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Abstract
Scientists often adjust their significance threshold (alpha level) during null hypoth-
esis significance testing in order to take into account multiple testing and multiple 
comparisons. This alpha adjustment has become particularly relevant in the context 
of the replication crisis in science. The present article considers the conditions in 
which this alpha adjustment is appropriate and the conditions in which it is inap-
propriate. A distinction is drawn between three types of multiple testing: disjunc-
tion testing, conjunction testing, and individual testing. It is argued that alpha adjust-
ment is only appropriate in the case of disjunction testing, in which at least one 
test result must be significant in order to reject the associated joint null hypothesis. 
Alpha adjustment is inappropriate in the case of conjunction testing, in which all 
relevant results must be significant in order to reject the joint null hypothesis. Alpha 
adjustment is also inappropriate in the case of individual testing, in which each indi-
vidual result must be significant in order to reject each associated individual null 
hypothesis. The conditions under which each of these three types of multiple test-
ing is warranted are examined. It is concluded that researchers should not automati-
cally (mindlessly) assume that alpha adjustment is necessary during multiple testing. 
Illustrations are provided in relation to joint studywise hypotheses and joint multi-
way ANOVAwise hypotheses.
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1  Introduction

The multiple testing of hypotheses occurs in the most areas of science. For exam-
ple, it occurs in clinical science, where researchers investigate whether a treat-
ment affects multiple disease symptoms, and it occurs in psychology, where 
researchers investigate whether multiple groups of people hold different attitudes 
to one another.

Multiple testing has been implicated in the replication crisis in science (e.g., 
Benjamin et al., 2018; Forstmeier et al., 2017; Goodman et al., 2016). In particu-
lar, it has been suggested that researchers who do not adequately correct their 
significance threshold, or alpha level, during multiple testing are at a greater risk 
of making Type I errors (incorrectly rejecting null hypotheses) and, consequently, 
publishing nonreplicable false positive results (Goodman et al., 2016).

Many books and articles explain how to adjust alpha levels during multiple 
testing (e.g., Bretz et al., 2011; Dmitrienko & D’Agostino, 2013; Dudoit & Van 
der Laan, 2008; Goeman & Solari, 2014; Hsu, 1996; Klockars, 2003; Pan, 2013; 
Shaffer, 1995; Streiner, 2015). However, far fewer articles consider when to adjust 
alpha levels during multiple testing (Proschan & Waclawiw, 2000). The most 
common view is that alpha adjustment is almost always required during multiple 
testing. For example, in their article on the control of false positives in neuro-
imaging, Bennett et  al., (2009, p. 417) explained that “it is a statistical neces-
sity that we must adapt our threshold criteria to the number of statistical tests 
completed on the same dataset.” Similarly, in their tutorial on multiple testing 
in genomics, Goeman and Solari (2014) argued that “there can be no reason not 
to correct for multiple testing in a genomics experiment” (p. 24). Commentators 
who hold different views tend to be in complete opposition to any alpha adjust-
ment. For example, O’Keefe (2003, p. 431) argued that “the practice of requiring 
or employing such adjustments should be abandoned,” and Rothman (1990, p. 
43) argued that “a policy of not making adjustments for multiple comparisons is 
preferable because it will lead to fewer errors of interpretation” (see also Hurlbert 
& Lombardi, 2012, p. 30; Mead, 1988; Perneger, 1998; Rothman et  al., 2008; 
Sinclair et al., 2013; Stewart-Oaten, 1995; Wilson, 1962; for a brief review, see 
Hurlbert & Lombardi, 2012, pp. 30–31). Researchers cannot be blamed for being 
confused about alpha adjustment when they are confronted with these contradic-
tory viewpoints.

Some articles have provided a more moderate and nuanced perspective in 
which an alpha adjustment is warranted in some cases of multiple testing but not 
in others (Armstrong, 2014; Bender & Lange, 2001; Greenland, 2020; Hewes, 
2003; Matsunaga, 2007; Proschan & Waclawiw, 2000; Schulz & Grimes, 2005; 
Streiner, 2015; Tutzauer, 2003; Wason et  al., 2014; Weber, 2007). Although 
numerous qualifying conditions have been proposed, a common criterion relates 
to the distinction between exploratory and confirmatory research. Some research-
ers believe that alpha adjustment is more appropriate when multiple testing occurs 
in exploratory research situations that involve unplanned analyses rather than in 
confirmatory research situations that include planned analyses (e.g., Armstrong, 
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2014; Cramer et al., 2016; Streiner, 2015; for a review, see Frane, 2015). How-
ever, other researchers hold the opposite view—that alpha adjustment is more 
appropriate in confirmatory situations than in exploratory situations (e.g., Bender 
& Lange, 2001; Schochet, 2009; Stacey et al., 2012; Tutzauer, 2003; Wason et al., 
2014; for a discussion, see Parker & Weir, 2020, p. 3). Hence, the distinction 
between exploratory and confirmatory research does not seem to clarify when to 
adjust alpha.

In the present article, I consider an alternative approach to determining when to 
adjust alpha during multiple testing. Rather than being based on the type of research 
situation (exploratory vs. confirmatory), my approach is based on the type of multi-
ple testing. Specifically, I consider three types of multiple testing—disjunction test-
ing, conjunction testing, and individual testing. I argue that an alpha correction for 
multiple testing is only necessary in the case of disjunction testing and not in the 
cases of either conjunction or individual testing. I explain when it is appropriate 
to undertake each type of multiple testing and, consequently, when it is appropri-
ate to adjust alpha. Based on this explanation, I argue that researchers should not 
automatically assume that alpha adjustment is necessary during multiple testing. I 
provide illustrations of the problems with this automatic (mindless) alpha adjust-
ment assumption in relation to joint studywise hypotheses and joint multiway ANO-
VAwise hypotheses. I begin with an introduction to the issue of multiple testing.

2 � What is multiple testing?

To understand multiple testing, it is first necessary to understand the null hypothesis 
significance testing approach. This approach is based on p values. A p value is the 
probability of obtaining a test statistic value or a more extreme value in a sample 
assuming that (a) the sample was drawn from a null population, as described in the 
null hypothesis, and that (b) all statistical assumptions are valid. In order to decide 
whether a test result is “significant,” researchers judge their observed p value against 
a threshold criterion value or alpha level.1 If the p value for an observed test statistic 
is less than or equal to the alpha level, then researchers categorize the result as being 
“significant,” and they decide to provisionally reject the null hypothesis that the 
sample was drawn from the null population. Otherwise, they categorise the observed 
result as “nonsignificant” and retain the null hypothesis.

In many fields, researchers set their alpha level at 0.05, meaning that they are 
willing to accept that random measurement error and random sampling error will 
cause them to incorrectly reject the null hypothesis in no more 5.00% of a long run 
of exact replications of their test. Hence, there is a 5.00% probability that researchers 

1  In the Neyman-Pearson approach, some researchers may consider alpha size tests rather than alpha 
level tests (Casella & Berger, 2002). However, alpha size tests are difficult to construct in the case of 
disjunction and conjunction testing (Casella & Berger, 2002, p. 385). Consequently, I refer to alpha level 
tests here.
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will make a Type I error in the long run by rejecting the null hypothesis when it is 
true.

It should be noted that null hypothesis significance testing is a hybrid of the 
Fisherian and Neyman–Pearson approaches (Dennis et  al., 2019; Rubin, 2021). A 
key difference between these two approaches is that the Neyman–Pearson approach 
explicitly contrasts the null hypothesis with a formal alternative hypothesis, whereas 
the Fisherian approach does not. In addition, some neo-Fisherians do not use signifi-
cance thresholds to make dichotomous “reject” vs. “fail to reject” decisions about 
the null hypothesis (Rubin, 2021, Footnote 4). However, many Fisherians, including 
Fisher himself, do use significance thresholds to make such decisions, and the issue 
of multiple testing is relevant to them (e.g., Fisher, 1971, pp. 205–207).

Imagine a case in which the same hypothesis is tested twice. For example, imag-
ine that a group of researchers investigate the alternative hypothesis that eating jelly 
beans causes acne (Munroe, 2011). There are many different colours of jelly bean 
and so, to keep their study simple, the researchers randomly select two colours for 
testing: green and red. The researchers ask one group of participants to eat a bag of 
green jelly beans every day for a week and one group to eat a bag of red jelly beans 
every day for a week. The researchers also ask a control group of participants to eat 
a bag of sugar pills every day for a week. The researchers then count the number of 
spots on participants’ faces.

In this jelly beans study, the researchers can make multiple comparisons in order 
to test the null hypothesis that the amount of acne among people who eat jelly beans 
is no greater than the amount of acne among people who eat sugar pills. In par-
ticular, the researchers can test for a significant increase in acne between (a) the 
green jelly beans group and the control (sugar pills) group and (b) the red jelly beans 
group and the control group. Hence, the researchers are conducting two tests of the 
same null hypothesis that eating jelly beans does not cause acne.2

Note that a hypothesis that undergoes multiple testing is called a joint hypothesis. 
Joint hypotheses comprise two or more constituent hypotheses. Hence, in the above 
example, the joint alternative hypothesis is that “eating jelly beans causes acne,” and 
the constituent alternative hypotheses are that (a) “eating green jelly beans causes 
acne,” and (b) “eating red jelly beans causes acne.”

