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Abstract

Scientists often adjust their significance threshold (alpha level) during null hypoth-
esis significance testing in order to take into account multiple testing and multiple
comparisons. This alpha adjustment has become particularly relevant in the context
of the replication crisis in science. The present article considers the conditions in
which this alpha adjustment is appropriate and the conditions in which it is inap-
propriate. A distinction is drawn between three types of multiple testing: disjunc-
tion testing, conjunction testing, and individual testing. It is argued that alpha adjust-
ment is only appropriate in the case of disjunction testing, in which at least one
test result must be significant in order to reject the associated joint null hypothesis.
Alpha adjustment is inappropriate in the case of conjunction testing, in which all
relevant results must be significant in order to reject the joint null hypothesis. Alpha
adjustment is also inappropriate in the case of individual testing, in which each indi-
vidual result must be significant in order to reject each associated individual null
hypothesis. The conditions under which each of these three types of multiple test-
ing is warranted are examined. It is concluded that researchers should not automati-
cally (mindlessly) assume that alpha adjustment is necessary during multiple testing.
Illustrations are provided in relation to joint studywise hypotheses and joint multi-
way ANOVAwise hypotheses.
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1 Introduction

The multiple testing of hypotheses occurs in the most areas of science. For exam-
ple, it occurs in clinical science, where researchers investigate whether a treat-
ment affects multiple disease symptoms, and it occurs in psychology, where
researchers investigate whether multiple groups of people hold different attitudes
to one another.

Multiple testing has been implicated in the replication crisis in science (e.g.,
Benjamin et al., 2018; Forstmeier et al., 2017; Goodman et al., 2016). In particu-
lar, it has been suggested that researchers who do not adequately correct their
significance threshold, or alpha level, during multiple testing are at a greater risk
of making Type I errors (incorrectly rejecting null hypotheses) and, consequently,
publishing nonreplicable false positive results (Goodman et al., 2016).

Many books and articles explain how to adjust alpha levels during multiple
testing (e.g., Bretz et al., 2011; Dmitrienko & D’Agostino, 2013; Dudoit & Van
der Laan, 2008; Goeman & Solari, 2014; Hsu, 1996; Klockars, 2003; Pan, 2013;
Shaffer, 1995; Streiner, 2015). However, far fewer articles consider when to adjust
alpha levels during multiple testing (Proschan & Waclawiw, 2000). The most
common view is that alpha adjustment is almost always required during multiple
testing. For example, in their article on the control of false positives in neuro-
imaging, Bennett et al., (2009, p. 417) explained that “it is a statistical neces-
sity that we must adapt our threshold criteria to the number of statistical tests
completed on the same dataset.” Similarly, in their tutorial on multiple testing
in genomics, Goeman and Solari (2014) argued that “there can be no reason not
to correct for multiple testing in a genomics experiment” (p. 24). Commentators
who hold different views tend to be in complete opposition to any alpha adjust-
ment. For example, O’Keefe (2003, p. 431) argued that “the practice of requiring
or employing such adjustments should be abandoned,” and Rothman (1990, p.
43) argued that “a policy of not making adjustments for multiple comparisons is
preferable because it will lead to fewer errors of interpretation” (see also Hurlbert
& Lombardi, 2012, p. 30; Mead, 1988; Perneger, 1998; Rothman et al., 2008;
Sinclair et al., 2013; Stewart-Oaten, 1995; Wilson, 1962; for a brief review, see
Hurlbert & Lombardi, 2012, pp. 30-31). Researchers cannot be blamed for being
confused about alpha adjustment when they are confronted with these contradic-
tory viewpoints.

Some articles have provided a more moderate and nuanced perspective in
which an alpha adjustment is warranted in some cases of multiple testing but not
in others (Armstrong, 2014; Bender & Lange, 2001; Greenland, 2020; Hewes,
2003; Matsunaga, 2007; Proschan & Waclawiw, 2000; Schulz & Grimes, 2005;
Streiner, 2015; Tutzauer, 2003; Wason et al., 2014; Weber, 2007). Although
numerous qualifying conditions have been proposed, a common criterion relates
to the distinction between exploratory and confirmatory research. Some research-
ers believe that alpha adjustment is more appropriate when multiple testing occurs
in exploratory research situations that involve unplanned analyses rather than in
confirmatory research situations that include planned analyses (e.g., Armstrong,
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2014; Cramer et al., 2016; Streiner, 2015; for a review, see Frane, 2015). How-
ever, other researchers hold the opposite view—that alpha adjustment is more
appropriate in confirmatory situations than in exploratory situations (e.g., Bender
& Lange, 2001; Schochet, 2009; Stacey et al., 2012; Tutzauer, 2003; Wason et al.,
2014; for a discussion, see Parker & Weir, 2020, p. 3). Hence, the distinction
between exploratory and confirmatory research does not seem to clarify when to
adjust alpha.

In the present article, I consider an alternative approach to determining when to
adjust alpha during multiple testing. Rather than being based on the type of research
situation (exploratory vs. confirmatory), my approach is based on the type of multi-
ple testing. Specifically, I consider three types of multiple testing—disjunction test-
ing, conjunction testing, and individual testing. 1 argue that an alpha correction for
multiple testing is only necessary in the case of disjunction testing and not in the
cases of either conjunction or individual testing. I explain when it is appropriate
to undertake each type of multiple testing and, consequently, when it is appropri-
ate to adjust alpha. Based on this explanation, I argue that researchers should not
automatically assume that alpha adjustment is necessary during multiple testing. I
provide illustrations of the problems with this automatic (mindless) alpha adjust-
ment assumption in relation to joint studywise hypotheses and joint multiway ANO-
VAwise hypotheses. I begin with an introduction to the issue of multiple testing.

2 What is multiple testing?

To understand multiple testing, it is first necessary to understand the null hypothesis
significance testing approach. This approach is based on p values. A p value is the
probability of obtaining a test statistic value or a more extreme value in a sample
assuming that (a) the sample was drawn from a null population, as described in the
null hypothesis, and that (b) all statistical assumptions are valid. In order to decide
whether a test result is “significant,” researchers judge their observed p value against
a threshold criterion value or alpha level.! If the p value for an observed test statistic
is less than or equal to the alpha level, then researchers categorize the result as being
“significant,” and they decide to provisionally reject the null hypothesis that the
sample was drawn from the null population. Otherwise, they categorise the observed
result as “nonsignificant” and retain the null hypothesis.

In many fields, researchers set their alpha level at 0.05, meaning that they are
willing to accept that random measurement error and random sampling error will
cause them to incorrectly reject the null hypothesis in no more 5.00% of a long run
of exact replications of their test. Hence, there is a 5.00% probability that researchers

! In the Neyman-Pearson approach, some researchers may consider alpha size tests rather than alpha
level tests (Casella & Berger, 2002). However, alpha size tests are difficult to construct in the case of
disjunction and conjunction testing (Casella & Berger, 2002, p. 385). Consequently, I refer to alpha level
tests here.
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will make a Type I error in the long run by rejecting the null hypothesis when it is
true.

It should be noted that null hypothesis significance testing is a hybrid of the
Fisherian and Neyman—Pearson approaches (Dennis et al., 2019; Rubin, 2021). A
key difference between these two approaches is that the Neyman—Pearson approach
explicitly contrasts the null hypothesis with a formal alternative hypothesis, whereas
the Fisherian approach does not. In addition, some neo-Fisherians do not use signifi-
cance thresholds to make dichotomous “reject” vs. “fail to reject” decisions about
the null hypothesis (Rubin, 2021, Footnote 4). However, many Fisherians, including
Fisher himself, do use significance thresholds to make such decisions, and the issue
of multiple testing is relevant to them (e.g., Fisher, 1971, pp. 205-207).

Imagine a case in which the same hypothesis is tested twice. For example, imag-
ine that a group of researchers investigate the alternative hypothesis that eating jelly
beans causes acne (Munroe, 2011). There are many different colours of jelly bean
and so, to keep their study simple, the researchers randomly select two colours for
testing: green and red. The researchers ask one group of participants to eat a bag of
green jelly beans every day for a week and one group to eat a bag of red jelly beans
every day for a week. The researchers also ask a control group of participants to eat
a bag of sugar pills every day for a week. The researchers then count the number of
spots on participants’ faces.

In this jelly beans study, the researchers can make multiple comparisons in order
to test the null hypothesis that the amount of acne among people who eat jelly beans
is no greater than the amount of acne among people who eat sugar pills. In par-
ticular, the researchers can test for a significant increase in acne between (a) the
green jelly beans group and the control (sugar pills) group and (b) the red jelly beans
group and the control group. Hence, the researchers are conducting two tests of the
same null hypothesis that eating jelly beans does not cause acne.’

