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07 Discrete-time LTI systems in the frequency domain

07.01 Ideal filters

One of the most important applications of LTI systems is allowing the passage of certain frequency
components of the signal without any distortion while simultaneously blocking all other frequency com-
ponents. For this reason, LTI systems are also defined as filters.” The two terms, 'LTI system’ and
filter, can be considered synonymous. In fact, the term filter’ is used not only for systems that are
frequency-selective but also for all systems that realize an appropriate weighting (a ’spectral shaping’)
of the signal spectrum:

Y (e?¥) = H(e?*) - X (e!¥)
Filters can be classified according to their frequency domain characteristics as

* lowpass filters,
* highpass filters,
» bandpass filters,

* bandstop filters.

The ideal characteristics of the frequency responses of these filters are as follows:
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An ideal filter allows certain frequency components to pass unaltered while completely eliminating all
other frequency components. Therefore, an ideal filter exhibits a unit magnitude (or amplitude) response
in the passband and a zero response in the stopband. Additionally, an ideal filter must feature linear
phase in the passband.

Considering a signal {z(n)} with a spectrum entirely within the band w; < |w| < wo, let’s filter it with a
frequency response given by:

. e Iwn0 gy < |w| < w
H(e]w) = L= ‘ . ‘ - 2
0 otherwise

In this case, the output signal has a spectrum given by:
Y(ed¥) = H(e?) - X (/%) = e 790 X (e7%).
This implies that:
y(n) = z(n — no).
The output signal coincides with the input signal except for a delay of ng. Generally, a pure delay is

tolerable and is not considered signal distortion. If the ideal filter has linear phase, the signal component
in the passband is delayed without distortion. Thus, the ideal phase response is linear in the passband:

O(w) = —wnyp.

- . de . . - .
In practice, we are contented with imposing L to be constant in the passband, i.e., with imposing the
w
group delay to be constant in the passband.

07.02 Phase delay and Group delay

Let's consider a LTI system with frequency response H (e’“), and let §(w) be its phase response,

H(e%) = |[H(e7)] - 79,
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For simplicity, let’s assume the system to be real, so that
[H(e')| = [H (™) and O(w) = —0(-w)

If we consider a sinusoidal sequence with normalized angular frequency wg as system input:

ejwon + e—ngn

x(n) = cos(won) = 5 ,
the output of the system is
1 jw j0(wo) ,jwon 1 —jw j0(—wo) ,—Jwon
y(n): §|H(e] 0)‘61 0) eJwo +§|H(e J o)|eJ 0)p—JWon —
= L (eren) (ej(won+9(w0)) n e*j(wonJr@(wo))) _
2
= |H(e7)| cos|won + 6(wo))

= [H(e’*")| cos [“’0 ( 9(“’0 >]

= |H(e?)| cos [wo (n — t,(wo))]

The system output is the same sinusoidal sequence delayed by

Bli)

tp(wo) = — wo

t,(w) is referred to as the Phase Delay, representing the delay of a sinusoidal component as it passes
from the input to the output of the system.
However, when we consider a signal composed of multiple frequency components (several sinusoids),
each component passing through the system experiences a different delay. In such cases, the delay
introduced by the system on the signal is assessed using another parameter known as the Group Delay,
defined as:

tg(w) = _%~
It's important to note that both ¢,(w) and t,(w) vary with frequency.
Considering the following phase response diagram:

the group delay ¢,(w) corresponds to the opposite of the slope of §(w) in wy. On the contrary, the phase
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delay ¢,(w) corresponds to the opposite of the slope of the line connecting the origin with the point
(wo, 9((,00)).

Why is the delay introduced by the system on the signal evaluated using the group delay ¢,(w)?
This choice is particularly relevant in Amplitude Modulation (AM) systems, where the group delay rep-
resents the delay introduced on the modulated signal. In contrast, the phase delay corresponds to the
delay of the modulating signal, i.e., the carrier.
Let’s return to the continuous-time domain and consider a lowpass signal (for example, think about a
musical signal), a(t), with a passband [, 2.]. Now, let's modulate this signal with a carrier having
an angular frequency Qp > .. In other words, we multiply the signal by a sinusoidal signal with an
angular frequency Q:

z4(t) = a(t) - cos(Qot) = a(t) - [e/" + e‘jﬂot} /2

Xa(j9) = SAGE - 20)) + A+ )

X

|
”

The spectrum of the signal a(t) is translated to +£2, and occupies the band’

+[Qo — Qe, Qo + Q).

Let us assume that the signal x,(t) passes through an LTI system with frequency response H(jQ)>2.
Since Q. < g, within the band [Qy — ., Qo + Q.], we can assume the amplitude response of the LTI
system to be constant (for simplicity, let’s assume it equals 1). Additionally, we can approximate the
phase response with a linear response:

o) =000 + O | (@ 00) =

= —,(Q0) - Qo — t4(Qo) - (2 — Q)

For ©2 > 0, the output signal spectrum is:

Y, (jQ) = %A (9 — Q) €=t =ity () (@-0)

TWith the AM modulation, the bandwidth of the signal is twice that of the “baseband” signal a(t).
2Similar to discrete-time LTI systems, for continuous-time systems, the impulse response and the frequency response are

sufficient to completely characterize the LTI system. The impulse response of a continuous-time system, denoted as h(t), is the
response to a Dirac pulse §(t), and the system output is given by:

+oo
y(t) = /7 h(r)a(t — 7)dr.

oo
This expression is known as the convolution integral. The frequency response, H (j2), is the CTFT of the impulse response h(t)
and can be expressed as:

Y (5Q) = H(iQ) X (§Q)
where X (5€2) and Y (j2) are the CTFTs of z(t) and y(t), respectively. The definitions of phase response, magnitude (or ampli-
tude) response, phase delay, and group delay remain the same as in the discrete-time case.
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For 2 < 0, the output signal spectrum is the conjugate symmetric of the spectrum for 2 > 0.
It is easy to verify that the system output is given by:

Ya(t) = a(t —tg) cos[Qo(t — tp)]
with t, = t,(Q) and t, = t,(Q). In fact, a(t — t,) has spectrum A(j2) - e~7t2. When a(t — t,) is

o eI (t=tp) _ o—iQ0(t+ty) . )
multiplied by cos[Qo(t — )] = 3 , two components with conjugate symmetry are

generated: one is centered at ), the other at —(2. Let’s consider the component for Q2 > 0, originating

from

%a(t —tg)el () = %a(t — tg)e I P0tr D0t

Due to the linearity and frequency shift properties of the Continuous-Time Fourier Transform (CTFT),
the spectrum is: 1
§A (2 = Qp)) e (= 0)ta =it

(because e~7%r is a constant, and the product /%! K (t) has spectrum K (j(£2 — €))). which is the
expression of Y, (j2) we has seen before.

