Cognome	Nome	Matricola

Ing. Navale, Ing. Civile e Ambientale

Prova scritta di Fisica Tecnica – Termodinamica – 10.6.2025

Esercizio

Una portata di aria umida ($\dot{m}_{as}=0.2\frac{\mathrm{kg}_{as}}{\mathrm{s}}$) a temperatura $T_1=25\,^{\circ}\mathrm{C}$ ed umidità relativa ϕ_1 viene raffreddata a pressione costante $p=10^5$ Pa fino a raggiungere un'umidità relativa $\phi_2=90\,\%$.

- 1. Diagrammare schematicamente la trasformazione 1-2 in un diagramma psicrometrico.
- 2. Calcolare la temperatura finale T_2 .
- 3. Calcolare la potenza termica estratta \dot{Q}_{12} .

Le relazioni tra pressione di saturazione p_{sat} [Pa] e temperatura T [°C] sono:

$$p_{sat}(T) = 611 \cdot e^{\frac{17,3 \cdot T}{237 + T}} \qquad T = \frac{237}{\frac{17.3}{\ln(\frac{p_{sat}}{611})} - 1}$$

Per la valutazione dell'entalpia di miscela dell'aria umida:

- calori specifici a pressione costante: $c_{p,as} = 1 \text{ kJ/(kg} \cdot \text{K)}, c_{p,vap} = 1.9 \text{ kJ/(kg} \cdot \text{K)}$
- calore latente di vaporizzazione $h_{lv} = 2500 \; \mathrm{kJ/(kg \cdot K)}$

Tema
$$φ_1$$
A 0.65

B 0.50

Teoria

Ciclo Brayton (o Brayton-Joule) ideale ad aria standard fredda:

- rappresentazione nei piani p v e T s
- determinazione del rendimento in funzione del rapporto di compressione

Soluzione

Nota la temperatura e l'umidità relativa del punto 1, si ricavano in sequenza la corrispondente pressione di saturazione e quella di vapore:

$$p_{sat,1} = p_{sat}(T_1) = 611 \cdot e^{\frac{17.3 \cdot T_1}{237 + T_1}} = 3184 \text{ Pa}$$

$$p_{vap,1} = \phi_1 \cdot p_{sat,1}$$

Non essendoci altre portate d'acqua in gioco, $p_{vap,2} = p_{vap,1}$ ed è quindi possibile ricavare $p_{sat,2}$:

$$p_{sat,2} = \frac{p_{vap,2}}{\phi_2}$$

e quindi la relativa temperatura del punto 2:

$$T_2 = \frac{237}{\frac{17.3}{\ln\left(\frac{p_{sat,2}}{611}\right)} - 1}$$

La potenza estratta si ottiene quindi dal bilancio entalpico per sistema aperto, dove i flussi entalpici dell'aria umida si calcolano attraverso le relative entalpie di miscela $J = c_{p,as} \cdot T + \omega \cdot (c_{p,vap} \cdot T + h_{lv})$:

$$\dot{Q}_{12} = \dot{m}_{as}(J_2 - J_1)$$

avendo calcolato l'umidità assoluta come $\omega=0.622\frac{p_{vap,1}}{p-p_{vap,1}}$.

Tema	ϕ_1	$p_{vap,1}$ [Pa]	$p_{sat,2}$ [Pa]	<i>T</i> ₂ [°C]	$\omega \left[\frac{\mathrm{kg}_{\mathrm{vap}}}{\mathrm{kg}_{\mathrm{as}}} \right]$	$J_1 \left[\frac{\mathrm{kJ}}{\mathrm{kg}_{\mathrm{as}}} \right]$	$J_2\left[\frac{\mathrm{kJ}}{\mathrm{kg}_{\mathrm{as}}}\right]$	\dot{Q}_{12} [kW]
A	0.65	2070	2299	19.7	0.0131	58.5	53.0	1.09
В	0.50	1592	1769	15.5	0.0101	50.6	41.0	1.93