Imagine that the researchers in the jelly beans study use an alpha level of 0.05 as the 
significance threshold for their two one-sided tests. Further imagine that they find that 
the comparison between the green jelly beans group and the control group results in a 
significant p value of 0.030, but that the comparison between the red jelly beans group 
and the control group results in a nonsignificant p value of 0.070. What decision should 
the researchers make about the joint null hypothesis that eating jelly beans does not 
increase acne? There are three main approaches that they could take.

2  The researchers could also collapse the green and red jelly beans conditions together and compare jelly 
beans versus the control (sugar pill) group, but they could do so on two measures of acne (e.g., inflam-
matory and noninflammatory). In this case, the researchers would be undertaking two tests of the same 
null hypothesis using two different outcome variables or endpoints. To keep things simple, I refer to the 
multiple comparisons example throughout this article. However, my arguments are equally applicable to 
the multiple endpoints situation.
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First, the researchers could require that at least one of the two tests returns a sig-
nificant result before they reject the joint null hypothesis. This “at-least-one-test-sig-
nificant” strategy (Dmitrienko & D’Agostino, 2013) represents a disjunction testing 
approach, because it operates on the basis of a logical disjunction decision rule (Weber, 
2007).

Second, the researchers could require that both tests return a significant result before 
they reject the joint null hypothesis. This “all-tests-significant” strategy represents a 
conjunction testing approach, because it operates on the basis of a logical conjunction 
decision rule (e.g., Capizzi & Zhang, 1996; Dmitrienko & D’Agostino, 2013; Weber, 
2007).

Finally, the researchers could abstain from making a decision about the joint null 
hypothesis and instead only make decisions about each of the two constituent null 
hypotheses. For example, this individual testing approach might allow the researchers 
to conclude that eating red jelly beans causes acne, but eating green jelly beans does 
not.

Below, I discuss each of these three types of multiple testing and their implications 
for adjustments to the alpha level. I illustrate my discussion with examples from psy-
chology, clinical science, genomics, and neuroimaging in order to show how scientists 
might benefit from these different approaches to multiple testing.

3 � Disjunction, conjunction, and individual types of multiple testing

3.1 � Disjunction testing

Disjunction testing is also called union-intersection testing (Bretz et al., 2011, p. 20; 
Hochberg & Tamrane, 1987, p. 28; Kim et al., 2004; Parker & Weir, 2020, p. 2; Roy, 

Fig. 1   Illustration of disjunction testing. Based on Kim et al., (2004, Fig. 1[a])
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1953; because multiple constituent alternative hypotheses form a union (dotted area 
in Fig. 1), and multiple constituent null hypotheses form an intersection (grey area 
in Fig. 1).

Because the constituent null hypotheses form an intersection, it is only neces-
sary to reject one of them in order to reject the corresponding joint intersection null 
hypothesis. For example, it is only necessary to reject the constituent null hypothesis 
that “green jelly beans do not cause acne” in order to reject the joint null hypothesis 
that “neither green jelly beans nor red jelly beans cause acne” and infer that “eating 
(either green or red) jelly beans causes acne.”

Importantly, disjunction testing increases the probability of making a Type I 
error about the joint intersection null hypothesis, because it increases the number of 
opportunities that researchers have to incorrectly reject this hypothesis. In particular, 
if researchers undertake disjunction testing, then every test of a constituent hypothe-
sis represents an opportunity to reject the joint null hypothesis. Consequently, when 
undertaking disjunction testing, it is important to know the probability of making 
at least one Type I error in the collection, or family, of constituent null hypotheses. 
This Type I error rate is called the familywise error rate.

Assuming that test results are independent from one another, the familywise error 
rate is computed by determining the probability that at least one of the tests of the 
constituent null hypotheses in the family is significant when the joint null hypothesis 
is true. This probability is equal to 1.00—(the probability that none of the tests are 
significant). Following the multiplicative probability rule for independent events, the 
probability that none of the tests are significant when the joint null hypothesis is true 
is equal to the product of the probabilities that each of them is nonsignificant (i.e., 
1 − α). Hence, for k constituent null hypotheses that are each tested using an alpha 
level of α, the familywise error rate is equal to 1 − (1 − α)k. For example, the prob-
ability that at least one of two tests will result in a Type I error at the 0.05 alpha level 
is equal to 1.00 −  (1 − 0.05)2 = 0.098.3 Note that this Type I error rate is higher than 

3  The familywise error rate assumes that test results are independent. As Greenland (2020, p. 17) 
explained, the term independence is used to refer to several different concepts. In particular, he distin-
guished between logical and statistical independence. Logical independence refers to the mathematical 
independence of parameter values such that variation in one value is not logically dependent on varia-
tion in another. Logical independence may be demonstrated via the mathematics of a model. Statistical 
independence refers to independence among variables, estimators, standard errors, and tests, and it may 
be achieved via study design (e.g., randomisation). A weak form of statistical independence is uncor-
relatedness, which assumes that there is no monotonic linear association between the variables (e.g., 
no positive correlation). As Greenland noted, “uncorrelatedness and hence statistical independence are 
rarely satisfied in nonexperimental studies.” Although this may be the case, two points allow a qualified 
interpretation of the familywise error rate under the assumption of independence. First, when interpreting 
the results of a disjunction test, researchers may adopt a counterfactual interpretation that (a) the joint 
null hypothesis is true and (b) all of the associated test assumptions are true, including the assumption 
of independence. Second, researchers may complement this qualified interpretation with an acknowledg-
ment that, if the constituent test results were positively dependent, then the actual familywise error rate 
would be less than the nominal familywise error rate, because a family of dependent tests provides less 
opportunity to incorrectly reject the joint null hypothesis than a family of independent tests (e.g., Weber, 
2007, p. 284). Hence, although the assumption of independence may not be met in reality, researchers 
may nonetheless interpret the familywise error rate as indicating a worst-case scenario that assumes that 
the constituent test results are independent.
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the prespecified alpha level of 0.05. Consequently, if researchers use a disjunction 
testing approach, and they wish to maintain the probability of making a Type I error 
about the joint null hypothesis at the conventional alpha level (i.e., αJoint = 0.05), 
then they need to decrease the alpha level for each constituent null hypothesis (i.e., 
αConstituent < αJoint).4

The amount by which αConstituent needs to be decreased can be determined using an 
alpha adjustment approach. There are many different alpha adjustment approaches 
(e.g., the Benjamini–Hochberg, Bonferroni, Dunn–Šidák, Holm, and Hochberg cor-
rections; for a review, see Goeman & Solari, 2014). For example, the Dunn–Šidák 
correction uses the formula 1 − (1 − α)1/k (Šidák, 1967). If this correction is used in 
the case of two constituent null hypotheses, then αConstituent should be reduced from 
0.050 to 0.025 in order to maintain the Type I error rate for the joint null hypothesis 
at the prespecified αJoint of 0.050.

The familywise error rate can be contrasted with the false discovery rate, which is 
the expected proportion of incorrectly rejected null hypotheses (Benjamini & Hoch-
berg, 1995, p. 290). If all of the null hypotheses are true, then the false discovery 
rate is equivalent to the familywise error rate. However, if some of the null hypoth-
eses are false, then the false discovery rate will be less than the familywise error 
rate, because the false null hypotheses that are rejected do not count as erroneous 
rejections. Hence, unlike the familywise error rate, the false discovery rate is not 
conditioned on the joint null hypothesis being true, because it assumes that some of 
the associated constituent hypotheses may be false and, consequently, that the joint 
null hypotheses may be false.

3.2 � Conjunction testing

Disjunction testing represents an “at-least-one-test-significant” approach to joint 
null hypothesis testing. In contrast, conjunction testing represents an “all-tests-sig-
nificant” approach. Berger (1982) proposed this approach as an intersection–union 
test (Berger, 1982; Berger & Hsu, 1996; Bretz et  al., 2011, p. 22). The intersec-
tion–union test refers to a configuration of multiple constituent alternative hypothe-
ses as an intersection (dotted area in Fig. 2) and multiple constituent null hypotheses 
as a union (grey area in Fig. 2).

Because the constituent null hypotheses form a union, it is necessary to reject all 
of them in order to reject the corresponding joint union null hypothesis (grey area). 
For example, it is necessary to reject both the null hypothesis that “green jelly beans 
do not cause acne” and the null hypothesis that “red jelly beans do not cause acne” 
in order to reject the joint union null hypothesis that “either green jelly beans do 
not cause acne or red jelly beans do not cause acne” and infer that “all (tested) jelly 
beans cause acne.”