Note that a hypothesis that undergoes multiple testing is called a joint hypothesis.
Joint hypotheses comprise two or more constituent hypotheses. Hence, in the above
example, the joint alternative hypothesis is that “eating jelly beans causes acne,” and
the constituent alternative hypotheses are that (a) “eating green jelly beans causes
acne,” and (b) “eating red jelly beans causes acne.”

Imagine that the researchers in the jelly beans study use an alpha level of 0.05 as the
significance threshold for their two one-sided tests. Further imagine that they find that
the comparison between the green jelly beans group and the control group results in a
significant p value of 0.030, but that the comparison between the red jelly beans group
and the control group results in a nonsignificant p value of 0.070. What decision should
the researchers make about the joint null hypothesis that eating jelly beans does not
increase acne? There are three main approaches that they could take.

2 The researchers could also collapse the green and red jelly beans conditions together and compare jelly
beans versus the control (sugar pill) group, but they could do so on two measures of acne (e.g., inflam-
matory and noninflammatory). In this case, the researchers would be undertaking two tests of the same
null hypothesis using two different outcome variables or endpoints. To keep things simple, I refer to the
multiple comparisons example throughout this article. However, my arguments are equally applicable to
the multiple endpoints situation.
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Fig. 1 Illustration of disjunction testing. Based on Kim et al., (2004, Fig. 1[a])

First, the researchers could require that at least one of the two tests returns a sig-
nificant result before they reject the joint null hypothesis. This “at-least-one-test-sig-
nificant” strategy (Dmitrienko & D’Agostino, 2013) represents a disjunction testing
approach, because it operates on the basis of a logical disjunction decision rule (Weber,
2007).

Second, the researchers could require that both tests return a significant result before
they reject the joint null hypothesis. This “all-tests-significant” strategy represents a
conjunction testing approach, because it operates on the basis of a logical conjunction
decision rule (e.g., Capizzi & Zhang, 1996; Dmitrienko & D’Agostino, 2013; Weber,
2007).

Finally, the researchers could abstain from making a decision about the joint null
hypothesis and instead only make decisions about each of the two constituent null
hypotheses. For example, this individual testing approach might allow the researchers
to conclude that eating red jelly beans causes acne, but eating green jelly beans does
not.

Below, I discuss each of these three types of multiple testing and their implications
for adjustments to the alpha level. I illustrate my discussion with examples from psy-
chology, clinical science, genomics, and neuroimaging in order to show how scientists
might benefit from these different approaches to multiple testing.

3 Disjunction, conjunction, and individual types of multiple testing
3.1 Disjunction testing

Disjunction testing is also called union-intersection testing (Bretz et al., 2011, p. 20;
Hochberg & Tamrane, 1987, p. 28; Kim et al., 2004; Parker & Weir, 2020, p. 2; Roy,
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1953; because multiple constituent alternative hypotheses form a union (dotted area
in Fig. 1), and multiple constituent null hypotheses form an intersection (grey area
in Fig. 1).

Because the constituent null hypotheses form an intersection, it is only neces-
sary to reject one of them in order to reject the corresponding joint intersection null
hypothesis. For example, it is only necessary to reject the constituent null hypothesis
that “green jelly beans do not cause acne” in order to reject the joint null hypothesis
that “neither green jelly beans nor red jelly beans cause acne” and infer that “eating
(either green or red) jelly beans causes acne.”

Importantly, disjunction testing increases the probability of making a Type I
error about the joint intersection null hypothesis, because it increases the number of
opportunities that researchers have to incorrectly reject this hypothesis. In particular,
if researchers undertake disjunction testing, then every test of a constituent hypothe-
sis represents an opportunity to reject the joint null hypothesis. Consequently, when
undertaking disjunction testing, it is important to know the probability of making
at least one Type 1 error in the collection, or family, of constituent null hypotheses.
This Type I error rate is called the familywise error rate.

Assuming that test results are independent from one another, the familywise error
rate is computed by determining the probability that at least one of the tests of the
constituent null hypotheses in the family is significant when the joint null hypothesis
is true. This probability is equal to 1.00—(the probability that none of the tests are
significant). Following the multiplicative probability rule for independent events, the
probability that none of the tests are significant when the joint null hypothesis is true
is equal to the product of the probabilities that each of them is nonsignificant (i.e.,
1 — ). Hence, for k constituent null hypotheses that are each tested using an alpha
level of «, the familywise error rate is equal to 1 — (1 — a)*. For example, the prob-
ability that at least one of two tests will result in a Type I error at the 0.05 alpha level
is equal to 1.00 — (1 — 0.05)>=0.098.> Note that this Type I error rate is higher than

3 The familywise error rate assumes that test results are independent. As Greenland (2020, p. 17)
explained, the term independence is used to refer to several different concepts. In particular, he distin-
guished between logical and statistical independence. Logical independence refers to the mathematical
independence of parameter values such that variation in one value is not logically dependent on varia-
tion in another. Logical independence may be demonstrated via the mathematics of a model. Statistical
independence refers to independence among variables, estimators, standard errors, and tests, and it may
be achieved via study design (e.g., randomisation). A weak form of statistical independence is uncor-
relatedness, which assumes that there is no monotonic linear association between the variables (e.g.,
no positive correlation). As Greenland noted, “uncorrelatedness and hence statistical independence are
rarely satisfied in nonexperimental studies.” Although this may be the case, two points allow a qualified
interpretation of the familywise error rate under the assumption of independence. First, when interpreting
the results of a disjunction test, researchers may adopt a counterfactual interpretation that (a) the joint
null hypothesis is true and (b) all of the associated test assumptions are true, including the assumption
of independence. Second, researchers may complement this qualified interpretation with an acknowledg-
ment that, if the constituent test results were positively dependent, then the actual familywise error rate
would be ess than the nominal familywise error rate, because a family of dependent tests provides less
opportunity to incorrectly reject the joint null hypothesis than a family of independent tests (e.g., Weber,
2007, p. 284). Hence, although the assumption of independence may not be met in reality, researchers
may nonetheless interpret the familywise error rate as indicating a worst-case scenario that assumes that
the constituent test results are independent.
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the prespecified alpha level of 0.05. Consequently, if researchers use a disjunction
testing approach, and they wish to maintain the probability of making a Type I error
about the joint null hypothesis at the conventional alpha level (i.e., a;;,=0.05),
then they need to decrease the alpha level for each constituent null hypothesis (i.e.,
XConstituent < aJoinl)'4

The amount by which ¢ iwent N€€dS to be decreased can be determined using an
alpha adjustment approach. There are many different alpha adjustment approaches
(e.g., the Benjamini—-Hochberg, Bonferroni, Dunn—gidék, Holm, and Hochberg cor-
rections; for a review, see Goeman & Solari, 2014). For example, the Dunn-Sidak
correction uses the formula 1 — (1 — o)'* (Sidak, 1967). If this correction is used in
the case of two constituent null hypotheses, then o, iwent Should be reduced from
0.050 to 0.025 in order to maintain the Type I error rate for the joint null hypothesis
at the prespecified a;;,, of 0.050.

The familywise error rate can be contrasted with the false discovery rate, which is
the expected proportion of incorrectly rejected null hypotheses (Benjamini & Hoch-
berg, 1995, p. 290). If all of the null hypotheses are true, then the false discovery
rate is equivalent to the familywise error rate. However, if some of the null hypoth-
eses are false, then the false discovery rate will be less than the familywise error
rate, because the false null hypotheses that are rejected do not count as erroneous
rejections. Hence, unlike the familywise error rate, the false discovery rate is not
conditioned on the joint null hypothesis being true, because it assumes that some of
the associated constituent hypotheses may be false and, consequently, that the joint
null hypotheses may be false.

3.2 Conjunction testing

Disjunction testing represents an ‘“‘at-least-one-test-significant” approach to joint
null hypothesis testing. In contrast, conjunction testing represents an “all-tests-sig-
nificant” approach. Berger (1982) proposed this approach as an intersection—union
test (Berger, 1982; Berger & Hsu, 1996; Bretz et al., 2011, p. 22). The intersec-
tion—union test refers to a configuration of multiple constituent alternative hypothe-
ses as an intersection (dotted area in Fig. 2) and multiple constituent null hypotheses
as a union (grey area in Fig. 2).

Because the constituent null hypotheses form a union, it is necessary to reject all
of them in order to reject the corresponding joint union null hypothesis (grey area).
For example, it is necessary to reject both the null hypothesis that “green jelly beans
do not cause acne” and the null hypothesis that “red jelly beans do not cause acne”
in order to reject the joint union null hypothesis that “either green jelly beans do
not cause acne or red jelly beans do not cause acne” and infer that “all (tested) jelly
beans cause acne.”

