Cognome	Nome	Matricola

Prova scritta di Fisica Tecnica Ambientale – 11.02.2025 (Ing. Civile e Ambientale, ing. Navale)

In un ciclo Rankine a vapore saturo una portata \dot{m}_{v} di vapore entra in turbina alla pressione p_{3} , in condizioni di vapore saturo secco e si espande adiabaticamente con rendimento isoentropico di espansione η_{ie} fino alla pressione p_{4} fornendo la potenza tecnica \dot{L}_{34} . La pompa all'uscita del condensatore aspira il liquido saturo alla pressione $p_{1} = p_{4}$ e lo comprime sino alla pressione $p_{2} = p_{3}$. In queste condizioni ed utilizzando la tabella allegata si ricavi:

- 1. l'andamento del ciclo in un diagramma *T-s* ed *h-s*;
- 2. il titolo $x_{4'}$ e l'entalpia $h_{4'}$ del vapore all'uscita dalla turbina per espansione ideale;
- 3. l'entalpia all'uscita dalla turbina h_4 ;
- 4. l'entalpia del liquido all'uscita della pompa h_2 ;

	p_3	p_4	η_{ie}	\dot{L}_{34}	
Tema	(kPa)	(kPa)	(-)	(MW)	
A	4000	50	0,80	10	
В	5000	60	0,85	8	

- 5. il rendimento del ciclo η_t ;
- 6. il flusso termico ceduto dal condensatore \dot{Q}_{41} .
- 7. il rendimento massimo raggiungibile con le temperature massime e minime del ciclo η_{rev}

p	t	v_l	ν_{ν}	h_l	h_{v}	Sl	S_{V}
MPa	°C	m ³ /kg	m ³ /kg	kJ/kg	kJ/kg	kJ/(kg K)	kJ/(kg K)
0.040	75.86	0.001026	3.9930	317.62	2636.05	1.0261	7.6690
0.050	81.32	0.001030	3.2400	340.54	2645.22	1.0912	7.5930
0.060	85.93	0.001033	2.7317	359.91	2652.86	1.1454	7.5311
4.000	250.35	0.001253	0.0498	1087.49	2800.82	2.7968	6.0696
5.000	263.94	0.001286	0.0394	1154.64	2794.21	2.9210	5.9737
6.000	275.58	0.001319	0.0324	1213.92	2784.59	3.0278	5.8901

Teoria

compressore alternativo con gas ideale a calori specifici caratteristici costanti

- 1) definire il rendimento volumetrico di un compressore alternativo η_V definendo, anche aiutandosi con schemi e diagrammi
 - a. volume aspirato
 - b. volume generato
 - c. volume nocivo
- 2) ricavare l'espressione del rendimento volumetrico η_V in funzione del rapporto delle pressioni r_p

Tema A

 $h_3 = 2800,8 \; \text{kJ/kg}; \;\; s_3 = 6,070 \; \text{kJ/(kg K)}; \;\; s_{liq} = 1,091 \; \text{kJ/(kg K)}; \;\; s_v = 7,593 \; \text{kJ/(kg K)}; \;\; h_l = 1,091 \; \text{kJ/(kg K)}; \;\; s_{liq} = 1,091 \; \text{kJ/(kg K)}; \;$ 340,54 kJ/kg; $h_{\nu} = 2645,2 \text{ kJ/kg}$

$$s_4 = s_3$$

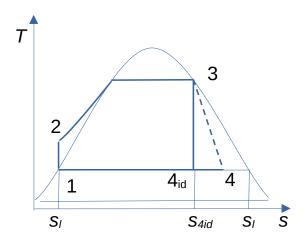
$$(x_4)_{id} = \frac{(s_{4id} - s_l)}{(s_v - s_l)} = 0,766$$

$$h_{4id} = h_l \cdot (1 - (x_4)_{id}) + h_v \cdot (x_4)_{id} = 2105,2 \text{ kJ/kg}$$

$$h_4 = h_3 - \eta_{ie} \cdot (h_3 - h_{4id}) = 2244,3 \text{ kJ/kg}$$

$$x_4 = \frac{(h_4 - h_l)}{(h_v - h_l)} = 0,826$$

$$h_1 = h_{liq}$$


$$h_2 = h_1 + (p_3 - p_4) \cdot v_1 = 344,6 \text{ kJ/kg}$$

 $\eta_t = 1 - \frac{(h_4 - h_1)}{(h_3 - h_2)} = 0,2249$

$$\dot{m} = \frac{\dot{L}_{34}}{(h_3 - h_4)} = 17,97 \text{ kg/s}$$

$$\dot{Q}_{41} = \dot{m} \cdot (h_1 - h_4) = -3.421 \cdot 10^4 \text{ Kw}$$

$$\dot{Q}_{41} = \dot{m} \cdot (h_1 - h_4) = -3,421 \cdot 10^4 \text{ Kw}$$

$$\eta_{rev} = 1 - \frac{T_{min}}{T_{max}} = 1 - \frac{T_3}{T_1} = 0,3229$$

