

A.A. 2025-2026 ELEMENTI DI TERMOFLUIDODINAMICA PER LE MACCHINE

Lucia Parussini

Dipartimento di Ingegneria e Architettura, Università degli Studi di Trieste Via Valerio 10 - 34127 Trieste - ITALY

E-mail: lparussini@units.it

EQUAZIONE DI BILANCIO DELLA QUANTITA' DI MOTO

La differenza fra la quantità di moto del fluido che in un tempo infinitesimo entra in un volume infinitesimo fisso nello spazio e la quantità di moto che ne esce più le forze agenti sul volume infinitesimo e sulla sua superficie esterna è rappresentata dalla quantità di moto che nello stesso tempo si accumula nello stesso volume infinitesimo.

Quantità di moto infinitesima

$$d\mathbf{Q} = dm\mathbf{u} = \begin{cases} dmu \\ dmv \\ dmw \end{cases}$$

Portata di quantità di moto infinitesima

$$d\dot{\mathbf{Q}} = \frac{d\mathbf{Q}}{dt} = \frac{dm}{dt}\mathbf{u} = dG_{m}\mathbf{u} = \begin{cases} dG_{m}u\\ dG_{m}v\\ dG_{m}w \end{cases}$$

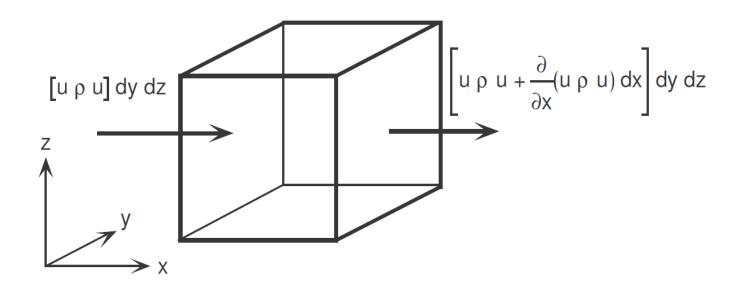
Portata massica infinitesima

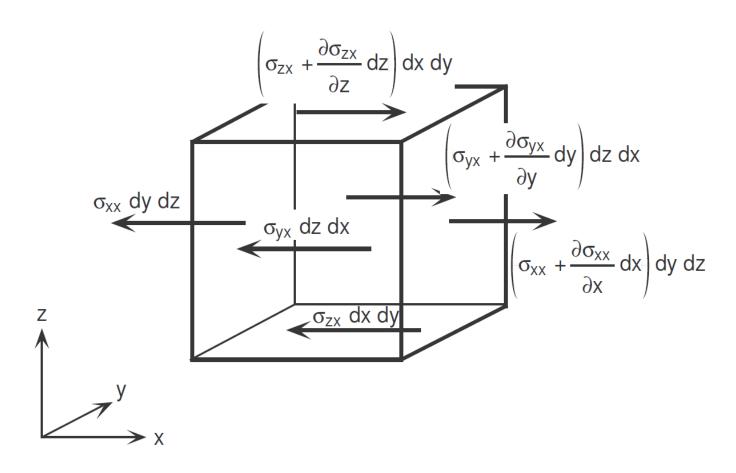
$$dG_m = \frac{dm}{dt} = \rho \mathbf{u} \cdot d\mathbf{S}$$

$$\frac{dG_{m_x} = \rho u dy dz}{d\dot{Q}_{m_x}} dG_{m_y} = \rho v dx dz dG_{m_z} = \rho w dx dy$$

$$\frac{d\dot{Q}_{m_x} = \rho u dy dz}{d\dot{Q}_{xx}} d\dot{Q}_{xy} d\dot{Q}_{xz} d\dot{Q}_{xz} d\dot{Q}_{yz} d\dot{Q}_{yz} d\dot{Q}_{yz} d\dot{Q}_{yz} d\dot{Q}_{zz} d\dot{Q}_{$$

Portata di quantità di moto passante in direzione x





Forze dovute allo stato di tensione lungo l'asse x

Forze di volume lungo l'asse x

$$F_x = F_{mx}dm = \rho F_{mx}dV$$

Quantità di moto in x accumulatasi nell'intervallo infinitesimo nel volume di controllo

$$\frac{\partial}{\partial t}(dQ_x) = \frac{\partial}{\partial t}(dmu) = \frac{\partial}{\partial t}(\rho dVu) = \frac{\partial}{\partial t}(\rho u)dV + \frac{\partial}{\partial t}(dV)(\rho u) = \frac{\partial}{\partial t}(\rho u)dV$$