4  Instead of adjusting their alpha level downwards, researchers can adjust their p values upwards (e.g., 
Pan, 2013; Westfall & Young, 1993). However, there are reasons to prefer alpha adjustment over p value 
adjustment (van der Zee, 2017).
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A key aspect of conjunction testing is that it does not require an adjustment to 
the alpha level for tests of each constituent null hypothesis (i.e., αConstituent = αJoint; 
Berger, 1982; Dmitrienko & D’Agostino, 2013; Dmitrienko et al., 2009; Kim et al., 
2004; Kordzakhia et al., 2010; Mascha & Turan, 2012; Massaro, 2009; Neuhäuser, 
2006; Pan, 2013; Rubin, 2017b; Weber, 2007; Westfall et al., 2001; Winkler et al., 
2016). This is because, although researchers use multiple tests to test the joint union 
null hypothesis, they may only reject this hypothesis if and only if all of their tests 
yield significant results. Hence, they only have a single opportunity to reject the joint 
null hypothesis at its prespecified alpha level of αJoint (Mascha & Turan, 2012). Con-
sequently, αConstituent does not need to be reduced to compensate for multiple testing.5

One disadvantage of conjunction tests is that they lack statistical power, because 
they fail to reject the joint null hypothesis if one or more constituent tests yield a 
nonsignificant result (Francis & Thunell, 2021; Julious & McIntyre, 2012). For 
example, imagine that a researcher wants to undertake a conjunction test with a 
power level of 0.80 (i.e., βJoint = 0.20). If two constituent hypotheses are each tested 

Fig. 2   Illustration of conjunction testing. Based on Kim et al., (2004, Fig. 1[b])

5  Some commentators have argued that conjunction testing decreases the Type I error rate and therefore 
warrants a corresponding increase in the αConstituent level above the αJoint level (e.g., Capizzi & Zhang, 
1996; Massaro, 2009; Weber, 2007). This argument is based on the assumption that the Type I error rate 
for k independent tests is the product of the Type I error rate for each test (i.e., αk). Hence, for example, 
the probability of obtaining two independent false positive results at the .05 alpha level is only .0025. 
However, during conjunction testing, all of the tests are required to be significant in order to reject the 
joint null hypothesis. Consequently, when undertaking conjunction testing, the alpha level for each of the 
constituent null hypotheses (αConstituent) cannot be higher than the alpha level for the joint null hypothesis 
(αJoint; Berger, 1982; Julious & McIntyre, 2012; Kordzakhia et al., 2010).
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with a power value of 0.80 (i.e., βConstituent = 0.20), then the familywise Type II error 
rate will be 1.00 −  (1 − 0.20)2 = 0.36, which is higher than the βJoint of 0.20. This 
Type II error rate of 0.36 equates to a power level of 0.64, which is lower than the 
desired power of 0.80.

Conjunction testing is relatively common in clinical and translational science, in 
which treatments need to be shown to be effective on multiple aspects of a disease 
in order to be regarded as being successful (Dmitrienko & D’Agostino, 2013; Dmi-
trienko et al., 2009; Julious & McIntyre, 2012; Kordzakhia et al., 2010; Mascha & 
Turan, 2012; Massaro, 2009; Neuhäuser, 2006; Pan, 2013; Westfall et  al., 2001). 
For example, researchers may test a new therapy for Alzheimer’s disease by requir-
ing it to be effective on both cognition and global clinical scores (Dmitrienko & 
D’Agostino, 2013; Dmitrienko et al., 2009). Similarly, clinical treatments for chronic 
obstructive pulmonary disease are usually required to demonstrate both (a) improved 
forced expiratory volume and (b) symptomatic benefits (Neuhäuser, 2006). Con-
junction testing may also be used to test the effectiveness of combination therapies 
such as exercise and diet to control weight gain; antihistamine and decongestant to 
treat allergic rhinitis; and bronchodilators and inhaled corticosteroids to treat asthma 
(Westfall et al., 2001).

Conjunction testing has also been used in comparative genomics. Here, research-
ers are interested in identifying the same instances of gene expression in different 
species in order to draw conclusions about the generality of molecular or develop-
mental mechanisms that underlie processes such as aging, energy metabolism, and 
diseases (Kim et al., 2004). For example, researchers may use conjunction testing to 
identify genes that are differentially expressed in the same way in response to caloric 
restriction in fruit flies, nematodes, and mice (for a worked example, see Kim et al., 
2004).

Finally, conjunction testing has been used in neuroimaging (e.g., Nichols et al., 
2005). Here, researchers might compare differences between several task groups and 
a control group in order to determine differences in the activation of thousands of 
voxels, each of which represent different parts of an image of the brain. Conjunction 
testing has been employed in order to confirm that certain brain regions are active 
under two or more different tasks (Nichols et al., 2005; Winkler et al., 2016).

3.3 � Individual testing

Disjunction and conjunction testing allow researchers to test a joint null hypothesis 
that comprises two or more constituent null hypotheses. In contrast, individual test-
ing only allows researchers to test individual null hypotheses that do not comprise 
a joint null hypothesis. Hence, individual testing allows decisions about individual 
null hypotheses but not about joint null hypotheses. For example, in the jelly bean 
study, individual testing would allow the researchers to infer that eating green jelly 
beans causes acne, but it would not allow researchers to infer that eating jelly beans 
in general causes acne. Consequently, individual testing is most appropriate when 
researchers are not interested in testing joint null hypotheses.
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Like conjunction testing, individual testing does not require an adjustment to the 
alpha level of each test (αIndividual; Armstrong, 2014, p. 505; Cook & Farewell, 1996, 
pp. 96–97; Fisher, 1971, p. 206; Hewes, 2003, p. 450; Hurlbert & Lombardi, 2012, 
p. 30; Matsunaga, 2007. p. 255; Parker & Weir, 2020, p. 2; Rothman, 1990, p. 45; 
Rubin, 2017b, pp. 271–272; Rubin, 2020, p. 380; Savitz & Olshan, 1995, p. 906; 
Senn, 2007, p. 150; Sinclair et al., 2013, p. 19; Tukey, 1953, p. 82; Turkheimer et al., 
2004, p. 727; Veazie, 2006, p. 809; Wilson, 1962, p. 299). This point is often mis-
understood (e.g., O’Keefe, 2003) and so it is important to clarify it. If multiple test 
results are used to make a decision about a single joint null hypothesis, and disjunc-
tion testing is used, then each test represents an independent opportunity to reject 
the joint null hypothesis, and the alpha level of each test (αConstituent) needs to be 
lowered in order to compensate for the increased number of opportunities to make a 
Type I error about the joint null hypothesis. In contrast, if a single test result is used 
to make a decision about a single null hypothesis, then that test result provides only 
one opportunity to make a Type I error about that null hypothesis. Consequently, the 
alpha level of the test (αIndividual) does not need to be lowered.

Importantly, the logic of individual testing applies even when multiple instances 
of individual testing take place side-by-side within the same study (see also Cook & 
Farewell, 1996; Fisher, 1971, p. 206; Greenland, 2020, p. 5; Hurlbert & Lombardi, 
2012, p. 30; Kotzen, 2013; Parker & Weir, 2020, p. 2; Rubin, 2017b, pp. 271–272; 
Savitz & Olshan, 1995, p. 906; Senn, 2007, p. 150; Tukey, 1953, pp. 82–83; Wil-
son, 1962). If each decision to reject each individual null hypothesis depends on no 
more than one significance test, then none of the individual tests constitute a “fam-
ily” with respect to any single hypothesis. Consequently, it is not necessary to adjust 
alpha levels on the basis of any family-based error rate (e.g., familywise error rate, 
per family error rate, etc.; Hurlbert & Lombardi, 2012, p. 30). A family-based alpha 
adjustment is only necessary when researchers undertake disjunction testing of a 
joint intersection null hypothesis.

Of course, a researcher who conducts a greater number of individual tests will 
have a greater opportunity to obtain more significant results and, consequently, a 
greater opportunity to make more Type I errors (e.g., Drachman, 2012; Goeman & 
Solari, 2014). For example, imagine that a researcher tests 100 true null hypoth-
eses using 100 individual tests that each have an αIndividual of 0.05. In this case, the 
researcher has a greater opportunity to obtain more significant results and make 
more Type I errors than if they had only tested one true null hypothesis. Indeed, 
given that all 100 null hypotheses are true, the researcher should expect to obtain 
five significant results and, consequently, make five Type I errors. However, it is 
important not to confuse this expected outcome for the collection of individual tests 
(the per family error rate) with the probability of making a Type I error in relation 
to each individual test (the individual, marginal, or per determination error rate; 
Cook & Farewell, 1996, pp. 96–97; Tukey, 1953, p. 82). As the size of the family 
of tests increases, the individual error rate remains constant (i.e., αIndividual = 0.05; 
Senn, 2007, pp. 150–151). It is only the per family error rate that increases (i.e., α x 
kfamily).

