Lezione 31 Geometria affine

Equazioni di sottospazi affini

 $A \subset V$ sottospazio affine passante per $a \in V$ e con giacitura A_0

$$A = A_0 + a$$
.

Scegliamo una base (u_1, \ldots, u_k) per A_0 , quindi dim $A = \dim A_0 = k$.

Equazione vettoriale.

$$A: v = t_1u_1 + \cdots + t_ku_k + a$$

è detta equazione vettoriale di A. Al variare dei parametri $t_1, \ldots, t_k \in \mathbb{K}$ si ottengono tutti i punti di A. La giacitura A_0 ha equazione vettoriale

$$A_0: v = t_1 u_1 + \cdots + t_k u_k$$

Equazione parametrica. $\mathcal{B} = (b_1, \ldots, b_n)$ base per V.

L'equazione vettoriale di A si scrive in coordinate

$$A: X = t_1C_1 + \cdots + t_kC_k + Q$$

dove X è il vettore delle coordinate di v, \mathcal{C}_j di u_j e Q di a, rispetto a \mathcal{B}

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \ C_j = \begin{pmatrix} c_{1j} \\ \vdots \\ c_{nj} \end{pmatrix}, \ Q = \begin{pmatrix} q_1 \\ \vdots \\ q_n \end{pmatrix}$$
 $A : \begin{cases} x_1 = c_{11}t_1 + \dots + c_{1k}t_k + q_1 \\ \dots & \dots & \dots \\ x_n = c_{n1}t_1 + \dots + c_{nk}t_k + q_n \end{cases}$

sono dette equazioni parametriche di A. A_0 ha equazioni parametriche

$$A_0: egin{cases} x_1=c_{11}t_1+\cdots+c_{1k}t_k\ \cdots\cdots\cdots\cdots\cdots\cdots\ x_n=c_{n1}t_1+\cdots+c_{nk}t_k \end{cases}$$

Equazione cartesiana. Eliminando i parametri t_1, \ldots, t_k dalle equazioni parametriche si ottengono le *equazioni cartesiane*

A è l'insieme dei punti le cui coordinate soddisfano questo sistema lineare. A_0 ha equazioni cartesiane

$$A_0: \begin{cases} \alpha_{11}x_1 + \cdots + \alpha_{1n}x_n = 0 \\ \cdots \\ \alpha_{m1}x_1 + \cdots + \alpha_{mn}x_n = 0 \end{cases}$$

Pertanto otteniamo l'inverso del Teorema di struttura: ogni sottospazio affine di \mathbb{K}^n è lo spazio delle soluzioni di un sistema lineare compatibile.

Il passaggio tra i vari tipi di equazioni è analogo a quanto visto nel caso dei sottospazi vettoriali.

Posizione reciproca di due sottospazi affini

Intersezione di sottospazi vettoriali. $U, W \subset V$ sottospazi vettoriali \Rightarrow

$$U \cap W = \{v \in V \mid v \in U \in v \in W\} \subset V$$

sottospazio vettoriale. Infatti:

 $0_V \in U \cap W$ perché 0_V appartiene sia a U che a W;

 $\forall \alpha_1, \alpha_2 \in \mathbb{K}, \forall v_1, v_2 \in U \cap W \Rightarrow \alpha_1 v_1 + \alpha_2 v_2 \in U \cap W.$

In termini di equazioni cartesiane abbiamo

$$A: FX = 0$$

 $B: GX = 0$ $A \cap B: \begin{cases} FX = 0 \\ GX = 0 \end{cases}$

dove F e G sono matrici.

Intersezione di sottospazi affini. $A, B \subset V$ sottospazi affini \Rightarrow

$$A \cap B = \{v \in V \mid v \in A \in v \in B\} \subset V$$

sottospazio affine oppure vuoto. Infatti se $A \cap B \neq \emptyset$ scegliamo un punto $a \in A \cap B$ e abbiamo

$$A \cap B = (A_0 \cap B_0) + a$$
.