Lungo l'asse x

Differenza tra portata di quantità di moto entrante e uscente dal volume di controllo infinitesimo

$$-\left(\frac{\partial(\rho uu)}{\partial x} + \frac{\partial(\rho vu)}{\partial y} + \frac{\partial(\rho wu)}{\partial z}\right)dV = -\nabla \cdot (\rho \mathbf{u}u)dV$$

Forze di superficie

$$\left(\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{yx}}{\partial y} + \frac{\partial \sigma_{zx}}{\partial z}\right) dV$$

Forze di volume

$$F_{x} = \rho F_{mx} dV$$

Quantità di moto accumulatasi nell'intervallo infinitesimo nel volume di controllo

$$\frac{\partial}{\partial t} (dQ_x) = \frac{\partial}{\partial t} (\rho u) dV$$

Lungo l'asse x

$$\frac{\partial(\rho u)}{\partial t} + \nabla \cdot (\rho \mathbf{u}u) = \left(\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{yx}}{\partial y} + \frac{\partial \sigma_{zx}}{\partial z}\right) + \rho F_{mx}$$

Essendo:
$$\frac{\partial(\rho u)}{\partial t} + \nabla \cdot (\rho \mathbf{u} u) = \rho \frac{Du}{Dt}$$

$$\rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right) = \frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{yx}}{\partial y} + \frac{\partial \sigma_{zx}}{\partial z} + \rho F_{mx}$$

Per analogia ricaviamo:

$$\rho \frac{D\mathbf{u}}{Dt} = \nabla \cdot \mathbf{\ddot{\sigma}} + \rho \mathbf{F}_{m}$$

 $\rho \frac{D\mathbf{u}}{Dt} = \nabla \cdot \mathbf{\sigma} + \rho \mathbf{F}_m \quad \text{EQUAZIONI DI} \\ \text{CONSERVAZIONE DELLA}$

In un fluido in quiete:

$$\overline{\overline{\sigma}} = -p\mathbf{I} = \begin{pmatrix} -p & 0 & 0 \\ 0 & -p & 0 \\ 0 & 0 & -p \end{pmatrix}$$

$$\overline{\sigma} = \frac{1}{3} \left(\sigma_{xx} + \sigma_{yy} + \sigma_{zz} \right) = -p$$

In un fluido in moto:

$$\overline{\overline{\mathbf{\sigma}}} = -p\mathbf{I} + \overline{\overline{\mathbf{\sigma}}}^*$$

equazione costitutiva

relazione tra il tensore deviatorico $\overline{\overline{m{\sigma}}}^*$ e il tensore delle velocità di deformazione $\overline{\dot{m{\epsilon}}}$

$$\overline{\dot{\mathbf{c}}} = \begin{pmatrix} \dot{\mathcal{E}}_{\hat{x}\hat{x}} & 0 & 0 \\ 0 & \dot{\mathcal{E}}_{\hat{y}\hat{y}} & 0 \\ 0 & 0 & \dot{\mathcal{E}}_{\hat{z}\hat{z}} \end{pmatrix}$$

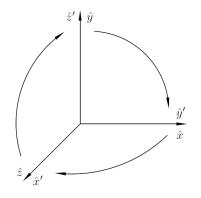
$$ar{ar{\dot{ar{\epsilon}}}} = egin{pmatrix} \dot{ar{arepsilon}}_{\hat{\imath}\hat{lpha}} & 0 & 0 \ 0 & \dot{ar{arepsilon}}_{\hat{\jmath}\hat{arphi}} & 0 \ 0 & 0 & \dot{ar{arepsilon}}_{\hat{z}\hat{z}} \end{pmatrix} \qquad ar{ar{ar{\sigma}}}^* = egin{pmatrix} \sigma^*_{\hat{\imath}\hat{\chi}} & \sigma^*_{\hat{\imath}\hat{\chi}} & \sigma^*_{\hat{\imath}\hat{z}} \ \sigma^*_{\hat{\jmath}\hat{\chi}} & \sigma^*_{\hat{\jmath}\hat{\chi}} & \sigma^*_{\hat{\jmath}\hat{z}} \ \sigma^*_{\hat{z}\hat{\chi}} & \sigma^*_{\hat{z}\hat{\chi}} & \sigma^*_{\hat{z}\hat{z}} \end{pmatrix}$$