To illustrate, if a person rolls a 20-sided dice 20 times instead of once, then they 
will increase the familywise probability that they will roll a “3” in at least one of 
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their rolls from 0.05 to 0.64. However, they will not increase the individual prob-
ability that each roll will result in a “3.” This individual probability will always 
remain at 0.05, regardless of the number of rolls of the dice (for a similar example, 
see Kotzen, 2013). Hence, it is perfectly true that “the more tests that are run, the 
greater the likelihood that at least 1 will be significant by chance” (Streiner, 2015, 
p. 722). However, if researchers undertake individual testing using an αIndividual of 
0.05, then it is also true that the probability that they will make a Type I error in the 
case of each specific individual hypothesis test is no more than 5.00%. It is a form of 
gambler’s fallacy to believe that each successive individual test in a series of indi-
vidual tests has a greater than 5.00% chance of yielding a Type I error, even after the 
millionth test.

The uncomfortable feeling that some researchers might feel about conducting 
multiple individual tests may be attributed to a confusion between the alpha levels 
that are associated with individual testing (αIndividual) and the alpha levels that are 
associated with disjunction testing (αConstituent). To illustrate, consider the jelly beans 
study again, as originally conceived by Munroe (2011) in Fig. 3.

Munroe’s (2011) jelly bean study is supposed to highlight the inappropriateness 
of not adjusting the alpha level during multiple testing. However, it actually illus-
trates the confusion between αIndividual and αConstituent in a case of individual testing. 
In the study, the scientists conducted individual tests of 20 different hypotheses (i.e., 
one test per hypothesis), and they obtained a single significant result using an alpha 
level of αIndividual = 0.05. Based on the results of these individual tests, they inferred 
that there is “a link between green jelly beans and acne.” Contrary to Munroe’s inti-
mation, this inference is entirely appropriate given its level of specificity—it refers 
to green jelly beans only and not to jelly beans of one or more unspecified colours—
and the fact that it is based on a single significance test that used a conventional 
alpha level of 0.05 (for the same conclusion, see Lew, 2019, pp. 21–22). Hence, in 
this case, there is no more than a 5.00% probability that the scientists’ decision to 
reject the associated null hypothesis (i.e., “green jelly beans do not cause acne”) 
represents a Type I error.6

The confusion in the jelly bean study relates to the fact that the scientists also 
have the potential to subsume their 20 hypotheses under a joint union alternative 
hypothesis that “either green, purple, brown, pink, blue, teal, salmon, red, turquoise, 

6  Tukey (1953), who was a pioneer in the area of multiple testing, described this individual testing error 
rate as the per determination error rate (i.e., αIndividual). This error rate should not be confused with the 
per comparison error rate (i.e., αConstituent). Both error rates use unadjusted alpha levels. However, the 
per determination error rate is used in the context of the individual testing of an individual null hypoth-
esis, whereas the per comparison error rate is used in the context of the disjunction testing of a joint 
null hypothesis. Tukey (p. 90) was firmly against the use of the per comparison error rate. However, he 
believed that the per determination error rate was “entirely appropriate” (p. 82) for some research ques-
tions (i.e., individual testing; see also Hochberg & Tamhane, 1987, p. 6). For example, he argued that a 
per determination rate was suitable when diagnosing potentially diabetic patients based on their blood 
sugar levels. As Tukey (1953, p. 82) explained:
  the doctor’s action on John Jones would not depend on the other 19 determinations made at the same 
time by the same technician or on the other 47 determinations on samples from patients in Smithville. 
Each determination is an individual matter, and it is appropriate to set error rates accordingly.
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Fig. 3   Illustration of multiple 
individual testing. Retrieved 
from https://​xkcd.​com/​882/

https://xkcd.com/882/
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magenta, yellow, grey, tan, cyan, mauve, beige, lilac, black, peach, or orange jelly 
beans cause acne.” As shown in Table 1, if they undertook disjunction testing of the 
corresponding joint intersection null hypothesis using an αConstituent of 0.05 for each 
of the 20 constituent hypotheses, then the single significant result that they obtained 
would be likely to represent a Type I error in relation to the joint null hypothesis, 
because 1 out of every 20 significant results is expected to represent a Type I error 
when using an αConstituent of 0.05 (i.e., 0.05 × 20 = 1; the per family error rate).

Importantly, if the scientists subsumed their 20 hypotheses under the joint union 
alternative hypothesis that “jelly beans (of one or more colours) cause acne,” then 
their inference should be that “jelly beans (of one or more colours) cause acne.” 
This inference would be inappropriate, because the scientists have a 64.15% prob-
ability of incorrectly rejecting the associated joint intersection null hypothesis when 
investigating 20 different colour of jelly bean. However, the scientists did not make 
this broader inference. Instead, they made the more specific inference that “green 
jelly beans cause acne.” This more specific inference is appropriate given that the 
scientists only have a 5.00% probability of incorrectly rejecting the associated null 
hypothesis (Lew, 2019, pp. 21–22).

The problem in jelly bean study and more generally is that it is easy to con-
fuse the alpha level for each hypothesis test in the individual testing situation (i.e., 
αIndividual) with the alpha level for each hypothesis test in the family testing situa-
tion (i.e., αConstituent) and to conclude that αIndividual needs to be adjusted because, 
if the 20 tests formed a family, then αConstituent would need to be adjusted (see also 
Greenland, 2020, p. 5). This alpha confusion leads to the erroneous conclusion that 
a single significant result that is obtained following 20 individual tests that each use 
an αIndividual of 0.05 is more likely to be a Type I error than a single significant result 
that is obtained using a single individual test that uses an αIndividual of 0.05 (e.g., 
Feise, 2002; Sainani, 2009).

To clarify, in the jelly bean study, αIndividual is the value for 20 independent alphas 
(each set at 0.05) that are associated with 20 individual hypotheses that are each 
tested only once (e.g., “green jelly beans cause acne,” “red jelly beans cause acne,” 
“purple jelly beans cause acne,” etc.). Consequently, none of these 20 alphas need 
to be adjusted, because none of them are associated with disjunction testing. In 
contrast, αConstituent is the value for 20 disjunction tests of the same joint hypothesis 
(e.g., “jelly beans cause acne”) that is tested using an αJoint of 0.05. Consequently, 
αConstituent needs to be reduced (e.g., to 0.0025) in order to maintain αJoint at 0.05.

Previous commentators have also attempted to clarify this alpha confusion. In 
particular, Matsunaga (2007, p. 255) explained that,

if multiple H0s are tested, inflation is of no concern because Type I errors 
are partitioned per H0, each of which entails distinct alphas. If multiple tests 
are carried out within one H0, however, overall Type I error rate for that H0 
becomes inflated and adjustment needs to be made (see also Rubin, 2017b, p. 
272).

In summary, if researchers perform 20 tests and obtain only one significant result 
using an alpha of 0.05, then they will have a 64.15% chance of making a Type I error 
with respect to a joint null hypothesis that is disjunction tested but only a 5.00% 
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chance of making a Type I error with respect to an individual null hypothesis that 
is individually tested. It is for this reason that there is no contradiction in the two 
claims made by the scientists in Munroe’s (2011) cartoon (Lew, 2019, p. 21). The 
scientists may have sufficient evidence to make the specific claim that “we found a 
link between green jelly beans and acne (p < 0.05)” (Panel 17 in Fig. 3) while lack-
ing sufficient evidence to make the broader claim that this link extends to jelly beans 
of some unspecified colour or colours, and so they would need to concede that “we 
found no link between jelly beans and acne p > 0.05” (Panel 2 in Fig. 3).

4 � Multiple testing and selection bias

In their discussion of multiple testing in genomics, Goeman and Solari (2014) pro-
posed that the individual testing of multiple individual hypotheses does not neces-
sitate a multiple testing correction, because “without multiple testing correction the 
probability of a type I error in each individual hypothesis remains equal to α regard-
less of the number of hypotheses that have been tested” (p. 2). Hence, Goeman and 
Solari hold a similar view to the one discussed above. However, they also proposed 
that the individual testing of multiple individual hypotheses can lead to a selection 
bias on the part of researchers (e.g., Benjamini & Bogomolov, 2011; Cox, 1965). 
Specifically, researchers may select and report significant results and fail to report 
nonsignificant results. According to Goeman and Solari, “multiple testing methods 
aim to correct for this selection process” (p. 2). In contrast, I argue that a selection 
bias only necessitates an alpha adjustment when testing joint null hypotheses and 
not when testing individual null hypotheses.