# Instead of adjusting their alpha level downwards, researchers can adjust their p values upwards (e.g.,
Pan, 2013; Westfall & Young, 1993). However, there are reasons to prefer alpha adjustment over p value
adjustment (van der Zee, 2017).
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Fig. 2 Illustration of conjunction testing. Based on Kim et al., (2004, Fig. 1[b])

A key aspect of conjunction testing is that it does not require an adjustment to
the alpha level for tests of each constituent null hypothesis (i.., @cgnsituent = Xoint:
Berger, 1982; Dmitrienko & D’Agostino, 2013; Dmitrienko et al., 2009; Kim et al.,
2004; Kordzakhia et al., 2010; Mascha & Turan, 2012; Massaro, 2009; Neuhéuser,
2006; Pan, 2013; Rubin, 2017b; Weber, 2007; Westfall et al., 2001; Winkler et al.,
2016). This is because, although researchers use multiple tests to test the joint union
null hypothesis, they may only reject this hypothesis if and only if all of their tests
yield significant results. Hence, they only have a single opportunity to reject the joint
null hypothesis at its prespecified alpha level of oy, (Mascha & Turan, 2012). Con-
sequently, 0o psiwen: 0€S NOt need to be reduced to compensate for multiple testing.’

One disadvantage of conjunction tests is that they lack statistical power, because
they fail to reject the joint null hypothesis if one or more constituent tests yield a
nonsignificant result (Francis & Thunell, 2021; Julious & Mclntyre, 2012). For
example, imagine that a researcher wants to undertake a conjunction test with a
power level of 0.80 (i.e., B;ui,=0.20). If two constituent hypotheses are each tested

5 Some commentators have argued that conjunction testing decreases the Type I error rate and therefore
warrants a corresponding increase in the 0 qiwen: 1€Vel above the oy ;. level (e.g., Capizzi & Zhang,
1996; Massaro, 2009; Weber, 2007). This argument is based on the assumption that the Type I error rate
for k independent tests is the product of the Type I error rate for each test (i.e., of). Hence, for example,
the probability of obtaining two independent false positive results at the .05 alpha level is only .0025.
However, during conjunction testing, all of the tests are required to be significant in order to reject the
joint null hypothesis. Consequently, when undertaking conjunction testing, the alpha level for each of the
constituent null hypotheses (0(cogiweny) Cannot be higher than the alpha level for the joint null hypothesis
(00ine Berger, 1982; Julious & Mclntyre, 2012; Kordzakhia et al., 2010).
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with a power value of 0.80 (i.e., Bconstituent = 0-20), then the familywise Type II error
rate will be 1.00 — (1 — 0.20)>=0.36, which is higher than the ., of 0.20. This
Type II error rate of 0.36 equates to a power level of 0.64, which is lower than the
desired power of 0.80.

Conjunction testing is relatively common in clinical and translational science, in
which treatments need to be shown to be effective on multiple aspects of a disease
in order to be regarded as being successful (Dmitrienko & D’Agostino, 2013; Dmi-
trienko et al., 2009; Julious & Mclntyre, 2012; Kordzakhia et al., 2010; Mascha &
Turan, 2012; Massaro, 2009; Neuhiuser, 2006; Pan, 2013; Westfall et al., 2001).
For example, researchers may test a new therapy for Alzheimer’s disease by requir-
ing it to be effective on both cognition and global clinical scores (Dmitrienko &
D’Agostino, 2013; Dmitrienko et al., 2009). Similarly, clinical treatments for chronic
obstructive pulmonary disease are usually required to demonstrate both (a) improved
forced expiratory volume and (b) symptomatic benefits (Neuhduser, 2006). Con-
junction testing may also be used to test the effectiveness of combination therapies
such as exercise and diet to control weight gain; antihistamine and decongestant to
treat allergic rhinitis; and bronchodilators and inhaled corticosteroids to treat asthma
(Westfall et al., 2001).

Conjunction testing has also been used in comparative genomics. Here, research-
ers are interested in identifying the same instances of gene expression in different
species in order to draw conclusions about the generality of molecular or develop-
mental mechanisms that underlie processes such as aging, energy metabolism, and
diseases (Kim et al., 2004). For example, researchers may use conjunction testing to
identify genes that are differentially expressed in the same way in response to caloric
restriction in fruit flies, nematodes, and mice (for a worked example, see Kim et al.,
2004).

Finally, conjunction testing has been used in neuroimaging (e.g., Nichols et al.,
2005). Here, researchers might compare differences between several task groups and
a control group in order to determine differences in the activation of thousands of
voxels, each of which represent different parts of an image of the brain. Conjunction
testing has been employed in order to confirm that certain brain regions are active
under two or more different tasks (Nichols et al., 2005; Winkler et al., 2016).

3.3 Individual testing

Disjunction and conjunction testing allow researchers to test a joint null hypothesis
that comprises two or more constituent null hypotheses. In contrast, individual test-
ing only allows researchers to test individual null hypotheses that do not comprise
a joint null hypothesis. Hence, individual testing allows decisions about individual
null hypotheses but not about joint null hypotheses. For example, in the jelly bean
study, individual testing would allow the researchers to infer that eating green jelly
beans causes acne, but it would not allow researchers to infer that eating jelly beans
in general causes acne. Consequently, individual testing is most appropriate when
researchers are not interested in testing joint null hypotheses.
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Like conjunction testing, individual testing does not require an adjustment to the
alpha level of each test (ay,giviqua; Armstrong, 2014, p. 505; Cook & Farewell, 1996,
pp. 96-97; Fisher, 1971, p. 206; Hewes, 2003, p. 450; Hurlbert & Lombardi, 2012,
p- 30; Matsunaga, 2007. p. 255; Parker & Weir, 2020, p. 2; Rothman, 1990, p. 45;
Rubin, 2017b, pp. 271-272; Rubin, 2020, p. 380; Savitz & Olshan, 1995, p. 906;
Senn, 2007, p. 150; Sinclair et al., 2013, p. 19; Tukey, 1953, p. 82; Turkheimer et al.,
2004, p. 727; Veazie, 2006, p. 809; Wilson, 1962, p. 299). This point is often mis-
understood (e.g., O’Keefe, 2003) and so it is important to clarify it. If multiple test
results are used to make a decision about a single joint null hypothesis, and disjunc-
tion testing is used, then each test represents an independent opportunity to reject
the joint null hypothesis, and the alpha level of each test (@¢ngitent) NEEAS to be
lowered in order to compensate for the increased number of opportunities to make a
Type I error about the joint null hypothesis. In contrast, if a single test result is used
to make a decision about a single null hypothesis, then that test result provides only
one opportunity to make a Type I error about that null hypothesis. Consequently, the
alpha level of the test (@, giviqua) dO€s not need to be lowered.

Importantly, the logic of individual testing applies even when multiple instances
of individual testing take place side-by-side within the same study (see also Cook &
Farewell, 1996; Fisher, 1971, p. 206; Greenland, 2020, p. 5; Hurlbert & Lombardi,
2012, p. 30; Kotzen, 2013; Parker & Weir, 2020, p. 2; Rubin, 2017b, pp. 271-272;
Savitz & Olshan, 1995, p. 906; Senn, 2007, p. 150; Tukey, 1953, pp. 82—-83; Wil-
son, 1962). If each decision to reject each individual null hypothesis depends on no
more than one significance test, then none of the individual tests constitute a “fam-
ily” with respect to any single hypothesis. Consequently, it is not necessary to adjust
alpha levels on the basis of any family-based error rate (e.g., familywise error rate,
per family error rate, etc.; Hurlbert & Lombardi, 2012, p. 30). A family-based alpha
adjustment is only necessary when researchers undertake disjunction testing of a
joint intersection null hypothesis.

Of course, a researcher who conducts a greater number of individual tests will
have a greater opportunity to obtain more significant results and, consequently, a
greater opportunity to make more Type I errors (e.g., Drachman, 2012; Goeman &
Solari, 2014). For example, imagine that a researcher tests 100 true null hypoth-
eses using 100 individual tests that each have an a4 igua Of 0.05. In this case, the
researcher has a greater opportunity to obtain more significant results and make
more Type I errors than if they had only tested one true null hypothesis. Indeed,
given that all 100 null hypotheses are true, the researcher should expect to obtain
five significant results and, consequently, make five Type I errors. However, it is
important not to confuse this expected outcome for the collection of individual tests
(the per family error rate) with the probability of making a Type I error in relation
to each individual test (the individual, marginal, or per determination error rate;
Cook & Farewell, 1996, pp. 96-97; Tukey, 1953, p. 82). As the size of the family
of tests increases, the individual error rate remains constant (i.e., Qpgiviguar=0-05;
Senn, 2007, pp. 150-151). It is only the per family error rate that increases (i.e., o X
kfamily)'

To illustrate, if a person rolls a 20-sided dice 20 times instead of once, then they
will increase the familywise probability that they will roll a “3” in at least one of
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their rolls from 0.05 to 0.64. However, they will not increase the individual prob-
ability that each roll will result in a “3.” This individual probability will always
remain at 0.05, regardless of the number of rolls of the dice (for a similar example,
see Kotzen, 2013). Hence, it is perfectly true that “the more tests that are run, the
greater the likelihood that at least 1 will be significant by chance” (Streiner, 2015,
p. 722). However, if researchers undertake individual testing using an oy,giviqua ©f
0.05, then it is also true that the probability that they will make a Type I error in the
case of each specific individual hypothesis test is no more than 5.00%. It is a form of
gambler’s fallacy to believe that each successive individual test in a series of indi-
vidual tests has a greater than 5.00% chance of yielding a Type I error, even after the
millionth test.