<u>Linearità</u>: tutti gli elementi del tensore deviatorico sono funzioni lineari dei tre elementi del tensore di velocità di deformazione, ad esempio:

$$\sigma_{\hat{x}\hat{x}}^* = a_1 \dot{\varepsilon}_{\hat{x}\hat{x}} + a_2 \dot{\varepsilon}_{\hat{y}\hat{y}} + a_3 \dot{\varepsilon}_{\hat{z}\hat{z}}$$

<u>Isotropia</u>: la forma delle equazioni che legano gli elementi del tensore deviatorico agli elementi del tensore velocità di deformazione sono indipendenti dalla scelta di coordinate cartesiane, ovvero vi è l'invarianza delle relazioni costitutive rispetto a qualsiasi rotazione arbitraria del sistema di riferimento: in pratica il materiale si comporta ugualmente in tutte le direzioni uscenti dal punto considerato.

$$\sigma_{\hat{y}\hat{y}}^* = b_1 \dot{\varepsilon}_{\hat{x}\hat{x}} + b_2 \dot{\varepsilon}_{\hat{y}\hat{y}} + b_3 \dot{\varepsilon}_{\hat{z}\hat{z}}$$



$$\hat{x}' = \hat{z} \qquad \hat{u}' = \hat{w}$$

$$\hat{y}' = \hat{x} \qquad \hat{v}' = \hat{u}$$

$$\hat{z}' = \hat{y} \qquad \hat{w}' = \hat{v}$$

$$\dot{\varepsilon}_{\hat{x}'\hat{x}'} = \frac{\partial \hat{u}'}{\partial \hat{x}'} = \frac{\partial \hat{w}}{\partial \hat{z}} = \dot{\varepsilon}_{\hat{z}\hat{z}}
\dot{\varepsilon}_{\hat{y}'\hat{y}'} = \dot{\varepsilon}_{\hat{x}\hat{x}}
\dot{\varepsilon}_{\hat{z}'\hat{z}'} = \dot{\varepsilon}_{\hat{y}\hat{y}}$$

$$\sigma_{\hat{y}'\hat{y}'}^* = b_1 \dot{\varepsilon}_{\hat{x}'\hat{x}'} + b_2 \dot{\varepsilon}_{\hat{y}'\hat{y}'} + b_3 \dot{\varepsilon}_{\hat{z}'\hat{z}'} \qquad \sigma_{\hat{x}\hat{x}}^* = \sigma_{\hat{y}'\hat{y}'}^*$$

$$\sigma_{\hat{x}\hat{x}}^* = \sigma_{\hat{y}'\hat{y}'}^*$$

$$\sigma_{\hat{x}\hat{x}}^* = b_1 \dot{\varepsilon}_{\hat{z}\hat{z}} + b_2 \dot{\varepsilon}_{\hat{x}\hat{x}} + b_3 \dot{\varepsilon}_{\hat{y}\hat{y}}$$

$$\sigma_{\hat{x}\hat{x}}^* = a_1 \dot{\varepsilon}_{\hat{x}\hat{x}} + a_2 \dot{\varepsilon}_{\hat{y}\hat{y}} + a_3 \dot{\varepsilon}_{\hat{z}\hat{z}}$$

$$b_1 = a_3$$

$$b_2 = a_1$$

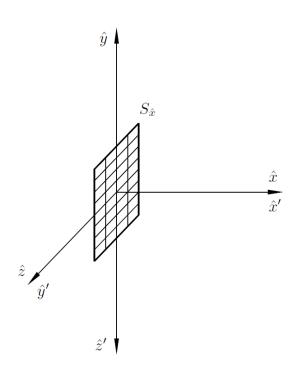
$$b_3 = a_2$$

$$\sigma_{\hat{y}\hat{y}}^* = a_3 \dot{\varepsilon}_{\hat{x}\hat{x}} + a_1 \dot{\varepsilon}_{\hat{y}\hat{y}} + a_2 \dot{\varepsilon}_{\hat{z}\hat{z}}$$

Similmente:
$$\sigma_{\hat{z}\hat{z}}^* = a_2 \dot{\varepsilon}_{\hat{x}\hat{x}} + a_3 \dot{\varepsilon}_{\hat{y}\hat{y}} + a_1 \dot{\varepsilon}_{\hat{z}\hat{z}}$$