To illustrate, consider the jelly bean study once again. If the researchers under-
took individual testing, and they reported the significant result for green jelly beans 
without reporting the nonsignificant results for the other 19 colours of jelly bean, 
then the αIndividual level for the individual hypothesis that “green jelly beans cause 
acne” would remain valid, because a single test has been used to make a decision 
about a single individual hypothesis. Hence, the selection bias does not inflate the 
alpha level of individual tests during individual testing (for related discussions, 
see Kotzen, 2013, p. 167; Rubin, 2017a, p. 325; Rubin, 2017c; Rubin, 2017d, pp. 
316–317; Rubin, 2020).7

In contrast, a selection bias can lead to alpha inflation when testing joint hypoth-
eses. Imagine that the scientists undertook 20 disjunction tests of the joint null 
hypothesis that “jelly beans do not cause acne,” but they retained their αConstituent 
level at the conventional level of 0.05 instead of lowering it to compensate for their 
disjunction testing. Further imagine that the researchers found a single significant 

7  A selection bias remains problematic during individual testing, because it involves the suppression of 
hypotheses after the results are known or SHARKing (Rubin, 2017d). SHARKing is problematic when 
suppressed falsifications are theoretically (as opposed to statistically) relevant to the research conclu-
sions. For example, in the jelly bean study, it is theoretically informative to know not only that green jelly 
beans cause acne but also that non-green jelly beans do not appear to cause acne.
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effect for green jelly beans using this unadjusted αConstituent level. In this case, fail-
ing to report the results of the other 19 tests misrepresents the situation as one of 
individual testing rather than disjunction testing, and the researchers may incor-
rectly infer that “jelly beans cause acne” (i.e., a joint hypothesis) on the basis of an 
αIndividual of 5.00% when the actual Type I error rate for this inference is 64.15% (i.e., 
αJoint). Hence, the selection bias inflates the relevant alpha level when testing joint 
null hypotheses but not when testing individual null hypotheses.

More generally, selecting an effect from among a variety of other unrelated effects 
because it is larger than the other effects does not necessarily mean that the selected 
effect will be “biased.” A bias will only occur when the selection occurs among dif-
ferent instances of the same effect, not when it occurs between qualitatively different 
effects. By analogy, picking the largest cherry from a bowl of cherries is likely to 
result in an unusually large cherry (i.e., a biased cherry). In contrast, selecting the 
largest fruit from a barrel that contains a variety of average-sized fruits is likely to 
yield an average-sized watermelon.

5 � Distinguishing between alpha specification and alpha adjustment

None of the above points should be interpreted as suggesting that the alpha level 
during the individual testing of multiple hypotheses should always be set at the 
conventional 0.05 level. In every significance testing situation, researchers need to 
specify their alpha level in the context of a range of external background factors, 
including the plausibility of the hypothesis, the plausibility of potential alternative 
explanations, the theoretical and/or practical costs of Type I and Type II errors, 
the smallest effect size of interest, the sample size, and the variability in the data 
(Mudge et al., 2012). Hence, even in the individual testing situation, there may be 
grounds for lowering the alpha level below the conventional 0.05 threshold (e.g., 
Rothman et al., 2008, pp. 234–235). For example, a much lower alpha level would 
be appropriate when testing the implausible hypothesis that dead Atlantic salmon 
will exhibit brain activity in a specific brain region (Bennett et al., 2010), because 
extraordinary claims require extraordinary evidence. Importantly, this process of 
alpha specification is quite different from the previously discussed alpha adjust-
ment during disjunction testing (for a similar view, see Parker & Weir, 2020, p. 564; 
Ryan, 1962, p. 305). In the former case, researchers specify an alpha level for their 
individual or joint hypothesis based on external factors. In the latter case, research-
ers adjust that prespecified alpha level in order to make it applicable to disjunction 
tests of constituent hypotheses.

In some cases, prudent alpha specification may be more appropriate than alpha 
adjustment. For example, in the field of genomics, researchers are interested in 
screening associations between hundreds of thousands of single nucleotide polymor-
phisms (SNPs) and diseases or other phenotypic traits in order to identify the largest 
and most reliable associations. Hence, they might attempt to identify the top 20 SNP 
associations among hundreds of thousands of tests (Goeman & Solari, 2014; Pan, 
2013). In this case, there is a need to reduce the alpha level for each test not because 
researchers want to undertake disjunction testing of a genome-wide joint null 
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hypothesis but because they want to achieve a more stringent screening approach in 
order to identify the largest effect sizes, which they presume are more likely to be 
clinically and biologically meaningful (Otani et al., 2018).

To illustrate, consider Wu et  al.’s (2018) tests of associations between 167,355 
SNPs from 532 pigs and phenotypic traits from the pigs’ litters (e.g., number born). 
In order to maintain the genome-wide significance level at 5.00%, they used a Bon-
ferroni correction (i.e., 0.05/167,355). On finding at least one single significant 
association, this Bonferroni correction would allow the researchers to reject the 
joint null hypothesis that the genome is not associated with the phenotype expres-
sion. However, the researchers did not make this genome-wide inference. Instead, 
they made SNP-specific inferences about “the top significant SNPs” (p. 173) and 
their associated chromosomes. For example, they noted that eight SNPs were sig-
nificantly associated with the number of pigs born in a litter, that seven of these 
were located on the same chromosome, and that one had a novel location. Hence, 
the researchers adjusted their αConstituent level, which enables a statistical inference 
about a genome-wide joint hypothesis, but they then ignored this joint hypothesis 
and instead made statistical inferences about individual hypotheses (i.e., which spe-
cific SNPs were associated with number of pigs born in a litter). Turkheimer et al.’s 
(2004) advice for functional brain imaging researchers is relevant here: “If before or 
after testing one wishes to consider the individual result on its own individual merit, 
then the multiple comparison correction becomes not only incorrect but also mean-
ingless” (p. 727; see also Cook & Farewell, 1996; Cox, 1965). Genetics researchers 
have also commented on this inferential mismatch. For example, Otani et al. (2018) 
recently noted that “the FWER [familywise error rate] criterion strictly controls the 
probability of having at least one false positive in millions of tests, and geneticists 
should generally recognize its inappropriateness regarding the primary purposes of 
GWAS [genome-wide association studies]” (p. 1). According to Otani et al. (2018), 
the primary purpose of GWAS research is to identify SNPs that have comparably 
large effects, because these are most likely to be clinically and biologically meaning-
ful. Given this purpose, it is more appropriate to use an individual testing approach 
in which the alpha level for each test has been specified at a more stringent level in 
order to screen out the smaller, less biologically important effects.

How are researchers supposed to determine a suitably stringent alpha level when 
they undertake multiple individual tests? As with single individual testing, a mix of 
community standards and cost analysis is required. In terms of community stand-
ards, conventional alpha levels can vary from field to field. For example, in a survey 
of 172 genome-wide association studies, Jannot et al. (2015) found that a consensus 
had emerged that an alpha level of 0.00000005 (i.e., 5.0 × 10–8) is appropriate. In 
theory, this alpha level is based on a Bonferroni adjustment to the conventional 5.0% 
alpha level that assumes a million tests. However, in practice, it has been validated 
by considering the actual replicability of specific SNP-trait associations (Panagiotou 
et al., 2011). Hence, again, genomic researchers are more concerned about identify-
ing specific SNP associations that are relatively large and replicable than they are 
about incorrectly rejecting the joint genome-wide null hypothesis. In terms of cost 
analysis, Type I errors need to be judged in relation to real world consequences and 
Type II errors. For example, Mudge et al. (2012) have proposed an optimal alpha 



10986	 Synthese (2021) 199:10969–11000

1 3

approach that balances the costs of Type I and Type II errors in the context of a 
specified critical effect size (i.e., a smallest effect size of interest). In a meta-analysis 
of 242 microarray gene expression studies, Mudge et al. (2017) found that this opti-
mal alpha approach resulted in Type I and II “error rates as low or lower than error 
rates obtained when using (i) no post-hoc adjustment, (ii) a Bonferroni adjustment 
and (iii) a false discovery rate (FDR) adjustment” (p. 1).

In summary, there is an important difference between using a million tests to 
identify the top 20 largest individual associations and using a million tests to dis-
junction test a joint intersection null hypothesis. A lower alpha level may be war-
ranted in both cases. However, it is more appropriate to achieve this lower alpha 
through alpha specification in the former case (i.e., lower αIndividual to screen out 
nonsignificant associations that are most likely below the smallest effect size of 
interest) and alpha adjustment in the latter case (i.e., αConstituent < αJoint to maintain 
αJoint at 0.050).

6 � When should researchers use individual, disjunction, 
and conjunction testing?

To recap, there are three approaches to multiple testing: disjunction testing, con-
junction testing, and individual testing. Disjunction and conjunction testing allow 
researchers to test joint null hypotheses, but individual testing does not. Further-
more, disjunction testing requires an alpha adjustment, but conjunction and individ-
ual testing do not. Hence, in order to know when to adjust alpha, researchers need to 
know when to use each of these three types of multiple testing, and it is to this issue 
that I now turn.

The first point that researchers should consider is whether they are making a sta-
tistical claim that is warranted by a specific p value and alpha level. For example, 
based on the result of a t test and a conventional alpha level, a statistical claim might 
be: “Male participants had significantly higher self-esteem than female participants, 
t(479) = 2.11, p = 0.018.” In contrast, more substantive non-statistical claims may 
summarise the results of significance tests without themselves being warranted by 
a specific p value (Meehl, 1978, p. 824). For example, a non-statistical claim might 
be: “Based on the results of Studies 1, 2, and 3, it was concluded that men have 
higher self-esteem than women.” Note that this claim is not explicitly tied to a spe-
cific p value and alpha level. Importantly, the question of whether to adjust an alpha 
level only applies to statistical claims. This question does not apply to claims that 
are not tied to a specific p value, because such claims are not associated with a spe-
cific alpha level, and they may be in error due to not only random sampling and 
measurement error but also theoretical errors, model misspecification, systematic 
measurement error, and so on (Rubin, 2017b, p. 272).