Since y,(t) = a(t — t,4) - cos[Q(t — t,)], we observe that the group delay (t,) represents the delay of the
baseband signal a(t),while the phase delay (¢,) corresponds to the delay of the carrier cos[Qot].

Let’s redirect our focus to ideal filters. As discussed earlier, an ideal filter is characterized by a unit
amplitude and linear phase in the passband, or, at the very least, it must exhibit a constant group delay
in the passband to ensure that all signal components experience the same delay. Unfortunately, ideal
filters are not realizable. To illustrate, consider the ideal lowpass filter with the frequency response:

) 1 |w| <we
Hip(e?¥) = ] .
0 otherwise
This filter has an impulse response:
th(n)ZM —oo<n<+0o
™

It's essential to note that this filter is not causal and is, in fact, an unstable system because hpp(n) is
not absolutely summable.

To achieve stable and realizable filters, we relax the stringent conditions imposed by ideal filters. One
key modification involves introducing a transition band between the passband and the stopband. This
enables the magnitude response to gradually decay from its maximum value to zero. Additionally,
the magnitude response is permitted to vary within specified bounds in both the passband and the
stopband.

For instance, when designing a lowpass filter, a frequency mask that defines bounds for the frequency
response §imi|ar to the following is often considered:
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In practice, the following constraints are taken into account for |H (e/)]:

l—e<|H(E¥)| <1 0<w<w,e
[H ()| <1 ws<w<T

07.03 Zero-phase filters

In many applications, it is crucial to design digital filters in a manner that introduces no phase distortion
to the input signal components in the passband. One effective approach to avoiding phase distortions
is the implementation of a zero-phase filter, characterized by a real positive frequency response. If we
do not work in real-time and we process real sequences of finite duration, the zero-phase filtering can
be easily implemented if we drop the hypothesis of system causality.

In this block diagram:

the input signal is processed with a filter H(z) having real coefficients; the output of this filter is time-
reversed and it is again filtered with the same filter H(z), whose output is folded again. Let us prove
that this is a zero-phase system.
V(el¥) = H(e™) - X (&)
U(e?™) = V*(el¥)
(because v(n) is real)
W(ej“’) = H(eMv) - U(ej“’)
Y(ed¥) = W*(e?¥) = H*(e9) - U*(e%) = H*(e7¥) - V(eI¥) =
= H* () H(e’) - X () = |[H () |* - X ()
The system introduced above implements a filter with a frequency response | H (e/*)|?, which is positive
real, ensuring a zero-phase characteristic.
To design a zero-phase filter with a given magnitude response A(e“), one can design a filter with the
magnitude response /A(e/v), without imposing constraints on the phase. Subsequently, the technique
described earlier can be applied. However, a notable drawback of this approach is that real-time signal
processing becomes impossible. The entire sequence must be recorded before the technique can be
applied.
For real-time processing systems, meeting our specifications while ensuring system causality often
involves accepting a certain delay introduced by the filter and considering a linear phase response. We
will explore that it is always possible to design linear phase FIR filters, whereas achieving linear phase
lIR filters is impossible.
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07.04 Linear phase FIR filters

In the upcoming discussion, we will demonstrate that a causal FIR filter with real coefficients, having a
length of N + 1, and a transfer function given by

H(z) =Y h(n)z™" = h(0) + h(1)z"" + ...+ h(n)z~~

n=0

(note that now N is the exponent of the polynomial in z~!), exhibits linear phase when the impulse
response h(n) is symmetric,

h(n) = h(N —n) for0 <n <N,

or is antisymmetric,
h(n) = —h(N —n) for0 <n <N.

Considering that the length can be either even or odd, we can categorize linear FIR filters with linear
phase into four classes:

* TYPE 1: h(n) is symmetric and has odd length,

TYPE 2: h(n) is symmetric and has even length,
« TYPE 3: h(n) is antisymmetric and has odd length,
* TYPE 4: h(n) is antisymmetric and has even length.

Let us analyze one by one these four classes.

TYPE 1: h(n) is symmetric and has odd length. Thus, N is even.
Let us consider for example N = 8.

H(z) =h0)+h(1)z ' +h(2)z 2+ h(3) 224+ ... + W(7)z~" + h(8)z~®

The impulse response could be the following,

Here, we have a symmetry axis for & = 4.
For the symmetry it is h(0) = h(8), h(1) = h(7), h(2) = h(6), h(3) = h(5), and

H(z) =h0)1+ 2" +r(M) " +27)+h2)(z 2+ 2 +rB) (22 +275) + h(4)2_4/

244
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H(z) =27 [h0)(z* + 27 + h(1)(2® + 27%) + h(2)(z* + 272) + h(3)(z" +27") + h(4)]
The frequency response is given by
H(e¥) = e%% . [2h(0) cos(4w) + 2h(1) cos(3w) + 2h(2) cos(2w) + 2h(3) cos(w) + h(4))

where we have utilized the identity /™ + e¢=7%“" = 2 cos(wn).
Note that the expression within the square brackets is real and can take both positive and negative
values. Consequently, the phase of the frequency response is linear, given by

N
H(w):f4w+ﬁ:fgw+ﬁ withg=0orn
and the group delay is constant:
L o _ N
I dw T 27

In general, for FIR filters of Type 1, the frequency response is given by

H(e?) = e 7% . H(w),

N/2
H(w) = h(%) +2>° h(g — n) cos(wn)

(which is the amplitude response apart from a +1 factor).