Dimostriamo:

$$a_2 = a_3$$



$$\hat{x}' = \hat{x} \qquad \hat{u}' = \hat{u}$$

$$\hat{y}' = \hat{z} \qquad \hat{v}' = \hat{w}$$

$$\hat{z}' = -\hat{y} \qquad \hat{w}' = -\hat{u}$$

$$\hat{x}' = \hat{x} \qquad \hat{u}' = \hat{u} \\
\hat{y}' = \hat{z} \qquad \hat{v}' = \hat{w} \\
\hat{z}' = -\hat{y} \qquad \hat{w}' = -\hat{v}$$

$$\dot{\hat{\varepsilon}}_{\hat{x}'\hat{x}'} = \frac{\partial \hat{u}'}{\partial \hat{x}'} = \frac{\partial \hat{u}}{\partial \hat{x}} = \dot{\varepsilon}_{\hat{x}\hat{x}} \\
\dot{\hat{\varepsilon}}_{\hat{y}'\hat{y}'} = \frac{\partial \hat{v}'}{\partial \hat{y}'} = \frac{\partial \hat{w}}{\partial \hat{z}} = \dot{\varepsilon}_{\hat{z}\hat{z}} \\
\dot{\hat{\varepsilon}}_{\hat{z}'\hat{z}'} = \frac{\partial \hat{w}'}{\partial \hat{z}'} = \frac{\partial \hat{v}}{\partial \hat{y}} = \dot{\varepsilon}_{\hat{y}\hat{y}}$$

$$\sigma_{\hat{x}'\hat{x}'}^* = a_1 \dot{\varepsilon}_{\hat{x}'\hat{x}'} + a_2 \dot{\varepsilon}_{\hat{y}'\hat{y}'} + a_3 \dot{\varepsilon}_{\hat{z}'\hat{z}'}$$

$$\sigma_{\hat{x}'\hat{x}'}^* = a_1 \dot{\varepsilon}_{\hat{x}\hat{x}} + a_3 \dot{\varepsilon}_{\hat{y}\hat{y}} + a_2 \dot{\varepsilon}_{\hat{z}\hat{z}} = \sigma_{\hat{x}\hat{x}}^*$$

$$a_{1} = \lambda + 2\mu$$

$$a_{2} = a_{3} = \lambda$$

$$\sigma_{\hat{x}\hat{x}}^{*} = (\lambda + 2\mu)\dot{\varepsilon}_{\hat{x}\hat{x}} + \lambda\dot{\varepsilon}_{\hat{y}\hat{y}} + \lambda\dot{\varepsilon}_{\hat{z}\hat{z}}$$

$$\sigma_{\hat{y}\hat{y}}^{*} = \lambda\dot{\varepsilon}_{\hat{x}\hat{x}} + (\lambda + 2\mu)\dot{\varepsilon}_{\hat{y}\hat{y}} + \lambda\dot{\varepsilon}_{\hat{z}\hat{z}}$$

$$\sigma_{\hat{z}\hat{z}}^{*} = \lambda\dot{\varepsilon}_{\hat{x}\hat{x}} + \lambda\dot{\varepsilon}_{\hat{y}\hat{y}} + (\lambda + 2\mu)\dot{\varepsilon}_{\hat{z}\hat{z}}$$

$$\sigma_{\hat{x}\hat{x}}^* = \lambda \left(\dot{\varepsilon}_{\hat{x}\hat{x}} + \dot{\varepsilon}_{\hat{y}\hat{y}} + \dot{\varepsilon}_{\hat{z}\hat{z}} \right) + 2\mu \dot{\varepsilon}_{\hat{x}\hat{x}} = \lambda \nabla \cdot \mathbf{u} + 2\mu \dot{\varepsilon}_{\hat{x}\hat{x}} = \lambda \dot{e} + 2\mu \dot{\varepsilon}_{\hat{x}\hat{x}}$$

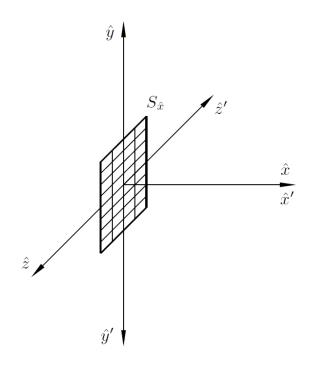
$$\sigma_{\hat{y}\hat{y}}^* = \lambda \left(\dot{\varepsilon}_{\hat{x}\hat{x}} + \dot{\varepsilon}_{\hat{y}\hat{y}} + \dot{\varepsilon}_{\hat{z}\hat{z}} \right) + 2\mu \dot{\varepsilon}_{\hat{y}\hat{y}} = \lambda \nabla \cdot \mathbf{u} + 2\mu \dot{\varepsilon}_{\hat{y}\hat{y}} = \lambda \dot{e} + 2\mu \dot{\varepsilon}_{\hat{y}\hat{y}}$$

$$\sigma_{\hat{z}\hat{z}}^* = \lambda \left(\dot{\varepsilon}_{\hat{x}\hat{x}} + \dot{\varepsilon}_{\hat{y}\hat{y}} + \dot{\varepsilon}_{\hat{z}\hat{z}} \right) + 2\mu \dot{\varepsilon}_{\hat{z}\hat{z}} = \lambda \nabla \cdot \mathbf{u} + 2\mu \dot{\varepsilon}_{\hat{z}\hat{z}} = \lambda \dot{e} + 2\mu \dot{\varepsilon}_{\hat{z}\hat{z}}$$