If researchers are making a claim about statistical significance, then they need to 
consider whether their claim derives from the test of an individual null hypothesis or 
a joint null hypothesis. If they are testing an individual hypothesis, then they should 
use individual testing and an unadjusted alpha level (Cook & Farewell, 1996; Roth-
man et al., 2008, pp. 236–237; Wilson, 1962). If they are testing a joint hypothesis, 
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then the decision about adjusting alpha depends on whether they are using disjunc-
tion testing or conjunction testing.

6.1 � Individual hypotheses

Individual hypotheses are hypotheses than can be tested using a single significance 
test. In some cases, researchers’ methods and designs constrain them into testing 
individual hypotheses. For example, researchers might have only one relevant pre-
dictor or comparison that relates to only one relevant outcome variable. Conse-
quently, they have only one test that is relevant to their individual hypothesis. In this 
case, they are only able to conduct an individual test.

In other cases, researchers may have several predictor variables, comparison 
groups, and/or outcome variables. As discussed above, in these cases, researchers 
may undertake individual testing using an unadjusted alpha level in order to make 
separate decisions about each individual null hypothesis.

Researchers may also find that there are theoretical, practical, and/or empiri-
cal reasons (e.g., factor analyses) for aggregating across some of their constituent 
groups or variables in order to create composite groups or variables. They may then 
subject these composite groups or variables to individual testing at an unadjusted 
alpha level (Feise, 2002; Goeman & Solari, 2014; Hung & Wang, 2010; Luck & 
Gaspelin, 2017; Matsunaga, 2007; Schulz & Grimes, 2005; Senn, 2007, p. 151).

A statistical aggregation approach may also be used to operationalize an individ-
ual test across groups or variables (Senn, 2007, p. 153). For example, a researcher 
might use a one-way ANOVA with simple contrasts that compare two experimental 
conditions to a control condition. Alternatively, a researcher might use a MANOVA 
to test the effects of a treatment on two or more outcome variables. To illustrate, 
consider the case of a clinical study that aimed to investigate the ability of a treat-
ment to prevent premature infants from developing respiratory distress syndrome 
(RDS; Wang et al., 2015). There were three outcome variables: incidence of RDS 
at 24 h, RDS-mortality through 14 days of age, and air leak through 7 days of age. 
As Dmitrienko (in Wang et  al., 2015) explained, if it is necessary to demonstrate 
an effect of the treatment on a specific outcome (e.g., RDS-mortality) in order to 
mount the case for regulatory change, then disjunction testing would be inappropri-
ate, because it would reject the joint null hypothesis on the basis of a significant 
result in relation to any of the three outcomes. Conjunction testing would be more 
appropriate in this case. However, it would lack power, which may be problematic in 
this particular scenario. Hence, Dmitrienko recommended using a single statistical 
test that provide a simultaneous assessment of the treatment effect across all three 
outcome variables and yields a single test statistic (e.g., a MANOVA).

6.2 � Joint hypotheses

The first requirement for testing a joint hypothesis is that the hypothesis should 
allow a statistical inference that has relevant and meaningful theoretical and/
or practical implications (Cook & Farewell, 1996, p. 107; Cox, 1965, p. 223; 
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Hochberg & Tamrane, 1987, p. 5; Parker & Weir, 2020, p. 2). To meet this 
requirement, researchers should ensure that the family of constituent hypoth-
eses that comprise the joint hypothesis are theoretically consistent with their 
intended inference (see also Hung & Wang, 2010). In particular, the family must 
contain all relevant constituent hypotheses and no irrelevant constituent hypoth-
eses (Cox, 1965; Hochberg & Tamrane, 1987, p. 6; Huberty & Morris, 1988, p. 
572). It is helpful for researchers to make their research materials and data set 
publicly available online in order to allow others to verify the correct specifica-
tion of their joint hypotheses and to check for any potential selection bias (Cox, 
1965; Goeman & Solari, 2014; Rubin, 2017b, p. 273; Rubin, 2020).

The second requirement for testing a joint hypothesis is that researchers use 
an appropriate form of testing. Researchers should use disjunction testing when 
the rejection of any of the constituent hypotheses is sufficient to reject the joint 
hypothesis as a whole and the extent of generalisation across constituent hypoth-
eses is unimportant. In contrast, researchers should undertake conjunction 
testing when it is important to demonstrate the confirmation of all constituent 
hypotheses within a joint hypothesis.

In the case of disjunction testing, researchers also need to assume that the 
constituent hypotheses are theoretically exchangeable with regards to infer-
ences about the joint hypothesis under investigation (e.g., Rosset et  al., 2018). 
That is to say, a significant result in relation to any of the constituent hypoth-
eses must provide the same logical basis for rejecting the joint null hypothe-
sis. For example, the hypothesis that “red M&Ms cause acne” is not theoreti-
cally exchangeable with the hypotheses that “green jelly beans cause acne” and 
“red jelly beans cause acne” when testing the joint hypothesis that “jelly beans 
cause acne,” because M&Ms are not a type of jelly bean. Consequently, the red 
M&Ms hypothesis should not be included as a constituent hypothesis in the joint 
“jelly beans cause acne” hypothesis. Importantly, the exchangeability assump-
tion is violated if researchers have an a priori theoretical expectation that one 
or more of their constituent hypotheses will yield a different result to the oth-
ers. For example, if it is expected, a priori, that green jelly beans cause acne but 
that red jelly beans do not, then it would be inappropriate to include these two 
hypotheses as constituent hypotheses in the joint hypothesis that “jelly beans 
cause acne.”

Conjunction testing may be more appropriate than disjunction testing when 
researchers undertake theory testing. Theories usually predict that all of their 
constituent hypotheses are true. They do not usually predict that at least one of 
their constituent hypotheses is true. Consequently, it is more logical for research-
ers to use conjunction testing rather than disjunction testing when they want to 
make a statistical inference about a joint hypothesis that comprises a family of 
hypotheses that belong to the same theory. Again, however, conjunction test-
ing may suffer from lower power. In addition, theory evaluation may be better 
conceived as a “qualitative exercise,” because it is influenced by non-statistical 
considerations (Haig, 2009, p. 220).
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7 � Against an automatic alpha adjustment assumption

To summarize, researchers only need to adjust their alpha level when they undertake 
disjunction testing of a joint null hypothesis. Furthermore, researchers should only 
undertake the disjunction testing of a joint null hypothesis when that hypothesis 
(a) enables a relevant theoretical and/or practical inference and (b) is better suited 
to disjunction testing rather than conjunction testing. This limited and qualified 
approach to alpha adjustment stands in contrast to the more common unqualified 
view that alpha adjustment is almost always necessary during multiple testing (e.g., 
Bennett et  al., 2009; de Groot, 2014; Glickman et  al., 2014). For example, in the 
introduction to their article on the false discovery rate, Glickman et al. provided the 
following explanation for alpha adjustment:

The usual argument to convince researchers that adjustments are necessary 
when multiple tests are performed is to point out that, without adjustments, the 
probability of at least one null hypothesis being rejected is larger than accept-
able levels. Suppose, for example, that a researcher performs 100 tests at the α 
= 0.05 significance level in which the null hypothesis is true in every case. If 
all the tests are independent, then the probability that at least one test would be 
incorrectly rejected is 1 − (1 − 0.05)100 = 0.9941, or 99.41% (p. 851).

Similarly, in their article on multiple testing, Sainani (2009) provided the follow-
ing explanation:

Mathematically, the problem of multiple testing can be explained as follows: 
every statistical test comes with an inherent false positive, or type I error, 
rate—which is equal to the threshold set for statistical significance, generally 
.05. However, this is just the error rate for one test; when more than one test is 
run, the overall type I error rate is much greater than 5%. For example, if one 
runs 100 independent statistical tests where it is known no effects exist, the 
chance of getting at least one false positive (ie, at least one p value less than 
.05) is 99.4% ... and 5 false positives are expected (because approximately 1 in 
20 tests will yield a false positive) (p. 1089).

At this stage, the missing qualifications to these explanations should be appar-
ent: (a) they assume that none of the 100 tests represent individual tests of indi-
vidual hypotheses. (b) They assume that the 100 tests form a coherent family of 
tests in relation to a theoretically- and/or practically-relevant joint hypothesis. (c) 
They assume that researchers are undertaking a disjunction test of this joint hypoth-
esis, rather than a conjunction test. To be clear, I am not suggesting that these three 
qualifications are never met. I am only suggesting that they are often ignored, as in 
the above examples, and that this omission leads to an inaccurate view that, when 
undertaking multiple testing, it is always necessary to compute family-based error 
rates and adjust alpha levels on the basis of these error rates.