TYPE 2: h(n) is symmetric and has even length. Thus, N is odd.
Let us consider the case where N = T7; here, we have a symmetry axis at N/2 = 3.5:

Let us proceed similarly to the previous case. For symmetry, we express H(z) as:

H(z) = h(0)(1+27") + A1) (=" +27%) + h(2)(z7% +27°) + h(3)(:7° + 24)/

2T/2.,=T/2
_ 277/2 h(O)(Z7/2 +Zf7/2) + h(l)(z5/2 +Zf5/2) + h(z)(23/2 +273/2) +h(3)(zl/2 +Z71/2)] ,
H(e%) = e I3 {Qh(O) cos(gw) +2h(1) cos(gw) +2h(2) cos(%w) + 2h(3) cos(;w)} .

Once again, the term within the square brackets is real, taking either positive or negative values. Con-
sequently, the phase is given by

N .
Q(w):—;erﬁ:—Ew—kﬁ with g =0or
' __dH(w) _E
9 dw 2
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In general, it is
H(eM) = e %% . H(w)

(N+1)/2 N1 1

Hw) =2 Y h(—5— —n) coslw(n — 5)]

TYPE 3: h(n) is antisymmetric and has odd length. Thus, N is even.
Here, we have an antisymmetry axis for N/2:

Given h(N —n) = —h(n), for n = &, it follows that n(§) = —r(%) = 0.

Let’s consider N = 8 and proceed similarly to the previous cases:
H(z)=h(0)(1 =278 +h(D)(z7 =27+ h(2) (272 — 275 + h(3)(273 - 2_5)/
=4 [h(O)(z4 —z 4+ h(l)(z3 — 27+ h(2)(22 - 272) + h(3)(z* — 271)]
Since e/“™ — e7I¥™ = 2jsin(wm) = 27/ sin(wm),

H(z) = 2¢ 4w eiT/2 [7(0) sin(4w) + h(1) sin(3w) + h(2) sin(2w) + h(4) sin(w)]

N .
g(w):_4w+g+5:_5w+g+6 withg=0or
; __dG(w) _ N
S dw 2

In general, it is
H(ej“’) — iR weIT/2 - H(w)

N/2
H(w)=2 Z h(g — n) sinfwn)]

TYPE 4: h(n) is antisymmetric and has even length. Thus, N is odd.
We have an antisymmetry axis for N/2:
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=

WA

Let’s proceed similarly to the previous cases, considering N = 7.

H(Z) _ h(o)(l . Z—7) + h(l)(z_l N 2_6) + h(Q)(z_2 - 2_5) + h(3)(z_3 — 2_4)/ A,

_ 2_7/2 h(O)(Z7/2 _ 2—7/2) + h(l)(2’5/2 _ 2—5/2) + h(2)(z3/2 _ 2—3/2) +h(3)(21/2 _ 2_1/2):|

H(e®) = e752ei™/2 hm)gm;w)+hu)ﬁm;w)+h@)$mzw)+h@)ﬁmwﬂ

Thus, the phase is

7 T N T .
w)=—gwtg+B=—guwtg+s with =0 or 7
; __de(w) _7T_N
ST dw 2 2
In general, it is
H(e?%) = e %% . eI/ . F(w)
(N+1)/2
_ N+1 1
H(w) =2 Z h(T—'— —n)sinfw(n — 5)]

n=1
Note that H(w) can take on negative values for certain w. It represents the amplitude response, with
the inclusion of a multiplicative term +1. Negative values of H(w) are commonly observed especially in

the stopband.
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Zeros’ position in linear FIR filters
For the symmetric filters:

N N
H(z) =Y h(n)z™"=> h(N —n)z""
n=0 n=0

By introducing the variable change m = N — n in the second equality, we get:

N
H(z) = Z h(m)z Nt = 27N H (271

m=0

Similarly, for the antisymmetric filters, we have
H(z)=—2"VH(z™).

A polynomial with constant coefficients that satisfies the condition H(z) = : =V H(z~!) is referred to as
a mirror image polynomial. Conversely, a polynomial with constant coefficients satisfying the condition
H(z) = —2~NH(z~1) is termed an antimirror image polynomial.

For these two properties, if z = & is a zero of H(z) (H(&) = 0) then z = ¢, is also a zero of H(z). In
other words, symmetric and antisymmetric FIR filters exhibit zeros with reciprocal symmetry, known as
mirror image symmetry with respect to the unit circle. Additionally, if the filter has real coefficients, the
zeros also possess conjugate symmetry. If a filter has a pair of conjugate symmetric zeros in z = re*?,
then, due to the mirror image symmetry property of the zeros, it must also have a pair of zeros a

z=r~let?:

For a zero on the unit circle z = e7?, its reciprocal coincides with the conjugate. Consequently, the filter
can have pairs of zeros on the unit circle in e*7?. For every real zero z = r, the filter must have also the
reciprocal zero in z = r—!. Additionally, zeros in z = +1 are reciprocal of themselves and may appear
individually in the set of zeros of H(z).
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Note that an FIR filter of Type 2 (h(n) symmetric and of even length, N odd) must have at least a zero
at —1. This is evident from the condition:

H(z)=2zNH(z)

H(-1)=(-1)"NYH(-1)=-H(-1) =0

Similarly, in Type 3 and 4 FIR filters, there must be at least one zero at z = +1 due to the antisymmetry
condition:
H(z)=—2"NH(z™")

H(1)=-1"H(1)=-H(1) =0

Furthermore, Type 3 FIR filters, which have an odd length and N even, must also have at least one zero
at —1.
H(-1) = ~(-)VH(-1) = —H(-1) = 0

Note that all linear FIR filters with an odd length must have either no zero or an even number of zeros
at +1 and —1 (because N is even), while all linear FIR filters with an even length must have an odd
number of zeros at +1 and —1 (since N is odd).

