_0: AX = 0_{\mathbb{K}^m}$. dim $\Sigma_S = \dim \Sigma_{S_0} = n - \operatorname{rg}(A)$.

Dim. $\Sigma_{S_0} = \ker L_A \subset \mathbb{K}^n$ sottospazio vettoriale, dim $\Sigma_{S_0} = n - \operatorname{rg} A$. Scegliamo una soluzione $s \in \Sigma_S$ (esiste perché S compatibile) $\Rightarrow As = B$. $v \in \Sigma_S \Leftrightarrow Av = B = As \Leftrightarrow 0_{\mathbb{K}^m} = Av - As = A(v - s) \Leftrightarrow v - s \in \Sigma_{S_0} \Leftrightarrow v \in s + \Sigma_{S_0} \Rightarrow \Sigma_S = s + \Sigma_{S_0}$.

Oss.

S incompatibile $\Leftrightarrow \Sigma_S = \emptyset$ non è sottospazio affine.

 Σ_S sottospazio vettoriale $\Leftrightarrow S$ omogeneo.