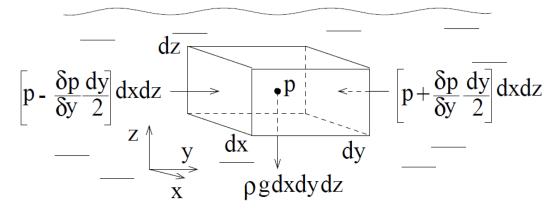


A.A. 2025-2026 ELEMENTI DI TERMOFLUIDODINAMICA PER LE MACCHINE

Lucia Parussini

Dipartimento di Ingegneria e Architettura, Università degli Studi di Trieste Via Valerio 10 - 34127 Trieste - ITALY

E-mail: lparussini@units.it



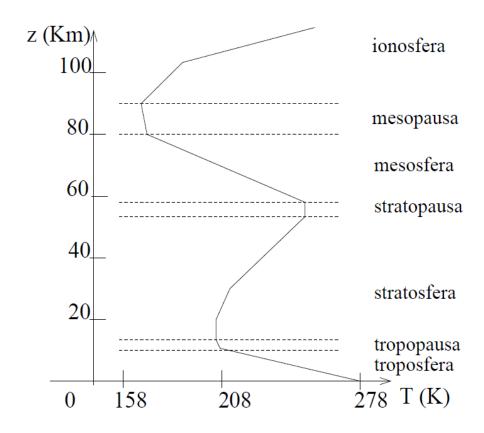
$$\left(p - \frac{\partial p}{\partial x} \frac{dx}{2}\right) dydz - \left(p + \frac{\partial p}{\partial x} \frac{dx}{2}\right) dydz = \rho dxdydza_{x} \qquad \qquad \qquad \qquad -\frac{\partial p}{\partial x} dxdydz = \rho a_{x}dxdydz$$

$$\left(p - \frac{\partial p}{\partial y} \frac{dy}{2}\right) dxdz - \left(p + \frac{\partial p}{\partial y} \frac{dy}{2}\right) dxdz = \rho dxdydza_{y} \qquad \qquad \qquad \qquad -\frac{\partial p}{\partial y} dxdydz = \rho a_{y}dxdydz$$

$$\left(p - \frac{\partial p}{\partial z}\frac{dz}{2}\right)dxdy - \left(p + \frac{\partial p}{\partial z}\frac{dz}{2}\right)dxdy - \rho dxdydzg = \rho dxdydza_z \longrightarrow -\frac{\partial p}{\partial z}dxdydz - \rho gdxdydz = \rho a_z dxdydz$$

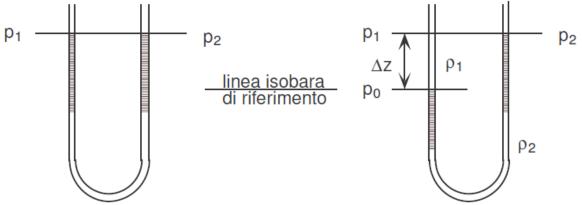
$$\mathbf{F} = m\mathbf{a} \longrightarrow \nabla p = \rho \mathbf{g} - \rho \mathbf{a} \qquad (\mathbf{a} = \mathbf{0}) \longrightarrow \nabla p = \rho \mathbf{g}$$

LEGGE DI STEVINO



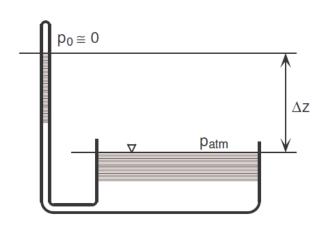
Manometro differenziale

$$p_0 = p_1 + \rho_1 g \Delta z = p_2 + \rho_2 g \Delta z$$
$$\Delta p = p_1 - p_2 = (\rho_2 - \rho_1) g \Delta z$$