The four cases of linear FIR filters differ in the distribution of zeros at +1 and —1. Specifically:

 Type 1 filters: have no zero or an even number of zeros at +1 and —1 (N is even).

 Type 2 filters: have no zero or an even number of zeros at +1 and an odd number of zeros at —1
(N is odd).

 Type 3 filters: have an odd number of zeros at +1 and an odd number of zeros at —1 (NN is even).

 Type 4 filters: have an odd number of zeros at +1 and no zero or an even number of zeros at —1
(N is odd).

Filters of Type 3 and 4 must have an odd number of zeros at +1.This is because the factor associated
with a zero at +1 is (1 — z~1), which imparts antisymmetry to the polynomial. Similarly, Filters of Type
2 and 3 must have an odd number of zeros at —1 (associated with the factor (1 + z~1)) to achieve the
desired value of N —whether odd or even — ensuring the symmetry or antisymmetry of the polynomial.
The zeros in the four cases are the following:

Type 1 Type 2
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Type 3 Type 4
Type 1 filters can be used to implement any kind of filters, including lowpass, highpass, passband,
and stopband filters. Type 2 filters have H(e’™) = 0, making them suitable for implementing lowpass
and passband filters but not highpass or stopband filters. Type 3 filters with H(e/™) = H(e/?) = 0 are
unsuitable for lowpass, highpass, and stopband filters, but they can be used for passband filters. Type 4
filters with H (¢%) = 0 cannot be used for implementing lowpass or stopband filters, but they are suitable
for highpass or passband filters.

IIR filters and linear phase
Let us consider the case of a causal IR filter described by a finite difference equation:

H(2) bo+biz 4 by 24+ +byz ™ B(z)
z) = —
ap+ a1z 4 az 2+ ... +anz™V  A(z)

We have observed that in the case of FIR filters, the linear phase condition manifests as the mirror
image symmetry of the zeros. The same criterion could be applied to derive IR filters with linear phase.
If A(z) and B(z) are mirror image polynomials, then H(z) exhibits linear phase. Unfortunately, the zeros
of A(z) are the poles of the system and, if the poles satisfy the mirror image symmetry property, the
system is unstable. This is because for every pole inside the unit circle, there must be a pole outside
the unit circle. IR filter design cannot overlook the need to ensure filter stability. Therefore, we shall
content ourselves only with approximating linear phase in the filter passband.

07.05 Geometric interpretation of frequency response
computation

In the following, we will study various examples of FIR and IIR basic filters. For these filters, using the
geometric interpretation of frequency response computation, it is very easy to plot amplitude response
or phase response diagrams based on the knowledge of pole and zero locations. Let us consider an
lIR filter with a transfer function

H( ) b()—|—b12’_1—‘—...—i-b]\/[z_]u
zZ) =
l14+a127 4+ ... +ayz™N
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where for simplicity we have set ay = 1.

2127 (1= 2927 1) (1= -1
H(z) = bo - (1—2=2 1) (1 — 292 1) (1—2zmz 1) _
(I=p1z7t) - (I =paz=t)-...- (1 —pnz71)
:bo-zN’M-(Z_Zl).(z_ZQ)"".(Z_ZM)
(z—p1) - (z=p2) ... (2 —pn)
where z1, ...,z are the system zeros and pq, ..., py are the system poles.

The frequency response of the system is

(ejw — Zl) . (ejw — ZQ) LI (€jw — Z]\,[)
(e7 —p1) - (€7 —pa) ... (7 —pN)’
The amplitude response and the phase response are given, respectively, by

H(e?™) = by - 7N =)

|7 — z1] - €% — 2| - ... - |€7¥ — zp]

7% —pi| - [ed¥ —po| - ... - |eI% — pn|’

[H(e’)| = |bol

arg H(e?*) = argby + w(N — M) + arg(e’ — z1) + arg(e?” — z5) + ... + arg(e!” — zp)
—arg(e’” —pp) —arg(e?” — po) — ... —arg(e’ — py).

If we examine the frequency response we can notice that the typical factor is
(e =)

with A = z; or A = p;. If we interpret this factor on the complex plane we have that:
¢?* is a point on the unit circle,

A is the zero or pole position,

e?“ — X is the vector from \ to e/«.

For w that goes from 0 to 27 this vector varies in amplitude and phase. From the position of the two
points, we can immediately obtain its amplitude and phase behavior. |e/* — \| has minimum value when
w = arg A\, and has maximum value when w = arg A + 7.

The amplitude response |H (e/*)| is given by the product of the modulus of all vectors associated with
the zeros, divided by the modulus of all vectors related to the poles, multiplied by the modulus of bg.
The phase response arg H (e/*) is given by the phase of b, plus w(N — M), plus the phase of all vectors
associated with the zeros, minus the phase of all vectors associated with the poles.

When designing a filter that should attenuate a certain frequency range, we shall locate the zeros
close to the unit circle around this frequency range. On the contrary, if we have to emphasize certain
frequency components of the signal, we shall locate the poles around this frequency range (indeed, the
amplitude response maxima correspond to the vectors z — p; minima).
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07.06 Simple digital filters

Lowpass FIR filter
The most simple lowpass filter is the filter that computes the average between samples. Let us consider

y(n) = ~(x(n) + z(n — 1))

2
Y(z) =g

Ho(z) = 5(1+271) = 522

This is an FIR filter with a zero at = = —1 and a pole at z = 0. The vector ¢/“ — X related to the pole has
always unit amplitude. The vector related to the zero has maximum amplitude for w = 0 (with amplitude
2) and then its amplitude decreases to 0 as w goes from 0 to 7. The filter is symmetric, and thus its

phase is linear.

; 1 ) 1 _. . ) .
Hy (') = 5(1 +e ) = 56_9“’/2(63“’/2 + eIy = emIw/2. cos(%).