Dimostriamo:

$$\sigma^*_{\hat{x}\hat{y}} = 0$$

$$\sigma_{\hat{x}\hat{y}}^* = c_1 \dot{\varepsilon}_{\hat{x}\hat{x}} + c_2 \dot{\varepsilon}_{\hat{y}\hat{y}} + c_3 \dot{\varepsilon}_{\hat{z}\hat{z}}$$



$$\dot{\varepsilon}_{\hat{x}'\hat{x}'} = \frac{\partial \hat{u}'}{\partial \hat{x}'} = \frac{\partial \hat{u}}{\partial \hat{x}} = \dot{\varepsilon}_{\hat{x}\hat{x}}$$

$$\dot{x}' = \hat{x} \qquad \hat{u}' = \hat{u}$$

$$\dot{y}' = -\hat{y} \qquad \dot{v}' = -\hat{v}$$

$$\dot{\varepsilon}_{\hat{y}'\hat{y}'} = \frac{\partial \hat{v}'}{\partial \hat{y}'} = \frac{\partial \hat{v}}{\partial \hat{y}} = \dot{\varepsilon}_{\hat{y}\hat{y}}$$

$$\dot{z}' = -\hat{z} \qquad \hat{w}' = -\hat{w}$$

$$\dot{\varepsilon}_{\hat{z}'\hat{z}'} = \frac{\partial \hat{w}'}{\partial \hat{z}'} = \frac{\partial \hat{w}}{\partial \hat{z}} = \dot{\varepsilon}_{\hat{z}\hat{z}}$$

$$\sigma_{\hat{x}'\hat{y}'}^{*} = c_{1}\dot{\varepsilon}_{\hat{x}'\hat{x}'} + c_{2}\dot{\varepsilon}_{\hat{y}'\hat{y}'} + c_{3}\dot{\varepsilon}_{\hat{z}'\hat{z}'}$$

$$\sigma_{\hat{x}'\hat{y}'}^{*} = c_{1}\dot{\varepsilon}_{\hat{x}\hat{x}} + c_{2}\dot{\varepsilon}_{\hat{y}\hat{y}} + c_{3}\dot{\varepsilon}_{\hat{z}\hat{z}}$$

$$\sigma_{\hat{x}'\hat{y}'}^{*} = c_{1}\dot{\varepsilon}_{\hat{x}\hat{x}} + c_{2}\dot{\varepsilon}_{\hat{y}\hat{y}} + c_{3}\dot{\varepsilon}_{\hat{z}\hat{z}}$$

$$\sigma_{\hat{x}'\hat{y}'}^* = -\sigma_{\hat{x}\hat{y}}^*$$

$$\overline{\overline{\sigma}}^* = \begin{pmatrix} \sigma_{\hat{x}\hat{x}}^* & 0 & 0 \\ 0 & \sigma_{\hat{y}\hat{y}}^* & 0 \\ 0 & 0 & \sigma_{\hat{z}\hat{z}}^* \end{pmatrix} = \lambda \nabla \cdot \mathbf{u} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + 2\mu \begin{pmatrix} \dot{\varepsilon}_{\hat{x}\hat{x}} & 0 & 0 \\ 0 & \dot{\varepsilon}_{\hat{y}\hat{y}} & 0 \\ 0 & 0 & \dot{\varepsilon}_{\hat{z}\hat{z}} \end{pmatrix} = \lambda \nabla \cdot \mathbf{u} \mathbf{I} + 2\mu \overline{\dot{\varepsilon}}$$

$$\overline{\overline{\mathbf{\sigma}}}^* = \lambda \nabla \cdot \mathbf{u} \mathbf{I} + 2\mu \overline{\dot{\mathbf{E}}} = \lambda \nabla \cdot \mathbf{u} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + 2\mu \begin{pmatrix} \dot{\varepsilon}_{xx} & \dot{\varepsilon}_{xy} & \dot{\varepsilon}_{xz} \\ \dot{\varepsilon}_{yx} & \dot{\varepsilon}_{yy} & \dot{\varepsilon}_{yz} \\ \dot{\varepsilon}_{zx} & \dot{\varepsilon}_{zy} & \dot{\varepsilon}_{zz} \end{pmatrix}$$