Il barometro a mercurio di Torricelli non è altro che un manometro a U con un ramo chiuso e un ramo aperto all'atmosfera, nel quale la lunghezza del ramo chiuso deve essere superiore al dislivello che corrisponde alla pressione atmosferica.

$$p_{atm} = 101325 Pa = 1.01325 bar$$



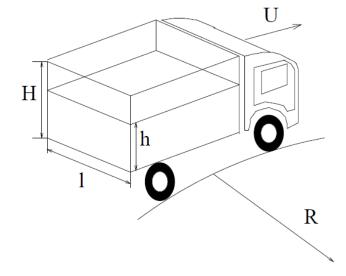
Esercizio

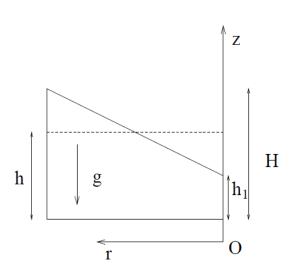
I = 2.5m

H = 2m

h = 2/3 H

R = 200m





Esercizio

 $h_1 = 22cm$

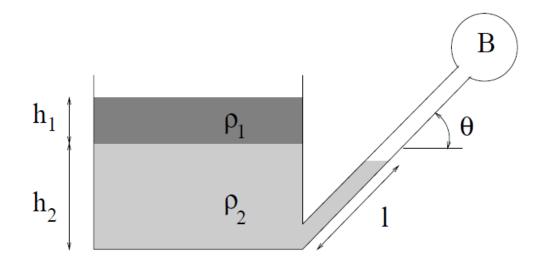
 $h_2 = 86cm$

 $\rho_1 = 10870 \text{kg/m}^3$

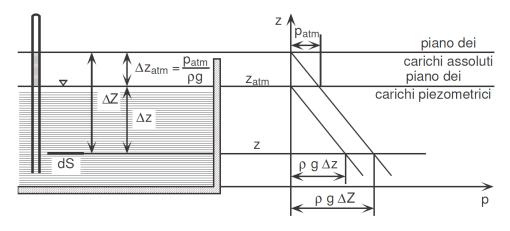
 $\rho_2 = 11030 \text{kg/m}^3$

 $p_B = 1.7atm$

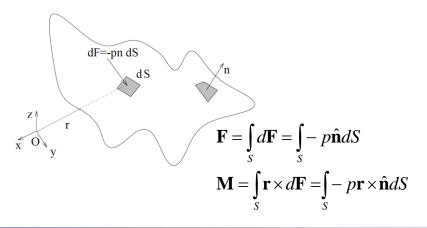
I = 0.6m



- Piano dei carichi assoluti
- Piano dei carichi piezometrici



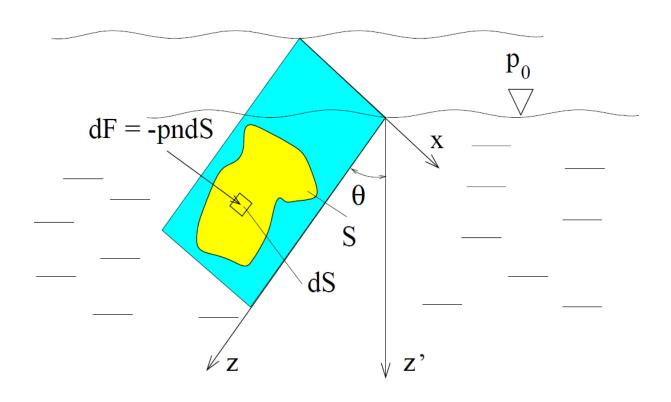
Spinta idrostatica su superfici immerse in un liquido



Diga di Hoover

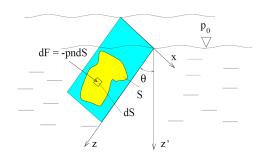
Spinta idrostatica su superfici immerse in un liquido