1
|

A | L ol
. e ol A 74
\

| 7|
| 4 L <

w

Of particular interest is the frequency w. for which

: 1 . 1 0
[Ho(e*)| = ﬁlHo(ew)\MAx = E\Ho(ej )|

Let us consider the gain in dB (i.e., the amplitude in dB):
G(we) = 201og,, [Ho(e?)| =
= 201log |Ho(e?)| — 2010g10(\/§) =
=0—3.0103 ~ —3dB.

Thus, the frequency w, is called the 3dB cutoff frequency, because the gain has reduced by 3dB com-

pared with the maximum value.
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Imposing,

|Ho(e?“¢)|? = cos? =2 = —

we obtain w, = 7.

Highpass FIR filter
The most simple highpass filter can be obtained by replacing = with —z in the previous transfer function:

Hl(z) = HQ(—Z).

If we consider the geometric interpretation of the frequency response, we can understand that with this
variable change H,(z) has for z = 1 (i.e., for w = 0) the same behavior of Hy(z) for = = —1 (i.e., for
w =), and H;(z) has for z = —1 (i.e., for w = 7) the same behavior of Hy(z) for z = +1 (i.e., forw = 0).

AN
“1

{
{

L ® EE’__‘i.__A_:;;;__ >
\ ,f‘ll
1 -1
Hy(z) = 5(1 —z7)
Hy (/%) = jem9%/? sin(%)
F
FA
]
A o Y (o o
Py il
23 .
\“\.‘
! g b
. g o W
- —7/ \\ ! V] )
\\‘J - ,“/z,

Also in this case the 3dB cutoff frequency falls at w. = 7.

We can obtain FIR lowpass or highpass filters with a narrower passband by cascading a certain number
of these elementary filters. By considering the cascade of M lowpass filters Hy(e’*), the resulting
frequency response is H(e/*) = H}!(e“) and the 3dB cutoff frequency is given for

M1

V2
© 2024 Alberto Carini 142/600

|[H (e7“)| = [Ho(e')




Digital Signal and Image Processing Computer Engineering
07.06 Simple digital filters University of Trieste

i.e., for

‘Ho(ejwc) _ 271/(2]VI)

wc) 1
— )| =27 2m
COS( B)

_ 1
Wwe = 2arccos (2 2M) .

IIR Lowpass filter
A lowpass filter of the first order has a transfer function:

l—a 14271
Hir(s) = 51—

where |a| < 1 for the stability of the system.
The filter has a zero at z = —1 and a pole at z = a.

n
e
4

In the geometric interpretation of the frequency response computation, we see that for w going from 0
to m the vector e/* — (—1) decreases from 2 to 0. On the contrary, the vector ¢/* — « for a > 0 increases
from 1 —« till 14 «. The maximum value and the minimum value of the frequency response are obtained

for w = 0 and w = , respectively.
HLp(e'jO) =1 HLp(ejﬂ) =0

w (1—a)? (1+ev)(1+e )
[Hyp (™) = 4 . (1 —aeiw)(1 — ae™iv) B

(1-a)? 1+e% +e v +1

4 1-ae¥ —ae ¥ +a?
(1-a)? 1 + cos(w)
2 1 —2acos(w) + a?

dHpp(e?*)]? _ (1—a)? —sin(w) (14 a* = 2acos(w)) — (1 + cos(w)) (2arsin(w))
dw 2 (1 — 2acos(w) + a2)?

(1-a)? —sin(w)(1 + a)?
2 (1 — 2 cos(w) + a2)®
For 0 < w < « the derivative is always negative and, thus, the amplitude response decreases monoton-

ically.
The 3dB cutoff frequency is obtained for |Hyp(e/“)[? = 1.

(1—a)? 1+ cos(w,) 1

2 1-2acos(we) +a? 2

© 2024 Alberto Carini 143/600



Digital Signal and Image Processing Computer Engineering
07.06 Simple digital filters University of Trieste

(1 —a)? (1 +cos(we)) = 1+ a? — 2a cos(w.)

(1 — 2a + a?) cos(we) + 2a cos(w,) = 1 + o — (1 — )?
2c
1+a2
If we want a lowpass filter with an assigned cutoff frequency w., we have to solve the previous equation
for a. It can be proved that the only stable solution is

cos(w.) =

1 —sin(w,)

cos(we)

o
oo

g
=N

Magnitude

2
'

&
>

10 ‘ 107 10’
W/t

(From S. K. Mitra, “Digital signal processing: a computer based approach”, McGraw Hill, 2011)

IIR Highpass filter

An order 1 lIR highpass filter is given by
l—a 1—2z71

Hoe(2) = =5 1 a1

where it must be |a| < 1 for stability.
This filter has been obtained from the previous lowpass filter by replacing = with —z:

HHP(Z) = HLP(—Z)

Thus, the same properties of the previous filter hold, apart from a frequency shift of = in the frequency
response:

Hyp (ejw) = Hip (ej(w+rr) ).

12
ok
-5t
g
8 10}
.0
A *
’ e mmi]
) o a=-0.5 ]
= 5 & : -20 Lo — I—} rrJ
0 02 0.4 0.6 08 1 10 10 10
/'t ; wn

(From S. K. Mitra, “Digital signal processing: a computer based approach”, McGraw Hill, 2011)
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IIR Bandpass filter
In order to obtain bandpass or bandstop filters, we must consider at least second-order filters.

A bandpass filter of the second order is given by the following transfer function:
l-« 1—272

H =
me(2) 2 1-p1l+a)z"t+az?

The squared amplitude response is

oz (1 —a)? (1 — cos(2w))
|Hpp(e’)|" = 2[1+ B(1 + a)2 cos(w) + 2arcos(2w)]

which is 0 for w = 0 and w = 7 and assumes the maximum value 1 for w = wy, called center frequency
for the bandpass filter, where

cos(wg) =0
wo = arccos(f)

The frequencies w.; and w, for which |Hgp(e/~)|? = 1 are called 3dB cutoff frequencies and their
difference w.o — w1 is called 3dB bandwidth. It can be proved that

B 2a
3dB — We2 — Wel = arccos | ———— | .
C! c 1+O[2

Thus, 8 controls the center frequency, while o controls the bandwidth.

