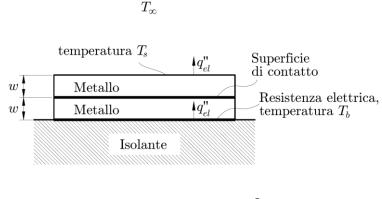
Cognome	Nome	Matricola

Ing. Navale, Ing. Civile e Ambientale

Prova scritta di Fisica Tecnica – Trasmissione del calore – 22.7.2025

Esercizio


Il valore della resistenza di contatto della superficie di contatto che separa due strati metallici (spessore w=5 mm, conduttività termica $\lambda=150\,\mathrm{W/(m\cdot K)}$) può essere determinata attraverso lo schema in figura, dove una resistenza elettrica posta sotto lo strato metallico inferiore fornisce un flusso termico q_{el}'' , uniforme lungo tutta la base, che viene interamente trasmesso attraverso gli strati metallici per via dell'isolante sottostante. La superficie esterna dello strato metallico superiore, a temperatura T_s , scambia per convezione verso l'ambiente a temperatura T_∞ che non varia nel corso delle misure; si trascurano invece gli scambi termici lungo le superfici laterali.

La determinazione della resistenza di contatto viene fatta misurando in condizioni stazionarie la temperatura alla base T_b in due configurazioni:

- quando la superficie di contatto non viene trattata, ossia quando dà luogo alla resistenza di contatto da determinare, si misura $T_b = 95\,^{\circ}\text{C}$
- quando la superficie di contatto viene riempita con pasta conduttiva, tale per cui la resistenza di contatto si può considerare nulla, si misura $T_b = 70$ °C

Determinare:

- 1. il valore della resistenza specifica di contatto $R_c^{\prime\prime}$
- 2. la temperatura T_s
- 3. il coefficiente convettivo nel caso particolare in cui $T_{\infty} = 10$ °C

Tema	$q_{el}^{\prime\prime}$ [W/cm ²]
A	30
В	40

Teoria

Convezione forzata in flussi interni (tubazione):

- andamento qualitativo della temperatura di mescolamento (bulk) lungo la tubazione nei due casi di flusso termico imposto e temperatura imposta a parete
- derivazione analitica dell'andamento della temperatura di mescolamento lungo la tubazione nel caso di flusso termico imposto a parete

Soluzione

1. Essendo il flusso termico $q_{el}^{\prime\prime}$ identico nelle due configurazioni, così come pure T_{∞} , anche la temperatura superficiale T_s sarà la stessa, quindi il salto termico a cavallo della resistenza di contatto ΔT_c sarà pari alla differenza di temperatura alla base T_b nelle due configurazioni, $T_{b,1}-T_{b,2}$. Di conseguenza si avrà:

$$q_{el}^{\prime\prime} = \frac{\Delta T_c}{R_c^{\prime\prime}} \qquad \Rightarrow \qquad R_c^{\prime\prime} = \frac{T_{b,1} - T_{b,2}}{q_{el}^{\prime\prime}}$$

2. La temperatura superficiale T_s si determina in una qualsiasi delle due configurazioni, per esempio la seconda:

$$q_{el}^{\prime\prime} = \lambda \frac{T_b - T_s}{2w} \qquad \Rightarrow \qquad T_s = T_b - \frac{2w \cdot q_{el}^{\prime\prime}}{\lambda}$$

3. Il coefficiente convettivo h si calcola direttamente dalla definizione:

$$q_{el}^{"}=h\cdot(T_S-T_\infty)$$
 \Rightarrow $h=\frac{q_{el}^{"}}{T_S-T_\infty}$

Tema	$q_{el}^{\prime\prime}[\mathrm{W/cm^2}]$	$R_c^{\prime\prime}\left[\frac{\mathrm{m}^2\mathrm{K}}{\mathrm{W}}\right]$	T_s [°C]	$h\left[\frac{W}{m^2K}\right]$
A	30	$8.33 \cdot 10^{-5}$	50.0	7500
В	40	$6.25 \cdot 10^{-5}$	43.3	12000