SPINTA SOPRA SUPERFICI PIANE



Spinta idrostatica su superfici immerse in un liquido

SPINTA SOPRA SUPERFICI PIANE



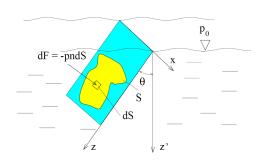
$$z' = z \cos \theta$$
 $p = \rho g z'$ per fluido incomprimibile
$$\int z dS$$
 $Z_c = \frac{s}{\varsigma}$ centroide

centroide

$$\mathbf{F} = \int_{S} d\mathbf{F} = \int_{S} -p\hat{\mathbf{n}}dS = -\int_{S} \rho gz \cos\theta \hat{\mathbf{n}}dS = -\rho g \cos\theta \int_{S} zdS \hat{\mathbf{n}} = -\rho gZ_{c} 'S \hat{\mathbf{n}}$$

Spinta idrostatica su superfici immerse in un liquido

SPINTA SOPRA SUPERFICI PIANE



$$I_x = \int_S z^2 dS$$
 momento di inerzia rispetto all'asse x

$$I_{xz} = \int_{S} xz dS$$
 momento di inerzia centrifugo rispetto agli assi x e z

$$F = \rho g Z_c$$
 'S modulo della spinta idrostatica

$$\mathbf{M} = \int_{S} \mathbf{r} \times d\mathbf{F} = \int_{S} \mathbf{r} \times (-p\hat{\mathbf{n}}dS) = \mathbf{r}_{R} \times \mathbf{F}$$

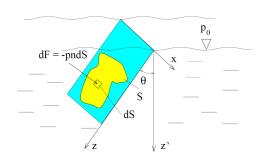
$$M_x = Z_R F = Z_R \rho g Z_c \cos \theta S$$

$$M_{x} = \int_{S} z dF = \int_{S} z \rho dS = \int_{S} z \rho gz \cos \theta dS = \rho g \cos \theta \int_{S} z^{2} dS = \rho g \cos \theta I_{x}$$

$$Z_R \rho g Z_c \cos \theta S = \rho g \cos \theta I_x \rightarrow Z_R = \frac{I_x}{Z_c S}$$

Spinta idrostatica su superfici immerse in un liquido

SPINTA SOPRA SUPERFICI PIANE



$$I_x = \int_S z^2 dS$$
 momento di inerzia rispetto all'asse x

$$I_{xz} = \int_{S} xz dS$$
 momento di inerzia centrifugo rispetto agli assi x e z

$$F = \rho g Z_c$$
 'S modulo della spinta idrostatica

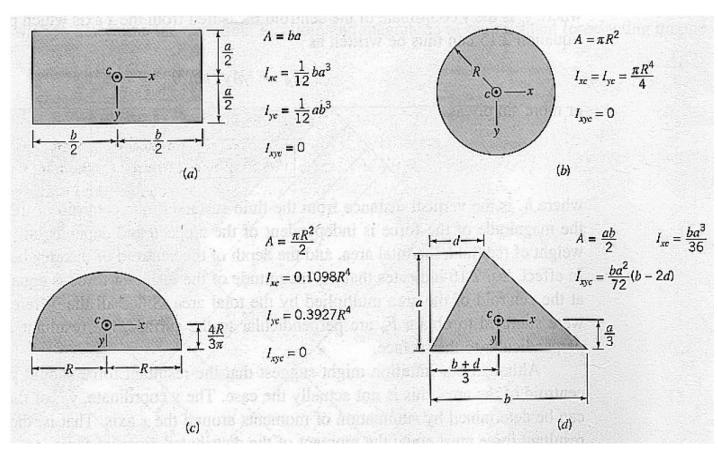
$$\mathbf{M} = \int_{S} \mathbf{r} \times d\mathbf{F} = \int_{S} \mathbf{r} \times (-p\hat{\mathbf{n}}dS) = \mathbf{r}_{R} \times \mathbf{F}$$

$$M_z = X_R F = X_R \rho g Z_c \cos \theta S$$

$$M_{z} = \int_{S} xdF = \int_{S} x\rho dS = \int_{S} x\rho gz \cos\theta dS = \rho g \cos\theta \int_{S} xzdS = \rho g \cos\theta I_{xz}$$

$$X_R \rho g Z_c \cos \theta S = \rho g \cos \theta I_{xz} \rightarrow X_R = \frac{I_{xz}}{Z_c S}$$