B=034 i o=0.6
12 : ; ; . . -
1 e 5
; o . \\
I \ /
o 0-8F [ ! 3
= L i \ i \
200.6 ; { ; .\
= / \ / -
04t / \ i T
/ N ! -~
b E: P S 02l ¢ S i, .
-7 ~ / ~
..' 3 -~ W O / = N
S L L 1 1 T = O i L 1 L
OD 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
/T /T

(From S. K. Mitra, “Digital signal processing: a computer based approach”, McGraw Hill, 2011)

IR Bandstop filter
An second order IR bandstop filter is given by the following transfer function

1+a 1-28z71+272
2 1-Bl+a)z7t+az?

HBP(Z) =

The amplitude response for different values of o and 3 is given by:
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B=05 | w=05

Magnitude
Magnitude

0 02 04 06 08 1

(From S. K. Mitra, “Digital signal processing: a computer based approach”, McGraw Hill, 2011)

This filter is also called a notch filter.
Also in this case « and 3 separately control the stopband bandwidth and the notch position. The notch
frequency is

wo = arccos(f)

2
Brsgp = arccos <1 +aa2) .

and the stopband bandwidth is

Higher order IIR filters

By cascading a certain number of filters like the ones we have just introduced, it is possible to obtain
filters with steeper rising and falling edges in the frequency domain, i.e., filters with smaller transition
bands.

For example, consider the cascade of K IIR lowpass filters:

l—a 14271
Hyp(2) = —— 1.
. 2c
for which we have seen cos(w.) = 1o a2
o

In the filter cascade, the resulting transfer function is

Gre(?) = (21—azl

(1 —a)2(1 + cos(w)) 1™
2(1+ a? — 2acos(w))
The 3dB cutoff frequency can be obtained by setting

l—a 14271 )K

Gur(e)P = |

. 1
Grp(e’)]? = 2

By imposing a certain w. and solving this equation for a, we obtain that the only stable solution is

1+ (1 —=C)cos(w,) — sin(w.)vV2C — C?
4= 1—C + cos(we)

—1

with ¢ = 2%
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Example: Let us design a filter with 3dB cutoff frequency w. = 0.47.
For K =1,C =1,itis a = 0.1584.

For K =4, C =1.6818, itis a = —0.251.

0

fasl

-
;? T
£ .10 - 0 e
S = :
g2 :
g ;
O 4L i
202 : .-| 0 2 = 1 ;

10 10 10" 10 10 10”
Normalized frequency Normalized frequency
(a) (b)

Figure 4.23: (a) Gain responses of a single first-order lowpass filter (K = 1) and a cascade of four identical ﬁfst-ordel
lowpass filters (K = 4) with a 3-dB cutoff frequency of w, = 0.47. (b) Passband details.

(From S. K. Mitra, “Digital signal processing: a computer based approach”, McGraw Hill, 2011)
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07.07 Comb filters

The filters we have seen up to this point have been characterized by a single passband and/or stopband.
However, there are several applications where filters with multiple passbands or stopbands are required.
Comb filters are an example of such filters.
Comb filters have a periodic frequency response with a period of 2% where L is a positive integer. If
H(z) is atransfer function with a single passband and/or stopband, a comb filter can be easily generated
by replacing each delay element with L delays, resulting in a transfer function G(z) = H(z1).
If |[H(e/*)| has a peak at w = w,, then |G(e7*)| has L peaks atw = “2 + 22k where 0 < k < L — 1, and
0<w< 2.
Similarly, if |[H(e’*)| has a notch at w = wy, then |G(e?*)| has L notches at w = %2 + 2T where
0<k<L-1l,and0<w < 2m.
For example, if we consider

H(z)=-(1+z7")

Gz)=z(1+ z*L)

[N NCY S

and for L = 4, the magnitude response is
e 4 ' /
) ;l'_. LY . :

-
|

g
-1
\
—

Similarly, if we consider

the magnitude response for L = 4 is

| ~ /7 WD
0 7 L0
4 ¢,
I
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It is easy to understand the behavior of the frequency response G(e’*) from the frequency response
H(e’*) because
G(e'¥) = H(eM%D).

By varying w from 0 to 27, ¢/ moves along the unit circle L times, and therefore, the frequency response
G(e?*) coincides with H (e/) (which is periodic with period 27), apart from a frequency axis scaling by
a factor of 1.

07.08 All-pass filters

By definition, a transfer function is called all-pass if the amplitude response is constant (i.e., one) for all
frequencies, that is, if
|A(e?) =1  Vw

An all-pass causal transfer function with real coefficients is given by

. dM —+ dM_lz_l + ...+ dlz_M‘H + d()Z_M
o do + diz71 4+ ...+ d]p[_lz_M+1 + d]\,[Z_M

A (2)
If we call the denominator polynomial Dy, (z),

Dar(z) =do+diz 4.+ dyrr 2 MA  dypa ™
we have

Note that the denominator polynomial is the mirror image polynomial of the numerator, and vice versa.

Ap(z) ==

If = = re’? is a pole of the transfer function, then z = %e*ja is a zero. Thus, poles and zeros of an
all-pass filter exhibit mirror-image symmetry in the z-plane. By assuming that A(z) is a stable transfer
function, the poles must be inside the unit circle and the zeros outside the unit circle.

Let us prove that A/ (z) = z*M% is an all-pass transfer function. Consider

1y DM(Z)
A =06

2. L1 :ZfMDM(Z_l) M Du(z) _
Am(z) - Ap(z7) Dot (2) Dt (=) 1
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Then,
A (%) - Apr(e779) = [Ap ()2 = 1
Q.E.D.
It is interesting to observe the phase behavior for 0 < w < 2.

With the geometric interpretation of the phase response, as w varies from 0 to 27, the zeros cause
phase fluctuations, but the overall phase variation is 0. Conversely, each pole contributes a phase of
—27. Overall, the phase varies from 0 to —27 M, as w varies between 0 and 27. In other words, for w
varying between 0 and =, the phase varies from 0 to —7 M.

