

Production, Transmission and Distribution

Fundamentals of Modern Power Systems

A.Y. 2025 - 2026

Prof. Alessandro Massi Pavan – apavan@units.it

Importance of Electric Power Systems

- Importance of electric energy to our social welfare
- Awareness of the finite supply of fossil fuels
- The use of fossil fuels releases carbon into the atmosphere
- Traditional power systems may have to change
- Also ... electric power is being used for a wider range of applications
 as time goes on
- Reduction in the need of energy requires efficiency and very often this involves the use of electricity
- All this indicates the need for well-educated, innovative engineers to build the power systems of the future

Electric Power Systems in developed countries

- Electric utility service is ubiquitous in developed countries
- Standardized levels of voltage and frequency permit a wide range of appliances to be simply plugged in and operated
- Blackouts are uncommon
- We depend on electric power to keep the lights on, to control heating, cooling, cooking, and refrigeration systems in our homes and businesses

Electric Power Systems in developing countries

- One billion people have not access to electric power
- In many developing countries there're widespread distribution systems but generation is insufficient
- Today the most used primary resources are new renewables (photovoltaics and wind), fossil fuels, falling water and heat from nuclear fission
- Sun and wind will be soon the most used primary resources

Definitions

- Energy w is the quantitative property that is transferred to a body or to a physical system. In the International System of Units, the unit of energy is joule (J). Often energy is measured in watt-hour (Wh)
- Power p is the amount of energy per unit time In the International System of Units, the unit of power is the watt (W) corresponding to one joule per second (J/s)

$$p = \frac{\Delta w}{\Delta t} \qquad w(T) = \int_0^T p(t) dt$$

1 $\underline{\text{watt-hour}}$ = 1 $\underline{\text{watt}}$ × $\underline{\text{hour}}$ = 3.600 $\underline{\text{J}}$

Definitions

- 1 W is also 1 V × 1 A
- The volt (V) is a unit of electrical potential
- The ampere (A) is a unit of current flow
- Power is expressed in watts, kilowatts, etc...
- A basic unit of electric energy is the kilowatt-hour (kWh) corresponding to $3.6 \times 10^6 \, \text{J}$
- Electricity is sold at retail by the kilowatt-hour and, usually, at wholesale by the megawatt-hour

Multiple	Prefix	Symbol
10 ¹⁵	peta	P
10 ¹²	tera	T
10 ⁹	giga	G
10 ⁶	mega	M
10 ³	kilo	k
10 ⁻³	milli	m
10-6	micro	μ
10 ⁻⁹	nano	n
10 ⁻¹²	pico	þ
10 ⁻¹⁵	femto	f

Application	Current
Integrated circuit	1 nA − 1 μA
Current that a person can feel	1 mA
Mobile phone charger	150 mA - 1 A
Photovoltaic module	5 — 10 A
Residential power plant	1 – 20 A
Industrial power plant	10 – 200 A
HV transmission line	30 – 500 A
Synchronous Generator	10 – a few kA

Application	Voltage
Radio antenna	100 nV – 10 μV
Car battery	12 V
Home plug	230 V
Industrial plug	400 V
Electrical distribution system	0,4 - 150 kV
Electrical transmission system	400 kV

Application	Power
Smartphone receiver	5 pW
Personal Computer	100 W
Dishwasher	1 – 2 kW
Residential power system	3 kW
E-Vehicle charger	3,7-22-120 kW
Synchrotron	1- 5 MW
Electrical distribution system	0,1- a few MW
Electrical transmission system	100 - a few GW
Power plants	0,01- a few GW

Application	Energy
Smartphone battery	10 Wh
Fridge use annually	150 – 300 kWh
Average energy consumption of a family	2.000 kWh
Car battery capacity	20 – 100 kWh
Photovoltaic plant yield (1 kWp)	1.500 – 5.000 kWh
Power plant yield	0,01 – 10 TWh

Centralized utility systems

Single line diagrams

Sinusoidal function

$$x(t)$$

$$T = \frac{2\pi}{\omega}$$

$$-\theta/\omega$$

$$-A$$

$$T = \frac{2\pi}{\omega}$$

$$-\theta/\omega$$

$$T = \frac{2\pi}{\omega}$$

$$T = \frac{2\pi}{\omega}$$

$$T = \frac{2\pi}{\omega}$$

$$\omega = 2\pi f$$

$$(t) = A\cos(\omega t + \theta)$$

$$x(t) = A\cos(\omega t + \theta)$$

$$T = \frac{1}{f}$$

- A amplitude
- ω pulsation [rad/s]
- θ initial phase [°]
- T period [s]
- f frequency [Hz]
- rms root mean square

$$A_{rms} = \sqrt{\frac{1}{T}} \int_0^T A^2 \sin^2 \omega t dt = \frac{A}{\sqrt{2}} = 0,707A$$

$$A_{rms} = \frac{A}{\sqrt{2}}$$

DC - 1ФАС - 3ФАС ???