The uncomfortable feeling that some researchers might feel about conducting
multiple individual tests may be attributed to a confusion between the alpha levels
that are associated with individual testing (@,giviqua) and the alpha levels that are
associated with disjunction testing (@congitend)- 10 1llustrate, consider the jelly beans
study again, as originally conceived by Munroe (2011) in Fig. 3.

Munroe’s (2011) jelly bean study is supposed to highlight the inappropriateness
of not adjusting the alpha level during multiple testing. However, it actually illus-
trates the confusion between @, givigual 304 Aconstituent 1N @ case of individual testing.
In the study, the scientists conducted individual tests of 20 different hypotheses (i.e.,
one test per hypothesis), and they obtained a single significant result using an alpha
level of oy giyiqua =0-05. Based on the results of these individual tests, they inferred
that there is “a link between green jelly beans and acne.” Contrary to Munroe’s inti-
mation, this inference is entirely appropriate given its level of specificity—it refers
to green jelly beans only and not to jelly beans of one or more unspecified colours—
and the fact that it is based on a single significance test that used a conventional
alpha level of 0.05 (for the same conclusion, see Lew, 2019, pp. 21-22). Hence, in
this case, there is no more than a 5.00% probability that the scientists’ decision to
reject the associated null hypothesis (i.e., “green jelly beans do not cause acne”)
represents a Type I error.’

The confusion in the jelly bean study relates to the fact that the scientists also
have the potential to subsume their 20 hypotheses under a joint union alternative
hypothesis that “either green, purple, brown, pink, blue, teal, salmon, red, turquoise,

© Tukey (1953), who was a pioneer in the area of multiple testing, described this individual testing error
rate as the per determination error rate (i.e., Oy giviqua))- 1his error rate should not be confused with the
per comparison error rate (i.e., Ocgngiwen)- BOth error rates use unadjusted alpha levels. However, the
per determination error rate is used in the context of the individual testing of an individual null hypoth-
esis, whereas the per comparison error rate is used in the context of the disjunction testing of a joint
null hypothesis. Tukey (p. 90) was firmly against the use of the per comparison error rate. However, he
believed that the per determination error rate was “entirely appropriate” (p. 82) for some research ques-
tions (i.e., individual testing; see also Hochberg & Tamhane, 1987, p. 6). For example, he argued that a
per determination rate was suitable when diagnosing potentially diabetic patients based on their blood
sugar levels. As Tukey (1953, p. 82) explained:

the doctor’s action on John Jones would not depend on the other 19 determinations made at the same
time by the same technician or on the other 47 determinations on samples from patients in Smithville.
Each determination is an individual matter, and it is appropriate to set error rates accordingly.
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Fig.. 3. Illustrat.ion of m}]ltiple JELLY BEANS WE FOUNDNO THAT SETTLES THAT,
individual testing. Retrieved CAUSE ACNE! LINK BETWEEN THEAR 175 oMY
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magenta, yellow, grey, tan, cyan, mauve, beige, lilac, black, peach, or orange jelly
beans cause acne.” As shown in Table 1, if they undertook disjunction testing of the
corresponding joint intersection null hypothesis using an oy iwen: ©f 0.05 for each
of the 20 constituent hypotheses, then the single significant result that they obtained
would be likely to represent a Type I error in relation to the joint null hypothesis,
because 1 out of every 20 significant results is expected to represent a Type I error
when using an o pgimen: Of 0.05 (i.e., 0.05X20=1; the per family error rate).

Importantly, if the scientists subsumed their 20 hypotheses under the joint union
alternative hypothesis that “jelly beans (of one or more colours) cause acne,” then
their inference should be that “jelly beans (of one or more colours) cause acne.”
This inference would be inappropriate, because the scientists have a 64.15% prob-
ability of incorrectly rejecting the associated joint intersection null hypothesis when
investigating 20 different colour of jelly bean. However, the scientists did not make
this broader inference. Instead, they made the more specific inference that “green
jelly beans cause acne.” This more specific inference is appropriate given that the
scientists only have a 5.00% probability of incorrectly rejecting the associated null
hypothesis (Lew, 2019, pp. 21-22).

The problem in jelly bean study and more generally is that it is easy to con-
fuse the alpha level for each hypothesis test in the individual testing situation (i.e.,
Odividua) With the alpha level for each hypothesis test in the family testing situa-
tion (i.e., Argngiens) aNd to conclude that o, giyigu N€€ds to be adjusted because,
if the 20 tests formed a family, then 0qqpginene WOUld need to be adjusted (see also
Greenland, 2020, p. 5). This alpha confusion leads to the erroneous conclusion that
a single significant result that is obtained following 20 individual tests that each use
an Qpgiviqua Of 0.05 is more likely to be a Type I error than a single significant result
that is obtained using a single individual test that uses an o4;yiqua ©f 0.05 (e.g.,
Feise, 2002; Sainani, 2009).

To clarify, in the jelly bean study, ay,4iviquar 1S the value for 20 independent alphas
(each set at 0.05) that are associated with 20 individual hypotheses that are each
tested only once (e.g., “green jelly beans cause acne,” “red jelly beans cause acne,”
“purple jelly beans cause acne,” etc.). Consequently, none of these 20 alphas need
to be adjusted, because none of them are associated with disjunction testing. In
contrast, dcgniment 15 the value for 20 disjunction tests of the same joint hypothesis
(e.g., “jelly beans cause acne”) that is tested using an a;;,, of 0.05. Consequently,
QConstituent N€€AS to be reduced (e.g., to 0.0025) in order to maintain a;;,, at 0.05.

Previous commentators have also attempted to clarify this alpha confusion. In
particular, Matsunaga (2007, p. 255) explained that,

if multiple Hys are tested, inflation is of no concern because Type I errors
are partitioned per H,, each of which entails distinct alphas. If multiple tests
are carried out within one H,, however, overall Type I error rate for that H,
becomes inflated and adjustment needs to be made (see also Rubin, 2017b, p.
272).

In summary, if researchers perform 20 tests and obtain only one significant result
using an alpha of 0.05, then they will have a 64.15% chance of making a Type I error
with respect to a joint null hypothesis that is disjunction tested but only a 5.00%
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chance of making a Type I error with respect to an individual null hypothesis that
is individually tested. It is for this reason that there is no contradiction in the two
claims made by the scientists in Munroe’s (2011) cartoon (Lew, 2019, p. 21). The
scientists may have sufficient evidence to make the specific claim that “we found a
link between green jelly beans and acne (p <0.05)” (Panel 17 in Fig. 3) while lack-
ing sufficient evidence to make the broader claim that this link extends to jelly beans
of some unspecified colour or colours, and so they would need to concede that “we
found no link between jelly beans and acne p>0.05” (Panel 2 in Fig. 3).

4 Multiple testing and selection bias

In their discussion of multiple testing in genomics, Goeman and Solari (2014) pro-
posed that the individual testing of multiple individual hypotheses does not neces-
sitate a multiple testing correction, because “without multiple testing correction the
probability of a type I error in each individual hypothesis remains equal to o regard-
less of the number of hypotheses that have been tested” (p. 2). Hence, Goeman and
Solari hold a similar view to the one discussed above. However, they also proposed
that the individual testing of multiple individual hypotheses can lead to a selection
bias on the part of researchers (e.g., Benjamini & Bogomolov, 2011; Cox, 1965).
Specifically, researchers may select and report significant results and fail to report
nonsignificant results. According to Goeman and Solari, “multiple testing methods
aim to correct for this selection process” (p. 2). In contrast, I argue that a selection
bias only necessitates an alpha adjustment when testing joint null hypotheses and
not when testing individual null hypotheses.

To illustrate, consider the jelly bean study once again. If the researchers under-
took individual testing, and they reported the significant result for green jelly beans
without reporting the nonsignificant results for the other 19 colours of jelly bean,
then the o, giyiqua l€Vel for the individual hypothesis that “green jelly beans cause
acne” would remain valid, because a single test has been used to make a decision
about a single individual hypothesis. Hence, the selection bias does not inflate the
alpha level of individual tests during individual testing (for related discussions,
see Kotzen, 2013, p. 167; Rubin, 2017a, p. 325; Rubin, 2017c; Rubin, 2017d, pp.
316-317; Rubin, 2020).”