07.09 Minimum-phase and maximum-phase transfer functions

Another useful classification of transfer functions is based on the behavior of the phase response. Let
us consider the following two first-order transfer functions with real coefficients:

z+b
Hl(Z)Z Z+a,
bz +1
HQ(Z): - +a

with |a| < 1 and |b] < 1.
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As we can see, both transfer functions have a pole inside the unit circle at —a, indicating stability. On
the other hand, the zero of H,(z) falls inside the unit circle (at = = —b), while the zero of Hs(z) falls
outside the unit circle at z = —+.

The two transfer functions have the same amplitude response because

bz+1

Hy(z) = Hi(2) o

Hi(z) - A(z)
with A(z) all-pass. Thus,
2

Hy(¢7%) - Hy(e™7*) = [Hi(e™*)|” = Ha(e™) - Ha(e ™) = | Hy(e)]

but they have different phase responses:

147

arg [Hl(ej‘“)] = 61 (w)) = arctan IH_Sircli((:(L) — arctan #f:;}()w)
arg [Ha(e/*)] = f(w)) = arctan % — arctan %(():()w)

arg [Ha(e’*)] = arg [Hy(e/¥)] + arg [A(e)]

For w ranging from 0 to 7, we observe that Hs(e“) undergoes a phase variation of —x, while H; (/)
undergoes no phase variation, i.e., Hy(e’*) exhibits an excess phase variation compared to H;(¢’*). In
general, for w ranging from 0 to =, a causal and stable transfer function with all zeros outside the unit
circle experiences an excess phase variation compared to a causal and stable transfer function with the
same amplitude response but with all zeros inside the unit circle. Consequently, a transfer function with
all zeros inside the unit circle is termed a minimum-phase transfer function, while if all zeros lie outside
the unit circle, it is termed a maximum-phase transfer function.
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07.10 Inverse system
Two LTI systems with impulse response h,(n) and hy(n) are inverses of each other if
hi(n) ® ha(n) = 6(n),

i.e., if their convolution is the unit impulse function, indicating that the cascade of the two systems (in
any order) results in the identity system.

Let us characterize the inverse system (or the inverse filter) in the frequency domain. By taking the
Z-transform of both sides of the equality, we have

Hl(Z) . HQ(Z) = ].,

which implies
Hy(z) = Hll(z)
and if H(z) is rational,
() = 53 () = 53

thus H»(z) is also rational, and the poles (zeros) of the inverse filter are the zeros (poles) of H;(z).
Assuming the inverse system to be causal, it will be stable if and only if H;(z) is minimum-phase.

Note that by relinquishing the assumption of causality for the inverse filter, the inverse filter is not unique.
For example, consider the causal system

~—

=
—
™R
~
|
—
N
|
=
~—
—
ISIN RN
+

==
S—

. 1
with R.O.C.: |z| > -
The inverse filter has a transfer function

(= +3 7
C-DEh)

~
—
N
\
=
~—

. . . 1 .1 1 .. 1 .
with three possible R.O.C.: (i) |z| < R (i) = < |2 < T (i) |z| > 1 Each region of convergence
corresponds to a different inverse system. Only the last R.O.C. corresponds to a causal system.

07.11 Deconvolution

If a system has a known causal impulse response h(n) and it is excited by a causal input signal z(n),
then, from the knowledge of the output signal y(n) for n > 0, we can estimate the input signal z(n) using
a recursive relation without the need to evaluate the inverse system. In fact, it is

n

y(n) = Z h(m)z(n —m).

m=0

Let us assume h(0) # 0,
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= y(0)
y(0) = h(0)z(0) —  2(0) Ho)
y(1) = h(0)x(1) + h(1)z(0) )= 2 —hizo()l)w(O)
2(2) = h(0)2(2) + h(Da(1) + h(2)2(0) — a(2) = LB = h(l)z%g — h(2)z(0)
n y(n) — Z h(m)xz(n —m)
y(n) = mz::oh(m)az(n —m) = z(n) = m:lh(O)

This procedure, which estimates the input signal 2:(n) from the convolution sum, is called deconvolution.

07.12 Amplitude equalizer and phase equalizer

Given a system H(z), a filter G(z) whose amplitude response |G(e’“)| satisfies the following condition
G(e)| = [H()|T! Vw € i, w]

is called an amplitude equalizer for the system H(z) in band [w1, wo).

i} et by

Given a system H(z), a filter P(z) whose phase response arg P(e’“) satisfies the following condition
arg P(e/“) = —arg H(e/*) — Kw  w € w1, ws),

with K € R, is called a phase equalizer for the system H(z) in band [wy, ws).
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Computer Engineering
University of Trieste

A\

\ !'/ﬁ I'to e’; A
%) Hie'”, 6
= - B —f‘—
™~ X "- ‘j_\.‘ A
orp Ple wie
|

(in this case K = 0)

)

}

g =
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07.13 Stability test for IIR filters

We have seen that a causal IIR filter, described by a finite difference equation or by a rational transfer
function, is stable in the BIBO sense if and only if its poles fall inside the unit circle. There exist stability
tests that do not require the estimation of the poles.

07.13.1 The stability triangle

For real coefficient lIR filters of second order, we can easily determine if the filter is stable from the
coefficients of the denominator. Consider the polynomial

D(z) =224 a1z +as = (2 — 21)(2 — 22)

2
al aj — 4as
= —— 44/ —7=
1,2 2 =V 4

ag = 21 * 29

and thus

a1 = —(21 + 2’2)

We can prove that the roots z; and 2z fall inside the unit circle if and only if
|a2\ < 1,

la1] < 14 as.

In fact, if the zeros are complex conjugate the condition |as| < 1 is necessary and sufficient for stability.
If the zeros are real: a? — 4a, > 0 and it is still necessary that |as| < 1.

a la? — 4a
|Zl,2‘max - |271| + 1T27

from which, if |az| < 1, the filter is stable if and only if |a1]| < 1 + as.