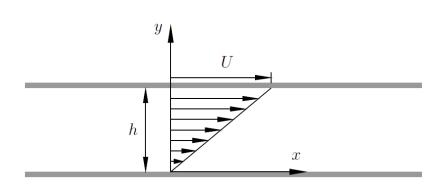
$$\overline{\overline{\mathbf{\sigma}}} = (-p + \lambda \nabla \cdot \mathbf{u})\mathbf{I} + 2\mu \overline{\dot{\overline{\mathbf{\varepsilon}}}} = (-p + \lambda \nabla \cdot \mathbf{u}) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + 2\mu \begin{pmatrix} \dot{\varepsilon}_{xx} & \dot{\varepsilon}_{xy} & \dot{\varepsilon}_{xz} \\ \dot{\varepsilon}_{yx} & \dot{\varepsilon}_{yy} & \dot{\varepsilon}_{yz} \\ \dot{\varepsilon}_{zx} & \dot{\varepsilon}_{zy} & \dot{\varepsilon}_{zz} \end{pmatrix}$$

$$\sigma_{ij} = \left(-p + \lambda \nabla \cdot \mathbf{u}\right) \delta_{ij} + \mu \left(\frac{\partial V_i}{\partial x_j} + \frac{\partial V_j}{\partial x_i}\right) \quad i, j = 1, 2, 3$$

$$\sigma_{yx} = 2\mu \dot{\varepsilon}_{yx} = 2\mu \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) = \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)$$

Significato fisico del coefficiente di viscosità:

Moto di Couette



$$u = \frac{U}{h} y$$

$$\sigma_{yx} = \mu \frac{\partial u}{\partial y} = \mu \frac{U}{h}$$

$$F = \mu \frac{U}{h} S$$

Ipotesi di Stokes: si assume che la pressione termodinamica p sia uguale in valore assoluto alla media aritmetica delle tensioni normali, nonostante una variazione di volume raggiunga un valore finito, e che le espansioni e compressioni cui un sistema è sottoposto siano trasformazioni reversibili in condizioni isoterme.

$$\overline{\boldsymbol{\sigma}} = \frac{1}{3} \left(\boldsymbol{\sigma}_{xx} + \boldsymbol{\sigma}_{yy} + \boldsymbol{\sigma}_{zz} \right) = \left(-p + \lambda \nabla \cdot \mathbf{u} \right) + \frac{2}{3} \mu \left(\dot{\boldsymbol{\varepsilon}}_{xx} + \dot{\boldsymbol{\varepsilon}}_{yy} + \dot{\boldsymbol{\varepsilon}}_{zz} \right) = -p + \left(\lambda + \frac{2}{3} \mu \right) \nabla \cdot \mathbf{u}$$

$$\overline{\overline{\sigma}}_{ij} = -\left(p + \frac{2}{3}\mu\nabla\cdot\mathbf{u}\right)\delta_{ij} + \mu\left(\frac{\partial V_i}{\partial x_j} + \frac{\partial V_j}{\partial x_i}\right) \quad i, j = 1, 2, 3$$

$$\rho \frac{D\mathbf{u}}{Dt} = \nabla \cdot \mathbf{\ddot{\sigma}} + \rho \mathbf{F}_m$$

$\rho \frac{D\mathbf{u}}{Dt} = \nabla \cdot \mathbf{\sigma} + \rho \mathbf{F}_m$ EQUAZIONI DI CONSERVAZIONE DELLA QUANTITA' DI MOTO

$$\rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right) = \frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{yx}}{\partial y} + \frac{\partial \sigma_{zx}}{\partial z} + \rho F_{mx}$$

$$\rho \left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} \right) = \frac{\partial \sigma_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + \frac{\partial \sigma_{zy}}{\partial z} + \rho F_{my}$$

$$\rho \left(\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} \right) = \frac{\partial \sigma_{xz}}{\partial x} + \frac{\partial \sigma_{yz}}{\partial y} + \frac{\partial \sigma_{zz}}{\partial z} + \rho F_{mz}$$