Quindi la giacitura di $A \cap B$ è l'intersezione delle rispettive giaciture

$$(A \cap B)_0 = A_0 \cap B_0$$
.

In termini di equazioni cartesiane abbiamo

$$A: FX = P$$

 $B: GX = Q$ $A \cap B: \begin{cases} FX = P \\ GX = Q \end{cases}$

Def. Due sottospazi affini A e $B \subset V$ con giaciture risp. A_0 e B_0 sono

- 1) incidenti se $A \cap B \neq \emptyset$;
- 2) disgiunti se $A \cap B = \emptyset$;
- 3) paralleli se $A_0 \subset B_0$ oppure $B_0 \subset A_0$, e scriviamo $A \parallel B$;
- 4) sghembi se $A \cap B = \emptyset$ e $A \not\parallel B$ (A e B disgiunti e non paralleli).

Oss. Se dim $A = \dim B < \infty$ allora $A \parallel B \Leftrightarrow A_0 = B_0$.

Teor ("Postulato delle parallele"). Sia $A \subset V$ un sottospazio affine di dimensione finita e sia $b \in V$ un punto qualsiasi. Allora $\exists ! B \subset V$ sottospazio affine passante per b t.c. $B \parallel A$ e dim $B = \dim A$.

Dim. L'unico sottospazio affine che soddisfa la tesi è $B=A_0+b$.

Per capire la posizione reciproca di due sottospazi affini si scrivono le equazioni cartesiane e si studia il sistema formato da tutte le equazioni messe insieme. Si applica Rouché-Capelli per capire la compatibilità e la dimensione dell'intersezione (se non vuota).

Nel seguito indichiamo con A la matrice dei coefficienti del sistema formato da tutte le equazioni coinvolte e con \tilde{A} la matrice completa. Si osservi che in generale

$$\operatorname{rg} \tilde{A} = \begin{cases} \operatorname{rg} A \\ \operatorname{rg} A + 1 \end{cases} \text{ (se i ranghi sono diversi)}$$

perché \tilde{A} si ottiene da A aggiungendo una colonna.

In \mathbb{R}^2

Due rette $r, s \subset \mathbb{R}^2$.

$$r: ax + by = c$$

$$s: dx + ey = f$$

In \mathbb{R}^3

Due piani $p, q \subset \mathbb{R}^3$.

$$p: ax + by + cz = d$$
$$q: ex + fy + gz = h$$

$$p = q \Leftrightarrow \operatorname{rg} \tilde{A} = 1$$
 $p \parallel q \in p \cap q = \emptyset \Leftrightarrow \operatorname{rg} A = 1 \in \operatorname{rg} \tilde{A} = 2$
 $p \cap q = \operatorname{retta} \Leftrightarrow \operatorname{rg} A = 2.$

Retta e piano $r, p \subset \mathbb{R}^3$.

$$r: \begin{cases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \end{cases}$$

$$p: ex + fy + gz = h$$

$$r \subset p \Leftrightarrow \operatorname{rg} \tilde{A} = 2$$

 $r \parallel p \in r \cap L = \emptyset \Leftrightarrow \operatorname{rg} A = 2 \operatorname{erg} \tilde{A} = 3$
 $r \cap p = \operatorname{punto} \Leftrightarrow \operatorname{rg} A = 3$.

Due rette $r, s \subset \mathbb{R}^3$.

$$r: \begin{cases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \end{cases}$$

$$s: \begin{cases} e_1x + f_1y + g_1z = h_1 \\ e_2x + f_2y + g_2z = h_2 \end{cases}$$

$$r = s \Leftrightarrow \operatorname{rg} \tilde{A} = 2$$

 $r \parallel s \in r \cap s = \emptyset \Leftrightarrow \operatorname{rg} A = 2 \operatorname{erg} \tilde{A} = 3$
 $r \cap s = \operatorname{punto} \Leftrightarrow \operatorname{rg} A = \operatorname{rg} \tilde{A} = 3$
 $r \in s$ sghembe $\Leftrightarrow \operatorname{rg} \tilde{A} = 4$.