In contrast, a selection bias can lead to alpha inflation when testing joint hypoth-
eses. Imagine that the scientists undertook 20 disjunction tests of the joint null
hypothesis that “jelly beans do not cause acne,” but they retained their acgqgitent
level at the conventional level of 0.05 instead of lowering it to compensate for their
disjunction testing. Further imagine that the researchers found a single significant

7 A selection bias remains problematic during individual testing, because it involves the suppression of
hypotheses after the results are known or SHARKing (Rubin, 2017d). SHARKing is problematic when
suppressed falsifications are theoretically (as opposed to statistically) relevant to the research conclu-
sions. For example, in the jelly bean study, it is theoretically informative to know not only that green jelly
beans cause acne but also that non-green jelly beans do not appear to cause acne.
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effect for green jelly beans using this unadjusted oqqpgimen: 1€VEL- In this case, fail-
ing to report the results of the other 19 tests misrepresents the situation as one of
individual testing rather than disjunction testing, and the researchers may incor-
rectly infer that “jelly beans cause acne” (i.e., a joint hypothesis) on the basis of an
Qpndividual Of 5-00% when the actual Type I error rate for this inference is 64.15% (i.e.,
aj.in)- Hence, the selection bias inflates the relevant alpha level when testing joint
null hypotheses but not when testing individual null hypotheses.

More generally, selecting an effect from among a variety of other unrelated effects
because it is larger than the other effects does not necessarily mean that the selected
effect will be “biased.” A bias will only occur when the selection occurs among dif-
ferent instances of the same effect, not when it occurs between qualitatively different
effects. By analogy, picking the largest cherry from a bowl of cherries is likely to
result in an unusually large cherry (i.e., a biased cherry). In contrast, selecting the
largest fruit from a barrel that contains a variety of average-sized fruits is likely to
yield an average-sized watermelon.

5 Distinguishing between alpha specification and alpha adjustment

None of the above points should be interpreted as suggesting that the alpha level
during the individual testing of multiple hypotheses should always be set at the
conventional 0.05 level. In every significance testing situation, researchers need to
specify their alpha level in the context of a range of external background factors,
including the plausibility of the hypothesis, the plausibility of potential alternative
explanations, the theoretical and/or practical costs of Type I and Type II errors,
the smallest effect size of interest, the sample size, and the variability in the data
(Mudge et al., 2012). Hence, even in the individual testing situation, there may be
grounds for lowering the alpha level below the conventional 0.05 threshold (e.g.,
Rothman et al., 2008, pp. 234-235). For example, a much lower alpha level would
be appropriate when testing the implausible hypothesis that dead Atlantic salmon
will exhibit brain activity in a specific brain region (Bennett et al., 2010), because
extraordinary claims require extraordinary evidence. Importantly, this process of
alpha specification is quite different from the previously discussed alpha adjust-
ment during disjunction testing (for a similar view, see Parker & Weir, 2020, p. 564;
Ryan, 1962, p. 305). In the former case, researchers specify an alpha level for their
individual or joint hypothesis based on external factors. In the latter case, research-
ers adjust that prespecified alpha level in order to make it applicable to disjunction
tests of constituent hypotheses.

In some cases, prudent alpha specification may be more appropriate than alpha
adjustment. For example, in the field of genomics, researchers are interested in
screening associations between hundreds of thousands of single nucleotide polymor-
phisms (SNPs) and diseases or other phenotypic traits in order to identify the largest
and most reliable associations. Hence, they might attempt to identify the top 20 SNP
associations among hundreds of thousands of tests (Goeman & Solari, 2014; Pan,
2013). In this case, there is a need to reduce the alpha level for each test not because
researchers want to undertake disjunction testing of a genome-wide joint null
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hypothesis but because they want to achieve a more stringent screening approach in
order to identify the largest effect sizes, which they presume are more likely to be
clinically and biologically meaningful (Otani et al., 2018).

To illustrate, consider Wu et al.’s (2018) tests of associations between 167,355
SNPs from 532 pigs and phenotypic traits from the pigs’ litters (e.g., number born).
In order to maintain the genome-wide significance level at 5.00%, they used a Bon-
ferroni correction (i.e., 0.05/167,355). On finding at least one single significant
association, this Bonferroni correction would allow the researchers to reject the
joint null hypothesis that the genome is not associated with the phenotype expres-
sion. However, the researchers did not make this genome-wide inference. Instead,
they made SNP-specific inferences about “the top significant SNPs” (p. 173) and
their associated chromosomes. For example, they noted that eight SNPs were sig-
nificantly associated with the number of pigs born in a litter, that seven of these
were located on the same chromosome, and that one had a novel location. Hence,
the researchers adjusted their otqqpgien: 1€VEl, Which enables a statistical inference
about a genome-wide joint hypothesis, but they then ignored this joint hypothesis
and instead made statistical inferences about individual hypotheses (i.e., which spe-
cific SNPs were associated with number of pigs born in a litter). Turkheimer et al.’s
(2004) advice for functional brain imaging researchers is relevant here: “If before or
after testing one wishes to consider the individual result on its own individual merit,
then the multiple comparison correction becomes not only incorrect but also mean-
ingless” (p. 727; see also Cook & Farewell, 1996; Cox, 1965). Genetics researchers
have also commented on this inferential mismatch. For example, Otani et al. (2018)
recently noted that “the FWER [familywise error rate] criterion strictly controls the
probability of having at least one false positive in millions of tests, and geneticists
should generally recognize its inappropriateness regarding the primary purposes of
GWAS [genome-wide association studies]” (p. 1). According to Otani et al. (2018),
the primary purpose of GWAS research is to identify SNPs that have comparably
large effects, because these are most likely to be clinically and biologically meaning-
ful. Given this purpose, it is more appropriate to use an individual testing approach
in which the alpha level for each test has been specified at a more stringent level in
order to screen out the smaller, less biologically important effects.

How are researchers supposed to determine a suitably stringent alpha level when
they undertake multiple individual tests? As with single individual testing, a mix of
community standards and cost analysis is required. In terms of community stand-
ards, conventional alpha levels can vary from field to field. For example, in a survey
of 172 genome-wide association studies, Jannot et al. (2015) found that a consensus
had emerged that an alpha level of 0.00000005 (i.e., 5.0x 107®) is appropriate. In
theory, this alpha level is based on a Bonferroni adjustment to the conventional 5.0%
alpha level that assumes a million tests. However, in practice, it has been validated
by considering the actual replicability of specific SNP-trait associations (Panagiotou
et al., 2011). Hence, again, genomic researchers are more concerned about identify-
ing specific SNP associations that are relatively large and replicable than they are
about incorrectly rejecting the joint genome-wide null hypothesis. In terms of cost
analysis, Type I errors need to be judged in relation to real world consequences and
Type 1II errors. For example, Mudge et al. (2012) have proposed an optimal alpha
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approach that balances the costs of Type I and Type II errors in the context of a
specified critical effect size (i.e., a smallest effect size of interest). In a meta-analysis
of 242 microarray gene expression studies, Mudge et al. (2017) found that this opti-
mal alpha approach resulted in Type I and II “error rates as low or lower than error
rates obtained when using (i) no post-hoc adjustment, (ii) a Bonferroni adjustment
and (iii) a false discovery rate (FDR) adjustment” (p. 1).

In summary, there is an important difference between using a million tests to
identify the top 20 largest individual associations and using a million tests to dis-
junction test a joint intersection null hypothesis. A lower alpha level may be war-
ranted in both cases. However, it is more appropriate to achieve this lower alpha
through alpha specification in the former case (i.e., lower @,givigua t© SCreen out
nonsignificant associations that are most likely below the smallest effect size of
interest) and alpha adjustment in the latter case (i.e., Qcopsituent < XJoint O Maintain
QApoine at 0.050).

6 When should researchers use individual, disjunction,
and conjunction testing?

To recap, there are three approaches to multiple testing: disjunction testing, con-
junction testing, and individual testing. Disjunction and conjunction testing allow
researchers to test joint null hypotheses, but individual testing does not. Further-
more, disjunction testing requires an alpha adjustment, but conjunction and individ-
ual testing do not. Hence, in order to know when to adjust alpha, researchers need to
know when to use each of these three types of multiple testing, and it is to this issue
that I now turn.

The first point that researchers should consider is whether they are making a sta-
tistical claim that is warranted by a specific p value and alpha level. For example,
based on the result of a ¢ test and a conventional alpha level, a statistical claim might
be: “Male participants had significantly higher self-esteem than female participants,
1(479)=2.11, p=0.018.” In contrast, more substantive non-statistical claims may
summarise the results of significance tests without themselves being warranted by
a specific p value (Meehl, 1978, p. 824). For example, a non-statistical claim might
be: “Based on the results of Studies 1, 2, and 3, it was concluded that men have
higher self-esteem than women.” Note that this claim is not explicitly tied to a spe-
cific p value and alpha level. Importantly, the question of whether to adjust an alpha
level only applies to statistical claims. This question does not apply to claims that
are not tied to a specific p value, because such claims are not associated with a spe-
cific alpha level, and they may be in error due to not only random sampling and
measurement error but also theoretical errors, model misspecification, systematic
measurement error, and so on (Rubin, 2017b, p. 272).