- I [m]—length of an electrical line connecting a generator to a load
- P [W]— active power absorbed by the load
- V [V] voltage across the load
- P_{xv} [W] power losses
- V_{cond, z} [m³] volume of the conductor

$$\frac{V_{cond,1\varphi}}{V_{cond,3\varphi}} = \frac{4}{3}$$

$$\frac{V_{cond,3\phi}}{V_{cond,cc}} = \frac{3}{4\cos\varphi^2}$$

$$P_{DC} = 2\rho \frac{l}{S_{CC}} \left(\frac{P}{V}\right)^2$$

$$P_{1\phi} = 2\rho \frac{l}{S_{1\phi}} \left(\frac{P}{V \cos \varphi} \right)^{2}$$

$$P_{3\phi} = \rho \frac{l}{S_{3\phi}} \left(\frac{P}{V \cos \varphi} \right)^2$$

Voltage and power levels (Italy)

- Extra High Voltage (EHV): > 150kV typically 230 and 400 kV
- High Voltage (HV): > [35 150 kV] typically 132 and 150 kV
- Medium Voltage (MV): [1 35 kV] typically 10 and 20 kV
- Low Voltage (LV): < 1 kV typically 400 and 230 V and 20 kV

Power [MW]	Voltage
≤ 0.1	LV
0.1 - 0.2	LV/MV
0.2 - 3(0.2 - 6)*	MV
3-10(6-10)*	MV/HV
> 10	HV

Sources of electric power

• Generators: prime movers can be heat engines (steam and gas turbines, internal combustion engines), or turbines converting from water or wind)

Sources of electric power

More in "Materials and Systems for the Energy Transition", "Photovoltaic Systems" and "Hydrogen and Fuel Cells"

Direct conversion: from chemical energy or sunlight

Power plants

- Fossil fuels-based
- Production of electricity but of contaminants too: sulfur (acid rain), mercury (food chain), carbon dioxide (global warming)
- Fossil fuel-based energy systems are inefficient and expensive

More in "Industrial Energy Management"

And in "Environmental hydraulics"

Nuclear Power plants

Figure 1.5 Diagram of a nuclear power plant.

Kirtley, Electric Power Principles

Hydroelectric power

More in "Renewable Energy Technologies"

Figure 1.6 Diagram of a hydroelectric generating unit.

Kirtley, Electric Power Principles

Wind turbines

More in "Alternative Technologies 2" and in "Renewable Energy Technologies"

Figure 1.8 Wind turbine components.

Kirtley, Electric Power Principles

Power plants: global

TECHNOLOGY	2023 [GW]	2022 [GW]	VARIATION [%]
PHOTOVOLTAICS	1600	1200	33.3
WIND	1021	904	12.9
BIOMASS, SOLID BIOFUELS AND WASTE	290	277	4.7
GAS	1926	1895	2.3
HYDROPOWER	1412	1392	1.6
COAL	2190	2142	2.2
NUCLEAR	372	371	0.3

- China 2023: 217GW of PV, 90GW of wind, 1GW of nuclear
- Nuclear in China: 34.4GW during the last 10 years, they have a plan to install other 30GW by 2030 (5 per year)

Power plants: global

Power generation in Italy

TECHNOLOGY	2005	2020	2022	2023	2024
THERMAL POWER	81%	60%	67%	58%	51%
HYDROPOWER	15%	17%	9%	16%	20%
PHOTOVOLTAICS	0%	9%	9%	12%	14%
WIND POWER	1%	6%	7%	9%	9%
BIOMASS	2%	6%	6%	3%	5%
GEOTHERMAL	2%	2%	2%	2%	1%

Comparing technologies

	FF-TE	N-TE	GT	CC	HP	WIND	PV
Power [MVA]	dozens thousands	dozens thousands	1 - 350	1 - 350	1 - hundreds	1 - hundreds	1 - hundreds
OCS [€/kW]	900 – 1.400	???	300	500	1.000 - 2.000	900 – 2.000	600 - 800
η [%]	36 – 50	50	33 - 40	60 – 75	50 – 90	20 – 70	20 - 25
Utilization hours	6.500 – 7.500	8.000	6.500 7.500	6.500 7.500	2.0004.000	1.7004.250	1.200 1.700
Speed	low	low	high	high	high	high	high
Load	full	full	variable	variable	variable	variable	variable
Fuel cost	variable	???	high	high	0	0	0
LCOE [€/kWh]	0.12 个	???	0.15 个	0.10 个	0.08 ↑	0.08 \$\square\$	0.04 🗸
EROEI	17 ↓	14 ↓	15 ↓	19 ↓	84	18 个	25 个
Flexibility	low	low	high	high	high	low/high	low/high