Spinta idrostatica su superfici immerse in un liquido



Momenti di inerzia di superficie delle sezioni più comuni

Spinta idrostatica su superfici immerse in un liquido

SPINTA SOPRA SUPERFICI PIANE

Il **teorema di Huygens-Steiner**, o teorema degli assi paralleli, permette di calcolare il momento di inerzia di un solido rispetto ad un asse parallelo a quello passante per il centro di massa.

$$I_x = I_{xC} + SZ_C^2$$

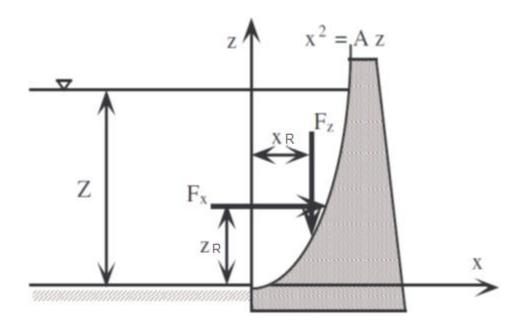
$$Z_R = \frac{I_x}{Z_C S} = \frac{I_{xC} + SZ_C^2}{Z_C S} = \frac{I_{xC}}{Z_C S} + Z_C \qquad \longrightarrow \qquad Z_R > Z_C$$

Esercizio

A = 2m

Z = 3m

Y = 1m

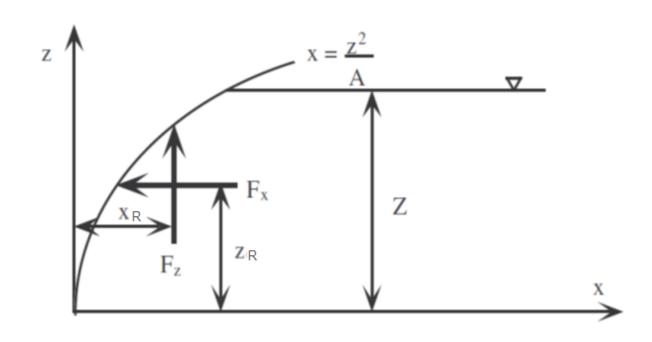


Esercizio

A = 4m

Y = 5m

Z = 4m



Spinta idrostatica su superfici immerse in un liquido

COMPONENTE VERTICALE

Caso di un liquido situato sopra una superficie curva immersa:

- uguale al peso del fluido;
- diretta verso il basso;
- passa attraverso il baricentro del fluido reale effettivamente presente.

Caso di un liquido situato sotto una superficie curva immersa:

- essere uguale al peso del fluido immaginario soprastante inserito;
- essere diretta verso l'alto;
- passare attraverso il baricentro del fluido **immaginario** non effettivamente presente.

Riassumendo, la forza verticale su una superficie curva immersa in un fluido è uguale al peso del fluido che "sta" oppure "potrebbe stare" verticalmente su di essa.

COMPONENTE ORIZZONTALE

 uguale al prodotto della proiezione S_V della superficie curva S sul piano verticale per la pressione pc all'altezza del baricentro geometrico C della proiezione S_V

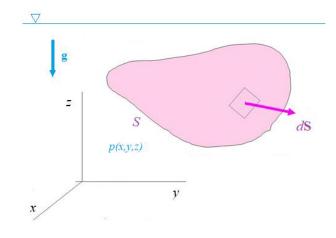
$$F_{io} = F_i \sin \alpha = pc S \sin \alpha = pc S_v$$

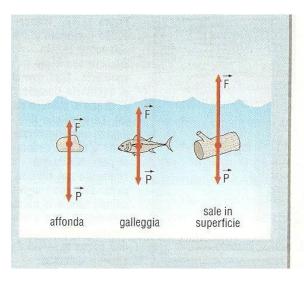
dove α è l'angolo fra la superficie S e il piano orizzontale dei carichi piezometrici.