[aZ — 4
‘@21|Jr ay - a2<1
2
a3 — 4das |aq]
4 2

a? —4a
1T2<17|a1\+

—ay < 1— \a1|

In fact, if

then

at

4

\a1| <14 as.

Conversely, if |a1] < 1+ ao then

1 /(1 24
|Zl,2|max < —;a2 + ( +a231 a2 =1
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On the plane a4, a2, the region of points for which the filter is stable is a triangle, called the stability
triangle.

L

07.13.2 Schur-Cohn stability test

The Schur-Cohn stability test can be applied to polynomials of any order. Let us consider:
M .
Dy(z) = Zdiz_Z =1+4+diz ' +...+dyzM
=0
with dy = 1 for simplicity. Let us take the mirror image polynomial,
M

Dy(z)=2"MDy(z"1) =M Zd,—zi =
i=0

=dy+dy_1z" .o dp M g M
and let us build the all-pass filter
Am(z) = 5=

M
If Das(z) = ] (1= Xiz™), with \; the filter poles, then

=1
M
dy = [ M(=DM.
=1
Thus, if we call K, = das, a necessary condition for the all-pass filter stability is that

‘KM| < 1.
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Let us assume |K /| < 1 and let us build the all-pass filter

Ap-i(z) =2 {%}

. Di(2) — dy D (2) _
D (2) — dyDag(2)
— .. (dv —dar - 1) + (dpr—1 — del)z—l +... 4+ (1= d?\/[)z_M _
(1—d3;) + (dy —dydy—1)z" + .o+ (dy — dpg - 1)z=M
(dar—y — dpgdy) + ...+ (1 — d3,)z~M+1
(1—d2,) + (dy — dprdnr 1)z~ + ...+ (dag—1 — dpgdy)z=M+1

It can be proved that the all-pass filter A;(z) is BIBO stable if and only if |[Ky/| < 1 and Ap—1(2) is
BIBO stable.

Proof:

The proof is based on the fact that if the real-coefficients all-pass filter A;(z) is stable then:

Ap(2)| =1 for || =1,

[Ap(2)] <1 for |z] >1,
|[Ap(2)] > 1 for |z] < 1.

We have already seen that the condition | K| < 1 is necessary for the stability.
In the hypothesis that | K| < 1 and that A, (z) is stable, let us prove that A;,_;(z) is stable.
If Ao is a pole of Ap;_1(z) then Ag is a root of the equation

DA[(Z) — K]MBJW(Z) = 0

i.e., Axr(Xo) = Du(do) = L Since | K| < 1, |Aa(Ao)| > 1, and A\ must fall inside the unit circle
Dunr(Xo)  Kun

because of the stability of A(2).
Let us prove that A,,(z) is stable when | K| < 1 and Ap;_1(z) is stable.
But if g is a pole of A/ (2), Dar(Ao) =0,

Dy(ho) Ao

Ap—1(Ng) = N——=—"—=—
M 1( O) OKMD]\,f()\o) K]W

. 1
Since | K| < 1, ‘)\ < Ap—1(XNo)| > 1, and
0

[Anr—1(Xo)| > [Aol

If for absurd we assume |\o| > 1, we also have |A,—1(\g)| > 1, which contradicts the hypothesis of
stability of Ay;_1(z). Thus, it must be |\g| < 1. Q.E.D.
The test procedure can be repeated. Let us consider:

d/]\/[71 + di]\/jfzzil + ...+ d’lszJFZ + Z*M+1

Avi(2) =
w-1(2) T+dz""+.. . +dy, 2z M+

with
g — di — dyrdar—i _ di — Knrdpr—i
T @, 1- K3,
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Let us set K,_1 = d),_, and build

CAp—1(2) — Ky
1 - Ky—1An-1(2)

Ap—2(z) =2

the filter Ay, (z) is stable if and only if | K| < 1, |[Kar—1]| < 1, and Apr—o(2) is stable.

By iterating this procedure M — 1 times, given the coefficients Ky;, K1, ..., K; associated with
the all-pass filters Ay (2), Ap—1(2), ..., A1(2), the all-pass filter A,(z) is stable (and the polynomial
Dy (z) has all its roots inside the unit circle) if and only if

For exercise, let’s ascertain whether the polynomial D,4(z),

1 2 1 1
Dy(z) =1+ gz_l - Ez_2 3 3 -

has roots inside the unit circle.
We apply the Schur-Cohn stability test. To apply the method it suffices to remember that the denomina-
tor of AM_1(Z) is given by [DM(Z) — Kjwﬁjw(z)]/(l — KJZQ)

1
K4:§,and17K§ilf%:§.
D3(2) = [Da(2) — K4Da(2)]/(1 - K3) =

(-0 Gr ) Chem) e () 8-
[ -
=1+ %zfl - 1—102:*2 - 5273
Kg,:f%,ng:Z
Dy(2) = [Ds(2) — K3D3(2)]/(1 - K3) =
= Kl - i) + <; - 210> 27t + (11 + i) 272+ (; + ;) z—ﬂ /34 =
= %+%z‘1+%z—2 /34 =
=1+ gz’l + 5272.
ngé,lfKS:%N
Di(z) = [D2(2) — K2Da(2)]/(1 = K3)
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=1+ %z_l.
1
Kl - 5

Since K, K», K3, and K4 have absolute value less than 1, the polynomial has roots inside the unit
circle.

For exercise, write a Matlab function that, given the vector of the polynomial coefficients, computes the
reflection coefficients K; of the Schur-Cohn method.

For more information study:

S. K. Mitra, "Digital Signal Processing: a computer based approach,” 4th edition, McGraw-Hill, 2011
Chapter 4.9, pp. 185-188

Chapter 7.1, pp. 333-335

Chapter 7.2.1, pp. 342-344

Chapter 7.3, pp. 349-360

Chapter 6.7.3-6.7.4, pp. 312-315

Chapter 7.2.3, pp. 346-349

Chapter 7.6, pp. 385-388

Chapter 7.9, pp. 394-399
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