Levelized Cost Of Energy

$$LCOE = VO&MC + \frac{OCS \times CRF + FO&MC}{8760 \times CF}$$

$$CRF = \frac{WACC \times (WACC + 1)^{N}}{(WACC + 1)^{N} - 1}$$

$$CRF = \frac{WACC \times (WACC + 1)^{N}}{(WACC + 1)^{N} - 1} \qquad WACC = \frac{E}{E + D} \times K_{e} + \frac{D}{E + D} \times K_{d}$$

- VO&MC [€/year]: variable operation and maintenance costs
- OCS [€]: overnight capital cost
- CRF []: capital recovery factor
- FO&MC [€/year]: fixed operation and maintenance costs
- CF []: capacity factor

- WACC [%]: weighted average cost of capital
- N []: number of annuities received
- E [%]: equity D [%]: dept
- Ke [%]: the return of equity Kd [%]: the cost of dept

Energy Returned on Energy Invested

More in "Design for Sustainability of Processes"

Some EROEIs

Table 1 | Comparison of mean EROIs for different energy sources

			0,	
	Energy source		Optimistic EROI	Optimistic net energy percentage
Coal	Thermal		46:1	98
	Electricity		17:1	94
	Electricity with CCS		13:1	92
Oil	Thermal		19:1	95
	Electricity		7:1	85
Gas	Thermal		19:1	95
	Electricity		8:1	88
	Electricity with CCS		7:1	86
Biofuels & waste	Solids	Thermal	25:1	96
		Electricity	10:1	90
	Gases and liquids	Thermal	5:1	80
		Electricity	2:1	50
Nuclear			14:1	93
Hydroelectric			84:1	99
Geothermal			9:1	89
Wind			18:1	94
Solar PV			25:1	96
Solar thermal			19:1	95

Oil and gas

Guilford et al., Sustainability, 2011

Longest vertically and directionally drilled oil and natural gas wells worldwide as of 2019

Energy transitions

More in "Fundamentals of the Energy Sector"

Power capacity growth

Power capacity growth

Investments in the power sector

The rise of renewables

The rise of photovolaics

Renewables and electricity

Why electricity?

- The most efficient carrier
- Easy to use
- Zero impact
- Easy to transport long distances
- New distributed generators

Why electricity?

New stationary applications: induction cooking and heat pumps

Why electricity?

• New applications: light electric vehicles

Reactive power and voltage

- The receiving voltage is less than the source voltage
- The receiving voltage
 decreases with the load

$$V_r = V_S \times \frac{R}{R + j\omega L}$$

Power in the sinusoidal steady-state

- Q reactive power [VAR]
- lacktriangledown cos ϕ power factor

$$\angle S = \theta_{v} - \theta_{i} = \varphi$$

$$S = |\bar{S}| = \frac{1}{2}V_mI_m = V_{eff}I_{eff}$$

$$\bar{S} = \frac{1}{2} V_m I_m \cos \varphi + j \frac{1}{2} V_m I_m \sin \varphi = P + jQ$$

Reactive power and voltage

The capacitor provides
 (positive) reactive power
 and thus provides some
 amount of voltage control

Reactive power and voltage

The capacitor is replaced by a general reactive admittance defined by: $\bar{I}=iB\bar{V}$

$$V_r = V_S \times \frac{R}{R \times (1 - X_S B) + jX_S}$$

$$Q = -|V_r|^2 \times B$$

$$P + jQ = \frac{1}{2} \bar{V}_r \bar{I}^*$$

- Inductive reactive power reduces voltage and maximum power transfer
- If Q is constant: ↑P ↓V
- If P is constant: ↑Q ↓V

$$V_r^2 = \frac{1}{2}(V_s^2 - 2XQ - 2RP) \pm \sqrt{\left(\frac{1}{2}(V_s^2 - 2XQ - 2RP)\right)^2 - |Z|(P^2 + Q^2)}$$

Hybrid utility systems

In the hybrid system, customers become active/passive (prosumers) because of their distributed generators (GD)

Distributed generators

Distributed generators

Small-scale decentralized power generators

- Modular, flexible, usually closed to the load
- Mostly RES-based
- Can be controlled and coordinated within a smart grid
- Make the grid bidirectional
- Offer benefits to the grid
- May be part of an isolated grid, of a microgrid or grid-connected
- Support in reducing losses and delivering RS
- Increase the complexity

S. S. Refaat et al.

Smart grid and enabling technologies

Integration of distributed generators & e-vehicles

Effect of on-load tap changer

Inertia of the electric power system (load-frequency relationship)

- One generator and a limited set of loads: controlling the frequency means controlling the speed of the generator shaft
- Grid frequency is a measure of the balance between supply and demand

https://www.next-kraftwerke.com/

Balance between electricity generation and electricity consumption

Inertia of the electric power system

Inertia and the Power Grid: A Guide Without the Spin - NREL

- Inertia refers to energy stored in rotating generators
- This energy is valuable when large power plants fail (temporary response – a few seconds)
- Historically inertia was abundant
- With the evolution of the grid (inverter-based sources) questions have emerged (and solution have been found!)