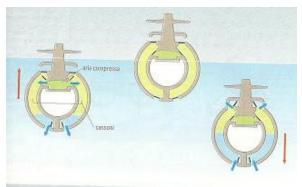
Corpi immersi

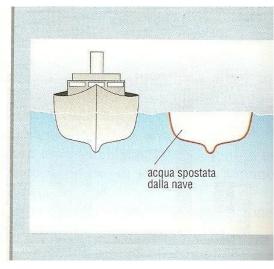
SPINTA DI ARCHIMEDE

$$\mathbf{F} = -\rho \mathbf{g} V$$



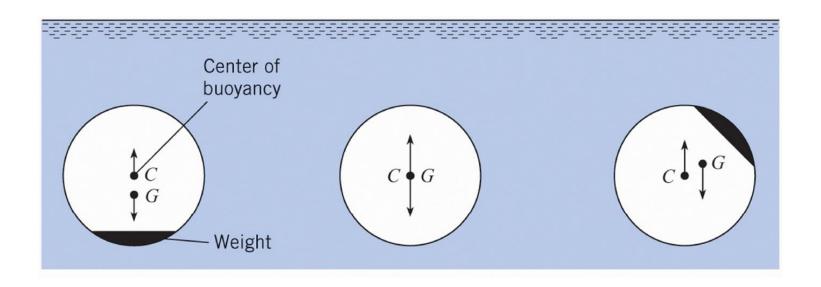




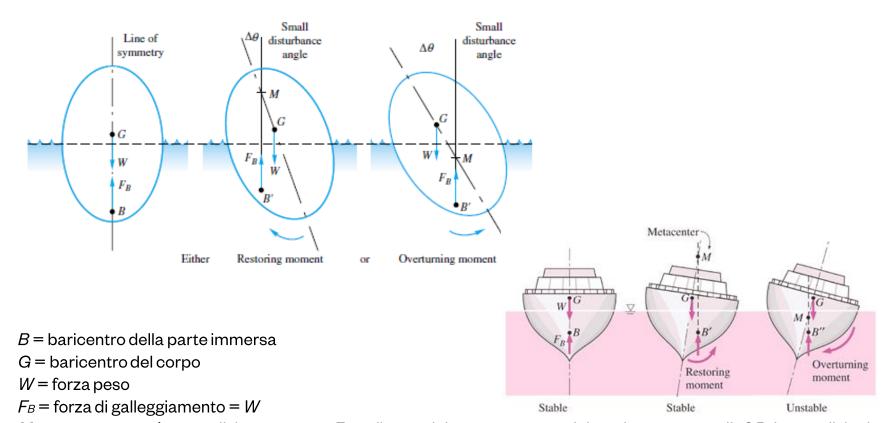


Un sottomarino può comportarsi come un pesce, che può galleggiare o affondare gonfiando o sgonfiando la vescica natatoria, variando cioè la sua densità media allagando o svuotando i cassoni

Corpi immersi



Corpi galleggianti



M= metacentro (punto di incontro tra F_B e l'asse del corpo ovvero del prolungamento di GB in condizioni d'equilibrio)

distanza GM = altezza metacentrica

GM>O equilibrio stabile, GM<O equilibrio instabile, GM=O equilibrio indifferente

Esercizio

D = 0.1 m

L = 20m

y = 15m

$$\begin{split} \rho_{acqua} &= 1000 kg/m^3 \\ \rho_{asta} &= 700 kg/m^3 \end{split}$$