Per le ipotesi di Stokes:

$$\sigma_{xx} = -p + 2\mu \frac{\partial u}{\partial x} - \frac{2}{3}\mu \nabla \cdot \mathbf{u} \qquad \sigma_{xy} = \sigma_{yx} = \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)$$

$$\sigma_{yy} = -p + 2\mu \frac{\partial v}{\partial y} - \frac{2}{3}\mu \nabla \cdot \mathbf{u} \qquad \sigma_{yz} = \sigma_{zy} = \mu \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right)$$

$$\sigma_{zz} = -p + 2\mu \frac{\partial w}{\partial z} - \frac{2}{3}\mu \nabla \cdot \mathbf{u} \qquad \sigma_{zx} = \sigma_{xz} = \mu \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right)$$

$$\rho \frac{Du}{Dt} = -\frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left(2\mu \frac{\partial u}{\partial x} - \frac{2}{3}\mu \nabla \cdot \mathbf{u} \right) + \frac{\partial}{\partial y} \left(\mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right) + \frac{\partial}{\partial z} \left(\mu \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \right) + \rho F_{mx}$$

$$\rho \frac{Dv}{Dt} = -\frac{\partial p}{\partial y} + \frac{\partial}{\partial x} \left(\mu \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) \right) + \frac{\partial}{\partial y} \left(2\mu \frac{\partial v}{\partial y} - \frac{2}{3}\mu \nabla \cdot \mathbf{u} \right) + \frac{\partial}{\partial z} \left(\mu \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) \right) + \rho F_{my}$$

$$\rho \frac{Dw}{Dt} = -\frac{\partial p}{\partial z} + \frac{\partial}{\partial x} \left(\mu \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right) \right) + \frac{\partial}{\partial y} \left(\mu \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right) \right) + \frac{\partial}{\partial z} \left(2\mu \frac{\partial w}{\partial z} - \frac{2}{3}\mu \nabla \cdot \mathbf{u} \right) + \rho F_{mz}$$

Equazione di continuità:

$$\frac{D\rho}{Dt} + \rho \nabla \cdot \mathbf{u} = 0$$

Equazione di conservazione dell'energia:
$$\rho \frac{D}{Dt}(c_pT) - \dot{q} - \lambda \Delta T - \frac{Dp}{Dt} - \mu \Phi = 0$$

Equazione di stato dei gas:

$$\frac{p}{\rho} = RT$$

Coefficiente di viscosità dinamica:

$$\mu = f(T)$$

Condizioni al contorno

Condizioni iniziali

Per flussi incomprimibili:

Equazione di continuità:

$$\frac{D\rho}{Dt} + \rho \nabla \cdot \mathbf{u} = 0$$

$$\nabla \cdot \mathbf{u} = 0$$

Equazione di conservazione dell'energia:
$$\rho \frac{D}{Dt}(c_pT) - \dot{q} - \lambda \Delta T - \frac{Dp}{Dt} - \mu \Phi = 0$$

Equazione di stato dei gas:

$$\frac{p}{\rho} = RT$$

Coefficiente di viscosità dinamica:

$$\mu = f(T)$$

Condizioni al contorno

Condizioni iniziali

Per flussi incomprimibili e isotermi:

Equazione di continuità:

$$\nabla \cdot \mathbf{u} = 0$$

Equazione di conservazione dell'energia:
$$\rho \frac{D}{Dt}(c_pT) - \dot{q} - \lambda \Delta T - \frac{Dp}{Dt} - \mu \Phi = 0$$

Coefficiente di viscosità dinamica:

$$\mu = f(T)$$

Condizioni al contorno

Condizioni iniziali

Per flussi incomprimibili e isotermi:

$$\rho \frac{Du}{Dt} = -\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + \rho F_{mx}$$

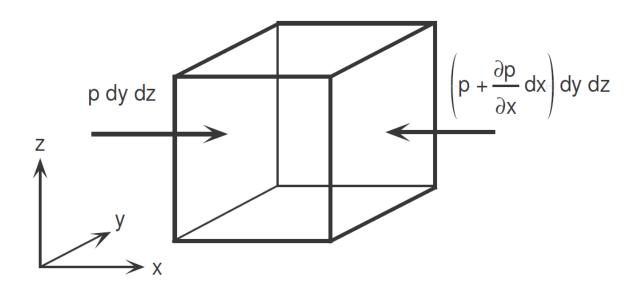
$$\rho \frac{Dv}{Dt} = -\frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right) + \rho F_{my}$$

$$\rho \frac{Dw}{Dt} = -\frac{\partial p}{\partial z} + \mu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right) + \rho F_{mz}$$

$$\frac{\partial \mathbf{u}}{\partial t} + \rho u \frac{\partial \mathbf{u}}{\partial x} + \rho v \frac{\partial \mathbf{u}}{\partial y} + \rho w \frac{\partial \mathbf{u}}{\partial z} = -\nabla p + \mu \Delta \mathbf{u} + \rho \mathbf{F}_{m}$$
termine instazionario termine convettivo termine viscoso