If researchers are making a claim about statistical significance, then they need to
consider whether their claim derives from the test of an individual null hypothesis or
a joint null hypothesis. If they are testing an individual hypothesis, then they should
use individual testing and an unadjusted alpha level (Cook & Farewell, 1996; Roth-
man et al., 2008, pp. 236-237; Wilson, 1962). If they are testing a joint hypothesis,
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then the decision about adjusting alpha depends on whether they are using disjunc-
tion testing or conjunction testing.

6.1 Individual hypotheses

Individual hypotheses are hypotheses than can be tested using a single significance
test. In some cases, researchers’ methods and designs constrain them into testing
individual hypotheses. For example, researchers might have only one relevant pre-
dictor or comparison that relates to only one relevant outcome variable. Conse-
quently, they have only one test that is relevant to their individual hypothesis. In this
case, they are only able to conduct an individual test.

In other cases, researchers may have several predictor variables, comparison
groups, and/or outcome variables. As discussed above, in these cases, researchers
may undertake individual testing using an unadjusted alpha level in order to make
separate decisions about each individual null hypothesis.

Researchers may also find that there are theoretical, practical, and/or empiri-
cal reasons (e.g., factor analyses) for aggregating across some of their constituent
groups or variables in order to create composite groups or variables. They may then
subject these composite groups or variables to individual testing at an unadjusted
alpha level (Feise, 2002; Goeman & Solari, 2014; Hung & Wang, 2010; Luck &
Gaspelin, 2017; Matsunaga, 2007; Schulz & Grimes, 2005; Senn, 2007, p. 151).

A statistical aggregation approach may also be used to operationalize an individ-
ual test across groups or variables (Senn, 2007, p. 153). For example, a researcher
might use a one-way ANOVA with simple contrasts that compare two experimental
conditions to a control condition. Alternatively, a researcher might use a MANOVA
to test the effects of a treatment on two or more outcome variables. To illustrate,
consider the case of a clinical study that aimed to investigate the ability of a treat-
ment to prevent premature infants from developing respiratory distress syndrome
(RDS; Wang et al., 2015). There were three outcome variables: incidence of RDS
at 24 h, RDS-mortality through 14 days of age, and air leak through 7 days of age.
As Dmitrienko (in Wang et al., 2015) explained, if it is necessary to demonstrate
an effect of the treatment on a specific outcome (e.g., RDS-mortality) in order to
mount the case for regulatory change, then disjunction testing would be inappropri-
ate, because it would reject the joint null hypothesis on the basis of a significant
result in relation to any of the three outcomes. Conjunction testing would be more
appropriate in this case. However, it would lack power, which may be problematic in
this particular scenario. Hence, Dmitrienko recommended using a single statistical
test that provide a simultaneous assessment of the treatment effect across all three
outcome variables and yields a single test statistic (e.g., a MANOVA).

6.2 Joint hypotheses
The first requirement for testing a joint hypothesis is that the hypothesis should

allow a statistical inference that has relevant and meaningful theoretical and/
or practical implications (Cook & Farewell, 1996, p. 107; Cox, 1965, p. 223;
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Hochberg & Tamrane, 1987, p. 5; Parker & Weir, 2020, p. 2). To meet this
requirement, researchers should ensure that the family of constituent hypoth-
eses that comprise the joint hypothesis are theoretically consistent with their
intended inference (see also Hung & Wang, 2010). In particular, the family must
contain all relevant constituent hypotheses and no irrelevant constituent hypoth-
eses (Cox, 1965; Hochberg & Tamrane, 1987, p. 6; Huberty & Morris, 1988, p.
572). It is helpful for researchers to make their research materials and data set
publicly available online in order to allow others to verify the correct specifica-
tion of their joint hypotheses and to check for any potential selection bias (Cox,
1965; Goeman & Solari, 2014; Rubin, 2017b, p. 273; Rubin, 2020).

The second requirement for testing a joint hypothesis is that researchers use
an appropriate form of testing. Researchers should use disjunction testing when
the rejection of any of the constituent hypotheses is sufficient to reject the joint
hypothesis as a whole and the extent of generalisation across constituent hypoth-
eses is unimportant. In contrast, researchers should undertake conjunction
testing when it is important to demonstrate the confirmation of all constituent
hypotheses within a joint hypothesis.

In the case of disjunction testing, researchers also need to assume that the
constituent hypotheses are theoretically exchangeable with regards to infer-
ences about the joint hypothesis under investigation (e.g., Rosset et al., 2018).
That is to say, a significant result in relation to any of the constituent hypoth-
eses must provide the same logical basis for rejecting the joint null hypothe-
sis. For example, the hypothesis that “red M&Ms cause acne” is not theoreti-
cally exchangeable with the hypotheses that “green jelly beans cause acne” and
“red jelly beans cause acne” when testing the joint hypothesis that “jelly beans
cause acne,” because M&Ms are not a type of jelly bean. Consequently, the red
M&Ms hypothesis should not be included as a constituent hypothesis in the joint
“jelly beans cause acne” hypothesis. Importantly, the exchangeability assump-
tion is violated if researchers have an a priori theoretical expectation that one
or more of their constituent hypotheses will yield a different result to the oth-
ers. For example, if it is expected, a priori, that green jelly beans cause acne but
that red jelly beans do not, then it would be inappropriate to include these two
hypotheses as constituent hypotheses in the joint hypothesis that “jelly beans
cause acne.”

Conjunction testing may be more appropriate than disjunction testing when
researchers undertake theory testing. Theories usually predict that all of their
constituent hypotheses are true. They do not usually predict that at least one of
their constituent hypotheses is true. Consequently, it is more logical for research-
ers to use conjunction testing rather than disjunction testing when they want to
make a statistical inference about a joint hypothesis that comprises a family of
hypotheses that belong to the same theory. Again, however, conjunction test-
ing may suffer from lower power. In addition, theory evaluation may be better
conceived as a “qualitative exercise,” because it is influenced by non-statistical
considerations (Haig, 2009, p. 220).
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7 Against an automatic alpha adjustment assumption

To summarize, researchers only need to adjust their alpha level when they undertake
disjunction testing of a joint null hypothesis. Furthermore, researchers should only
undertake the disjunction testing of a joint null hypothesis when that hypothesis
(a) enables a relevant theoretical and/or practical inference and (b) is better suited
to disjunction testing rather than conjunction testing. This limited and qualified
approach to alpha adjustment stands in contrast to the more common unqualified
view that alpha adjustment is almost always necessary during multiple testing (e.g.,
Bennett et al., 2009; de Groot, 2014; Glickman et al., 2014). For example, in the
introduction to their article on the false discovery rate, Glickman et al. provided the
following explanation for alpha adjustment:

The usual argument to convince researchers that adjustments are necessary
when multiple tests are performed is to point out that, without adjustments, the
probability of at least one null hypothesis being rejected is larger than accept-
able levels. Suppose, for example, that a researcher performs 100 tests at the a
= 0.05 significance level in which the null hypothesis is true in every case. If
all the tests are independent, then the probability that at least one test would be
incorrectly rejected is 1 — (1 — 0.05)!% = 0.9941, or 99.41% (p. 851).

Similarly, in their article on multiple testing, Sainani (2009) provided the follow-
ing explanation:

Mathematically, the problem of multiple testing can be explained as follows:
every statistical test comes with an inherent false positive, or type I error,
rate—which is equal to the threshold set for statistical significance, generally
.05. Howeyver, this is just the error rate for one test; when more than one test is
run, the overall type I error rate is much greater than 5%. For example, if one
runs 100 independent statistical tests where it is known no effects exist, the
chance of getting at least one false positive (ie, at least one p value less than
.05) i 99.4% ... and 5 false positives are expected (because approximately 1 in
20 tests will yield a false positive) (p. 1089).

At this stage, the missing qualifications to these explanations should be appar-
ent: (a) they assume that none of the 100 tests represent individual tests of indi-
vidual hypotheses. (b) They assume that the 100 tests form a coherent family of
tests in relation to a theoretically- and/or practically-relevant joint hypothesis. (c)
They assume that researchers are undertaking a disjunction test of this joint hypoth-
esis, rather than a conjunction test. To be clear, I am not suggesting that these three
qualifications are never met. I am only suggesting that they are often ignored, as in
the above examples, and that this omission leads to an inaccurate view that, when
undertaking multiple testing, it is always necessary to compute family-based error
rates and adjust alpha levels on the basis of these error rates.