It is important to note that automatic (mindless) alpha adjustment is not advo-
cated by some of the experts in the field of multiple testing (Tukey, 1953, p. 82–83; 
see also Mead, 1988, pp. 310–314; Parker & Weir, 2020, p. 4). Instead, they argue 
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that the choice between individual and disjunction testing should depend on the 
number and type of inferences that are to be made. If multiple testing is used to 
make multiple independent statistical inferences, then no alpha adjustment is war-
ranted. Below, I illustrate the problems with automatic alpha adjustment in relation 
to studywise error rates and multiway ANOVAwise error rates.8

7.1 � Studywise error rates

I use the term studywise error rates (sometimes called experimentwise, global, or 
universal error rates) to refer to family-based error rates (e.g., familywise error 
rates, per family error rates, false discovery rates, etc.) that are associated with all 
of the hypotheses that are tested in a study, experiment, or sample or, in the case 
of exploratory analyses, all of the hypotheses that could have been tested (e.g., 
An et al., 2013, pp. 6–7; Cohen, 1990, p. 1304; Drachman, 2012, p. 2; Klockars, 
2003, p. 614; Luck & Gaspelin, 2017, p. 151; Maxwell & Delaney, 2004, p. 291; 
Miller, 1981, p. 34; Parker & Weir, 2020, p. 3; Rubin, 2022; Ryan, 1962; Shaffer, 
2006; Stacey et al., 2012, p. 1830). Consistent with the above points, researchers 
only need to consider the studywise error rate if they undertake disjunction test-
ing of the joint studywise null hypothesis that the study produces a null effect. 
Furthermore, researchers should only be expected to test this joint studywise 
hypothesis if there are theoretical and/or practical reasons for doing so. However, 
often these reasons are lacking. As Cook and Farewell (1996, p. 106) explained 
with reference to clinical trials, “a concern is that testing strategies are frequently 
adopted with the aim of controlling the experimental type I error rate without 
considering how this relates to the questions of main interest.” More recently, 
Parker and Weir (2020, p. 2) echoed this concern with respect to multi-arm clini-
cal trials: “If treatments are distinct and we are interested in individual treatment 
versus control comparisons, … then it is difficult to see how the concept of for-
mulating a global intersection null hypothesis could be relevant.” If it is not use-
ful to test the joint studywise hypothesis, then researchers should consider lower-
order families of hypotheses and/or individual hypotheses for testing (Benjamini 
& Bogomolov, 2011; Efron, 2008; Fisher, 1971, p. 206; Hochberg & Tamrane, 
1987, pp. 6–7; Hung & Wang, 2010; Mei et al., 2017; Rubin, 2017b). For exam-
ple, in their discussion of multiple testing in microarray gene expression analysis, 
Yekutieli et  al. (2006) explained that “the set of hypotheses that is of interest 
to the researcher in a single study does not necessarily form a single family of 
hypotheses” (p. 416). Instead, they suggested that families can be specified at the 

8  Studywise and multiway ANOVAwise error rates are not the only types of error rates that have caused 
confusion in the area of multiple testing. Other examples include datasetwise error rates (in which 
the family includes all hypotheses that are tested using a specific dataset; Bennett et al., 2009, p. 417; 
Thompson et al., 2020), careerwise error rates (in which the family includes all hypotheses that are per-
formed by a specific researcher during their career; O’Keefe, 2003; Stewart-Oaten, 1995), and fieldwise 
error rates (in which the family includes all hypotheses that are performed in a specific field). A key 
argument in the current article is that researchers do not usually make decisions about data sets, research-
ers, and fields. Instead, they make decisions about hypotheses.
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level of genes. Similarly, in discussing functional neuroimaging research, Ben-
jamini and Bogomolov (2011) explained that hypotheses that refer to the same 
brain region should be regarded as belonging to the same family. Hence, joint 
studywise null hypotheses are often theoretically irrelevant.

In contrast to the above views, De Groot (2014) suggested that it is necessary 
to test the joint studywise hypothesis in order to test “the value of the research as a 
whole” (p. 189). From this perspective, studies that have a high studywise error rate 
have a correspondingly low research value, because their significant results are more 
likely to represent Type I errors. However, this reasoning assumes that the value 
of the research is associated with the joint studywise hypothesis, and this assump-
tion is unwarranted unless the joint studywise hypothesis is relevant to the research 
question. Again, in many cases, the joint studywise hypothesis has no relevance to 
researchers’ specific research questions, because its constituent hypotheses refer to 
comparisons and variables that have no theoretical or practical basis for joint con-
sideration (Bender & Lange, 2001, p. 343; Cook & Farewell, 1996, pp. 101–102; 
Hewes, 2003, p. 450; Morgan, 2007, p. 34; Parker & Weir, 2020, p. 2; Perneger, 
1998, p. 1236; Rothman et  al., 2008, pp. 236–237; Rubin, 2020, 2022; Savitz & 
Olshan, 1995, p. 905; Schulz & Grimes, 2005, p. 1592). They are what Meehl (1978, 
p. 813) might call “a mere conjunction of unrelated assertions, a ‘heap of hypoth-
eses’.” For example, in a study of alcohol and drug use disorders among homeless 
veterans, researchers used a Bonferroni correction when testing differences across a 
diverse range of variables, including age, gender, race, marital status, housing sta-
tus, and mental health diagnoses (Tsai et al., 2014). In this case, it is unclear how 
a single joint alternative hypothesis might explain differences on all of these vari-
ables, and the researchers did not attempt this type of explanation. Consequently, it 
is unclear why it was necessary to adjust the alpha level on the basis of a studywise 
family of tests. Rothman et al. (2008, pp. 236–237) noted a similar problem in the 
field of epidemiology:

A large health survey or cohort study may collect data pertaining to many pos-
sible associations, including data on diet and cancer, on exercise and heart 
disease, and perhaps many other distinct topics. A researcher can legitimately 
deny interest in any joint hypothesis regarding all of these diverse topics, 
instead wanting to focus on those few (or even one) pertinent to his or her 
specialities. In such situations, multiple-inference procedures … are irrelevant, 
inappropriate, and wasteful of information.

In general then, researchers should not be concerned about erroneous answers 
to questions that they are not asking. In other words, they should not be concerned 
about the familywise error rate for a joint studywise null hypothesis that they are 
not, in fact, testing. Instead, they should be concerned about the error rates for the 
individual and/or joint hypotheses about which they actually make inferences (Cook 
& Farewell, 1996, p. 107; Cox, 1965, p. 223; Hochberg & Tamrane, 1987, p. 6).

In some cases, the joint studywise hypothesis may subsume a collection of 
hypotheses that are all derived from the same theory. In this case, researchers 
may want to test the joint studywise hypothesis in order to make a statistical infer-
ence about the theory. However, as explained above, it is more appropriate to use 
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conjunction testing, rather than disjunction testing, to test theories. Conjunction test-
ing does not require an alpha adjustment. However, it may suffer from low power.

The assumption that studywise error rates should be considered on an auto-
matic basis also forms part of an argument against the use of significance testing 
in exploratory research situations and in favour of the preregistration of analysis 
plans (e.g., de Groot, 2014; Forstmeier et  al., 2017; Nosek et  al., 2018, 2019, p. 
816). According to this argument, the number of hypotheses that are tested or could 
be tested in exploratory research situations is unknown. Consequently, the size of 
the family of hypotheses that comprise the joint studywise hypothesis is unknown, 
and an appropriate alpha adjustment cannot be computed to control the associated 
studywise error rate (Hochberg & Tamrane, 1987, p. 6; Nosek & Lakens, 2014). 
Again, this argument assumes that researchers are interested in disjunction testing 
a joint studywise hypothesis that includes all of the constituent hypotheses that they 
tested or could have tested in other instances of their exploratory study. However, 
if researchers are not interested in a disjunction test of this joint studywise hypoth-
esis, then it becomes unnecessary for them to preregister their tests in order to con-
trol the associated studywise error rate and the vague atheoretical probability state-
ment that this error rate underwrites (e.g., “our study yielded a significant effect, 
p < 0.05”). Instead, it is sufficient for researchers to make their research materials 
and data set publicly available (e.g., via the Open Science Framework https://​osf.​
io/) in order for their audience to confirm that any joint hypothesis that they dis-
junction tested includes all of the relevant constituent hypotheses (Rubin, 2017b, pp. 
272–273; Rubin, 2020, 2022). Note that, in this case, although the exploratory, post 
hoc disjunction testing of a series of different joint hypotheses will inflate the error 
rate for the (usually irrelevant) joint studywise hypothesis, it will not inflate the error 
rates for each of the specific, theoretically informative joint hypotheses because, by 
definition, each error rate is limited to the constituent hypotheses within each joint 
hypothesis.