Equazioni di Eulero

Forze di pressione lungo l'asse x (per un *flusso non viscoso* sono le uniche forze di superficie)



Equazioni di Eulero

$$\frac{\partial}{\partial t}(\rho u) + \nabla \cdot (\mathbf{u}\rho u) = -\frac{\partial p}{\partial x} + \rho F_{mx}$$

Analogamente:

$$\frac{\partial}{\partial t}(\rho v) + \nabla \cdot (\mathbf{u}\rho v) = -\frac{\partial p}{\partial y} + \rho F_{my}$$

$$\frac{\partial}{\partial t}(\rho w) + \nabla \cdot (\mathbf{u} \rho w) = -\frac{\partial p}{\partial z} + \rho F_{mz}$$

$$\rightarrow$$

$$\frac{\partial}{\partial t}(\rho \mathbf{u}) + \nabla \cdot (\mathbf{u}\rho \mathbf{u}) = -\nabla p + \rho \mathbf{F}_m$$

Equazioni di Eulero

$$\frac{\partial}{\partial t}(\rho \mathbf{u}) + \nabla \cdot (\mathbf{u} \rho \mathbf{u}) = \rho \frac{D\mathbf{u}}{Dt}$$

$$\rho \frac{D\mathbf{u}}{Dt} = -\nabla p + \rho \mathbf{F}_m$$

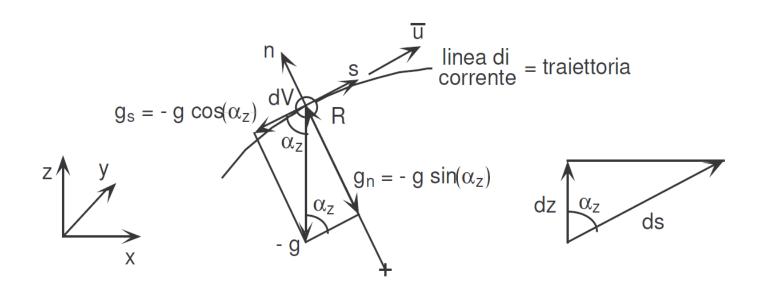
$$\rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right) = -\frac{\partial p}{\partial x} + \rho F_{mx}$$

$$\rho \left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} \right) = -\frac{\partial p}{\partial y} + \rho F_{my}$$

$$\rho \left(\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} \right) = -\frac{\partial p}{\partial z} + \rho F_{mz}$$

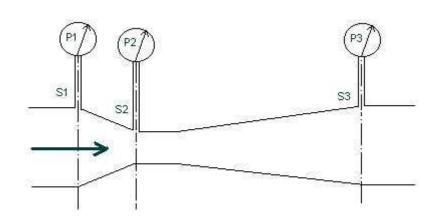
Equazione di Bernoulli

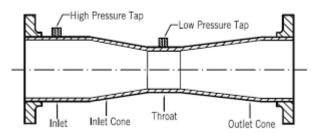
Particella di fluido in moto lungo una linea di corrente



Equazione di Bernoulli

Tubo di Venturi





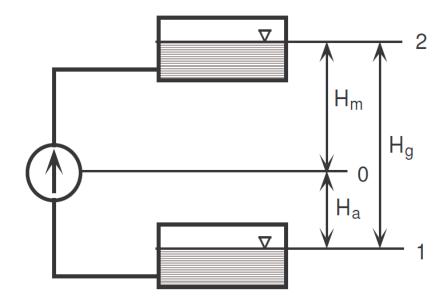
Equazione di Bernoulli

Tubo di Pitot-Prandtl



Teorema di Bernouilli modificato

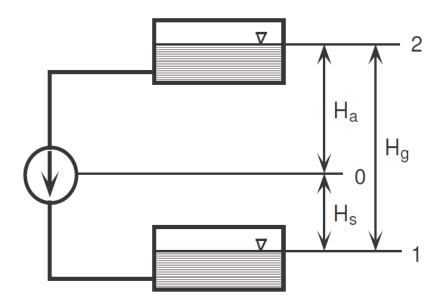
PREVALENZA DI UN IMPIANTO



Schema di un impianto idraulico di sollevamento.

Teorema di Bernouilli modificato

SALTO DI UN IMPIANTO



Schema di un impianto idraulico di caduta.