It is important to note that automatic (mindless) alpha adjustment is not advo-
cated by some of the experts in the field of multiple testing (Tukey, 1953, p. 82-83;
see also Mead, 1988, pp. 310-314; Parker & Weir, 2020, p. 4). Instead, they argue
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that the choice between individual and disjunction testing should depend on the
number and type of inferences that are to be made. If multiple testing is used to
make multiple independent statistical inferences, then no alpha adjustment is war-
ranted. Below, I illustrate the problems with automatic alpha adjustment in relation
to studywise error rates and multiway ANOVAwise error rates.t

7.1 Studywise error rates

I use the term studywise error rates (sometimes called experimentwise, global, or
universal error rates) to refer to family-based error rates (e.g., familywise error
rates, per family error rates, false discovery rates, etc.) that are associated with all
of the hypotheses that are tested in a study, experiment, or sample or, in the case
of exploratory analyses, all of the hypotheses that could have been tested (e.g.,
An et al., 2013, pp. 6-7; Cohen, 1990, p. 1304; Drachman, 2012, p. 2; Klockars,
2003, p. 614; Luck & Gaspelin, 2017, p. 151; Maxwell & Delaney, 2004, p. 291;
Miller, 1981, p. 34; Parker & Weir, 2020, p. 3; Rubin, 2022; Ryan, 1962; Shaffer,
2006; Stacey et al., 2012, p. 1830). Consistent with the above points, researchers
only need to consider the studywise error rate if they undertake disjunction test-
ing of the joint studywise null hypothesis that the study produces a null effect.
Furthermore, researchers should only be expected to test this joint studywise
hypothesis if there are theoretical and/or practical reasons for doing so. However,
often these reasons are lacking. As Cook and Farewell (1996, p. 106) explained
with reference to clinical trials, “a concern is that testing strategies are frequently
adopted with the aim of controlling the experimental type I error rate without
considering how this relates to the questions of main interest.” More recently,
Parker and Weir (2020, p. 2) echoed this concern with respect to multi-arm clini-
cal trials: “If treatments are distinct and we are interested in individual treatment
versus control comparisons, ... then it is difficult to see how the concept of for-
mulating a global intersection null hypothesis could be relevant.” If it is not use-
ful to test the joint studywise hypothesis, then researchers should consider lower-
order families of hypotheses and/or individual hypotheses for testing (Benjamini
& Bogomolov, 2011; Efron, 2008; Fisher, 1971, p. 206; Hochberg & Tamrane,
1987, pp. 6-7; Hung & Wang, 2010; Mei et al., 2017; Rubin, 2017b). For exam-
ple, in their discussion of multiple testing in microarray gene expression analysis,
Yekutieli et al. (2006) explained that “the set of hypotheses that is of interest
to the researcher in a single study does not necessarily form a single family of
hypotheses” (p. 416). Instead, they suggested that families can be specified at the

8 Studywise and multiway ANOVAwise error rates are not the only types of error rates that have caused
confusion in the area of multiple testing. Other examples include datasetwise error rates (in which
the family includes all hypotheses that are tested using a specific dataset; Bennett et al., 2009, p. 417;
Thompson et al., 2020), careerwise error rates (in which the family includes all hypotheses that are per-
formed by a specific researcher during their career; O’Keefe, 2003; Stewart-Oaten, 1995), and fieldwise
error rates (in which the family includes all hypotheses that are performed in a specific field). A key
argument in the current article is that researchers do not usually make decisions about data sets, research-
ers, and fields. Instead, they make decisions about hypotheses.

@ Springer



Synthese (2021) 199:10969-11000 10991

level of genes. Similarly, in discussing functional neuroimaging research, Ben-
jamini and Bogomolov (2011) explained that hypotheses that refer to the same
brain region should be regarded as belonging to the same family. Hence, joint
studywise null hypotheses are often theoretically irrelevant.

In contrast to the above views, De Groot (2014) suggested that it is necessary
to test the joint studywise hypothesis in order to test “the value of the research as a
whole” (p. 189). From this perspective, studies that have a high studywise error rate
have a correspondingly low research value, because their significant results are more
likely to represent Type I errors. However, this reasoning assumes that the value
of the research is associated with the joint studywise hypothesis, and this assump-
tion is unwarranted unless the joint studywise hypothesis is relevant to the research
question. Again, in many cases, the joint studywise hypothesis has no relevance to
researchers’ specific research questions, because its constituent hypotheses refer to
comparisons and variables that have no theoretical or practical basis for joint con-
sideration (Bender & Lange, 2001, p. 343; Cook & Farewell, 1996, pp. 101-102;
Hewes, 2003, p. 450; Morgan, 2007, p. 34; Parker & Weir, 2020, p. 2; Perneger,
1998, p. 1236; Rothman et al., 2008, pp. 236-237; Rubin, 2020, 2022; Savitz &
Olshan, 1995, p. 905; Schulz & Grimes, 2005, p. 1592). They are what Meehl (1978,
p- 813) might call “a mere conjunction of unrelated assertions, a ‘heap of hypoth-
eses’.” For example, in a study of alcohol and drug use disorders among homeless
veterans, researchers used a Bonferroni correction when testing differences across a
diverse range of variables, including age, gender, race, marital status, housing sta-
tus, and mental health diagnoses (Tsai et al., 2014). In this case, it is unclear how
a single joint alternative hypothesis might explain differences on all of these vari-
ables, and the researchers did not attempt this type of explanation. Consequently, it
is unclear why it was necessary to adjust the alpha level on the basis of a studywise
family of tests. Rothman et al. (2008, pp. 236-237) noted a similar problem in the
field of epidemiology:

A large health survey or cohort study may collect data pertaining to many pos-
sible associations, including data on diet and cancer, on exercise and heart
disease, and perhaps many other distinct topics. A researcher can legitimately
deny interest in any joint hypothesis regarding all of these diverse topics,
instead wanting to focus on those few (or even one) pertinent to his or her
specialities. In such situations, multiple-inference procedures ... are irrelevant,
inappropriate, and wasteful of information.

In general then, researchers should not be concerned about erroneous answers
to questions that they are not asking. In other words, they should not be concerned
about the familywise error rate for a joint studywise null hypothesis that they are
not, in fact, testing. Instead, they should be concerned about the error rates for the
individual and/or joint hypotheses about which they actually make inferences (Cook
& Farewell, 1996, p. 107; Cox, 1965, p. 223; Hochberg & Tamrane, 1987, p. 6).

In some cases, the joint studywise hypothesis may subsume a collection of
hypotheses that are all derived from the same theory. In this case, researchers
may want to test the joint studywise hypothesis in order to make a statistical infer-
ence about the theory. However, as explained above, it is more appropriate to use
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conjunction testing, rather than disjunction testing, to test theories. Conjunction test-
ing does not require an alpha adjustment. However, it may suffer from low power.

The assumption that studywise error rates should be considered on an auto-
matic basis also forms part of an argument against the use of significance testing
in exploratory research situations and in favour of the preregistration of analysis
plans (e.g., de Groot, 2014; Forstmeier et al., 2017; Nosek et al., 2018, 2019, p.
816). According to this argument, the number of hypotheses that are tested or could
be tested in exploratory research situations is unknown. Consequently, the size of
the family of hypotheses that comprise the joint studywise hypothesis is unknown,
and an appropriate alpha adjustment cannot be computed to control the associated
studywise error rate (Hochberg & Tamrane, 1987, p. 6; Nosek & Lakens, 2014).
Again, this argument assumes that researchers are interested in disjunction testing
a joint studywise hypothesis that includes all of the constituent hypotheses that they
tested or could have tested in other instances of their exploratory study. However,
if researchers are not interested in a disjunction test of this joint studywise hypoth-
esis, then it becomes unnecessary for them to preregister their tests in order to con-
trol the associated studywise error rate and the vague atheoretical probability state-
ment that this error rate underwrites (e.g., “our study yielded a significant effect,
p<0.05”). Instead, it is sufficient for researchers to make their research materials
and data set publicly available (e.g., via the Open Science Framework https://osf.
io/) in order for their audience to confirm that any joint hypothesis that they dis-
junction tested includes all of the relevant constituent hypotheses (Rubin, 2017b, pp.
272-273; Rubin, 2020, 2022). Note that, in this case, although the exploratory, post
hoc disjunction testing of a series of different joint hypotheses will inflate the error
rate for the (usually irrelevant) joint studywise hypothesis, it will not inflate the error
rates for each of the specific, theoretically informative joint hypotheses because, by
definition, each error rate is limited to the constituent hypotheses within each joint
hypothesis.