Finally, the automatic consideration of studywise error rates also forms the basis 
for the recommendation to limit the number of tests that are performed in any given 
study (e.g., Armstrong, 2014; Cohen, 1990; Drachman, 2012; Goeman & Solari, 
2014; Luck & Gaspelin, 2017; Schochet, 2009; Schulz & Grimes, 2005; Senn, 2007, 
p. 150; for a review, see Frane, 2015; for a discussion, see Wilson, 1962, p. 299). 
For example, in his article on multiple testing in social policy impact evaluations, 
Schochet (2009) advised that “limiting the number of outcomes and subgroups…is 
one of the best ways to address the multiple comparisons problem” (p. 548). Simi-
larly, in their article on multiple comparison corrections in ophthalmology research, 
Stacey et al. (2012) suggested that “the best way to address the problem is to limit 
the number of comparisons” (p. 1830). Again, if researchers undertake disjunction 
testing of a joint hypothesis that relates to all of the variables in their study, and they 
do not adjust their αConstituent alpha level, then the more variables that they include in 
their study, the greater the probability that they will make a Type I error with respect 
to the joint studywise hypothesis. However, this issue should not deter researchers 
from including relevant outcome variables in their study and then adjusting their 
alpha level accordingly. In addition, this issue assumes that all of the outcome vari-
ables in a study relate to the same joint hypothesis and, as discussed above, this may 

https://osf.io/
https://osf.io/
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not be the case. Finally, the number of outcome variables in a study has no impact 
on alpha levels that are associated with either individual testing or conjunction test-
ing (although increasing the number of variables would decrease the power of con-
junction tests). Hence, in some cases, limiting the number of tests that are conducted 
in a study is unnecessary.

In summary, the usefulness of studywise error rates depends on the theoretical 
and/or practical relevance of the joint studywise hypothesis. If this joint hypothesis 
is relevant to the research questions under consideration, then researchers should test 
it, and if they undertake a disjunction test, then they should adjust their alpha level. 
However, if the joint studywise hypothesis is irrelevant, then it should not be tested, 
and a corresponding alpha adjustment is not required (Cook & Farewell, 1996, p. 
107; Cox, 1965, p. 223; Rothman et al., 2008, pp. 236–237; Savitz & Olshan, 1995, 
p. 905; Wilson, 1962). Furthermore, if conjunction testing is used to test the joint 
studywise hypothesis, then no alpha adjustment is required. Under these latter two 
conditions, it is inappropriate to “count the number of tests reported in a paper and 
multiply it by 0.05 to get a rough idea of the number of P values less than 0.05 that 
would be expected to arise by chance alone (if no effects being tested were real)” 
(Sainani, 2009, p. 1101).

7.2 � Multiway ANOVAwise error rates

The automatic alpha adjustment assumption applies to not only large families 
of hypotheses, such as those that comprise a joint studywise hypothesis, but also 
smaller families of hypotheses, such as those tested in a multiway ANOVA or mul-
tiple linear regressions (for the same comparison, see Yekutieli et al., 2006, p. 416) 
Hence, some researchers believe that it is necessary to control the multiway ANO-
VAwise error rate (e.g., Cramer et  al., 2016; Kromrey & Dickinson, 1995; Luck 
& Gaspelin, 2017; Rodriguez, 1997; for a more moderate positions, see An et al., 
2013; Kozak & Powers, 2017).

Consider the example that Cramer et al. (2016) used to argue that alpha adjust-
ment is necessary in exploratory multiway ANOVAs. Cramer et  al. discussed a 2 
(speed-stress: high/low) × 3 (age: 14–20 yrs/50–60 yrs/75–85 yrs) ANOVA that was 
conducted on response time data. This ANOVA tests three hypotheses: (a) a main 
effect of speed-stress, (b) a main effect of age, and (c) an interaction between speed-
stress and age. Cramer et al. argued that “the multiway ANOVA brings with it the 
problem of multiple comparisons” (p. 640), because these three null hypotheses 
form a joint null hypothesis. As they explained,

in an exploratory setting, all hypotheses implied by the design are considered 
and tested jointly, rendering this collection of hypotheses a family; in line with 
the idea that “the term ‘family’ refers to the collection of hypotheses … that is 
being considered for joint testing” (Lehmann & Romano, 2005). As a result, 
we argue that a multiple comparison problem lurks in these exploratory uses 
of a multiway ANOVA (p. 641).
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Certainly, in an exploratory setting, it is likely that researchers would be inter-
ested in testing all three hypotheses in this multiway ANOVA. However, in an 
exploratory setting, it is also likely that researchers would not have any clear theo-
retical or practical reason for subsuming these three hypotheses under a joint ANO-
VAwise hypothesis and making a statistical inference based on disjunction tests of 
this hypothesis. Consequently, in this particular example, it is unlikely that research-
ers would want to adjust their alpha level for each hypothesis in order to control the 
multiway ANOVAwise error rate. Instead, it is more likely that they would use an 
individual testing approach and test each of the three hypotheses (i.e., the two main 
effects and the interaction effect) at their own individual, unadjusted alpha levels 
(i.e., αIndividual).

But is it ever necessary to adjust alpha in order to compensate for multiple testing 
in multiway ANOVAs? One reason why researchers might consider adjusting their 
alpha levels in this context is if the ANOVA tested a group of hypotheses that were 
all predicted by the same theory. In this case, the researchers might want to under-
take a test of that theory in the form of a joint hypothesis. However, as explained 
above, it is more appropriate to use an “all-tests-significant” conjunction approach 
for theory testing than it is to use an “at-least-one-test-significant” disjunction 
approach, and conjunction testing does not require an alpha adjustment. Hence, it 
is unlikely that researchers would ever have reasonable grounds for adjusting their 
alpha to compensate for multiple testing in a multiway ANOVA.9

To illustrate, it is useful to consider the type of inference that might be made after 
correcting for multiple testing in Cramer et  al.’s (2016) multiway ANOVA exam-
ple. Specifically, imagine that a group of researchers adjusted their alpha level from 
0.05 to 0.015 in order to compensate for the three multiple tests that they conducted 
(i.e., the two main effects and the interaction effect). Further imagine that, using 
this adjusted alpha level, the researchers found a significant main effect of speed-
stress but no significant effect of age and no significant speed-stress by age interac-
tion effect. Following a disjunction decision rule, the significant speed-stress main 
effect would be sufficient grounds to warrant the rejection of the joint null hypoth-
esis that “neither speed-stress nor age nor their interaction are related to response 
times.” Logically, this is a correct statistical inference, because the significant speed-
stress main effect refutes this joint null hypothesis (Hewes, 2003). However, it is not 
an inference that researchers are likely to be interested in making unless a theory 
predicts that “either speed-stress or age or their interaction are related to response 
times.” Scientific theories do not usually specify a disjunction relation between their 
predictions. Instead, it is more likely that a theory would predict that “speed-stress 
and age and both in combination are related to response times.” Consequently, it 
would be more appropriate to test this joint hypothesis using conjunction testing.

9  Multiple testing corrections may be necessary in multiway ANOVAs when a factor contains more than 
two levels and multiple comparisons are conducted between those levels in order to test a joint intersec-
tion null hypothesis (Benjamini & Bogomolov, 2011; Yekutieli et al., 2006). However, in this case, fami-
lywise error rates are limited to the comparisons that are made within factors. Familywise error is not 
computed across all factors in the ANOVA.
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8 � Conclusions

The multiple testing literature provides plenty of advice about how to adjust alpha 
levels, but it is relatively silent about when to adjust alpha levels. Some previous 
work in this area has suggested that alpha adjustment is only necessary in explor-
atory research situations (e.g., Armstrong, 2014; Cramer et  al., 2016; Streiner, 
2015; for a review, see Frane, 2015), whereas other work has suggested that alpha 
adjustment is only necessary in confirmatory research situations (e.g., Bender & 
Lange, 2001; Schochet, 2009; Stacey et al., 2012; Tutzauer, 2003; Wason et al., 
2014). In this present paper, I argued that this focus on exploratory versus con-
firmatory research settings is misleading, and that what really matters is the type 
of multiple testing that is employed: disjunction testing, conjunction testing, or 
individual testing.

If researchers make a decision about a joint null hypothesis after rejecting 
at least one (and not all) constituent null hypotheses, then an alpha adjustment 
is necessary. This disjunction testing approach is most useful when researchers 
aim to test a joint hypothesis without demonstrating the extent of generalisation 
across constituent hypotheses.

In contrast, if researchers make a decision about a joint null hypothesis after 
rejecting all of its constituent null hypotheses, then no alpha adjustment is neces-
sary. This conjunction testing approach is most useful when all of the constituent 
hypotheses need to be confirmed in order to confirm the joint hypothesis.

Finally, if researchers make a decision about each null hypothesis separately, 
and they do not make a decision about joint null hypotheses, then no alpha adjust-
ment is needed. Nonetheless, researchers should carefully consider the way in 
which they specify their alpha level during individual testing, and they should 
specify a lower alpha level when more stringent testing is required.

The above qualifications and limitations make it inappropriate for researchers 
to automatically assume that alpha adjustment is necessary in the context of mul-
tiple testing. In particular, researchers should be cautious about applying default 
corrections for multiple testing in relation to studywise and multiway ANOVA-
wise families of hypotheses.
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