Inertia of the electric power system – Virtual inertia

Inertia and the Power Grid: A Guide Without the Spin - NREL

- Wind, solar and storage can provide frequency-responsive services through inverters
- Using sensors and software that
 control the response (virtual inertia)
- Inverter-based resources including photovoltaic, wind and storage can quickly detect frequency deviations and respond to system imbalances
- The response is much faster than traditional mechanical response

Power electronics

- An enabling technology for large utilization of RES
- Photovoltaics, wind, storage, ...
- Distributed generation

More in "Power Converters"

Inverter

- Performing the grid connection
- MPPT

Energy storage

More in "Materials and Systems for the Energy Transition" and "Electrical Energy Storage"

- To settle peaks and valleys of supply
- Combined with power electronics
- Grid support: grid's voltage and frequency, spinning reserve, resilience ...
- Financial benefits (automatic pricing signals
- Power congestion avoiding upgrades in the grid
- Challenges: policies, business models, financing mechanisms

S. S. Refaat et al.
Smart grid and enabling technologies

Energy storage

Storage can contribute to shift and or to level the electric energy demand making it somehow <u>asynchronous</u> with respect to production

There are two kinds of applications:

- Power applications: <u>peak shaving</u>
- Energy application: time shift

Power transmission (EHV)

Transmission System Operator (TSO)

Generation

ransition

Transmission HV Distribution

"Low frequency":the line is "short"compared to thewavelength ofvoltages andcurrents

Transmission load curve

Generation curve

- Base load
- Peak load
- Variable load
- Reserve

Duck curves are getting deeper

Duck curves are getting deeper

EHV – HV power stations

Transmission System Operator (TSO)

EHV/HV Station

Transmission HV Distribution

///

HV Customers

10 - 100 MVA

Transformers

- Transformers convert electrical energy at one voltage to some other voltage
- Higher voltages means lower currents and lower losses

HV customers

Distribution System Operator (DSO)

HV Customers
10 - 100 MVA

HV – MV power stations (primary)

Power distribution (MV)

Distribution System Operator (DSO)

More in "Electrical System Design" Prof. Andrea Vicenzutti

MV Customers

HV/MV Station

MV – LV power stations (secondary)

< 200 kVA

■ TT – TN Systems

More in "Electrical System Design" Prof. Andrea Vicenzutti

LV Customers

Distribution System Operator (DSO)

20/0.4 kV MV/LV Station

Load flow

- Understand howload flows and overwhich pathways
- Load flow evaluation
 are required in
 advance of any
 system expansion
- Load flow evaluation
 are required as part
 of generation
 dispatch

Flexibility of the power system

More in "Microgrid" Prof. Daniele Bosich

- Increasing need for flexibility
- At the distribution level:
 controllable generation
 (VPP, microgrid),
 storage, controllable
 loads, e-vehicles (V2X)
- Guarantee various
 services providing active
 (P) and reactive (Q)
 power support

CEI 0-21: Reference technical rules for the connection of active

and passive users to the LV electrical Utilities

- Frequency variation: 50±5% (100% of the time),
 50±2% (95% of the time)
- Voltage "slow" variation: U_n + 10% and U_n 15%

Power [kW]	Grid voltage level
≤ 100	LV
> 100 and ≤ 200	LV or MV

SISTEMA TT - SCHEMA DI DISTRIBUZIONE REALE

CEI 0-21: Producers connected to the DSO's grid

Iransition

- "Dispositivo della rete": grid switch
- "Cabina secondaria": secondary power station
- Rete del DSO": DSO's grid
- "PdC": connection point
- "Dispositivo generale" DG: main switch
- "Parte di impianto ... isola": portion of the power system which cannot work in islanded mode
- "Dispositivo d'interfaccia" DI: interface switch
- "Parte di impianto ... isola": portion of the power system which can work in islanded mode
- "Dispositivo del generatore" DGG: generator switch
- "Eventuale Sistema di conversione": possible inverter

CEI 0-21: electrical storage systems

"Sistema di accumulo": electrical storage device

CEI 0-21: electrical storage systems

- DG: the main switch separates the consumer's plant from the grid when a failures occurring before PdC (internal failure)
- DI: the interface switch avoids the consumer can supply the grid in case of power outage on the network; it opens when in case of a fault or abnormal voltage and/or frequency values on the low voltage network
- DDG: the generator switch separates the generator
 from the consumer's plant and protects the generator itself