Finally, the automatic consideration of studywise error rates also forms the basis
for the recommendation to limit the number of tests that are performed in any given
study (e.g., Armstrong, 2014; Cohen, 1990; Drachman, 2012; Goeman & Solari,
2014; Luck & Gaspelin, 2017; Schochet, 2009; Schulz & Grimes, 2005; Senn, 2007,
p. 150; for a review, see Frane, 2015; for a discussion, see Wilson, 1962, p. 299).
For example, in his article on multiple testing in social policy impact evaluations,
Schochet (2009) advised that “limiting the number of outcomes and subgroups...is
one of the best ways to address the multiple comparisons problem” (p. 548). Simi-
larly, in their article on multiple comparison corrections in ophthalmology research,
Stacey et al. (2012) suggested that “the best way to address the problem is to limit
the number of comparisons” (p. 1830). Again, if researchers undertake disjunction
testing of a joint hypothesis that relates to all of the variables in their study, and they
do not adjust their @ giwen: @lpha level, then the more variables that they include in
their study, the greater the probability that they will make a Type I error with respect
to the joint studywise hypothesis. However, this issue should not deter researchers
from including relevant outcome variables in their study and then adjusting their
alpha level accordingly. In addition, this issue assumes that all of the outcome vari-
ables in a study relate to the same joint hypothesis and, as discussed above, this may
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not be the case. Finally, the number of outcome variables in a study has no impact
on alpha levels that are associated with either individual testing or conjunction test-
ing (although increasing the number of variables would decrease the power of con-
junction tests). Hence, in some cases, limiting the number of tests that are conducted
in a study is unnecessary.

In summary, the usefulness of studywise error rates depends on the theoretical
and/or practical relevance of the joint studywise hypothesis. If this joint hypothesis
is relevant to the research questions under consideration, then researchers should test
it, and if they undertake a disjunction test, then they should adjust their alpha level.
However, if the joint studywise hypothesis is irrelevant, then it should not be tested,
and a corresponding alpha adjustment is not required (Cook & Farewell, 1996, p.
107; Cox, 1965, p. 223; Rothman et al., 2008, pp. 236-237; Savitz & Olshan, 1995,
p- 905; Wilson, 1962). Furthermore, if conjunction testing is used to test the joint
studywise hypothesis, then no alpha adjustment is required. Under these latter two
conditions, it is inappropriate to “count the number of tests reported in a paper and
multiply it by 0.05 to get a rough idea of the number of P values less than 0.05 that
would be expected to arise by chance alone (if no effects being tested were real)”
(Sainani, 2009, p. 1101).

7.2 Multiway ANOVAwise error rates

The automatic alpha adjustment assumption applies to not only large families
of hypotheses, such as those that comprise a joint studywise hypothesis, but also
smaller families of hypotheses, such as those tested in a multiway ANOVA or mul-
tiple linear regressions (for the same comparison, see Yekutieli et al., 2006, p. 416)
Hence, some researchers believe that it is necessary to control the multiway ANO-
VAwise error rate (e.g., Cramer et al., 2016; Kromrey & Dickinson, 1995; Luck
& Gaspelin, 2017; Rodriguez, 1997; for a more moderate positions, see An et al.,
2013; Kozak & Powers, 2017).

Consider the example that Cramer et al. (2016) used to argue that alpha adjust-
ment is necessary in exploratory multiway ANOVAs. Cramer et al. discussed a 2
(speed-stress: high/low) x 3 (age: 14-20 yrs/50-60 yrs/75-85 yrs) ANOVA that was
conducted on response time data. This ANOVA tests three hypotheses: (a) a main
effect of speed-stress, (b) a main effect of age, and (c) an interaction between speed-
stress and age. Cramer et al. argued that “the multiway ANOVA brings with it the
problem of multiple comparisons” (p. 640), because these three null hypotheses
form a joint null hypothesis. As they explained,

in an exploratory setting, all hypotheses implied by the design are considered
and tested jointly, rendering this collection of hypotheses a family; in line with
the idea that “the term ‘family’ refers to the collection of hypotheses ... that is
being considered for joint testing” (Lehmann & Romano, 2005). As a result,
we argue that a multiple comparison problem lurks in these exploratory uses
of a multiway ANOVA (p. 641).
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Certainly, in an exploratory setting, it is likely that researchers would be inter-
ested in testing all three hypotheses in this multiway ANOVA. However, in an
exploratory setting, it is also likely that researchers would not have any clear theo-
retical or practical reason for subsuming these three hypotheses under a joint ANO-
VAwise hypothesis and making a statistical inference based on disjunction tests of
this hypothesis. Consequently, in this particular example, it is unlikely that research-
ers would want to adjust their alpha level for each hypothesis in order to control the
multiway ANOVAwise error rate. Instead, it is more likely that they would use an
individual testing approach and test each of the three hypotheses (i.e., the two main
effects and the interaction effect) at their own individual, unadjusted alpha levels
(i-€., Apngividual)-

But is it ever necessary to adjust alpha in order to compensate for multiple testing
in multiway ANOVAs? One reason why researchers might consider adjusting their
alpha levels in this context is if the ANOVA tested a group of hypotheses that were
all predicted by the same theory. In this case, the researchers might want to under-
take a test of that theory in the form of a joint hypothesis. However, as explained
above, it is more appropriate to use an “all-tests-significant” conjunction approach
for theory testing than it is to use an “at-least-one-test-significant” disjunction
approach, and conjunction testing does not require an alpha adjustment. Hence, it
is unlikely that researchers would ever have reasonable grounds for adjusting their
alpha to compensate for multiple testing in a multiway ANOVA.’

To illustrate, it is useful to consider the type of inference that might be made after
correcting for multiple testing in Cramer et al.’s (2016) multiway ANOVA exam-
ple. Specifically, imagine that a group of researchers adjusted their alpha level from
0.05 to 0.015 in order to compensate for the three multiple tests that they conducted
(i.e., the two main effects and the interaction effect). Further imagine that, using
this adjusted alpha level, the researchers found a significant main effect of speed-
stress but no significant effect of age and no significant speed-stress by age interac-
tion effect. Following a disjunction decision rule, the significant speed-stress main
effect would be sufficient grounds to warrant the rejection of the joint null hypoth-
esis that “neither speed-stress nor age nor their interaction are related to response
times.” Logically, this is a correct statistical inference, because the significant speed-
stress main effect refutes this joint null hypothesis (Hewes, 2003). However, it is not
an inference that researchers are likely to be interested in making unless a theory
predicts that “either speed-stress or age or their interaction are related to response
times.” Scientific theories do not usually specify a disjunction relation between their
predictions. Instead, it is more likely that a theory would predict that “speed-stress
and age and both in combination are related to response times.” Consequently, it
would be more appropriate to test this joint hypothesis using conjunction testing.

° Multiple testing corrections may be necessary in multiway ANOVAs when a factor contains more than
two levels and multiple comparisons are conducted between those levels in order to test a joint intersec-
tion null hypothesis (Benjamini & Bogomolov, 2011; Yekutieli et al., 2006). However, in this case, fami-
lywise error rates are limited to the comparisons that are made within factors. Familywise error is not
computed across all factors in the ANOVA.
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8 Conclusions

The multiple testing literature provides plenty of advice about how to adjust alpha
levels, but it is relatively silent about when to adjust alpha levels. Some previous
work in this area has suggested that alpha adjustment is only necessary in explor-
atory research situations (e.g., Armstrong, 2014; Cramer et al., 2016; Streiner,
2015; for a review, see Frane, 2015), whereas other work has suggested that alpha
adjustment is only necessary in confirmatory research situations (e.g., Bender &
Lange, 2001; Schochet, 2009; Stacey et al., 2012; Tutzauer, 2003; Wason et al.,
2014). In this present paper, I argued that this focus on exploratory versus con-
firmatory research settings is misleading, and that what really matters is the type
of multiple testing that is employed: disjunction testing, conjunction testing, or
individual testing.

If researchers make a decision about a joint null hypothesis after rejecting
at least one (and not all) constituent null hypotheses, then an alpha adjustment
is necessary. This disjunction testing approach is most useful when researchers
aim to test a joint hypothesis without demonstrating the extent of generalisation
across constituent hypotheses.

In contrast, if researchers make a decision about a joint null hypothesis after
rejecting all of its constituent null hypotheses, then no alpha adjustment is neces-
sary. This conjunction testing approach is most useful when all of the constituent
hypotheses need to be confirmed in order to confirm the joint hypothesis.

Finally, if researchers make a decision about each null hypothesis separately,
and they do not make a decision about joint null hypotheses, then no alpha adjust-
ment is needed. Nonetheless, researchers should carefully consider the way in
which they specify their alpha level during individual testing, and they should
specify a lower alpha level when more stringent testing is required.

The above qualifications and limitations make it inappropriate for researchers
to automatically assume that alpha adjustment is necessary in the context of mul-
tiple testing. In particular, researchers should be cautious about applying default
corrections for multiple testing in relation to studywise and multiway ANOVA-
wise families of hypotheses.
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