Sottospazio affine generato da un sottoinsieme

 $P_0, \ldots, P_k \in V \rightsquigarrow A(P_0, \ldots, P_k) \stackrel{\text{def}}{=} \operatorname{span}(P_1 - P_0, \ldots, P_k - P_0) + P_0$ $P_1 - P_0, \ldots, P_k - P_0 \in V$ lin. indip. $\Leftrightarrow \dim A(P_0, \ldots, P_k) = k$. Equazione vettoriale di $A(P_0, \ldots, P_k)$

$$v = t_1(P_1 - P_0) + \cdots + t_k(P_k - P_0) + P_0$$

Oss. La giacitura di $A(P_0, \ldots, P_k)$ è span $(P_1 - P_0, \ldots, P_k - P_0)$.

Oss. $P_i \in A(P_0, ..., P_k), \forall i = 0, ..., k$. Infatti $P_i = (P_i - P_0) + P_0$.

Oss. $A(P_0, \ldots, P_k)$ non dipende dall'ordine dei punti P_0, \ldots, P_k . Infatti $A(P_0, \ldots, P_k) = \{t_0 P_0 + \cdots + t_k P_k \mid t_i \in \mathbb{K} \ \forall i \in t_0 + \cdots + t_k = 1\}$ ottenuta dall'equazione vettoriale ponendo $t_0 = 1 - t_1 - \cdots - t_k$

Retta per due punti distinti. $P_0 \neq P_1 \in V \Leftrightarrow \dim A(P_0, P_1) = 1$

$$A(P_0, P_1) = \text{span}(P_1 - P_0) + P_0$$

 $A(P_0, P_1) : v = t(P_1 - P_0) + P_0$

Oss. $P_0, \ldots, P_k \in V$ allineati $\Leftrightarrow P_1 - P_0, \ldots, P_k - P_0 \in \mathbb{K}^n$ proporzionali.

Piano per tre punti non allineati. P_0 , P_1 , $P_2 \in V$ non allineati $\Leftrightarrow P_1 - P_0$, $P_2 - P_0$ lin. indip. \Leftrightarrow dim $A(P_0, P_1, P_2) = 2$

$$A(P_0, P_1, P_2)$$
: $v = t_1(P_1 - P_0) + t_2(P_2 - P_0) + P_0$

Affinità

Def. $f: V \to V$ è detta affinità se $\exists \varphi: V \to V$ isomorfismo t.c.

$$f(v) - f(w) = \varphi(v - w), \ \forall v, w \in V.$$

 φ si chiama parte lineare di f.

Oss. $f(v) = \varphi(v) + f(0_V)$, $\forall v \in V$, ottenuta ponendo $w = 0_V$.

 $f: \mathbb{K}^n \to \mathbb{K}^n$ affinità $\Leftrightarrow \exists G \in GL_n(\mathbb{K}) \in \exists a \in \mathbb{K}^n$ t.c.

$$f(X) = GX + a, \quad \forall X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{K}^n.$$

Oss. $a = 0_{\mathbb{K}^n} \Rightarrow f$ isomorfismo. $G = I_n \Rightarrow f = t_a$ traslazione.

 $f:\mathbb{K}^n o \mathbb{K}^n$ affinità $\Rightarrow f^{-1}$ affinità ottenuta risolvendo Y=GX+a

$$X = G^{-1}Y - G^{-1}a$$

$$f^{-1}(Y) = G^{-1}Y - G^{-1}a.$$

Le affinità mandano sottospazi affini in sottospazi affini della stessa dimensione e preservano la posizione relativa, in particolare il parallelismo.